
Strength in Numbers:
Robust Tamper Detection in Crowd Computations

Bimal Viswanath
MPI-SWS

bviswana@mpi-sws.org

Muhammad Ahmad Bashir
Northeastern University
ahmad@ccs.neu.edu

Muhammad Bilal Zafar
MPI-SWS

mzafar@mpi-sws.org

Simon Bouget
IRISA/INRIA Rennes
simon.bouget@irisa.fr

Saikat Guha
Microsoft Research India

saikat@microsoft.com

Krishna P. Gummadi
MPI-SWS

gummadi@mpi-sws.org

Aniket Kate
Purdue University

aniket@purdue.edu

Alan Mislove
Northeastern University
amislove@ccs.neu.edu

ABSTRACT
Popular social and e-commerce sites increasingly rely on
crowd computing to rate and rank content, users, products
and businesses. Today, attackers who create fake (Sybil)
identities can easily tamper with these computations. Exist-
ing defenses that largely focus on detecting individual Sybil
identities have a fundamental limitation: Adaptive attack-
ers can create hard-to-detect Sybil identities to tamper ar-
bitrary crowd computations.

In this paper, we propose Stamper, an approach for detect-
ing tampered crowd computations that significantly raises
the bar for evasion by adaptive attackers. Stamper design
is based on two key insights: First, Sybil attack detection
gains strength in numbers: we propose statistical analysis
techniques that can determine if a large crowd computation
has been tampered by Sybils, even when it is fundamentally
hard to infer which of the participating identities are Sybil.
Second, Sybil identities cannot forge the timestamps of their
activities as they are recorded by system operators; Stam-
per analyzes these unforgeable timestamps to foil adaptive
attackers. We applied Stamper to detect tampered computa-
tions in Yelp and Twitter. We not only detected previously
known tampered computations with high accuracy, but also
uncovered tens of thousands of previously unknown tam-
pered computations in these systems.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences; K.6 [Management of Computing and Informa-
tion Systems]: Security and Protection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
COSN’15, November 2–3, 2015, Palo Alto, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3951-3/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2817946.2817964.

General Terms
Security, Design, Algorithms, Measurement

Keywords
Sybil attacks; crowd computing; social networks; Twitter;
Yelp

1. INTRODUCTION
Popular social networking and e-commerce sites are increas-
ingly employing crowd computing to rate and rank content,
users, products, and businesses. In such systems, crowd
computations involve polling the “wisdom” or “opinions” of
crowds—the users of the system—to provide a variety of
recommendation services to their customers. For example,
social networking and media sites like Facebook, Twitter,
YouTube, and Reddit recommend content (be it business
pages, news stories, videos, photos, or web pages) based
on the number of users who posted, endorsed, or liked the
content. Similarly, e-commerce sites like Amazon and eBay
rely on their users to rate and review products and sellers.
Some online sites like Yelp and TripAdvisor are dedicated
to crowd-sourcing the rating of businesses.

In many crowd computation systems, users operate be-
hind easy-to-create weak identities and consequently, they
are vulnerable to Sybil attacks [18], where an attacker cre-
ates multiple fake identities with the goal of manipulating
the aggregate opinion of the crowd. There are thriving un-
derground markets for launching such tampering attacks on
the crowd-sourcing sites mentioned above [27, 32, 35]; typ-
ically, the more popular a site, the greater the frequency
and magnitude of such attacks. Existing Sybil defenses
have mostly taken the approach of detecting individual
Sybils [15, 36, 37, 41], enabling the operator to either sus-
pend the Sybils or nullify their contribution to the crowd
computation.

In this paper, we begin by highlighting a fundamental lim-
itation of defenses based on detecting Sybil identities: when
a weak identity has limited or no activity history (e.g., inter-
actions with other identities or information they post), the
defenses lack sufficient information to determine whether the
identity is a Sybil or an inactive non-Sybil. This limitation
allows adaptive attackers to create and stockpile large num-

ber of Sybil identities with limited prior activity and use
them for tampering crowd computations. If the tampered
computations involve legitimate content (e.g., promoting a
real business on Yelp for a fee, as opposed to promoting mal-
ware links on Twitter), it can be hard to detect the tamper-
ing (because the act of recommending a real business is by
itself not a sign of Sybil activity).

Given the basic limitation of existing defenses, in this pa-
per, we propose to address Sybil attacks on crowd computa-
tions, by moving from detecting individual Sybil identities to
directly detecting crowd computations that have significant
levels of Sybil identity participation. Our approach, Stamper,
is based on a realization that even when it is fundamentally
hard to differentiate between individual Sybil and non-Sybil
identities, large groups of Sybil and non-Sybil identities can
be differentiated. Our approach is based on two key insights:
Key insight 1: If an attacker tampers a computation using
a large number of Sybil identities with limited activity, it
would result in a distributional anomaly or a statistically
significant deviation in the distribution of the activity-levels
(e.g., number of reviews posted or number of friends formed)
of the identities participating in the computation. By an-
alyzing the statistical distributions of the activity-levels of
all the identities participating in a crowd computation, we
can easily detect such tampering. While there is prior work
on detecting malicious activity in crowd computations on e-
commerce sites [19,40] and peer-to-peer search networks [28]
that looks for anomalies or specific abnormal patterns in
feature distributions (where a feature can be some attribute
associated with the user activity), our work stands out by
providing improved resilience against adaptive attackers.
Key insight 2: To evade detection by the above insight, a
determined attacker would have to forge the activities of the
Sybil identities under her control to match the distribution
of the activity-levels of non-Sybil identities. To be robust
against such adaptive attackers, we employ a novel method:
we leverage the key observation that even as the attack-
ers forge the activities of their identities, they cannot forge
the timestamps of their activities (e.g., join date or friend
link creation time). The timestamp information is typically
recorded by operators for all activities of all identities in
the system. By analyzing the statistical distributions of the
times when the activity-levels of identities have changed, we
can significantly raise the bar for evading detection by adap-
tive attackers (see Section 3.3).

Another distinguishing feature of Stamper’s tamper de-
tection is that it is agnostic to specific attacker strategies:
Unlike existing Sybil detection approaches, Stamper does not
make specific assumptions about attacker behaviors; instead
it uses anomaly detection to detect tampering of any kind.
As a result, Stamper can detect computations manipulated
by a variety of different attacker strategies, and site opera-
tors can choose to further investigate the identities partic-
ipating in computations flagged by Stamper to detect new
and yet undiscovered Sybil identities and attack strategies.

We demonstrate the utility and practicality of Stamper ap-
proach by evaluating it over data gathered from two widely-
used crowd computing systems: Yelp and Twitter. In the
case of Yelp, we evaluate accuracy of Stamper in detecting
known tampered computations (already identified by Yelp).
We demonstrate that Stamper can detect businesses with
highly tampered reviews, independently of the strategies at-
tackers used to manipulate the reviews. Using the Twit-

ter dataset, we demonstrate how a site operator can apply
Stamper to detect thousands of previously unknown tam-
pered computations in which Sybil identities were used to
boost user popularity. Finally, in section 6 we present a
publicly accessible service designed using Stamper to detect
tweet content in Twitter with tampered popularity.

2. RELATED WORK AND MOTIVATION

Weak identities and Sybil attacks The systems that
Stamper targets allow users to create identities, and re-
quire all interactions to be conducted via these identities.
Many systems do not require that identities be certified by
a trusted authority (to lower the sign-on overheads), and in-
stead only require identities to be created with few creden-
tials (typically, an email address and a solved CAPTCHA).
Such identities, known as weak identities, are the vector for
Sybil attacks, as the small amount of work required to cre-
ate an additional identity makes it possible for an attacker
to create many Sybils. Recent studies show that there are
thriving underground “blackmarket” services, where human
users or bots can be “hired” to create fake identities [27,39].
These Sybil identities are then profitably used to manipu-
late crowd-sourced information, such as followers in Twit-
ter [4, 33], reviews in Yelp [3], or content likes in Face-
book [2, 35].

Limitations with detecting individual Sybil identi-
ties The traditional approach to detect if a computation
is manipulated involves determining which of the participat-
ing identities are Sybils. Identities detected as Sybils are
then suspended and their contributions to computations are
nullified.

Significant recent research has focused on identifying Sybil
identities in the system. A large body of work applied ma-
chine learning techniques to distinguish between behaviors
(activities and profile characteristics) of Sybil and non-Sybil
identities [12,26,37,38]. While most approaches in this space
use supervised machine learning schemes, work by Wang
et al. [37] and Viswanath et al. [35] proposed unsupervised
learning schemes to detect Sybil identities. Another body of
work has focused on detecting individual Sybil identities by
leveraging the structure of the social network graphs formed
by Sybils and non-Sybil connecting to one another [36].

However, all these approaches to detect Sybil identities
suffer from a fundamental limitation: because weak identi-
ties are not backed by some external trusted authority, at
their core, all Sybil detection schemes have to rely on ana-
lyzing an identity’s activities (e.g., interactions with other
identities or information they post) to determine if an iden-
tity is Sybil. As a result, if an identity has limited or no
activity, the schemes lack sufficient evidence to determine if
the identity is Sybil or non-Sybil. Studies have shown that
many honest users create identities in online systems, but
rarely use them [5].

Attackers can take advantage of the above limitations of
Sybil detection schemes to create hard-to-detect Sybil identi-
ties with only legitimate or limited past activity. An attacker
could stockpile a large number of accounts over a period of
time, which can later be used to launch hard-to-detect at-
tacks on computations.

Strength in numbers Given the inherent difficulty in
determining whether an individual identity is Sybil, we pro-

pose to shift the focus to detecting whether a group of iden-
tities participating in a computation are likely to have Sybil
participants.

Few works have explored techniques for preventing Sybil-
tampering of computations directly. Prominent among them
are DSybil [42], SumUp [34], and Iolaus [23], which work
by preventing or discounting votes based on trusted guides
(DSybil) or the social network (SumUp and Iolaus). Unfor-
tunately, these systems rely on assumptions that do not al-
ways hold in a generic crowd-sourcing system. For example,
many crowd-sourcing systems do not have social network
links interconnecting identities (as assumed by SumUp and
Iolaus) and in many systems, a majority of users do not rate
many items (preventing the assignment of guides in DSybil).

Prior work has also examined detecting product rating
manipulation in e-commerce sites [19, 40] and manipulation
of authority scores in peer-to-peer Web search networks [28].
Among them, the most related piece of work is by Feng et
al. [19] which explores detecting product rating manipula-
tion in online market places by comparing the distribution
of product rating scores of an item to known-good distribu-
tions. However, unlike Stamper, the approach by Feng et al.
is vulnerable against adaptive attackers as it only consid-
ers distribution of product rating scores which can be easily
forged to evade detection.

Two other works, SynchoTrap [16] and CopyCatch [13]
also focused on analyzing behavior of a group of malicious
identities. However, they have a similar limitation where
they focus on detecting a specific attack behavior: loosely
synchronized actions, where a group of malicious identities
behave similarly at around the same time. For example,
a group of Sybil identities liking a set of Facebook pages
at around the same time can be potentially detected by
such schemes. In contrast, Stamper does not make any as-
sumptions about specific attacker strategies and thus, has
the potential to detect computations tampered using diverse
strategies.

3. Stamper: KEY INSIGHTS

3.1 System model and goal
We consider a crowd computing system (e.g., Twitter, Yelp,
Facebook) that uses weak identities for its users. A crowd
computation can be voting on a given business by a set of
identities in Yelp, or promoting a tweet or following a certain
identity by a set of identities in Twitter. A site operator
is interested in defending against Sybil attacks on crowd
computations within the system.

Goal For each computation, the goal of the system oper-
ator is to determine whether the set of identities participat-
ing in the computation included a sizeable fraction of Sybil
identities. Stamper design focuses on the core challenge of
robustly detecting tampered computations. The site-specific
actions operators might take against the tampered computa-
tions are not integral to Stamper design. An operator might
choose to suspend (remove) the computations detected as
tampered or display the computations at the bottom in site-
search results or attach warning labels to them.

Reputation scores We assume that each identity in the
system is associated with one or more reputation scores that
are computed by the operators based on the identity’s past

activity. Reputation scores can take a variety of forms, and
can be computed or obtained by the operators based on
“certifications or endorsements”, “proofs-of-work”, “activity
history”, or a combination of these. For example, a reputa-
tion score could be the number of social network “friends”
the identity has in the system, the number of messages it
has posted, or the number of endorsements it received from
its friends for its work. Given that weak identities are not
backed by external trust, reputation scores reflect the sys-
tem operators’ estimation of trust they would place in the
identities in the system, i.e., it is less likely (probable) that
identities with higher reputation would misbehave (or be
Sybils). Note that by definition all newly created identities
(Sybils or non-Sybils) will have zero reputation as they have
no prior activity.

Threat model We assume that an attacker can create
arbitrary number of fake identities in the existing system.
However, the attacker does not have unbounded economic
resources to create and sustain Sybil identities on every
newly created site on the Internet. We allow reputation
scores to be forged, i.e., attackers may manipulate the dif-
ferent reputation scores of malicious identities they control
with different amounts of effort. However, we assume that
the site operator keeps detailed historical records of the rep-
utation scores of identities over time.1 The attacker can also
obtain the complete historical records of identities’ reputa-
tion scores; however, the attacker cannot go back in time
and tamper with those records.

3.2 Detecting tampered computations
We describe how Stamper detects tampered computations in
two steps below. We first tackle simple attackers and then
consider stronger adaptive attackers.

Step 1 In practice, the distributions of the reputation
scores of Sybil and non-Sybil identities tend to be quite dif-
ferent. In other words, some attackers today do not expend
significant effort to make their Sybil identities similar to
non-Sybil identities. Sybil identities as a group, particularly
those with limited or no activity, tend to skew towards low
reputation scores (as reputation scores are computed based
on the identities’ activities on the site), while the non-Sybil
identities would naturally span a full spectrum of low to high
reputation scores.

Insight 1 Due to the above observation, the participa-
tion of Sybil identities in a computation tends to distort the
reputation score distributions of the nodes participating in
the computation. Figure 1 illustrates this insight. It shows
the reputation scores for untampered and tampered compu-
tations in the Twitter network.2 The participation of Sybil
identities tends to skew the reputation scores towards lower
values and has the overall effect of decreasing the entropy in
the distribution of scores. It is this difference in reputation
score distributions that Stamper leverages to detect Sybil
tampering.

We stress that the above insight allows us to determine
that a computation has been tampered with even when we
cannot determine which of the identities are Sybil. In Fig-

1Many site operators today including Facebook and Twitter
are known to keep detailed historical records of identities.
2These are samples of real untampered and tampered com-
putations in Twitter flagged by Stamper (See Section 5.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

F
ra

c
.

o
f

p
a

rt
ic

ip
a

n
ts

(C
D

F
)

Reputation score (number of Twitter followers)

Untampered #1
Untampered #2

Tampered

Figure 1: Reputation score (based on number of follow-
ers) distribution of tampered vs untampered computations.
Most participants in the tampered computation have a low
reputation score.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

01/2006

01/2007

01/2008

01/2009

01/2010

01/2011

01/2012

01/2013

01/2014

F
ra

c
.
o

f
p

a
rt

ic
ip

a
n

ts
(C

D
F

)

Join date of participants

Untampered #1
Untampered #2

Tampered

Figure 2: Join date distribution of participants of tampered
and untampered computation.

ure 1, even as we infer that the skew towards lower repu-
tation scores is due to Sybils, we cannot tell which of the
identities with low reputation scores are Sybils as there do
exist non-Sybil identities with such low reputation scores as
well.

However, this insight alone would not allow us to design an
approach that is robust against an adaptive attacker. For ex-
ample, a determined attacker could expend additional effort
to manipulate the reputation scores of her Sybil identities
to match the distribution of reputation scores of non-Sybil
identities.

Step 2 Even when an attacker can forge a malicious iden-
tity’s reputation, she can only forge the present and future
reputation scores of the identity, but she cannot go back in
time and forge the past history (i.e., temporal evolution) of
the identity’s reputation as recorded by the operator. Thus,
the distribution of temporal evolution of forged reputation
scores of Sybils tend to exhibit distributions that are quite
different than non-Sybils’.

Insight 2 To detect potential forging of reputations of
Sybil identities by an adaptive attacker, we analyze the tem-
poral evolution of reputation scores of the identities partic-
ipating in the computation. Specifically, we examine the
distributions of times (i.e., dates) when the identities have
achieved a certain percentile (e.g., 0%, 10%, 25%, 50%) of
their current reputation score.

Figure 2 illustrates this insight. It shows the times when
the identities participating in untampered and tampered
computations began to acquire reputation in the system
(i.e., their join date).2 The Sybil identities have acquired
most of their reputation within the short period of time
close to their participation date in the computation, while

 0

 0.2

 0.4

 0.6

 0.8

 1

0
2
/2

0
0
7

0
1
/2

0
0
8

1
2
/2

0
0
8

1
2
/2

0
0
9

1
1
/2

0
1
0

1
1
/2

0
1
1

1
0
/2

0
1
2

F
ra

c
ti

o
n

 o
f

ID
s

 c
re

a
te

d

a
t

T
 t

h
a

t
a

re
 s

u
s

p
e

n
d

e
d

ID creation date (T)

Figure 3: Growth in the fraction of identities in Twitter that
are eventually suspended.

the non-Sybil identities have acquired their reputations over
a much longer period of time. In fact, a significant fraction
of untampered computations have identities with reputation
histories dating back to the inception of the Twitter site (in
2006). It is this difference in the distributions of tempo-
ral evolution of reputation scores of identities that Stamper
leverages to detect Sybil tampering of a computation.

3.3 Robustness and Limitations
In this section, we discuss how Stamper raises the bar for
evasion by adaptive attackers and also point out limitations
against adaptive attackers.

Robustness 1: Can an adaptive attacker create Sybil
identities whose reputation histories match those of
non-Sybils? To tamper a computation without being
caught by Stamper, an attacker would have to create new
Sybil identities and groom their reputations from the in-
ception of the system, i.e., when non-Sybils started being
created.

In existing systems like Facebook, Twitter, or Yelp, the
attacker is already too late to go back in time and forge
identities whose reputation histories date back to the time
when these sites came into existence. Figure 3 shows the
growth in suspended identities in Twitter, since the time of
its inception.3 In the first two years, Twitter witnessed very
few (0.036%) malicious identities. However, once Twitter
reached a critical mass of users, it started attracting more
attackers and the percentage of malicious identities sharply
rises to as high as 40% of all identities created on a single
day. So, it is hard for any attacker to gain control of Sybil
identities with reputation histories dating back to the early
years of these existing systems.

An attacker still has an opportunity to create and groom
Sybil identities on newly (or yet to be) created online sites.
However, the attacker cannot accurately predict which of
the several new online sites are likely to succeed and acquire
critical mass of users in the long run. So the attacker would
have to create Sybil identities on all online sites from their
inception to be prepared to launch an attack on any single
site in the future. Considering the large number of new
online sites that are created everyday, we argue that such
attacks are not economically viable in practice.

Robustness 2: Can an adaptive attacker create
“sleeper cells” to launch an attack in the distant fu-

3We crawled 2.3M Twitter identities that joined Twitter
at different points of time since its inception. Twitter API
allows us to figure out which identities have been suspended.

ture? A determined attacker can start creating “sleeper”
Sybil identities on popular sites like Facebook and Twitter
today, with the goal of launching an attack several years
down the road. While such attacks are not impossible, we
argue that Stamper significantly raises the costs for the at-
tacker making it economically non-viable. Since Stamper
checks for temporal evolution of reputation scores, an at-
tacker would need to actively groom the “sleeper” identities
to evolve their reputation scores similar to how non-Sybils
reputation scores evolve. As different reputation scores of
user identities in different systems evolve in complex, un-
predictable ways, an attacker would have to constantly track
and mimic these changes. The difficulty of grooming such
identities would be reflected in their cost for the attack.

To test our hypothesis about attacker costs for creating
identities with high reputation histories, we collected pricing
information for Sybil identities in Twitter and Facebook, by
manually inspecting postings in 8 online black-market ser-
vices (that we found via google search), where such identities
are sold. A Facebook (Twitter) identity with no reputation
costs $0.51 ($0.09), while those with 4 years of age cost $15
($1) and those with 5000 (200) real and active friends (fol-
lowers) costs $150 ($5). While the data we gathered does
not constitute a rigorous proof, it indicates that identities
with long running and high reputations could cost 10 to 100
times or more than newly created Sybil identities with no
reputation.

Robustness 3: Can Stamper fundamentally alter the
arms race between Sybil attackers and defenses?
The root cause of arms race between Sybil attackers and
defenses today is that every time a Sybil identity is detected
and suspended, attackers can not only create a new Sybil
identity and regain their lost attack power, but they can
also derive knowledge about how to evade detection. With
Stamper, every malicious identity suspended by the site op-
erator would represent a loss in the power of the attacker
because the attacker cannot replace the suspended identities
with newly created identities. If used in an attack, Stamper
would be able to detect the differences in how reputations of
identities evolved over time for older and newer identities.

Most site operators today proactively deploy“spam filters”
that over time detect Sybil identities and suspend them.
While these spam filters are far from detecting all Sybil iden-
tities in a timely manner, Stamper fundamentally shifts the
balance of the arms race in favor of these defenses because
every suspended identity results in a near permanent reduc-
tion in attack power, which can be regained with a new Sybil
identity only after waiting for the entire generation of exist-
ing identities to leave the system (see Robustness 2 above).

Limitation 1: Can Stamper detect attacks using non-
Sybil identities that are incentivised to collude or
whose login credentials are compromised? Stamper
cannot provide the robustness guarantees discussed above
for attacks involving non-Sybil identities that are compro-
mised by an attacker or that have an incentive to collude
with one another (e.g., to boost each other’s popularity).
However, there is still hope; Stamper would still be able to
detect tampering as long as the colluding or compromised
identities are not carefully chosen in such a way that the dis-
tribution of reputation scores and their temporal evolution
match that of non-Sybil identities. In practice, it may not
be easy for an attacker to selectively target and compromise

non-Sybil identities with varied levels of reputation scores.
In fact, in our evaluation Section 5.2, we show that Stamper
is able to detect identities colluding to follow one another in
Twitter, because their collusion distorts the distribution of
their reputation scores, which is easily flagged by Stamper.

Limitation 2: Can Stamper detect computations that
involve only a few identities or that have been tam-
pered using only a few Sybils? At its core, Stamper
relies on identifying statistically significant deviations in dis-
tributions of reputation histories of identities participating
in a crowd computation. So the robustness guarantees of
Stamper do not hold when the number of participating iden-
tities is too small or when the degree of tampering is small.
In practice, we show that Stamper can be used to detect
tampering of computations with 100 or more participants
(see Section 5.1). We also show that Stamper is very robust
in detecting highly tampered computations (e.g., > 50% of
identities are Sybil), but when the computations are tam-
pered only to a small extent (e.g., < 10% of identities are
Sybil), the detection accuracy suffers. While this is a funda-
mental limitation of Stamper’s approach, it is worth noting
that in practice, system operators would be more concerned
about detecting heavily tampered computations than lightly
tampered ones.

4. Stamper DESIGN
We design Stamper to satisfy the following requirements for
a practical design: (i) robustness: any computation flagged
as being tampered with should have been tampered with
very high probability and any tampered computation has
a good chance of being detected; (ii) generality: the sys-
tem should be able to detect Sybil tampered computations
independently of the attack method used.

Notation Let sets A, M, and H respectively represent
all identities, all Sybil identities, and all non-Sybil (hon-
est) identities in the crowd computing system (e.g., Twitter,
Yelp, or Facebook) such that A = H ∪M. We assume that
each identity is associated with a set of reputation scores
R = {R1, R2, . . . , R`}, which are computed by the operators
based on the identity’s activity in the system to date. For a
given set of identities that participated in a crowd computa-
tion c, we denote by Ri(c) to be the probability distribution
(or density) function (PDF) of the values of the reputation
score Ri of the identities in computation c.

The system operator is interested in defending against
Sybil attacks on a set of crowd computations C = {c1, c2, . . . ,
cn} Let sets Ci, M(Ci), H(Ci) respectively represent all iden-
tities, Sybil identities, and non-Sybil identities that are in-
volved in computation ci.

4.1 Design overview
Our goal is to design a “detector” that can check if a given
large crowd computation ci was tampered with by Sybil
identities, i.e., whether the (unknown) Sybil identities M(Ci)
constitute a significant fraction of all identities Ci partici-
pating in the computation ci.

We compute the relative entropy or divergence between
two distributions using a statistical measure called the
Kullback—Leibler (KL) divergence [24]. The choice of KL-
divergence as the statistical measure is not fundamental to
the application of Stamper. We could have used other sta-

tistical distance measures [1], but as we show in our eval-
uation, KL-divergence is quite sufficient for our purposes.
KL-divergence ranges from 0 (identical distributions) to ∞
(highly differing distributions); the (symmetric) divergence
between two distributions P and Q is denoted by KLD(P,Q),
where

KLD(P,Q) =

r∑
i=1

(
log(

P(i)

Q(i)
)P(i) + log(

Q(i)

P(i)
)Q(i)

)
Our insight suggests that in practice, the KL-divergence be-
tween distributions of untampered computations would be
low, while those between untampered and tampered compu-
tations would be anomalously high.

4.1.1 Detecting anomalous distributions
We use anomaly detection [22,25,35] techniques to separate
out the “outlier” or “anomalous” distributions of reputations
scores (and their temporal evolution) observed for tampered
computations. Specifically, we apply a variant of anomaly
detection known as semi-supervised anomaly detection [30],
where the site operator has a priori knowledge of a small
subset of crowd computations, UC = {uc1, uc2, . . . , uck}
that are largely untampered with by Sybil identities.

We first analyze the KL-divergence in the distribution of a
reputation score Rj between the known untampered compu-
tations. If we find that the distributions of most untampered
computations lie within some small threshold divergence Tj

from one another, then we could declare any other compu-
tation whose distribution lies far outside the threshold Tj as
potentially tampered.

When identity participation is unbiased We can of-
fer strong theoretical guarantees on the choice of the thresh-
old Tj , if participants in any untampered crowd computation
ci are drawn uniformly at random (without any bias) from
the set of all non-Sybil identities H in the system. Under the
unbiased participation assumption, the probability distribu-
tions of the reputation scores of identities participating in
all large untampered computations are guaranteed to con-
verge to the same distribution. Specifically, as the size of a
computation ci grows, the distribution of reputation scores
Rj(ci) quickly approximates the distribution of reputation
scores for all non-Sybil identities Rj(H). Formally, for all ci
such that Ci = H(Ci), and for some small ε,

∃ s s.t. ∀i, |Ci| > s ∩ KLD(Rj(H), Rj(Ci)) < ε.

We refer to s as the size threshold for the crowd computa-
tions. In fact, Roy [29] studied the thresholds theoretically
as well as empirically and proved an upper bound of 1/|Ci|
on KLD for a sampled distribution of size |Ci|. Thus, if an
untampered computation involves over 100 or 1,000 iden-
tities, the KLD between the reputation score distributions
of the computation participants and the non-Sybil identi-
ties will be lower than 0.01 or 0.001, respectively. As a
result, a simple strategy for detecting whether a given large
computation ci (i.e., |Ci| > s) has been tampered with is
as follows: First, select some a priori known untampered
computation cu of size greater than s. Then, compute the
divergence in the distributions of reputation score Rj be-
tween the given computation and known untampered com-
putation, i.e., compute KLD(Rj(cu), Rj(ci)). If the diver-
gence is greater than the divergence threshold 1/s, declare
the computation ci as tampered (with high probability).

When identity participation is biased In practice,
many crowd computations draw a biased population of iden-
tities: For example, in Yelp, many reviewers of businesses
in San Francisco are likely to be drawn from San Francisco.
Without the unbiased participation assumption, we cannot
offer any theoretical guarantees on convergence of distribu-
tions of untampered computations. However, in practice we
often observe that the distributions for untampered computa-
tions are far closer to one another than they are to tampered
computations. We validate this claim using real-world data
from Yelp and Twitter in the evaluation sections 5.1 and 5.2.

In the case of biased participation, we first derive a ref-
erence or expected distribution by “averaging” the distri-
butions of known untampered computations and then se-
lect a KL-divergence threshold Tj that encompasses most, if
not all, the untampered computations. To detect whether a
given large computation ci is tampered with, we compute its
KL-divergence from the reference distribution. If it is larger
than the threshold divergence Tj , we declare the computa-
tion ci as tampered (with high probability).

While we defer the precise details of the threshold selec-
tion to Section 4.2, we make two observations on the choice
of the divergence threshold. First, if for some reputation
score Rj , the distributions of untampered computations do
not converge in practice, then the observed threshold diver-
gence Tj between the untampered computations would also
naturally be quite large, and consequently there would be
little risk of an untampered computation flagged as tam-
pered. Thus, the risk of untampered computations being
flagged as tampered is low, even when the distributions of
untampered computations do not converge. Second, by rais-
ing and lowering the threshold Tj , an operator can trade-off
between the precision and recall in detecting tampered com-
putations. Depending on the application scenario, operators
can either choose a more or less conservative threshold.

4.2 Detailed Design
The operator would deploy Stamper as follows:

1. Creating a pool of reputation scores The first
step in deploying Stamper involves choosing a set of reputa-
tion scores {R1, R2, ..., Rl} that can be computed for each
identity in the system. Identities start with low (zero) repu-
tation scores when they are created and can earn higher rep-
utations over time. We do not assume that reputation scores
are unforgeable: different reputation scores of an identity
may be manipulated by the attacker with different amounts
of effort.

2. Building a reference (expected) distribution To
build a reference distribution for a given reputation score
Rj , we first compute the distribution of the reputation score
for each known-untampered computation (i.e., calculates
Rj(uci) for each uci ∈ UC). Now, these distributions are
aggregated into a single reference distribution Rj(UC) us-
ing a linear opinion pool [17] model. We do so using a
fair weighting scheme such that each crowd computation
contributes a fair share towards building the final reference
distribution. Formally, the reference distribution Rj(UC) is

defined as Pr[v ← Rj(UC)] = 1
k

∑k
i=1 Pr[v ← Rj(uci)]

3. Selecting a threshold We now compute the KL-
divergence of each of the crowd computations in set C from
that of the reference distribution. We will obtain a range

of KL-divergence values and will select a threshold Tj , such
that KL-divergence values greater than Tj is anomalous with
respect to the rest of KL-divergence values. To select this
threshold, we use a simple statistical technique called the
box plot rule [14] defined as follows: Let Q1 and Q3 be the
lower and upper quartile respectively, for the KL-divergence
values. A KL-divergence value is an outlier if it lies beyond
the upper outer fence: Q3 + 3 ∗ (Q3 − Q1). We select the
upper outer fence of the distribution as the threshold Tj .

4. Detecting anomalous computations With Tj and
Rj(UC), it is straightforward to detect anomalous compu-
tations. For a given computation ci, the operator simply
calculates the KL-divergence between Rj(ci) and Rj(UC); if
it is higher than Tj , the computation is flagged as anoma-
lous. In fact, the higher divergence (above the threshold),
the more anomalous the computation turns out when com-
pared to the rest of the computations. The operator can ex-
periment with the tradeoff of catching more tampered com-
putations (when using a lower KL-divergence threshold) ver-
sus improving the efficiency of workers (when using a high
KL-divergence threshold).

Operators typically use human workers to examine suspi-
cious accounts or activities once they are flagged by their de-
fense mechanisms [15]. Stamper can guide operators to focus
the attention of their human verifiers on a set of flagged com-
putations to verify if they are tampered with. More impor-
tantly, while Stamper has been designed to detect computa-
tion tampering, it can be used in practice for a broader range
of Sybil defense tasks. The operator can manually investi-
gate the anomalous computations—as they have a higher
chance of containing Sybils—to further discover new Sybils
and previously unknown attacker strategies. We demon-
strate this in Section 5.2.2 where we investigate the identi-
ties that participate in tampered computations. However,
it should be noted that an investigation phase is common
in deployed defense schemes and it is not part of the core
Stamper deployment workflow.

5. Stamper EVALUATION
This section presents two case studies of applying Stamper
in two popular systems, namely Yelp and Twitter.

5.1 Case 1: Yelp review tampering

Goal: Find businesses with tampered reviews Yelp
is a popular local directory service, where users can search
for businesses in a given locality and retrieve crowd-sourced
reviews and ratings for those businesses from other users. As
Yelp is becoming popular, businesses (e.g., restaurants) have
an incentive to manipulate their reviews and ratings in their
favor. Today, there are plenty of black-market services [10],
where one can easily buy Yelp reviews for a cheap price (e.g.,
three reviews cost $74.85 in one such service). The crowd
computation that we are interested in is the set of identities
that rate a given business in Yelp. Our goal is to evaluate
how effectively Stamper can be leveraged to detect attacks
that tamper the computation, i.e., detect businesses that
have manipulated reviews.

For evaluating effectiveness of Stamper we leverage Yelp’s
review filter [8, 9] feature to obtain “ground truth” for tam-
pered reviews. Yelp filters suspicious reviews to defend
against fake reviews. It should be noted that as is the case

with many online defense schemes deployed today, Yelp ac-
knowledges that their review system is not perfect and may
not be able to detect all types of tampered reviews and may
even sometimes wrongly flag legitimate reviews. However,
for the purpose of this analysis, we will consider a business
to have tampered reviews if Yelp filters at least one review
of the business. Note that we do not have any knowledge
about specific strategies used by attackers of the filtered re-
views (i.e., did the attacker create multiple fake accounts to
tamper reviews or did she incentivize real users to write fake
reviews in return for a monetary reward).

More precisely, we investigate the following three ques-
tions: (i) How easy or difficult is it to apply Stamper to
detect review tampering in Yelp? (ii) Does the key require-
ment that distributions of reputation scores of large untam-
pered computations converge (while those of large tampered
computations diverge) hold in practice in Yelp? (iii) Can
Stamper detect most of the highly tampered computations
(businesses with a majority of reviews filtered) at a low
false positive rate (fraction of businesses with no filtered
reviews flagged)? Recall that Stamper is designed to detect
highly tampered computations and cannot guarantee detec-
tion of computations tampered only to a small extent (see
Section 3.3).

Data gathered We used Yelp data gathered by Kakhki
et al. [23] in May 2012, which we updated with our own data
gathering crawl in March 2013. This dataset consists of all
businesses on Yelp in the city of San Francisco at that time.
This includes 30,339 businesses with a total of 1,655,385 rat-
ings from 340,671 reviewer identities. Each rating consists
of a score from 1 to 5 stars. These ratings also include those
filtered by Yelp’s automated review filter. In total, Yelp fil-
tered 195,825 (or 11.83%) ratings. As Stamper has been
designed to infer tampering in large computations involving
more than a certain number of identities, we threshold the
size of the computation at 100 for Yelp. There are 3,579
businesses with more than 100 reviews. Out of these 3,579
businesses, there are 54 businesses which did not have a sin-
gle review filtered by Yelp. We consider these 54 cases as
untampered computations. Also, for each reviewer we col-
lected information about a variety of reputation scores. (See
the first column of Table 1.)

5.1.1 Ease of deploying Stamper

The four steps that constitute Stamper detection strategy
(outlined in Section 4.2) can be applied in a straight-forward
manner with very little overhead.

1. Creating a pool of reputation scores The first
column in Table 1 lists all the 8 reputation scores used in
our evaluation; e.g., the reputation score in the 8th row is a
measure of the number of times reviews by an identity are
marked useful by other identities in the service. To tam-
per a crowd computation by forging this reputation score,
an attacker would have to put additional effort to boost
the reputation for the malicious identities employed in the
attack by obtaining a certain number of endorsements (by
getting reviews marked useful) from other identities.

2. Building reference distributions We select busi-
nesses which had no (zero) review filtered as the set of un-
tampered computations. There are 54 such businesses (with
zero reviews filtered). Even though the number of untam-

Reputation score # flagged
Percentage of computations flagged

0% (0,10]% (10,30]% (30,50]% > 50%
filtered filtered filtered filtered filtered

photos 158 5.6 (3/54) 0.2 (5/2280) 6.6 (72/1089) 32.9 (27/82) 68.9 (51/74)
first badges 141 0.0 (0/54) 1.3 (30/2280) 4.4 (48/1089) 20.7 (17/82) 62.2 (46/74)
fans 139 0.0 (0/54) 0.6 (14/2280) 5.0 (54/1089) 28.0 (23/82) 64.9 (48/74)
compliments 173 1.9 (1/54) 0.7 (15/2280) 6.2 (67/1089) 35.4 (29/82) 82.4 (61/74)
reviews marked funny 157 0.0 (0/54) 0.7 (15/2280) 5.0 (54/1089) 28.0 (23/82) 87.8 (65/74)
reviews marked cool 174 0.0 (0/54) 1.0 (22/2280) 5.6 (61/1089) 35.4 (29/82) 83.8 (62/74)
friends 227 0.0 (0/54) 0.2 (4/2280) 9.7 (106/1089) 56.1 (46/82) 95.9 (71/74)
reviews marked useful 224 3.7 (2/54) 0.5 (11/2280) 9.2 (100/1089) 51.2 (42/82) 93.2 (69/74)
All scores combined 362 5.6 (3/54) 3.0 (68/2280) 14.8 (161/1089) 70.7 (58/82) 97.3 (72/74)

Table 1: Computations with varied levels of filtered reviews flagged by Stamper. Stamper flags most of the highly tampered
(>50% filtered) computations while flagging very few (3/54) untampered computations.

pered computations might seem small, they have a large
number of reviewers (14,223 reviewers) who wrote reviews
for them.

3. Selecting a threshold We compute KL-divergence
values for all 3,579 businesses from the reference distribu-
tion for each reputation score. Then, for each reputation
score, using the box plot rule, we estimate a KL-divergence
threshold for flagging anomalies; e.g., in the case of the rep-
utation score, #times review is marked useful (we will call
this as the number of review endorsements), we estimate a
threshold of 1.2.

4. Detecting anomalous computations If the KL-
divergence computed for a business is greater than the diver-
gence threshold for any reputation score, the computation is
marked as anomalous. The second column of Table 1 shows
the number of businesses whose reviews have been flagged
as tampered by Stamper.

The above discussion demonstrates how easily Stamper
can be applied by operators of crowd computing systems
today.

5.1.2 Detectability of tampered computations
We now investigate whether a key assumption behind Stam-
per design holds in practice. Specifically, we verify if the
distributions of reputation scores of large untampered com-
putations in Yelp tend to converge, while those of tampered
computations diverge. Figure 4 shows the distribution of
KL-divergence values using the endorsement count reputa-
tion score for untampered computations and computations
with different levels of filtered reviews. Note that, compu-
tations with zero and with less than 10% reviews filtered
show low KL-divergence values from the reference distribu-
tion, indicating a good convergence in the reputation score
distributions. In fact, for 90% of untampered computations
their divergence values are less than or equal to 0.36. While
for tampered computations (computations with more than
20% and 50% reviews filtered), the KL-divergence values are
higher and shows a diverging trend. We observe a similar
trend for other reputation scores listed in Table 1.

5.1.3 Robustness of Stamper tamper detection
Next we investigate the robustness of Stamper detection.
For the rest of the analysis, we divide businesses into five
categories based on the level of filtering: 0% filtered (or
untampered), 0 to 10%, 10 to 30%, 30 to 50%, and more
than 50% filtered. We consider computations with more

than 50% reviews filtered to be highly tampered. Out of a
total of 3,525 businesses with at least one filtered review,
there are 74 businesses that are highly tampered.

1. Stamper can detect most of the highly tampered
computations The last column in Table 1 shows the
fraction of highly tampered computations that are flagged.
By combining all 8 reputation scores (a computation is
flagged if it is flagged by at least one reputation score), we
detect more than 97% of highly tampered computations.
It is interesting to note that combining multiple reputa-
tion scores can help to catch more tampered computations.
Stamper also manages to catch a significantly high fraction
(over 70%) of computations with 30 to 50% reviews filtered.

2. Stamper has low false positives The third column
in Table 1 shows the fraction of untampered computations
flagged. By combining all 8 reputation scores, we observe
a false positive rate of only 5.6%. While interpreting this
false positive rate, it is important to keep in mind that Yelp’s
review filter is not perfect and could have potentially missed
flagging some fake reviews.

5.1.4 Discussion

Why is Stamper useful for a system like Yelp? Note
that Stamper does not detect individual suspicious reviews.
While this might sound like a limitation, Stamper can still be
useful for Yelp in flagging businesses with highly tampered
reviews. For example, Yelp is known to suspend businesses
that were caught buying reviews [11], and display a warning
when a user visits a business page suspected of tampering
reviews [7]. Using Stamper, Yelp can do so even without de-
tecting individual suspicious reviews as they might be very
hard to detect for various reasons. For example, Yelp went

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8

C
D

F

KL-divergence

Untampered
Filtered < 10%
Filtered > 20%
Filtered > 50%

Figure 4: Distribution of KL-divergence values for untam-
pered and tampered computations using number of review
endorsements in Yelp.

to the extent of conducting sting operations to catch busi-
nesses trying to buy fake reviews [6] because we suspect
that such type of tampering is very hard to detect by an-
alyzing reviewer behavior or the content of their reviews.
With Stamper, Yelp has the potential to catch highly tam-
pered computations even with very minimum or no infor-
mation about the behavior of the reviewers. Another huge
advantage of our scheme is that compared to prior machine
learning approaches, Stamper can detect highly tampered
computations in Yelp without training on any pre-identified
fake reviews.

Leveraging temporal evolution of reputation scores
We tried to find anomalous computations by analyzing the
temporal evolution of reputation scores. We used the times-
tamp at 0th percentile reputation, which is the join date of
the user. Stamper flagged only 2 highly tampered computa-
tions (already caught by the other reputation scores) using
join dates. We suspect that attackers on Yelp are not trying
hard to forge their reputation scores today, and we are able
to detect most of the highly tampered computations using
simple reputation scores. In the next case study, we observe
that temporal evolution of reputation scores are very helpful
in catching adaptive attackers.

5.2 Case 2: Twitter follower tampering

Goal: Find Twitter users with fake followers In
Twitter, to obtain real time information posted by specific
users, users typically follow those users. Today, the influ-
ence of a user is often estimated by counting the number of
followers. As a result, there are strong incentives for users to
acquire more users to follow them and there have been nu-
merous reports of follower count manipulations [31]. Thus,
the crowd computation that we are interested in is the set
of identities in Twitter that follow a given Twitter identity.
Our goal is detect attacks that manipulate the computation,
i.e., detect identities that have tampered follower counts.

We use this case study to showcase Stamper’s capabil-
ity of detecting yet unknown tampered computations. This
provides an opportunity to evaluate how system operators
(who in practice would not have a priori ground truth in-
formation about tampered computations) might use Stam-
per. More precisely, we investigate the following three ques-
tions: (i) How easy or difficult is it to apply Stamper to
detect computation (follower count) tampering in Twitter?
(ii) Can system operators analyze the computations flagged
by Stamper further (potentially manually) to detect (poten-
tially new) patterns of Sybil attacks? (iii) Can the newly
discovered Sybil attack patterns be used to uncover more
Sybil identities?

Data gathered We target detecting tampering of
follower-counts only for popular Twitter user identities with
more than 1,000 followers. We obtained the Twitter-UIDs
(unique identifiers) of all users with more than 1,000 fol-
lowers in all of Twitter (as of July 2012) from a research
group which collected this data for a separate study [20].
This dataset contained 2,100,851 identities. We selected a
random sample of 70,000 of these identities and gathered
profile information of all their followers. Some of these ac-
counts no longer existed on Twitter and their information
could not be collected. In total, we discovered (in aggregate)
over 176M followers for 69,409 of these users.

5.2.1 Ease of deploying Stamper

We briefly discuss the steps that constitute Stamper proce-
dure for this case study.

1. Creating a pool of reputation scores We select
number of followers as a reputation score to build our ref-
erence distribution (i.e., we consider the distribution of the
number of followers of the followers). To account for the
cases where an attacker forges this reputation score, we con-
sider the temporal evolution of the reputation score (i.e.,
the distribution of times at which the identity acquired 0th,
25th, or 50th percentile of their reputation). Since it was
easy for us to gather the timestamps at which the identi-
ties started building their reputation (i.e., the date at which
the identities “joined” the service—corresponding to the 0th
percentile of their reputation—we use the join dates of iden-
tities to build the reference distribution.

2. Building reference distributions In Twitter, we
assume that the accounts verified by Twitter4 do not know-
ingly tamper their follower counts. We use them as the set
of known untampered computations. We randomly sample
30,000 verified accounts from the list of Twitter verified ac-
counts with more than 1,000 followers, and crawled profiled
information of their 266M followers to derive the reference
distribution.

3. Selecting a threshold We compute KL-divergence
values for all the 69,409 identities and estimate a KL-
divergence threshold of 7.88 and 5.79 using the follower
count reputation score, and join date, respectively.

4. Detecting tampered computations Among the
69,409 popular users, using follower counts, Stamper flags
620 users and using join dates, Stamper flags 1,129 users
as having tampered follower counts. When we examine the
overlap between computations flagged using follower count
and join date (i.e., the 0th percentile of the follower count), it
is very low, consisting of only 49 computations. Thus, using
join dates, Stamper is able to flag 1,080 users (with poten-
tially tampered follower counts) who were not flagged using
the follower count reputation score. These 1,080 users were
able to successfully hide or evade detection when using the
follower count reputation score. This finding further shows
the advantages of using unforgeable timestamps to detect
tampering. Our discussion above once again demonstrates
the ease of deploying Stamper.

5.2.2 Investigating anomalies to detect new attacks
For manual investigation, we randomly sample 50 computa-
tions out of each group of anomalous computations flagged
using follower count and join dates, respectively. Three
graduate students with prior experience in investigating sus-
picious identities in social networks spent roughly 15 to 20
minutes per computation for investigation.

First, we try to understand the characteristics of the dis-
tribution for each anomalous sample. Second, we attempt
to localize our analysis to a subset of the identities within
the tampered computation that are most likely to be Sybils.
We can find such a subset by looking for regions within the
anomalous distribution where it exhibits maximum diver-

4Twitter vouches for the authenticity of a small portion of
all identities (43,901 identities as of April 2013) through an
offline verification process.

gence from the reference distribution. To identify potential
Sybil identities, for each candidate account, we analyze the
Twitter profile picture, name, bio, content of tweets posted
(including URLs posted), follower and following count, and
profiles of followers of the account.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08F
ra

c
ti

o
n

 o
f

p
a

rt
ic

ip
a

n
ts

 (
C

D
F

)

Reputation score (#Followers in Twitter)

Tampered
Reference

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

01/2006

01/2007

01/2008

01/2009

01/2010

01/2011

01/2012

01/2013

01/2014

F
ra

c
ti

o
n

 o
f

p
a

rt
ic

ip
a

n
ts

 (
C

D
F

)

Join date of participants

Tampered
Reference

Figure 5: Detecting suspicious participants of a tampered
computation. The highlighted region contains the identities
suspected of tampering the computation.

Investigating anomalies in follower count distribu-
tions On investigating the distribution of follower counts
we noticed two distinct patterns. In the first pattern, we
found that most of the followers have very low reputation
(e.g., almost all had less than 10 followers). 2 out of 50 com-
putations exhibit this pattern. These followers look like fake
accounts (fake looking profile, pictures and tweets talking
about following activity) and some were already suspended
by Twitter. While we would expect tampering to be carried
out by unpopular Sybil identities, we were surprised to find
only two such instances. The remaining 48/50 computations
showed a different distribution pattern–an example is shown
in Figure 5 (top figure). When analyzing these computa-
tions, we surprisingly discovered that these identities appear
to be popular users (i.e., more than 1,000 followers) tamper-
ing their follower counts by colluding with one another and
exchanging links with “you follow me, I follow you” deals.
Such activity is referred to as “farming” links on the Twit-
ter network. Link farming [21] is a well-studied problem in
Twitter and their defining traits are as follows: they have
a large number of followers (more than 1,000), a following
per follower ratio in the range [0.9,1.1] and a majority of
their followers satisfy these criteria as well. The identities
we investigated match these link farmer traits. Using this
definition we analyzed all the followers of each of the 48 com-
putations, and found that all computations had at least 32%
of their followers that matched the criteria for link farmers.
In fact, for 44 out of 48 cases, a majority of their followers
are link farmers.

Our analysis above reveals that even though Stamper has
been designed to catch computations tampered by Sybil at-
tacks, it is able to detect a broader category of attacks, in-

cluding colluding attacks by non-Sybil identities. However,
we do not claim that our robustness guarantees would ex-
tend to such non-Sybil attacks.

Investigating anomalies in join date distributions
We analyzed the distributions of the 50 random computa-
tions in this case and noticed that for a majority (33/50) of
the computations, a significant fraction of the participating
identities are tightly clustered in the time domain. Figure 5
(bottom figure) gives an example of such a tampered com-
putation. More specifically, we check if at least 10% (12%)
of the followers of the identity joined Twitter within a sin-
gle day (or week).5 In contrast, the join dates of identities
in the reference (untampered) distribution are spread out
over many years. The tight-clustering in the time domain
suggests that these identities are possibly created by a Sybil
attacker on a single day and then pressed into attack soon
after.

To further test our hypothesis, we bought followers for 10
different Twitter identities under our control from 10 differ-
ent online marketplaces. We discovered these services with
a simple keyword search (e.g., “buy Twitter followers”) on
search engines like Google. In each case, we paid to receive
1,000 followers. When we analyzed the timestamp distribu-
tion of followers bought from the black-market for the 10
accounts, we observe that for 9 out of 10 accounts, a vast
majority of followers were created on the same day or on a
handful of days. This observation supports our hypothesis
that identities discovered in anomalous distributions of join
dates are Sybils from whom links have been bought.

We further analyzed the remaining 17 (out of 50) compu-
tations that did not exhibit tight clustering at a day or week
granularity. On manual investigation of followers in the most
divergent region, we found that 15/17 computations had
very suspicious followers and are most likely tampered com-
putations. Many followers look like fake profiles with no pro-
file picture, names with specific patterns, meaningless tweet
content, and some even had malware links in their tweets.
An interested reader can browse through more details of
the manual analysis of these 15 suspicious computations on
this page: http://trulyfollowing.app-ns.mpi-sws.org/

local/stamper/tampered_fcounts.html. Note that our
manual investigation provides detailed information about
why we think a computation looks suspicious along with
a sample of suspicious participants of the computation.

5.2.3 Detecting new Sybil identities
We now show how an operator can leverage the newly dis-
covered attacker strategies to detect new Sybil identities.
We propose to identify cases of follower tampering by an-
alyzing the join date distributions of followers of a given
identity and checking if a non-trivial fraction of their fol-
lowers joined Twitter within a small window of time (we
use the same thresholds discussed in earlier section). We
applied this technique to detect potential follower tamper-
ing activity in Twitter to over 2.1M identities in Twitter

5Note that we choose conservative thresholds where we
found that over 95% of 69K computations did not exhibit
this level of tight clustering in the time domain. To validate
our thresholds of 10% followers in a day (and 12% in a week),
we monitored accounts that exhibited tight clustering and
those that did not, for 6 months. Identities forming clusters
had a high Twitter suspension rate of 36% compared to a
low suspension rate of 0.38% for the other accounts.

http://trulyfollowing.app-ns.mpi-sws.org/local/stamper/tampered_fcounts.html
http://trulyfollowing.app-ns.mpi-sws.org/local/stamper/tampered_fcounts.html

with more than 1000 followers. We detect 89,728 identi-
ties as having tampered follower counts. Interested read-
ers can browse the data about these 89,728 identities at
the site: http://trulyfollowing.app-ns.mpi-sws.org/.
From these flagged computations, we identified over 23 mil-
lion Sybil followers whose join dates fall within a small win-
dow of time.5

5.3 Ethics
All the data about user activity collected from Yelp and

Twitter are publicly visible information. All money we paid
to acquire followers from the black-market were exclusively
for Twitter accounts under our control and set up for the
sole purpose of conducting the experiments in the paper.
Overall, we ensured that no user or page on Yelp and Twitter
was abused or benefited as a result of our study.

6. Stamper DEPLOYMENT
Finally, to demonstrate the effectiveness of Stamper in the
real world, we deployed a public online service at http://

trulytweeting.app-ns.mpi-sws.org/ which detects tam-
pered tweet promotions in Twitter. Today, there are strong
incentives for users to artificially boost popularity of their
posts by hiring Sybil identities to promote their content.
In this service, we are interested in three types of crowd
computations involving a set of identities that: (1) tweet
about a particular topic (described by a set of keywords)
(2) tweet a URL, or (3) retweet a tweet. Our goal is to de-
tect attacks that manipulate such computations, i.e., detect
content (topic, URL or tweet) that is promoted by Sybil
identities. Our service lists currently trending topics6, pop-
ular URLs and tweets that are tampered and also provides
a real time search interface to check arbitrary URL or topic
computations for tampering in Twitter. We encourage inter-
ested readers to test the service to understand the potential
and practicality of Stamper.

7. CONCLUSION
In this paper, we tackle the challenging problem of detecting
when computations on crowdsourcing systems like Twitter
or Yelp have been tampered by fake (Sybil) identities. We
have advocated a fundamentally different approach called
Stamper that can detect whether a computation has been
tampered even when it is not feasible to detect which of
the individual identities participating in the computation
are Sybil. The key insight that enables our approach is
that large statistical samples (groups) of Sybil and non-
Sybil identities exhibit very different characteristics. We
have leveraged this insight to design Stamper to (i) detect
tampered computations and raise the bar for defense against
adaptive attackers and (ii) detect computation tampering in-
dependent of the attacker strategy. We have demonstrated
the robustness and practicality of Stamper by evaluating its
performance using extensive data gathered from two widely
used crowd computing systems, namely Yelp and Twitter.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Jim
Blomo, for their helpful comments. We also thank Arash

6Twitter periodically recommends a set of globally trending
topics to users who are signed in to Twitter.

Molavi Kakhki for his assistance with the Yelp dataset and
Lisette Esṕın Noboa for her help with building the web user
interface of the TrulyFollowing website. This research was
supported in part by NSF grants CNS-1319019 and CNS-
1421444. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

8. REFERENCES
[1] http:

//en.wikipedia.org/wiki/Statistical_distance.

[2] http://tinyurl.com/guardian-cf-p.

[3] http://tinyurl.com/nyt-haggl.

[4] http://tinyurl.com/nyt-tw-sale.

[5] http://tinyurl.com/twitter-inactive.

[6] http://tinyurl.com/yelp-bought.

[7] http://tinyurl.com/yelp-consumer-alert.

[8] http://tinyurl.com/yelp-filter.

[9] http://tinyurl.com/yelp-filter-explained.

[10] http://tinyurl.com/yelp-halt.

[11] http://tinyurl.com/yelp-suspend.

[12] F. Benevenuto, G. Magno, T. Rodrigues, and
V. Almeida. Detecting spammers on twitter. In
Proceedings of the 7th Annual Collaboration,
Electronic messaging, Anti-Abuse and Spam
Conference (CEAS), 2010.

[13] A. Beutel, W. Xu, V. Guruswami, C. Palow, and
C. Faloutsos. Copycatch: stopping group attacks by
spotting lockstep behavior in social networks. In
Proceedings of the 22nd international conference on
World Wide Web (WWW), 2013.

[14] NIST/SEMATECH e-Handbook of Statistical
Methods.
http://www.itl.nist.gov/div898/handbook/.

[15] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro.
Aiding the detection of fake accounts in large scale
social online services. In Proceedings of the 9th

USENIX conference on Networked Systems Design
and Implementation (NSDI), 2012.

[16] Q. Cao, X. Yang, J. Yu, and C. Palow. Uncovering
large groups of active malicious accounts in online
social networks. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and
Communications Security (CCS), 2014.

[17] R. T. Clemen and R. L. Winkler. Combining
probability distributions from experts in risk analysis.
Risk analysis, 19(2):187–203, 1999.

[18] J. Douceur. The Sybil Attack. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems
(IPTPS), 2002.

[19] S. Feng, L. Xing, A. Gogar, and Y. Choi.
Distributional footprints of deceptive product reviews.
In Proceedings of the the 6th International AAAI
Conference on Weblogs and Social Media (ICWSM),
2012.

[20] M. Gabielkov and A. Legout. The complete picture of
the twitter social graph. In Proceedings of the 2012
ACM conference on CoNEXT student workshop, 2012.

[21] S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma,
G. Korlam, F. Benevenuto, N. Ganguly, and K. P.
Gummadi. Understanding and combating link farming

http://trulyfollowing.app-ns.mpi-sws.org/
http://trulytweeting.app-ns.mpi-sws.org/
http://trulytweeting.app-ns.mpi-sws.org/
http://en.wikipedia.org/wiki/Statistical_distance
http://en.wikipedia.org/wiki/Statistical_distance
http://tinyurl.com/guardian-cf-p
http://tinyurl.com/nyt-haggl
http://tinyurl.com/nyt-tw-sale
http://tinyurl.com/twitter-inactive
http://tinyurl.com/yelp-bought
http://tinyurl.com/yelp-consumer-alert
http://tinyurl.com/yelp-filter
http://tinyurl.com/yelp-filter-explained
http://tinyurl.com/yelp-halt
http://tinyurl.com/yelp-suspend
http://www.itl.nist.gov/div898/handbook/

in the twitter social network. In Proceedings of the
21st International Conference on World Wide Web
(WWW), 2012.

[22] V. J. Hodge and J. Austin. A survey of outlier
detection methodologies. Artificial Intelligence Review,
22(2):85–126, 2004.

[23] A. M. Kakhki, C. Kliman-Silver, and A. Mislove.
Iolaus: Securing online content rating systems. In
Proceedings of the 22nd International World Wide
Web Conference (WWW), 2013.

[24] S. Kullback and R. A. Leibler. On information and
sufficiency. The Annals of Mathematical Statistics,
22(1):79–86, 1951.

[25] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
Network-wide Traffic Anomalies. In Proceedings of the
Annual Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM, 2004.

[26] E.-P. Lim, V.-A. Nguyen, N. Jindal, B. Liu, and
H. W. Lauw. Detecting product review spammers
using rating behaviors. In Proceedings of the 19th

ACM international conference on Information and
knowledge management (CIKM), 2010.

[27] M. Motoyama, D. McCoy, K. Levchenko, S. Savage,
and G. M. Voelker. Dirty jobs: The role of freelance
labor in web service abuse. In Proceedings of the 20th

USENIX conference on Security (Usenix Security),
2011.

[28] J. X. Parreira, D. Donato, C. Castillo, and
G. Weikum. Computing trusted authority scores in
peer-to-peer web search networks. In Proceedings of
the 3rd International workshop on Adversarial
information retrieval on the web, 2007.

[29] B. C. Roy. The Birth of a Word. PhD thesis, MIT
Media Lab, Feb 2013. http://web.media.mit.edu/
~bcroy/papers/bcroy-thesis_FINAL-sm.pdf.

[30] R. R. Sillito and R. B. Fisher. Semi-supervised
learning for anomalous trajectory detection. In
Proceedings of the British Machine Vision Conference
2008 (BMVC), 2008.

[31] G. Stringhini, M. Egele, C. Kruegel, and G. Vigna.
Poultry markets: on the underground economy of
twitter followers. In Proceedings of the 2012 ACM
workshop on Workshop on Online Social Networks,
2012.

[32] G. Stringhini, G. Wang, M. Egele, C. Kruegel,
G. Vigna, H. Zheng, and B. Y. Zhao. Follow the green:
growth and dynamics in twitter follower markets. In
Proceedings of the 2013 conference on Internet
measurement conference (IMC), 2013.

[33] K. Thomas, D. McCoy, C. Grier, A. Kolcz, and
V. Paxson. Trafficking fraudulent accounts: The role
of the underground market in twitter spam and abuse.
In Proceedings of the 22nd USENIX Security
Symposium (USENIX Security), 2013.

[34] N. Tran, B. Min, J. Li, and L. Subramanian.
Sybil-resilient online content voting. In Proceedings of
the 6th Symposium on Networked Systems Design and
Implementation (NSDI), 2009.

[35] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha,
K. P. Gummadi, B. Krishnamurthy, and A. Mislove.
Towards Detecting Anomalous User Behavior in
Online Social Networks. In Proceedings of the 23rd

USENIX Security Symposium (Usenix Security).

[36] B. Viswanath, M. Mondal, A. Clement, P. Druschel,
K. P. Gummadi, A. Mislove, and A. Post. Exploring
the design space of social network-based Sybil defense.
In Proceedings of the 4th International Conference on
Communication Systems and Network (COMSNETS),
2012.

[37] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng,
and B. Y. Zhao. You Are How You Click: Clickstream
Analysis for Sybil Detection. In Proceedings of the 22nd

USENIX Security Symposium (Usenix Security), 2013.

[38] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao. Man
vs. machine: Practical adversarial detection of
malicious crowdsourcing workers. In Proceedings of the
23rd USENIX Security Symposium (Usenix Security),
2014.

[39] G. Wang, C. Wilson, X. Zhao, Y. Zhu, M. Mohanlal,
H. Zheng, and B. Y. Zhao. Serf and turf: crowdturfing
for fun and profit. In Proceedings of the 21st

International conference on World Wide Web
(WWW), 2012.

[40] G. Wu, D. Greene, B. Smyth, and P. Cunningham.
Distortion as a validation criterion in the identification
of suspicious reviews. In Proceedings of the First
Workshop on Social Media Analytics, 2010.

[41] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao,
and Y. Dai. Uncovering social network Sybils in the
wild. In Proceedings of the 11th ACM/USENIX
Internet Measurement Conference (IMC), 2011.

[42] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and
F. Xiao. DSybil: Optimal sybil-resistance for
recommendation systems. In Proceedings of the 2009
30th IEEE Symposium on Security and Privacy (IEEE
S&P), 2009.

http://web.media.mit.edu/~bcroy/papers/bcroy-thesis_FINAL-sm.pdf
http://web.media.mit.edu/~bcroy/papers/bcroy-thesis_FINAL-sm.pdf

	Introduction
	Related Work and Motivation
	Stamper: Key Insights
	System model and goal
	Detecting tampered computations
	Robustness and Limitations

	Stamper Design
	Design overview
	Detecting anomalous distributions

	Detailed Design

	Stamper Evaluation
	Case 1: Yelp review tampering
	Ease of deploying Stamper
	Detectability of tampered computations
	Robustness of Stamper tamper detection
	Discussion

	Case 2: Twitter follower tampering
	Ease of deploying Stamper
	Investigating anomalies to detect new attacks
	Detecting new Sybil identities

	Ethics

	Stamper deployment
	Conclusion
	References

