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Abstract

Online marketplaces are now a popular way for users to

buy and sell goods over the Internet. On these sites, user

reputations—based on feedback from other users con-

cerning prior transactions—are used to assess the likely

trustworthiness of users. However, because accounts

are often free to obtain, user reputations are subject to

manipulation through white-washing, Sybil attacks, and

user collusion. This manipulation leads to wasted time

and significant monetary losses for defrauded users, and

ultimately undermines the usefulness of the online mar-

ketplace.

In this paper, we propose Bazaar, a system that ad-

dresses the limitations of existing online marketplace

reputation systems. Bazaar calculates user reputations

using a max-flow-based technique over the network

formed from prior successful transactions, thereby limit-

ing reputation manipulation. Unlike existing approaches,

Bazaar provides strict bounds on the amount of fraud that

malicious users can conduct, regardless of the number

of identities they create. An evaluation based on a trace

taken from a real-world online marketplace demonstrates

that Bazaar is able to bound the amount of fraud in prac-

tice, while only rarely impacting non-malicious users.

1 Introduction

Online marketplaces like eBay, Overstock Auctions, and

Amazon Marketplace enable buyers and sellers to con-

nect regardless of each other’s location, allowing even

the most esoteric of products to find a market. These

marketplaces have greatly expanded the set of people

who can act as a buyer or seller and, thus, can be viewed

as democratizing commerce. These sites are extremely

popular with users; in 2009, over $60 billion worth of

goods was exchanged on eBay alone.

This new freedom, however, does not come without

challenges. Online marketplaces are known to suffer

from fraud, and often rely on user reputations—formed

from the feedback provided by other users—in an ef-

fort to mitigate the effects of malicious activities on their

sites. For example, on eBay, potential buyers often ex-

amine the reputation of the seller to determine the seller’s

trustworthiness. In fact, it has been observed [13, 15, 19]

that sellers with highly positive reputations tend to sell

goods at a higher price when compared to sellers with

lower reputations, demonstrating the central role that

user reputations play in online marketplaces. Malicious

buyers (who do not pay for goods purchased) and ma-

licious sellers (who do not deliver the promised goods)

quickly gain bad reputations and are avoided [11].

One challenge, however, is that accounts on online

marketplaces are often free to create (usually only requir-

ing filling out a form and solving a CAPTCHA [23]), to

avoid discouraging potential users. As a result, reputa-

tions derived from user feedback are still subject to three

types of manipulation:

• Malicious users whose accounts have a bad reputa-

tion can effectively white-wash their reputation by

creating a new account with a blank reputation.

• Malicious users can collude by providing positive

feedback on each other’s transactions, thereby im-

proving both of their reputations.1

• Malicious users can create fake identities, known as

Sybils [7], and use these to provide positive feed-

back on fictitious transactions between the various

identities, thereby inflating their reputations.

Reputation manipulation can lead to significant mone-

tary losses for defrauded users. For example, a single

malicious eBay user was recently found to have created

260 different accounts, fabricated positive feedback, and

stolen over $717,000 from over 5,000 users [24]. This

1In fact, this type of abuse can be plainly viewed on eBay by search-

ing for auctions that are selling “positive feedback.” As of this writing,

350 such auctions exist for prices ranging from $0.01 to $0.99.



case is hardly unique: Another malicious eBay user was

arrested after defrauding others of over $1 million [20].

In this paper, we propose Bazaar, a system that

strengthens user reputations in online marketplaces in

the face of collusion, white-washing, and Sybil attacks.

Bazaar creates and maintains a risk network in order to

predict whether potential transactions are likely to be

fraudulent. The risk network consists of weighted links

between pairs of users who have successfully conducted

transactions in the past. When a transaction is about

to be completed, Bazaar calculates the max-flow be-

tween the buyer and seller; if it is lower than the amount

of the transaction, the transaction is flagged as poten-

tially fraudulent. Since Bazaar only needs to determine

whether the max-flow is above a given value (instead of

calculating the exact max-flow), Bazaar stores the risk

network using a novel multi-graph representation. We

demonstrate that this results in a substantial speed-up

of Bazaar’s max-flow calculation while imposing only a

modest storage overhead.

Bazaar provides a number of useful security proper-

ties: First, malicious users in Bazaar cannot conduct

more fraud together than they could separately, and as

a result, there is no incentive for malicious users to col-

lude. Second, malicious users cannot gain any advantage

from conducting Sybil attacks, and thus, there is no in-

centive to create multiple identities. Third, Bazaar ex-

plicitly allows users to create as many identities as they

wish; this is sometimes a desired feature in online mar-

ketplaces, where sellers may own multiple businesses or

wish to maintain separate identities for different types of

goods. Fourth, Bazaar provides a strict guarantee that

each user can only defraud others by up to the amount of

valid transactions the user has participated in, regardless

of the number of identities the user possesses, thereby

bounding the potential damage.

We evaluate Bazaar using a trace collected from eBay,

the largest online marketplace. We collected a 90-day

history of five of the most popular categories on the eBay

United Kingdom site, encompassing over 3 million users

and 8 million auctions. Simulating Bazaar on this data

set, we demonstrate that Bazaar successfully bounds the

amount of fraudulent transactions that malicious users

can conduct, while only rarely impacting the transactions

that occur between non-malicious users. We demonstrate

that if Bazaar had been deployed on eBay during the 90-

day period and in the five categories we study, it would

have flagged over £164,000 of auctions that eventually

resulted in negative feedback as potentially fraudulent,

substantially increasing the reliability of the online mar-

ketplace.

The rest of this paper is organized as follows. Sec-

tion 2 describes the approaches that are currently taken to

secure online marketplaces, and Section 3 provides more

detail on different types of fraud that are still present to-

day. Section 4 describes the design of Bazaar in detail,

and Section 5 details the multi-graph representation of

the risk network. Section 6 presents an evaluation of

Bazaar. Section 7 details related work and Section 8 con-

cludes.

2 Background

Online marketplaces often use site-specific mechanisms

for fraud prevention, but many of these can be reduced to

a few simple techniques:

Making joining the market difficult Certain market-

places only allow trusted users or organizations to par-

ticipate as sellers, often requiring upfront fees or ac-

counts backed by difficult-to-forge financial information.

An example of such such an approach is Amazon Mer-

chants [3], which requires bank account information, a

$40-per-month fee, and pre-approval for listing high-

fraud-risk goods. However, by making it more difficult

to join, this approach reduces the usefulness of the mar-

ketplace and severely restricts the population of sellers.

Using a trusted broker In some marketplaces, a mid-

dleman participates in the transaction and holds payment

until the buyer is satisfied with the transaction. For exam-

ple, on eBay, there are escrow services that hold money

for transactions until the buyer has received the good.

However, brokers typically charge a fixed fee and a per-

centage of the sale,2 increasing the transaction cost and

making escrow practical only for expensive goods (rep-

resenting a small minority of the goods on typical mar-

ketplaces).

Requiring in-person transactions Other marketplaces

such as Craigslist require buyers and sellers to be within

the same geographical area, ensuring that the participants

can meet in person to complete a transaction. This ap-

proach allows buyers to inspect goods, and sellers to ver-

ify payment, before going through with the transaction.

However, this approach also severely restricts who is able

to buy and sell goods from each other (as the buyer and

seller must live close to each other), limiting its useful-

ness to local marketplaces.

Providing insurance Certain marketplaces offer buyer

and seller insurance programs, either by default or for a

fee. However, coverage is generally limited to certain

geographic regions and the cost of the insurance pay-

outs and program administration results in higher fees

for marketplace users. Nevertheless, the information that

Bazaar provides can be viewed as an estimate of risk be-

2For example, eBay’s recommended escrow service charges a min-

imum of $22 and up to 3% of the transaction cost.



tween two parties, and can therefore be used as an input

when choosing the appropriate the insurance premium.

Paying via trusted services Because certain payment

methods (e.g., money orders) are difficult to recover,

many marketplaces suggest or require that trusted on-

line payment services (e.g., PayPal) be used. Ideally,

such services would link accounts to real-world financial

information, making the creation of multiple accounts

difficult. However, this is not the case: For example,

receiving money with a PayPal account only requires

an email address (although financial information is re-

quired to withdraw funds). Thus, malicious users can

receive money with networks of email-backed accounts,

and then send that money to the single, “real” account

that is able to withdraw money.

Leveraging feedback Finally, many online market-

places use feedback provided by users who have par-

ticipated in transactions. For example, eBay’s feedback

mechanism calculates a score for each user, consisting

of the amount of positive feedback minus the amount of

negative feedback. Users with highly positive feedback

scores are considered to be more trustworthy, and have

been observed to sell goods for higher prices [13,15,19].

This approach has the advantage of not restricting mar-

ketplace membership and allowing any buyer and seller

to participate in a transaction. However, as we will ob-

serve in the next section, using feedback is often subject

to manipulation by malicious users.

Ideally, we would like to prevent fraud without un-

necessarily restricting participation in the online market-

place. The first four approaches above artificially restrict

the marketplace by making it either harder to join, more

expensive to use, segmenting it based on geography, or

spreading the cost of fraud to all users. Thus, we focus

on the last approach, leveraging feedback, for the design

of Bazaar and present a design that is not subject to the

manipulation of existing approaches. Focusing on user

feedback also has the advantage that is the mechanism

used by the largest online marketplaces, such as eBay,

meaning Bazaar could be directly applied to such sites.

3 Examples of malicious behavior

We motivate the design of Bazaar by examining several

types of fraud that have been observed in online market-

places today. The eBay dataset that we use for illustra-

tion is fully described in Section 6, however, our purpose

here is simply to provide a few motivating examples. In

this section, we focus on malicious sellers who attempt

to defraud buyers, as sellers are largely protected from

malicious buyers by being allowed to verify payment be-

fore shipping the good. To define the fraud we observe,

we look at various sellers’ feedback history, consisting

of entries recording whether the buyer was satisfied with

the transaction.

For clarity, we begin by examining the feedback his-

tory of a typical seller, shown in Figure 1 (a). Even

though over 99% of the seller’s feedback is positive, a

few items of negative feedback can be observed. A cer-

tain low level of negative feedback is expected even for

non-malicious sellers, as some buyers may have been un-

satisfied with their purchase (e.g., due to the good being

lost or damaged in transit, a miscommunication between

the participants, or buyer’s remorse). We will use similar

timeline diagrams throughout the rest of this section.

3.1 Leaving the marketplace

One of the most common types of fraud occurs when a

seller participates in the marketplace as a non-malicious

user for a period of time, and then turns malicious (often

by starting to conduct transactions without ever shipping

the goods). As a result, the unsuspecting buyers who

have not yet received their goods are defrauded. This

type of fraud can be detected once the buyers begin to

provide negative feedback, serving as a warning to oth-

ers. However, malicious users often take advantage of

the “window of opportunity” before the negative feed-

back appears: They can advertise and accept payment

for a large number of goods before any user realizes that

a fraud has occurred.

An example of such a malicious seller is shown in Fig-

ure 1 (b). Towards the end of the seller’s timeline, he lists

a significant number of goods that are never delivered

and eventually result in negative feedback. In fact, this

user made significantly more money in aggregate from

the fraudulent transactions than from the non-fraudulent

transactions. The underlying problem is that in-progress

transactions are not counted against a seller’s reputa-

tion, enabling malicious users to establish a reputation,

defraud users with the window of opportunity, and then

re-join the site with a new account.

3.2 Hiding fraud in the noise

As an alternative to leaving the marketplace, malicious

users have also been observed to “hide the fraud in the

noise” by participating in many non-fraudulent trans-

actions, but conducting fraudulent transactions for (rel-

atively) expensive goods. As a result, their feedback

history has only a small amount of negative feedback,

and only a close inspection of the transaction values re-

veals the fraud. An example of a malicious user con-

ducting such fraud is shown in Figure 1 (c), where

the user made more money through the two fraudulent

transactions than through the hundreds of non-fraudulent



Figure 1: Auction feedback history over time for three eBay sellers: (a) a typical seller, (b) a malicious seller who

leaves the marketplace, and (c) a malicious seller who hides the fraud in the noise by conducting a few, large fraudulent

transactions. Positive feedback is shown in green, neutral feedback in blue, and negative feedback in red and below

the line. The size of each bar correspond to the log of the value of the auction.

transactions. The underlying problem is that the value

of transactions is not considered when determining a

seller’s reputation, enabling malicious users to conduct

a high-value fraudulent transactions with the same effec-

tive penalty (one piece of negative feedback) as a low-

value fraudulent transaction.

3.3 Conducting fictitious transactions

Malicious users have also been observed to conduct fic-

titious transactions and provide fictitious positive feed-

back. The ultimate goal of these transactions is not to

sell a good, but rather, to improve the user’s feedback

score, making the user look more like an non-malicious

user. For example, numerous auctions on eBay are la-

beled with “Positive Feedback Guaranteed.” Often, these

auctions ostensibly offer a copy of a digital picture or

other token item, so as to appear as a legitimate auction.

Thus, it is easy for a malicious user to arbitrarily ma-

nipulate his feedback score by adding spurious positive

feedback, so as to appear as a legitimate seller. The un-

derlying problem is that feedback counts the same, re-

gardless of the other user providing the feedback. This

allows malicious users to conspire to inflate each other’s

feedback score (or, a single malicious user to do the same

via a Sybil attack).

3.4 Summary

In this section, we described three of the most common

types of reputation manipulation that are present in the

online marketplaces of today. In the next section, we de-

scribe the design of Bazaar, which addresses each type

of manipulation by (a) considering outstanding transac-

tions, (b) taking into account the value of transactions

with positive and negative feedback, and (c) discriminat-

ing between different users’ feedback, in order to pre-

vent malicious users from artificially inflating their repu-

tation.

4 Bazaar design

We now describe the design of Bazaar.

4.1 Overview

Bazaar is intended to augment an online marketplace, run

by a marketplace operator, where buyers and sellers may

have no previous relationship and accounts are free to ob-

tain. In such systems, buyers must rely on the reputation

of the sellers, represented by feedback from other buy-

ers, to distinguish between non-malicious and malicious

users. Thus, the goal of Bazaar is to protect buyers from

malicious sellers who manipulate their reputation so as

to appear non-malicious. Additionally, we aim to keep

the existing model and basic user operations, while sig-

nificantly reducing the vulnerability to fraud. By doing

so, Bazaar serves as a drop-in component applicable to

numerous marketplaces.

Now, let us introduce a few definitions that we use for

the remainder of this section. A user corresponds to an

actual person in the offline world. An identity is an online

account with a particular username associated with it. A

user can have a potentially arbitrary number of identities.

A transaction is an event where two identities agree to a

sale, which has some value. Note that both identities in a

transaction may correspond to the same user.

Bazaar relies on two insights. First, successful trans-

actions between different users require significant effort

and risk for both parties. Both users are trusting the other

to complete the transaction, by providing payment or de-

livering the good. We refer to this as shared risk be-

tween two users. Second, once a transaction has been

successfully completed, the two users are more likely to

enter into a transaction together in the future. Note, how-

ever, this risk in not unbounded, and is dependent on the

type of transaction that has occurred: The amount of risk

that two users are willing to undertake is likely propor-

tional to the amount of risk that has been successfully

rewarded.



4.2 Risk network

We view a successful transaction as linking two identi-

ties in an undirected fashion, where the weight of the

link is the aggregate monetary value of all success-

ful transactions—successfully rewarded shared risk—

between the two identities. For example, if identities A

and B participated in two successful transactions for $5

and $10, there would be an A ↔ B link with weight $15.

Note that link weights must always be non-negative.

The set of all such links forms an undirected network,

which we refer to as the risk network. An example of

such a network is shown in Figure 2 (a). Note that

the risk network has a particularly useful property: The

weights are automatically generated by user actions, and

do not have to be explicitly provided by users. As we

demonstrate below, the risk network can be used not only

to gauge the risk between two identities who have con-

ducted a transaction in the past, but also between arbi-

trary identities who may not have directly interacted in

the past.

4.3 Design

Bazaar is run behind-the-scenes by the online market-

place operator. The basic operation of Bazaar is sim-

ple: When a buyer is about to enter into a transaction,

the marketplace operator queries Bazaar, which calcu-

lates the max-flow in the risk network between the buyer

and the seller. If the max-flow is below the amount of the

potential transaction, the marketplace operator flags the

transaction as potentially fraudulent. We discuss ways in

which this output can be used by the marketplace oper-

ator in Section 4.5, but for now, we assume that flagged

transactions are blocked.

The intuition for this approach lies in the observation

above about shared risk. Consider a risk network with

only two identities, connected by a link of weight w. The

identities may be willing to engage in another transaction

of value w, and if that is successful, then another trans-

action for a higher amount. Bazaar generalizes this intu-

ition, allowing identities who are not directly connected

to engage in a transaction as long as there is a set of paths

of sufficient weight connecting them. For example, in the

network shown in Figure 2 (a), if A was about to buy a

good from D, Bazaar would consider the flow on paths

A ↔ B ↔ D and A ↔ C ↔ D in order to determine

D’s reputation from A’s perspective.

In existing online marketplaces, feedback-based rep-

utations are “global,” in the sense that everyone has the

same view of a given user’s reputation. In Bazaar, repu-

tations are a function of both the user who is being asked

about as well as the user who is asking. As we demon-

strate below, this approach allows Bazaar to mitigate rep-

utation manipulation: Malicious users who conspire to

inflate their reputations do not necessarily increase their

reputations from the perspective of non-malicious users.

4.3.1 Putting credit “on hold”

The design of Bazaar is complicated by the fact that the

buyer may not be able to determine whether the transac-

tion was fraudulent immediately after sending payment

for the good; generally, there is a delay between when

he agrees to the transaction and when the good arrives.

In order to prevent malicious sellers from abusing these

outstanding transactions in the manner observed in Sec-

tion 3.1, when the buyer decides to go through with the

transaction, Bazaar first determines a path set3 between

the buyer and seller that has a total weight of at least the

transaction amount. Such a path set must exist, as, other-

wise, the max-flow between the buyer and seller is lower

than the transaction amount (meaning Bazaar would have

flagged the transaction as potentially fraudulent).

Once the path set is determined, Bazaar temporarily

lowers the weights on these paths (in aggregate) by the

transaction amount. In essence, this puts the weight on

these paths “on hold” until feedback concerning the suc-

cess or failure of the transaction is received. Since each

link weight must always be non-negative, this approach

prevents the malicious users from leveraging the weight

that is “on hold” in order to conduct additional transac-

tions.

Continuing with our running example in Figure 2, the

initial state of the risk network is shown in Figure 2

(a), with each identity having participated in transactions

with two other identities. Then, suppose that A con-

ducts a $10 transaction with D. Bazaar determines that

the max-flow between A and D is greater than $10, and

therefore allows the transaction to go through without be-

ing flagged. In doing so, Bazaar temporarily lowers the

links along the path set by a total of $10 (specifically, $2

is lowered off of the A ↔ B ↔ D path and $8 is low-

ered off of the A ↔ C ↔ D path). This is shown in

Figure 2 (b).

4.3.2 Responding to feedback

Finally, once the buyer provides feedback about the

transaction, Bazaar makes changes to the risk network.

These changes depend on the feedback from the buyer:

• Positive feedback If the buyer reports a success-

ful transaction, indicated by positive feedback,

Bazaar restores the temporarily lowered weight and

additionally creates a new link directly between

3If multiple path sets exist that have sufficient weight, Bazaar sim-

ply picks one of these sets randomly.
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Figure 2: State of the risk network while A conducts a $10 transaction with D. The state is shown (a) before the

transaction, (b) while waiting for feedback, (c) if the buyer reports an negative feedback, (d) if the buyer reports a

positive feedback, and (a) again, if the buyer reports neutral feedback or the timeout expires.

the buyer and seller weighted by the transaction

amount.4 This has the effect of both restoring the

network to its previous state, and creating a new

risk link between the buyer and seller. The intuition

for this action follows from the discussion above,

whereby the buyer and seller are more likely to en-

ter into a future transaction together.

• Neutral feedback If the buyer reports a par-

tially successful transaction, indicated by neutral

feedback, Bazaar restores the temporarily lowered

weight, but does not create a new link. This has the

effect of restoring the network to its previous state,

with no changes. The intuition for this action is that

users who provide neutral feedback are not claim-

ing that the transaction was fraudulent, but are not

completely satisfied. Thus, the buyer is not likely

to enter into a future transaction with the seller, but

does not wish to punish the seller by providing neg-

ative feedback.

• Negative feedback If the buyer reports an un-

successful transaction, indicated by negative feed-

back, Bazaar makes the temporary lowering of the

weights permanent and does not create any new

links. This has the effect of reducing weight on the

seller’s links, thereby decreasing the seller’s ability

to conduct transactions in the future without having

them flagged. In particular, if the seller conducts

many transactions that end up with negative feed-

back, eventually, all of his links will be exhausted,

and he will be unable to conduct any non-flagged

transactions.

• No feedback Finally, if the buyer does not report

feedback at all, a configurable timeout of T is used,

after which Bazaar responds as if the buyer pro-

vided neutral feedback (i.e., the temporarily low-

ered weight is restored, but no new link is created).

This is similar to existing sites, which often have a

time cutoff for providing feedback.

4If a direct link already existed, then Bazaar simply increases that

link’s weight by the transaction amount.

Returning to our running example in Figure 2, sup-

pose that the feedback is received or the timeout occurs.

Bazaar either makes the weight reductions permanent if

the buyer reports negative feedback (Figure 2 (c)), re-

stores the previous weights and also forms a new A ↔ D

link if the buyer reports positive feedback (Figure 2 (d)),

or restores the previous weights if the buyer reports neu-

tral feedback or the timeout occurs (Figure 2 (a)).

The intuition for why Bazaar is able to prevent fraud is

demonstrated by the network shown in Figure 3, where a

malicious user X has created a number of identities (X1

... X5) and has conducted fictitious transactions between

them (in essence, the weight on these links can be ar-

bitrarily set by X). Without Bazaar, potential victim Z

would only see X1’s fictitious feedback consisting of a

number of positive entries. Not knowing that all of this

positive feedback was from other identities owned by the

same underlying user, Z would likely be defrauded. With

Bazaar, however, the fictitious transactions do not con-

tribute to the max-flow between Z and X1, and Bazaar

is likely to flag the transaction as potentially fraudulent

(even though Bazaar had no a priori knowledge that all

Xi identities belong to the same user). Moreover, should

$500

$250
$10

$100

$5$75

Figure 3: Example risk network, showing why Bazaar

secures reputations (links represent previous real transac-

tions, and double links represent fictitious transactions).

Honest identity Z is considering entering into a trans-

action with malicious identity X1 (owned by the same

user as X2 ... X5). Without Bazaar, X1 appears to be a

reputable seller. With Bazaar, the fictitious transactions

do not increase the max-flow ($5) between Z and X1,

thereby preventing the reputation manipulation.



X use one of these identities to conduct a fraud—of no

more than $5, since anything greater would be automat-

ically flagged as potentially fraudulent—the Y ↔ X1

link will have credit put “on hold” and eventually re-

duced (once the buyer provides negative feedback), re-

gardless of which identity X selects as the seller. This is

the case regardless of the number of identities X creates

or how he creates fictitious transactions between them.

In effect, Bazaar forces X to participate in successful

transactions with other non-malicious users in order to

increase his max-flow, and penalizes these links when-

ever X conducts fraud.

4.3.3 Bootstrapping

New users, by definition, have no transaction history

and therefore have a max-flow of 0 to all other users.

To allow new users to participate without having all

of their transactions flagged as potentially fraudulent,

Bazaar uses two techniques. First, Bazaar allows users

to create virtual links to their real-world friends (in the

same manner as malicious users can create links in the

risk network between their identities by conducting ficti-

tious transactions). This mechanism allows users to ob-

tain a few “starter” links from the friends, without open-

ing a new security vulnerability: Since the user’s friends

are, in effect, vouching for the new user, the friends are

putting their existing links on-the-line. If the new user

defrauds others, not only would his links be penalized,

but the links of his friends would be as well.

Second, if the new user does not have any real-world

friends in the marketplace, Bazaar allows him to option-

ally provide the marketplace operator with an amount of

money to hold in escrow. In return, the marketplace op-

erator creates links between the new user’s identity and

other, random identities with a total value of the amount

in escrow. These newly created links allow the new user

to participate in the marketplace. At some later time,

the new user can request that the escrowed money be

returned (and the marketplace operator will remove the

created links). However, if the created links represent

weight on hold, or if the they have been lost (due to a

fraudulent transaction), the marketplace operator would

refuse to return the escrowed money. This approach does

not open up a new vector for attack, as (a) the most

the new user could defraud is the amount of escrowed

money, and (b) if the user does commit such a fraud, he

would lose his escrowed money. In essence, such an at-

tack would not allow a malicious user to gain any money.

4.4 Guarantees

We now discuss the guarantees that Bazaar provides. In

brief, Bazaar ensures that malicious users can only de-

fraud others up to the total amount of successful transac-

tions that they have participated in with non-malicious

users. To see this, let us imagine a malicious user

X , whose identity has outgoing links with weight to-

taling aX . Each time X conducts a fraudulent transac-

tion, some of his links are reduced, in aggregate, by the

amount that he defrauds. Thus, once X has defrauded

a total of aX , all of his links have been removed and

he is prevented from participating in transactions in the

future. Moreover, X cannot use the “window of oppor-

tunity” (discussed in Section 3) to conduct fraud before

feedback is provided, as Bazaar puts link weights on hold

until the feedback is received.

Moreover, the same analysis holds for any subgraph

or any cut in the network. Thus, collusion between ma-

licious users does not help; the users can only defraud

together for the total of what they could defraud sepa-

rately. This argument also explains why creating fake

identities also does not help, as it is the cut in the net-

work between the user’s identities and the rest of the net-

work that bounds the amount that the user can defraud,

instead of the number of identities the user has or the

amount of fictitious feedback. The upshot is that Bazaar

does not explicitly detect Sybil nodes or malicious users

in the network, rather, it provides a strict guarantee on

the amount of fraud that they are able to conduct.

The implication of this analysis is that we can charac-

terize the amount of fraud the malicious users are able

to conduct, in aggregate. Let us partition the network

in two groups: G, containing non-malicious identities

who do not conduct fraudulent transactions, and M , con-

taining malicious identities whose goal is to defraud oth-

ers. Let us consider the cut in the network between these

two sets, with total value cMG. We make two observa-

tions: First, any links that lie along this cut must repre-

sent non-fraudulent transactions between non-malicious

users and malicious users; in essence, these represent in-

stances where the malicious users were non-malicious.

Second, any time one of the malicious users defrauds a

non-malicious user, this cut is reduced by the amount of

the fraud. Thus, malicious users can only defraud non-

malicious users of up to cMG before the two groups are

partitioned and all of the malicious users’ transactions

are flagged as potentially fraudulent to the non-malicious

users.

It is worth noting that this is a much stronger guar-

antee than what can be provided today. For example,

today, a user can potentially purchase a large amount of

fictitious positive feedback with a low monetary invest-

ment, use that feedback to appear as an non-malicious

seller, and then defraud users of a significant amount of

money. This problem is exacerbated by the fact that the

defrauded users have to realize that they have been de-

frauded before they can provide negative feedback and



warn others, leaving a significant window of vulnerabil-

ity. Moreover, the malicious user can simply repeat this

process with a new identity. By putting this bound in

place, we are able to force the malicious user to par-

ticipate in valid transactions with non-malicious users,

thereby significantly reducing the attractiveness of com-

mitting such a fraud.

4.5 Discussion

We now discuss a few deployment issues with Bazaar.

User interaction The marketplace operator can use the

output of Bazaar in multiple ways. For example, the mar-

ketplace operator can provide strong fraud guarantees by

not allowing flagged transactions to go through. Alterna-

tively, the marketplace operator can require that flagged

transactions use an escrow service or insurance service,

or can more closely scrutinize the transaction. The lat-

ter options represent an additional incentive for the mar-

ketplace operator to deploy Bazaar, as selling additional

services such as escrow or insurance may increase their

revenue while at the same time attracting customers due

to a decrease in fraud.

Providing honest feedback An additional concern is

whether buyers are incentivized to provide honest feed-

back on transactions in Bazaar. First, rational buyers

have no incentive to provide incorrect negative feedback:

By doing so, they penalize their own links and they pre-

vent the creation of a new link between themselves and

the seller. Since having more links is desirable (as it

allows a user to participate in more and higher-valued

transactions), buyers are disincentivized from providing

incorrect negative feedback. Second, rational buyers also

have no incentive to provide incorrect positive feedback.

In particular, if they were unhappy with the transaction,

providing positive feedback creates a new direct link to

the seller; this is likely to be highly undesirable if the

buyer felt defrauded, as it risks the buyer’s existing links.

Targeted attacks Another possible concern is whether

Bazaar introduces a new attack vector by allowing a ma-

licious user to conduct a targeted attack on a seller by

purchasing their goods and then always providing nega-

tive feedback (thereby damaging the seller’s reputation).

First, such an attack is possible in existing marketplaces,

as malicious users can conduct this attack by creating nu-

merous free identities and then purchasing the victim’s

goods. Thus, Bazaar does not open up a new avenue for

attack. Second, we note that Bazaar raises the bar on this

attack, making it more difficult to conduct: With today’s

marketplaces, the malicious users can purchase the vic-

tim’s goods immediately after creating another identity.

With Bazaar, the malicious users must first conduct non-

fraudulent transactions in order to obtain enough links

to be able to conduct the attack, making such an attack

significantly more difficult and less attractive.

Compromised accounts If a user’s account password is

compromised, an attacker can conduct fraudulent trans-

actions on the user’s behalf, eventually causing the user

to run out of links. However, this attack is not unique

to Bazaar, since attackers could conduct the same attack

with the reputation systems in-use today. Moreover, with

Bazaar, the amount of fraud that can be conducted is still

subject to the Bazaar bounds, whereas without Bazaar, it

is potentially unbounded.

Protecting sellers Bazaar, as described so far, focuses

on protecting buyers from being defrauded by malicious

sellers who manipulate their reputation. However, in cer-

tain marketplaces, it may be necessary to protect sellers

as well (e.g., from buyers who use fraudulent payment

mechanisms like stolen credit cards). We leave protect-

ing sellers to future work, with one comment: The need

to protect sellers is somewhat mitigated by the fact that

marketplace operators generally allow sellers to verify

payment before shipping the good.

Maintaining full network knowledge The design of

Bazaar proposed so far requires knowledge of the com-

plete risk network. This is not an unreasonable assump-

tion, as online marketplaces are generally run by a sin-

gle operator that has full knowledge of all transactions.

Given this information, the marketplace operator can cre-

ate and update the risk network as necessary. It may be

possible to decentralize knowledge of the risk network,

but this remains an open research question and is a sub-

ject of future work. A decentralized system has several

advantages with regards to privacy and scalability, but

as we do not know of any decentralized online market-

places, the path to deploy a decentralized solution is un-

clear.

5 Calculating max-flow using multi-graphs

The Bazaar design described so far relies on finding the

max-flow path between two nodes in order to calcu-

late the amount of risk embedded in a potential trans-

action. Since the risk network may have large number

nodes and links, finding the max-flow between nodes us-

ing traditional approaches like Ford-Fulkerson [8] and

Goldberg-Rao [9] may prove to be expensive. Similarly,

pre-computing max-flow values through techniques like

Gomory-Hu Trees [12] may also prove too costly, and are

complicated by the fact that the risk network is chang-

ing over time. Instead, Bazaar uses a novel approach

called multi-graphs in order to reduce the computation

required. In this section, we first describe useful obser-

vations on risk networks and of our desired max-flow al-



gorithm, detail the multi-graph data structure, and finally

demonstrate how multi-graphs reduce the complexity of

finding max-flow values.

5.1 Observations

We begin by making two observations concerning the

risk networks in online marketplaces and the properties

of the max-flow calculation in Bazaar.

1. Dense core First, like social networks [16], the risk

networks we observe in real-world online market-

places tend to have a dense core, meaning a small

minority of users possess the majority of the links.

Moreover, the higher-valued links (representing risk

relationships with higher values) also tend to fall

in this “core.” As a result, the risk network tends

to shrink rapidly if links with less than a specified

weight are discarded. We demonstrate this with

real-world data in the following section.

2. Actual max-flow not needed Second, and most im-

portant, Bazaar does not need to actually calculate

the value of the max-flow between a potential buyer

and seller. Instead, Bazaar simply needs to verify

whether the max-flow is above a certain value (i.e.,

the value of the potential transaction). This implies

that the complexity of calculating the max-flow in

Bazaar may not be as high as a general max-flow

calculation.

The multi-graph optimization, described next, leverages

both of these observations in order to reduce the com-

plexity of the max-flow calculation in Bazaar.

5.2 Multi-graphs

Formally, we define a multi-graph M to be a set of graphs

M = {G0, G1, ..., Gn}

where each graph Gi = (Vi, Ei). These graphs are re-

lated: First, G0 is defined to be the entire risk network.

Second, Gi is defined to be the subgraph of Gi−1 with

Ei = {e ∈ Ei−1 : w(e) ≥ ki}

Vi = {v : (v, · ) ∈ Ei}

where w(e) represents the weight of edge e and k is a

configurable system parameter with a suggested value of

2. Thus, the multi-graph contains a series of risk net-

works, where each subsequent network is a subgraph of

the previous containing only those links with an expo-

nentially higher weight. An example of converting a risk

network into a multi-graph is shown in Figure 4.

Figure 4: Conversion of a risk network (left) to a risk

multi-graph (right). Links with higher weights are shown

with thicker lines. Graphs at higher levels in the multi-

graph only include links with exponentially increasing

weights (e.g., with k = 2, the three levels of the multi-

graph would represent all links, links with weight $2 and

higher, and links with weight $4 and higher).

Note that a multi-graph contains multiple copies of a

given link, the weights of which need to be kept consis-

tent. There are three operations on the risk network under

which Bazaar must maintain consistency:

• Link addition When a new link is added, it is sim-

ply added to all of the graphs to which it belongs

(e.g., if the link weight is w, the link is added to

{Gi : w ≥ ki}).

• Link weight change When the weight of a link

is changed, it is simply added to or removed from

the appropriate graphs. Conceptually, this can be

viewed as removing the link from all graphs, fol-

lowed by adding it back at its new value.

• Link weight temporary adjustment Recall that

Bazaar may temporarily lower the weight of a link

when a transaction is in progress. Conceptually, this

can be viewed as changing the weight of the link.

Later, if the adjustment is undone, this can again be

viewed as a weight change.

5.3 Max-flow on multi-graphs

Now, let us consider what happens when Bazaar calcu-

lates whether a path set of total weight w exists between

a source and destination. With a normal risk network,

Bazaar must use an algorithm like Goldberg-Rao, which

runs over the entire risk network and is optimized to de-

termine the actual max-flow between the source and des-

tination.In contrast, with a multi-graph, Bazaar proceeds

by first finding the highest-weight network Gm where

both the source and the destination are present. Then,

Bazaar runs any existing max-flow algorithm on Gm,

looking for a set of paths of collective weight w. If such a



set is found, then the algorithm returns that set and is fin-

ished. If no such set is found, Bazaar repeats the process

with the next-lowest graph Gm−1. This process contin-

ues until either a set of paths of weight w is found, or

Bazaar cannot find such a set of paths in the lowest graph

G0. The latter case indicates that the max-flow in the

original risk network was lower than w, demonstrating

that finding the max-flow in a multi-graph is guaranteed

to have the same outcome as finding the max-flow in the

original risk network.

It is worth noting that multi-graphs require an increase

in storage costs, since multiple copies of many links must

be stored. However, as we demonstrate in the evaluation,

the storage requirements of the multi-graphs are modest

and are easily met by today’s computing hardware.

5.4 Benefit of multi-graphs

We now describe how the use of multi-graphs speeds up

the max-flow calculation in Bazaar. Consider the case of

a transaction of value w. First, because of observation

1 above, the sizes of the graphs Gi decrease extremely

rapidly as i increases. Thus, running a max-flow algo-

rithm over Gi is significantly faster than running it over

Gi−1. Second, because of observation 2, it is possible to

modify the max-flow algorithm to terminate as soon as it

finds a path set of weight w, instead of continuing to find

the actual max-flow. For example, if we are using Ford-

Fulkerson, only a few rounds may be are needed in order

to find a set of paths of weight w. Third, the increasing

link weights in higher Gi further reduce the running time

of the max-flow algorithm, as the path set in higher Gi

is likely to consist of only a few paths. As we demon-

strate in the evaluation, these effects allow multi-graphs

to significantly speed up the calculation in practice.

6 Evaluation

In this section, we present an evaluation of Bazaar. In

particular, we use data collected from a real-world on-

line marketplace to determine if the max-flow technique

employed by Bazaar is able to detect and prevent fraud-

ulent transactions. We describe the data collected, verify

our observations in the previous section, demonstrate the

performance gains of using multi-graphs, and present an

evaluation of Bazaar on real-world data.

6.1 Auction data

In order to evaluate Bazaar, we collect data from eBay,

the largest online marketplace. We focus on collect-

ing data from the ebay.co.uk site, containing United

Kingdom auctions.

Category Purchases Users Avg. Price

Clothes 3,311,878 1,436,059 £9.73

Collectibles 940,815 454,773 8.90

Computing 964,925 661,285 21.31

Electronics 861,108 652,350 20.67

Home/Garden 2,795,795 1,426,785 16.57

Total 8,874,521 3,168,455 £14.12

Table 1: Distribution and monetary values of feedback

seen in our trace.

eBay makes the feedback for all users public. Each

piece of feedback consists of the feedback value (posi-

tive, negative, or neutral), the auction the feedback was

for, the identity of the user providing feedback, and a

short message from that user explaining the feedback.

Feedback can be provided by both the buyer and seller, so

each auction can result in two pieces of feedback. eBay

only makes detailed feedback available for 90 days, after

which time, information about the auction the feedback

is for is removed, and only the feedback value, message,

and providing user remain. Thus, we are only able to

collect detailed feedback for the previous 90 days.

eBay provides an API to collect data, but rate limits the

requests to a very low rate. Instead, we use web scrap-

ing to collect data. We start from one user and crawl

their feedback profile. From this profile, we learn about

other users and proceed to crawl them. We continue this

process until we exhaust all known users, effectively per-

forming a breadth-first-search of the feedback graph.

In order to make our data collection process tractable,

we only consider auctions and feedback that occur in five

of the largest auction categories, shown in Table 1. Thus,

we do not crawl other users that appear in the feedback

history if the auction is not in one of these five categories.

Since eBay allows users to participate in international

transactions, not all users we discover are located in the

United Kingdom. We restrict our crawl to only consider

users located in United Kingdom, leaving us with a to-

tal of 3,168,455 distinct users (note that users may par-

ticipate in multiple categories). Finally, because Bazaar

focuses on protecting buyers from malicious sellers, we

only collect feedback from buyers to sellers (and ignore

feedback from sellers to buyers). In total, our dataset

contains information on 8,874,521 items of feedback.

6.2 Dense core of risk networks

We now turn to validate our observation in Section 5 that

motived our multi-graph design. Specifically, we exam-

ine whether there tends to be a dense “core” of users

in the risk network, which was necessary for the multi-

graph representation to have acceptable overhead. To do

so, we use a similar approach to prior studies [16] and ex-
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Figure 5: Fraction of links remaining (bottom) and frac-

tion of the remaining nodes in the largest SCC (top) as

only higher-weighted links are considered. Even as the

majority of links are discarded, the largest SCC still con-

tains most nodes, indicating the presence of a core.

amine the subgraph consisting of highly weighted links.

We are interested in both the size and the connectedness

of these subgraphs. Figure 5 shows how these two at-

tributes vary as only higher-weighted links are consid-

ered. As the threshold rises from £1 to £20, almost 80%

of the links are discarded. However, the vast majority of

the remaining nodes are still in the largest strongly con-

nected component (SCC), indicating the presence of a

strong core. For some of the categories, the largest SCC

does not disintegrate until only links of over £100 are

considered. This validates our observation from the pre-

vious section, and indicates that multi-graphs are likely

to speed up Bazaar’s max-flow calculations in practice.

6.3 Multi-graph performance

We now turn to evaluate the benefits of using the multi-

graph representation on the performance of finding max-

flow paths. Specifically, we examine the tradeoff be-

tween memory and speed; since multi-graphs store mul-

tiple copies of certain links, they naturally have higher

memory requirements than only using a risk network.

First, we show the number of multi-graph levels and the

resulting memory overhead, relative to the single graph,

of storing a multi-graph in Bazaar in Table 2. As can be

seen from the table, while the relative storage overhead

is a 3- to 4-fold, the absolute overhead is small.

Next, we turn to evaluate the speedup of verifying

whether a max-flow exists using a multi-graph in Bazaar.

To do so, we create separate risk networks from each

of the five categories by aggregating our feedback trace,

creating links between users who participated in transac-

tions with positive feedback. We then randomly select

Size Overhead

Category (MB) Levels Rel. Abs. (MB)

Clothes 7.38 12 234.6% 17.3

Collectibles 2.01 14 221.0% 4.44

Computing 3.47 13 282.9% 9.83

Electronics 3.23 13 255.9% 8.25

Home/Garden 7.31 13 251.8% 18.4

Table 2: Memory requirements of a single graph repre-

sentation of the risk network, and number of levels and

overhead (both relative and absolute) of a multi-graph

representation, with k = 2.

1,000 pairs of nodes from each category and an amount

from the prices in the observed auction trace. We cal-

culate the time required to verify whether a set of paths

exist with at least the selected auction amount between

the pair of users. For this experiment, we used a machine

with a 2.83 GHz Intel Xeon processor.

Table 3 presents the results of this experiment. Using

the multi-graph representation shows a significant per-

formance gain, with speed-ups ranging between 1.92×
and 2.86×. In fact, with the multi-graph, most of the

max-flow calculations take less than 6 seconds to com-

plete. However, most of the calculations that are suc-

cessful (e.g., a set of paths is found with at least the

specified weight) finish quickly, while the calculations

that eventually fail (e.g., no such set is found) take much

longer to finish, thereby inflating the average. This trend

is expected since a failure must traverse every graph in

the multigraph, whereas a success has the potential to

end early. This observation suggests a further avenue

for speeding up the max-flow calculation in practice, by

considering calculations that run longer than a specified

amount of time to have failed. For example, in the Com-

puting category, if all calculations that take longer than

two seconds are considered to have failed, this would

only misclassify 5.5% of the eventually to-succeed cal-

culations, and would lower the average running time

from 1.66 to 0.70 seconds.

Regardless, even without this further optimization, the

average max-flow calculations in the largest category we

examine (Clothes) required 6.29 seconds, meaning that

13,736 calculations could be completed per server per

day. Using our trace, we determined that the highest

number of auctions closing on a single day in this cat-

egory was 80,846, meaning that Bazaar could be de-

ployed in this category by purchasing a server with at

least 6 cores. Of course, synchronization would need to

be maintained to ensure that two cores were not using a

single link at once. We observed, though, that such con-

flicts occur rarely (0.0165% of the time in this category),

implying that parallelism of the max-flow algorithm [1]

is likely to provide significant performance gains.



Time (s)

Category Single Multi-graph Speedup

Clothes 18.0 6.29 2.86×

Collectibles 2.53 1.18 2.14×

Computing 3.78 1.66 2.27×

Electronics 2.71 1.41 1.92×

Home/Garden 11.6 5.34 2.15×

Table 3: Average max-flow calculation times, and rela-

tive speedup when using multi-graphs with k = 2.

6.4 Detecting fraud with Bazaar

We now turn to examine how well Bazaar is able to de-

tect fraudulent transactions. In particular, we are inter-

ested in three aspects of Bazaar’s performance: First,

what is the impact on non-malicious users? In other

words, how often are non-malicious users’ transactions

incorrectly flagged as potentially fraudulent? Second, is

Bazaar able to bound the amount of fraud that malicious

users are able to conduct? Third, what impact, in terms

of the amount of fraud prevented, could we expect from

Bazaar if it were deployed on a online marketplace?

To conduct the evaluation, we use a random subset of

80% of the feedback data to create a risk network for

each of the five categories, and then use the remaining

20% of the feedback data to simulate the operation of

Bazaar. Because our data only represents a 90-day pe-

riod, many of the users participate only in a single trans-

action (and therefore have a max-flow of 0 to all other

users). In order to reduce the bias caused by our short

time-window of data, we only simulate users who we ob-

serve to participate in at least five transactions during the

time range. Finally, for each data point, we repeat the

experiment 10 times using different random seeds.

To simulate Bazaar, we need a few pieces of informa-

tion from each auction transaction: the identity of the

buyer and seller, the price of the auction, the purchase

and feedback time, and the feedback itself. Our crawled

data unfortunately only contains the purchase time for

54.6% of the data.5 So, for the auctions where the pur-

chase time is not available, we artificially select a pur-

chase time by subtracting a random “delay” from the

feedback time. This delay is randomly drawn from the

observed purchase-time-to-feedback-time delay distribu-

tion of the other auctions.

6.4.1 Impact on non-malicious users

Our first evaluation examines the potential negative im-

pact that Bazaar has on non-malicious buyers and sellers.

The primary form that such impact takes is incorrectly

5In more detail, the purchase time of fixed-price auctions—where a

user sells multiple, identical items at a fixed price—is not available, as

these auctions have multiple buyers purchasing the items.

Fraction of transactions

Category incorrectly flagged

Clothes 1.11%

Collectibles 1.12%

Computing 3.23%

Electronics 4.68%

Home/Garden 2.43%

Table 4: Fraction of non-fraudulent transactions that are

incorrectly flagged as fraudulent by Bazaar. The fraction

flagged incorrect is never higher than 5%, indicating that

non-malicious users are largely unaffected.

flagging transactions as potentially fraudulent. To de-

termine the frequency with which this happens, we sim-

ulate Bazaar without any malicious users and calculate

the fraction of transactions that had positive feedback

but that would have been flagged by Bazaar due to in-

sufficient max-flow. The results of this experiment are

shown in Table 4, listing the fraction of non-fraudulent

transactions which are flagged as potentially fraudulent

by Bazaar. The results show that no more than 5% of all

non-fraudulent transactions are flagged, indicating that

non-malicious users in Bazaar are largely unaffected.

6.4.2 Blocking malicious users

We now evaluate whether Bazaar is able to bound the

amount of fraud that malicious users can conduct in prac-

tice. Recall that Bazaar guarantees that each user is only

able to conduct fraudulent transactions up to the amount

of non-fraudulent transactions that he has participated in.

Thus, we are interested in comparing how much fraud

malicious users can conduct, relative to the amount of

non-fraudulent transactions they participated in.

To simulate the behavior of malicious users, consistent

with prior studies [22], we randomly select 1% of the

users to be malicious. For each user, we simulate Bazaar

running with other, randomly selected users purchasing

items from the malicious user. We then calculate the total

amount of fraudulent transactions that each user can con-

duct, until the point at which Bazaar flags all transactions

with the malicious user as potentially fraudulent.

Figure 6 presents the results from conducting this ex-

periment, by plotting the amount of fraudulent transac-

tions a malicious user can conduct versus the sum of

the malicious user’s initial links. As can clearly be seen

in the figure, Bazaar’s bound on the amount of fraudu-

lent transactions holds: the amount of possible fraud is

strictly bounded by the sum of the non-fraudulent trans-

actions that the malicious user has participated in so far.6

6A careful reader will note that malicious users are sometimes

bounded to less than the actual total of their previous successful trans-

actions. This occurs when, for example, a malicious user is the only
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Figure 6: Aggregate amount of fraudulent transactions

that malicious users can conduct versus the aggregate

value of previous successful transactions. Also included

is the expected bound (y = x). As expected, Bazaar en-

sures that malicious users can only commit fraud up the

amount of successful transactions that they have partici-

pated in previously.

Even if the malicious user whitewashes his account (by

creating a new identity), or conducts a Sybil attack (by

creating multiple identities and linking them by fictitious

transactions), he is unable to conduct any more transac-

tions that are not flagged as potentially fraudulent.

6.4.3 Preventing fraud

As a final point of evaluation, we examine the amount of

fraud that Bazaar would prevent, were it to be deployed

on a real-world online marketplace. In other words, what

impact could we expect from Bazaar?

To evaluate this, we use the same 90-day trace from the

five eBay categories. Then, for each seller, we calculate

the total amount of goods sold with positive feedback,

and the total with negative feedback. Recall that Bazaar

prevents any user from having more (price weighted)

negative feedback than positive feedback, so the auctions

that represent the excess negative feedback would have

been flagged as potentially fraudulent. We therefore cal-

culate the total of this excess, and determine what frac-

tion of the overall negative feedback it represents.

Table 5 presents the results. Bazaar would have

flagged between 29% and 42% of all auctions that re-

sulted in negative feedback as being potentially fraud-

ulent, thereby possibly preventing these auctions from

occurring. While we cannot say that all of these trans-

actions represent fraud (e.g., the negative feedback could

simply represent buyer’s remorse), the fact that these all

come from sellers whose weighted negative feedback is

greater than their weighted positive feedback strongly

suggests so. In total, the auctions that Bazaar would have

prevented represent £164,791.55 worth of goods, signifi-

user that another user is linked to: Even though the malicious user’s

total is increased, this link does not increase the max-flow to any other

users (much in the manner of the X2...X5 identities in Figure 3).

Fraction of all

Category Total flagged negative feedback

Clothes £28,291.34 29.9%

Collectibles 4,995.04 38.2%

Computing 48,742.66 39.7%

Electronics 34,476.87 42.6%

Home/Garden 47,285.64 32.4%

Total £164,791.55 36.0%

Table 5: Total number of auctions with negative feed-

back that would be flagged as potentially fraudulent,

and the fraction of all auctions with negative feedback

that this represents. Overall, Bazaar would have flagged

£164,791.55 worth of auctions that eventually resulted in

negative feedback, representing 36% of all such auctions.

cantly bolstering the reliability of the online marketplace.

Moreover, this amount is only for a 90-day period in the

five categories we study; the amount is likely to be sig-

nificantly higher if Bazaar were deployed on the entire

marketplace and over a longer period of time.

7 Related work

Researchers have previously studied approaches to de-

tecting auction fraud, usually relying on machine-

learning techniques [4, 18] based on bidding behavior.

While these techniques succeed at detecting some fraud-

ulent users, they rely on characteristics of malicious be-

havior. As a result, unlike Bazaar, these approaches do

not provide a bound on the amount of fraud any user can

conduct. Additionally, researchers have developed tech-

niques [14, 21] to detect shill bidding, where users con-

spire with others to artificially inflate the selling price of

their auctions. Bazaar is complementary to this work, as

it is not concerned with shill bidding, but rather, fraud

caused by reputation manipulation.

Other work [5, 10] has examined building reputations

based on social relationships between users. While some

of the techniques used are similar to Bazaar, Bazaar must

determine pairs of trusting users itself (instead of as-

suming pairwise trust is externally provided). This in-

troduces significant challenges, but enables Bazaar to be

deployed on existing sites.

There is also significant work that studies the network

formed by users who trust each other, and a number of

research systems have already been proposed to lever-

age this trust. Perhaps the most well known of these are

the PGP web of trust [27] and the Advagato trust met-

ric [2]. However, these systems are generally concerned

with providing a stronger notion of identity, instead of

bounding the amount of malicious activity.

More generally, recent work has focused on detecting

Sybil accounts using social networks [6, 25, 26]. These



approaches are not directly applicable to online market-

places for two reasons: First, they assume the existence

of a social network that is not necessarily present, and

second, they only bound the number of Sybil accounts

that are admitted, not on the amount of fraud that mali-

cious users can conduct. Thus, even with Sybil detection

algorithms, malicious users are still able to conspire to

arbitrarily inflate each others’ reputations.

Like other work [22], Bazaar uses a mechanism that

is loosely based on the one used in Ostra [17], a system

that uses a social network to block senders of unwanted

communication. However, Bazaar differs from Ostra in

three important ways. First, while Ostra is based on a rel-

atively stable, unweighted social network, Bazaar uses a

weighted risk network that is changing with every trans-

action (e.g., links are added and removed, and the links

weights can grow and shrink over time). Second, Os-

tra assumes the trust network is given from an external

source, while Bazaar constructs the risk network dur-

ing the operation of the system. This requires Bazaar

to face additional challenges, as malicious users are able

to create links by participating in transactions (this is not

possible in Ostra, as Ostra’s assumption is simply that

links to non-malicious users take effort to form and main-

tain). Third, Bazaar works by calculating the max-flow

in the risk network, instead of simply finding a single

path (as in Ostra). This induces significant engineering

challenges and results in a system with a different set of

guarantees.

8 Conclusion

In this paper, we presented Bazaar, a system that

strengthens user reputations in online marketplaces.

Bazaar is based on max-flow calculations over a risk

network, a data structure that encodes the amount of

rewarded shared risk between participants. Using data

on over 8 million purchases from a real-world online

marketplace, we demonstrated that Bazaar is able to ef-

fectively bound the fraud that malicious users are able

to conduct, while only rarely impacting the transactions

conducted between non-malicious users.

Given the popularity of online marketplaces and the

large amount of fraud that such marketplaces currently

experience, our hope is that Bazaar can be used as a drop-

in component on real-world sites. Bazaar is designed to

be readily applied to such marketplaces.
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