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ABSTRACT
Today, isolated trusted computation and code execution is of 
paramount importance to protect sensitive information and 
workfl ows from other malicious privileged or unprivileged 
software. Intel Software Guard Extensions (SGX) is a set of 
security architecture extensions fi rst introduced in the Skylake 
microarchitecture that enables a Trusted Execution Environment 
(TEE). It provides an ‘inverse sandbox’, for sensitive programs, 
and guarantees the integrity and confi dentiality of secure 
computations, even from the most privileged malicious software 
(e.g. OS, hypervisor).

SGX-capable CPUs only became available in production systems 
in Q3 2015, and they are not yet fully supported and adopted in 
systems. Besides the capability in the CPU, the BIOS also needs 
to provide support for the enclaves, and not many vendors have 
released the required updates for the system support. This has led 
to many wrong assumptions being made about the capabilities, 
features, and ultimately dangers of secure enclaves. By having 
access to resources and publications such as white papers, 
patents and the actual SGX-capable hardware and software 
development environment, we are in a privileged position to be 
able to investigate and demystify SGX.

In this paper, we fi rst review the previous trusted execution 
technologies, such as ARM Trust Zone and Intel TXT, to better 
understand and appreciate the new innovations of SGX. Then, we 
look at the details of SGX technology, cryptographic primitives 
and the underlying concepts that power it, namely the sealing, 
attestation, and the Memory Encryption Engine (MEE). We also 
consider use cases such as trusted and secure code execution on 
an untrusted cloud platform, and digital rights management 
(DRM). This is followed by an overview of the software 
development environment and the available libraries.

1. INTRODUCTION
Today, cloud platforms are becoming more widely used, both by 
end-users and enterprises. However, the notion of trusting a 
third party with your secrets is not very desirable for many 
entities. The status quo not only forces users to put their faith in 
the honesty and trustworthiness of the cloud providers but also 
forces them to trust in the lack of malware and comprise of the 
cloud platforms. Intel SGX is a new technology that guarantees 
the confi dentiality of users’ data on a remote node, against other 
unprivileged or even privileged software such as the operating 
system and hypervisor. Without adequate support from the 
hardware to provide a secure execution environment, previous 
work relied on trusted hypervisors to protect applications 

against malicious OSs [1–3]. An alternative approach that 
mobilized the research community is to compute over encrypted 
data [4], for example using Fully Homomorphic Encryption 
(FHE) schemes [5] that can perform general operations on 
encrypted data. However, current FHE techniques are still 
several orders of magnitude slower than necessary for practical 
applications.

Earlier attempts such as Intel TXT, formerly known as LaGrande 
Technology, did not succeed in becoming widely adopted and 
deployed. Intel TXT is a platform-level enhancement and set of 
extensions to attest the authenticity of the hardware and 
operating system by enabling the measurement and verifi cation 
of the environment [6]. Currently, ARM TrustZone is one of  the 
most successful and widely deployed TEEs both for clients and 
enterprises.

Previous works have looked at Intel SGX and discussed its 
potentials and shortcomings [7–9]. However, they were based on 
the information available prior to the offi cial release of the SGX 
hardware (processors and supporting motherboards) and its 
specifi cations. In this work, by having access to resources and 
publications such as white papers, patents and the actual 
SGX-capable hardware and software development environment, 
we are in a privileged position to be able to report on our 
experience with SGX. We fi rst look at ARM TrustZone, the other 
competing TEE technology that is widely used. Then we 
overview the SGX internals and the underlying concepts that 
power it, followed by a discussion of its use cases. Finally, we 
review the software development model and libraries available in 
SGX.

2. ARM TRUSTZONE
ARM TrustZone is a set of security enhancement extensions to 
the ARM architecture that appears in ARMv6 and later versions. 
It introduces two security modes, which divide the CPU into two 
isolated worlds, the secure mode and the normal mode. A third 
mode, called the monitor mode, is in charge of the switch 
between the secure and normal worlds. The Secure Monitor Call 
(SMC) instruction is invoked to switch between the two worlds. 
In TrustZone, the two worlds have their own separate address 
spaces and different privileges. The memory is partitioned into 
two sections, one of which is reserved exclusively for the secure 
mode. Furthermore, individual peripherals can be assigned to 
different worlds. Both worlds can run any software, ranging from 
unprivileged user-level applications, to the OS.

To guarantee the integrity of the secure world’s components and 
software, upon powering the device, it boots into the secure 
world, and after executing the secure boot and verifying the 
signature of the boot image, it can attest that the software has not 
been modifi ed.

To determine the state of the CPU, an extra bit is added to the 
Secure Confi guration Register (SCR), called the non-secure (NS) 
bit, which indicates the security context of the CPU. When the 
NS bit is zero, the CPU is in the secure world mode, and when 
the NS bit is set to 1, the CPU is in the normal mode.

Previous work has looked at the use and application of TrustZone 
for a wide range of domains. For example, to regulate devices in 
restricted spaces [10], for cache-assisted secure execution [11], 
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and for enabling a Samsung mobile security solution called 
KNOX.

As noted in ARM TrustZone, the TCB is much larger than SGX. 
The larger size of TCB can lead to errors and ultimately 
vulnerabilities. Furthermore, a trusted system stack, including 
OS, fi rmware, and libraries, needs to be implemented and 
trusted by all the users.

3. INTEL SOFTWARE GUARD EXTENSIONS 
(SGX)
Intel SGX allows the creation of secure enclaves that can keep 
and be trusted with a secret. In the context of SGX, enclaves are 
isolated execution units, with encrypted code and data. At the 
beginning, enclaves have no secret, since they can be 
disassembled and viewed like any other normal program. After 
their launch, the enclaves need to be provisioned, to retrieve the 
secret data. The following is an overview of SGX [12] (Figure 1 
provides a diagram of the procedure and lifecycle of an SGX 
enclave):

F  igure 1: Diagram of the SGX enclave lifecycle.

• Step 1 (Launch): the untrusted application loads the 
enclave code and instantiates it. During this process a log is 
created called the enclave’s measurement. This 
measurement is used in the verifi cation by the remote party 
(service provider).

• Step 2 (Attestation): the enclave contacts the service 
provider for provisioning and retrieving the secrets. As 
mentioned earlier, the enclave does not contain any secret 
information before provisioning. The enclave presents its 
attested measurement to the service provider, which 
identifi es the hardware environment and the enclave.

• Step 3 (Provisioning): after verifying the attestation 
provided by the enclave in step 2, the service provider 
establishes a secure communication channel with the 
enclave. The service provider uses the key exchange 
information in the attestation. After establishing the secure 
channel, the service provider sends the secure data to the 
enclave.

• Step 4 (Sealing/Unsealing): to allow an enclave to access 
the secret material in a secure and confi dential way, the 
data can be sealed (encrypted) and stored on persistent 
storage. Later, based on the policies defi ned by the service 
provider, the data can be decrypted into an enclave without 
going through the remote attestation and provisioning 
again.

3.1 New instructions and data structures
The two main challenges to enable the functionalities of SGX 
are memory access semantics and protection of the address 
mappings [13]. To address this, new instructions, data 
structures, and a new mode of execution have been introduced.

The 18 new instructions can be categorized into fi ve groups: fi ve 
instructions to build and destroy enclaves, four instructions to 
enter and exit enclaves, fi ve instructions to move enclave pages 
to and from memory, two instructions to debug enclaves, and 
two instructions for the security operation of enclaves, including 
key generation and the measurement of the enclaves.

Six new data structures have been introduced to hold the 
enclave’s data and metadata:

• The Enclave Page Cache (EPC) is a protected memory 
region used to hold the protected code and data, in 4k pages. 
The EPC is encrypted through the Memory Encryption 
Engine (MME), and is managed by the OS/VMM. 

• The Enclave Page Cache Map (EPCM) contains the 
metadata of the enclave pages, and is used by the CPU to 
keep track of the content of EPC pages. The EPCM is 
controlled by the CPU and is not directly accessible by the 
software or devices. 

• The SGX Enclave Control Store (SECS) and Thread 
Control Structure (TCS) hold the metadata for each 
enclave, and each thread, respectively. 

• The Version Array (VA) of evicted pages.

• The SIGSTRUCT record, which is responsible for the 
signature and sealing identity of the enclave.

The new mode (enclave mode) is activated when a process 
moves into an enclave. In this mode, extra memory access 
checks are performed to ensure the confi dentiality and 
protection of the enclave’s memory from other processes.

3.2 Types of enclaves
Enclaves are the secure computation units that run in ring 
level 3 (user level). They have no privileged access, yet they are 
protected against the higher level, privileged programs, 
including the OS, VMM and hypervisor. Since enclaves run in 
ring 3, and do not have direct access to peripheral and I/O 
devices, they cannot harm systems [7]. The enclaves are 
designed to work on multi-core platforms, since multiple 
enclaves can run at the same time. Furthermore, the enclave and 
the untrusted application can run in simultaneous threads. SGX 
provides isolation between enclaves, and mitigates against 
replay attack, by checking for the freshness and integrity of the 
pages, through the MEE. To ensure the security of enclaves, 
access control mechanisms make sure that the enclave data is 
protected from other software while it is in the register and the 
cache inside the CPU. Not even exits from enclaves or 
exception handling leak information about them.

The secrets will be provisioned into the enclaves after the 
remote attestation is complete. Special ‘architectural enclaves’ 
are involved in this process to generate a measurement report 
and attestation of the enclave. After this set-up, the service 
provider can provision their secret into the enclave. To avoid 



TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS...  NOUBIR & SANATINIA

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

going through the remote attestation each time and provisioning 
the enclave, SGX provides a sealing mechanism. Sealing binds 
the data and key to the enclave and the CPU. In the future the 
enclave will be able to access the protected content without 
going through the provisioning and remote attestation process. 
The attestation process uses the Enhanced Privacy ID (EPID) 
and group signature algorithm to preserve the privacy of the 
individuals, since each private key belongs to a much larger set 
of private keys that correspond to a public key, therefore it will 
not be possible to identify or track an individual in the set.

To create an enclave, fi rst the ECREATE instruction creates and 
initializes the SECS structure. EADD adds the pages to the 
enclave; after the page is added, EEXTEND measures the 
content, and EINIT fi nalizes the creation of the enclave.

3.2.1 Architectural enclaves
There are two types of enclaves, the ‘architectural enclaves’, 
which are provisioned and belong to Intel, and the normal/user 
enclaves, which are created by the user or service provider. The 
architectural enclaves facilitate the attestation, provisioning and 
licensing capabilities. Only these enclaves have access to the 
keys that are inside the CPU.

3.2.1.1 Provisioning enclave

The provisioning enclave uses EGETKEY to access the 
provisioning key that is provided by Intel to the CPU. It is used 
to authenticate the CPU to the Intel provisioning service [6]. 
The Intel provisioning service generates an attestation key and 
returns it to the provisioning enclave which is encrypted with 
the provisioning seal key for storage on the platform.

3.2.1.2 Quoting enclave

The quoting enclave creates the EPID key that is used to sign 
the platform attestations. Only this enclave has access to the 
EPID key inside the CPU fuse (by calling the EGETKEY 
instruction). This key also indicates the trustworthiness of the 
platform. The EPID key is bound to the device’s fi rmware 
version. The quoting enclave and underlying keys facilitate the 
remote attestation procedure.

3.2.1.3 Licensing enclave

This is used to produce the code in the deployment mode, 
otherwise the program is compiled and run in debug mode, 
which means it does not utilize the full power of the SGX 
capability and the protection it provides. All public keys need to 
be registered with Intel (at least in the current generation of 
SGX – in future generations, this process might be moved to 
other domains, for example an enterprise could be in charge of 
its own licensing server). As of now, Intel claims, this is a 
security measure, and it is not intended to marginalize service 
providers who have not paid enough licence fee to develop and 
deploy SGX-capable software. This is one of the less discussed 
aspects of SGX that has raised some concerns [14].

3.2.2 Normal/user enclaves
The other type of enclaves are the ones that are created by the 
user or service providers. These enclaves do not have access to 

the keys inside the fuses. They rely on the architectural enclaves 
for attestation. Note that the enclave code should not contain 
any secret, since they can be disassembled just like any other 
binary. The secret should be provisioned in the enclaves after 
instantiation and provisioning. 

3.3 Attestation
Attestation is used to ensure that the software and enclaves are 
instantiated on a genuine Intel SGX platform [12] [15]. There 
are two modes of attestation: local attestation and remote 
attestation. In the former, one enclave wishes to prove and 
authenticate to another on the same platform that it is also 
running on the same platform. In the latter, an enclave wishes to 
prove to a remote third party the authenticity of itself and the 
platform on which it is being instantiated.

For attestation and sealing, SGX has access two measurement 
registers. MRENCLAVE holds the identity of the code and data. 
It is a SHA-256 digest of the enclave creation log. It includes 
code, data, stack, heap, and the position of the pages and the 
security fl ags. MRSIGNER, which acts as the identity of the 
signer authority, is a structure which contains a signed enclave 
certifi cate (SIGSTRUCT) and the expected value for the 
MRENCLAVE. If the checks in the hardware pass, then the 
public key of the signer is stored in MRSIGNER.

3.3.1 Local attestation
Local attestation is used when a developer wants two enclaves 
to operate together on the same platform. The two enclaves can 
authenticate each other, and ensure that they are running on the 
same platform.

When an enclave invokes the EREPORT instruction, it creates a 
signed structure called REPORT that contains the identity of the 
enclave, attributes, and additional information that the developer 
has specifi ed to be passed on to the target enclave, as well as the 
Message Authentication Code (MAC). The target enclave would 
verifi es the MAC of the report, to ensure that the enclave that 
created the report runs on the same platform. The MAC is 
created using AES128-CMAC, and the key is a shared 
symmetric key retrieved by calling the EREPORT instruction on 
the source enclave and EGETKEY on the target enclave.

The REPORT structure also has a 256-bit fi eld for user data, 
which can be used, for example, to authenticate randomly 
generated Diffi e-Hellman keys that two enclaves now share and 
can use for further secure communication and data sharing.

3.3.2 Remote attestation
The secrets are provisioned into an enclave after a remote 
service provider has verifi ed the enclave based on the remote 
attestation that the quoting enclave generates. Therefore, the 
remote attestation is of paramount importance. The remote 
attestation is mostly used at the beginning for the provisioning, 
and after that the data can be sealed to the platform and stored 
on the persistent storage. The remote attestation also allows the 
establishment of a secure communication channel between the 
service provider and the enclave, by negotiating authenticated 
Diffi e-Hellman keys. This is analogous to the key negotiation 
procedure in SSL/TLS.
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Fi gure 2: Flow diagram of remote attestation.

Figure 2 depicts the attestation procedure. First, the service 
provider (challenger) asks the application to provide an 
attestation (step 1). Then the application asks its enclave to 
create an attestation (step 2), and the enclave returns the local 
attestation to the application (step 3). To transform the local 
attestation to a remote attestation, the application sends it to the 
quoting enclave (step 4). The quoting enclave replaces the MAC 
of the REPORT with a signature created with the CPU’s private 
key, using the EPID group signature. The newly created 
structure is called QUOTE. The QUOTE is returned to the 
application (step 5). The application returns the remote 
attestation (QUOTE) to the challenger (step 6). To verify the 
remote attestation, the service provider contacts the attestation 
verifi er server (step 7).

3.4 Sealing/unsealing

After an enclave is provisioned with a secret, the confi dentiality 
of the secret is guaranteed within the CPU and TCB boundary. 
However, after the enclave exits, or after a power outage, when 
the enclave is destroyed, the secret that resided within the 
protected memory is also removed. To allow access to the 
secrets in the future, SGX provides the sealing functionality, 
where the data can be encrypted, using the sealing keys 
provided by EGETKEY, and stored on persistent storage. There 
are two sealing policies supported by SGX: sealing to the 
enclave and sealing to the author/sealing identity [12].

When sealing to the enclave identity, EGETKEY keys are based 
on the enclave measurement (MRENCLAVE). Therefore, it 
provides an isolation for data access between different versions 
of the same enclave. Additionally, any changes to an enclave 
that result in a different measurement make the data unusable, 
since the key also changes. This makes the migration of the data 
between software upgrades harder.

When choosing to seal the data to the sealing identity, 
EGETKEY returns keys based on the value of MRSIGNER, and 
the enclave’s version. This approach allows easy migration of 
data between different versions of an enclave. Furthermore, it 
allows the transparent sharing of the sealed data between 
different enclaves created by the same developer/service 
provider (sealing identity). The sealing authority still has the 
option to limit the data sharing between enclaves of same 
security version number (SVN), by specifying this attribute in 
EGETKEY.

3.5 Memory Encryption Engine (MEE)
In SGX, only the CPU and its internals are in the TCB, and the 
memory is not. Therefore, to protect the contents of EPC while 
in the RAM, it needs confi dentiality, integrity and freshness. 
Merely encrypting the data is not enough, it also needs to be 
integrity checked and mitigated against replay attacks [16]. 
However, in many physical attacks, such as the cold boot attack, 
merely encrypting the memory contents is suffi cient.

The Memory Encryption Engine (MEE) is an extension of the 
memory controller which provides the aforementioned 
functionalities. The requests for memory access to the protected 
memory pass through MEE, which encrypts/decrypts the data 
before writing/reading it to/from RAM, and verifi es the integrity 
and freshness of the data. The limit for protected memory is 
128MB, but only 96MB is usable for the enclaves, because the 
rest of the space is used to store the integrity tree and the MACs. 
For encryption, MEE uses the AES block cipher in counter 
mode (CTR), for increased speed and parallelization. The 
MACs and the integrity tree tags are based on the 
Carter-Wegman MAC.

Note that MEE is not an oblivious RAM, and it is not protected 
against side channel attacks and traffi c analysis. MEE has the 
following three properties [16]:

1. The keys are generated randomly at boot time and 
never leave the TCB boundary.

2. The authentication and encryption keys are different.

3. The MME enforces the drop-and-lock policy, meaning 
that if the MAC verifi cation of a page fails, MEE issues 
a fault and it drops the transaction immediately. This 
causes the system to stop and require a reboot. At the 
reboot time, new keys will be generated. Therefore, the 
adversary has one trial per key.

The MEE introduces an overhead to the operations. According to 
the measurement in [16], the performance overhead ranges from 
2.2% to 14%, with an average of 5.5%. The statistics are based on 
adapting SPECINT2006 v01 and the Graphene library OS.

3.6 Enhanced Privacy ID (EPID)
Due to privacy concerns with asymmetric signing schemes, Intel 
created EPID, which is an extension of the Direct Anonymous 
Attestation (DDA). The DDA scheme is a cryptosystem that 
provides anonymous signatures, specifi cally designed for the 
Trusted Platform Module (TPM). EPID improves DDA by 
adding revocation capabilities, and improved effi ciency.

In EPID, one group key corresponds to many private keys. Each 
one of the private keys can generate a signature that can be 
verifi ed by the group public key. The issuer does not need to 
know the members’ private keys. Moreover, the signatures are 
anonymous, meaning the verifi er cannot determine who created 
the signature. Furthermore, an important difference between 
EPID and other group signatures is that the EPID signatures are 
untraceable, meaning that not even the issuer can determine the 
group member who created the signature [17].

EPID is used by the quoting enclave to sign the enclave’s 
remote attestations. In the context of Intel SGX, the group refers 
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to the set of CPUs of the same type. For example, CPUs from 
the core i3, i5, or i7 families. Therefore, based on this grouping, 
the size of a fully populated group would be a few million 
platforms [18].

There are two signature modes, with different linkability 
capabilities. For each signature a base is chosen; if the base of 
two signatures is different, then the two signatures are unlinkable. 
However, if the bases for two signatures are the same, then it is 
possible to determine if the signatures are generated by the same 
key. Note that it is still not possible to identify the specifi c key 
that generated the signature, but only whether the same key has 
generated the signatures. The two modes discussed are called 
Random Base Mode, and Name Base Mode.

From the security point of view, the Name Base Mode signatures 
are preferred. Imagine a scenario where an EPID key is 
compromised, and a malware writer is able to trick users into 
using this enclave. If the Random Base Mode is used instead of 
the Name Base Mode, the EPID owner will not be able to detect 
that all the signatures belong to the same key, or even notify users 
about the key. Therefore, the Name Base Mode is preferred [18].

One of the enhancements to EPID is the revocation capability. 
There are four supported revocation mechanisms/modes. Private 
key revocation (if Intel receives a private EPID key), verifi er 
local revocation (if a key is noticed to be compromised, the key 
can be revoked locally, which is possible when the Name Base 
Mode is used), signature-based revocation (when evidence is 
provided to a revocation authority that a key is compromised, 
the corresponding certifi cate will be added to the Certifi cate 
Revocation List (CRL), which is available in both the Random 
Base, and Named Base modes), and fi nally, group-based 
revocation (when a group is no longer valid, e.g. if the group 
master key is compromised).

4. USE CASES
In this section we look at a few use cases for the SGX technology. 
SGX is an evolution of trusted code execution and trusted 
platform. Compared to previous technologies such as ARM 
TrustZone, the TCB is much smaller in SGX, and the only source 
of trust is Intel and the CPU boundaries. Such confi guration 
makes it a very attractive and promising technology for digital 
rights management (DRM), where the content provider and 
distributors can be assured of the protection of their content from 
theft. Another venue where SGX is attracting attention is in 
trusted code execution on untrusted cloud platforms, since the 
users do not need to trust the cloud service provider, the OS or 
the VMM. Furthermore, they have the capability to attest their 
enclaves remotely. Note that, at the time of writing this paper, the 
fi rst generation of SGX is not available on server-end CPUs and 
is targeted towards client computers.

4.1 Digital rights management (DRM)
Digital rights management (DRM) refers to techniques and 
mechanisms used to restrict access to digital content and 
material, mostly sought after by content distributors for profi t 
and revenue. There are many DRM technologies available, 
proposed and deployed by different companies and alliances to 
address different issues and mitigate against evolving and ever 

more complex DRM circumvention tools and techniques. For 
example, Google products use Wivedine; Netfl ix and Microsoft 
products rely on Microsoft’s Play Ready; and Apple uses the 
in-house FairPlay. DRM technologies are mostly based on a 
few functionalities, namely key management, rights 
management, and a secure playback mechanism for audio and 
video [19]. To address the incompatibility issue of different 
DRM technologies, in 2011, Intel introduced UltraViolet in the 
‘Sandy Bridge’ family of CPUs. UltraViolet is not a DRM, but a 
cloud-based system that contains several DRMs to unify 
different schemes [19].

Given the capability of the enclaves to guarantee the secrecy of 
their data and availability of remote attestation, content 
providers and distributors can use SGX to deploy a DRM 
technology. Furthermore, to secure the transmission of the 
content on the bus to the GPU, they can use Intel’s Protected 
Audio Video Path (PAVP) and High-bandwidth Digital Content 
Protection (HDCP). These technologies protect the audio and 
video fl ow in the graphic processor unit (GPU) by sending the 
GPU the encrypted data and having the GPU decrypt the data. 
Even though DRM technologies can rely on TrustZone as well, 
its two shortcomings are persistent non-volatile storage for 
device keys and installed licences, and secure audio and video 
path [19]. Intel SGX can make the whole process easier because 
of the remote attestation, secure execution and sealing.

4.2 Trusted execution on untrusted cloud 
platforms

As mentioned earlier, as of now, server-end SGX-capable CPUs 
are not yet available. However, previous studies have looked at 
the utilization of SGX functionalities and services for trusted 
verifi able code execution on untrusted cloud providers, as 
discussed in the following.

VC3 [20] allows the execution of Hadoop Map-Reduce jobs on 
an untrusted platform, while keeping the data and code secret. 
VC3 excludes the OS, hypervisor and Hadoop framework from 
the TCB, and works on the unmodifi ed Hadoop platform. VC3 
relies on SGX functionalities and services, such as memory 
isolation, to achieve this. To deploy tasks, users implement their 
map-reduce code in C++, encrypt them, bind them to the code 
that implements the VC3 protocol, and upload their encrypted 
code to the cloud. After the code is loaded, the map and reduce 
functions will be decrypted, and the distributed computations 
will run. To ensure the integrity of the computations, VC3 uses a 
job execution protocol where nodes produce a summary of their 
computations and aggregate them. Later, the user can verify that 
the cloud provider did not interfere with the computations, by 
reviewing the aggregate summaries.

Haven [21] introduces the concept of shielded execution, a 
reverse sandboxing mechanism to protect the confi dentiality and 
integrity of the application from a malicious OS, or hypervisor. 
It ensures the secrecy and confi dentiality of the application’s 
code and data. Furthermore, if the application executes, it will 
produce verifi able correct results. This means that the users can 
be assured that the software executed correctly. Haven allows 
the shielded execution of unmodifi ed software on the Windows 
platform. It relies on SGX for isolation and protection of the 
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software from the privileged system software, Iago attacks [22], 
and other unprivileged software and processes.

5. SGX SOFTWARE DEVELOPMENT AND 
LIBRARIES
As of the time of writing this paper, the SGX capability is only 
available for the Microsoft Windows platform. However, 
according to Intel, a Linux Software Development Kit (SDK), 
will be available in June 2016 [23]. Currently, only Visual 
Studio Integrated Development Environment (IDE) has support 
for SGX programming. Furthermore, there is an SGX simulator 
available for the Windows platform, which allows the simulation 
of SGX programs on non-SGX CPUs. Note that the simulator is 
neither performant, nor does it provide the actual SGX secrecy 
guarantees, since it works at the software level.

Even though the whole program can run inside an enclave, this 
is not the recommended approach, since: 1) the enclaves’ 
memory size is very limited, 2) enclaves do not have direct 
access to the peripherals, I/O devices and some of the system 
calls, and 3) increasing the size of TCB can lead to a higher 
error rate and an increase in vulnerabilities. The recommended 
SGX programming model is to redesign ad split applications 
into two different sections. One section for secure and 
information-sensitive functionalities that run inside an enclave, 
and another section for general operations. The SGX does not 
support dynamic library loading for enclaves. Programs need to 
be statically linked, and the libraries also should not have 
external dynamic dependency. Everything should be compiled 
as a single static binary blob. The calls from the untrusted 
application to inside an enclave are called ECalls, and the calls 
from inside an enclave to the untrusted application are called 
OCalls. These interfaces enable the interaction between the 
enclave and the application.

The Intel SGX SDK provides a set of trusted static libraries that 
can be used inside an enclave. These libraries provide sets of 
functionalities, such as standard C library (sgx_tstdc.lib), 
standard C++ libraries and STL (sgx_tstdcxx.lib), cryptographic 
functions (sgx_tcrypto.lib), and trusted key exchange (sgx_
tkey_exchange.lib) [24].

CONCLUSION
SGX is a new functionality introduced by Intel, in its 
sixth-generation CPUs (code-named Skylake), which allows the 
launch and execution of secure enclaves. In this paper, we have 
presented an overview of the SGX internals, its use cases, the 
programming model, and the available libraries. SGX can be 
used for a range of sensitive applications, from digital rights 
management to trusted code execution on untrusted platforms. 
As of the time of writing this paper, SGX is limited to the 
Windows operating system. Furthermore, at this moment the 
only IDE available for SGX programming is Visual Studio 2012. 
Even though SGX does not provide any security measure against 
side channel attack, power analysis attack, and low-level 
hardware attacks, it would be interesting to evaluate the 
diffi culty and accuracy of such attacks. Another issue that may 
limit the adoption and deployment of the SGX platform is the 
current licensing mechanism. However, unlike many other 

previous TEE attempts, SGX has the potential of gaining 
widespread adoption because of its small TCB and affordable 
low cost.
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