
TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

TRUSTED CODE EXECUTION ON
UNTRUSTED PLATFORMS USING

INTEL SGX
Guevara Noubir & Amirali Sanatinia

Northeastern University, USA

Email {noubir, amirali}@ccs.neu.edu

ABSTRACT
Today, isolated trusted computation and code execution is of
paramount importance to protect sensitive information and
workfl ows from other malicious privileged or unprivileged
software. Intel Software Guard Extensions (SGX) is a set of
security architecture extensions fi rst introduced in the Skylake
microarchitecture that enables a Trusted Execution Environment
(TEE). It provides an ‘inverse sandbox’, for sensitive programs,
and guarantees the integrity and confi dentiality of secure
computations, even from the most privileged malicious software
(e.g. OS, hypervisor).

SGX-capable CPUs only became available in production systems
in Q3 2015, and they are not yet fully supported and adopted in
systems. Besides the capability in the CPU, the BIOS also needs
to provide support for the enclaves, and not many vendors have
released the required updates for the system support. This has led
to many wrong assumptions being made about the capabilities,
features, and ultimately dangers of secure enclaves. By having
access to resources and publications such as white papers,
patents and the actual SGX-capable hardware and software
development environment, we are in a privileged position to be
able to investigate and demystify SGX.

In this paper, we fi rst review the previous trusted execution
technologies, such as ARM Trust Zone and Intel TXT, to better
understand and appreciate the new innovations of SGX. Then, we
look at the details of SGX technology, cryptographic primitives
and the underlying concepts that power it, namely the sealing,
attestation, and the Memory Encryption Engine (MEE). We also
consider use cases such as trusted and secure code execution on
an untrusted cloud platform, and digital rights management
(DRM). This is followed by an overview of the software
development environment and the available libraries.

1. INTRODUCTION
Today, cloud platforms are becoming more widely used, both by
end-users and enterprises. However, the notion of trusting a
third party with your secrets is not very desirable for many
entities. The status quo not only forces users to put their faith in
the honesty and trustworthiness of the cloud providers but also
forces them to trust in the lack of malware and comprise of the
cloud platforms. Intel SGX is a new technology that guarantees
the confi dentiality of users’ data on a remote node, against other
unprivileged or even privileged software such as the operating
system and hypervisor. Without adequate support from the
hardware to provide a secure execution environment, previous
work relied on trusted hypervisors to protect applications

against malicious OSs [1–3]. An alternative approach that
mobilized the research community is to compute over encrypted
data [4], for example using Fully Homomorphic Encryption
(FHE) schemes [5] that can perform general operations on
encrypted data. However, current FHE techniques are still
several orders of magnitude slower than necessary for practical
applications.

Earlier attempts such as Intel TXT, formerly known as LaGrande
Technology, did not succeed in becoming widely adopted and
deployed. Intel TXT is a platform-level enhancement and set of
extensions to attest the authenticity of the hardware and
operating system by enabling the measurement and verifi cation
of the environment [6]. Currently, ARM TrustZone is one of the
most successful and widely deployed TEEs both for clients and
enterprises.

Previous works have looked at Intel SGX and discussed its
potentials and shortcomings [7–9]. However, they were based on
the information available prior to the offi cial release of the SGX
hardware (processors and supporting motherboards) and its
specifi cations. In this work, by having access to resources and
publications such as white papers, patents and the actual
SGX-capable hardware and software development environment,
we are in a privileged position to be able to report on our
experience with SGX. We fi rst look at ARM TrustZone, the other
competing TEE technology that is widely used. Then we
overview the SGX internals and the underlying concepts that
power it, followed by a discussion of its use cases. Finally, we
review the software development model and libraries available in
SGX.

2. ARM TRUSTZONE
ARM TrustZone is a set of security enhancement extensions to
the ARM architecture that appears in ARMv6 and later versions.
It introduces two security modes, which divide the CPU into two
isolated worlds, the secure mode and the normal mode. A third
mode, called the monitor mode, is in charge of the switch
between the secure and normal worlds. The Secure Monitor Call
(SMC) instruction is invoked to switch between the two worlds.
In TrustZone, the two worlds have their own separate address
spaces and different privileges. The memory is partitioned into
two sections, one of which is reserved exclusively for the secure
mode. Furthermore, individual peripherals can be assigned to
different worlds. Both worlds can run any software, ranging from
unprivileged user-level applications, to the OS.

To guarantee the integrity of the secure world’s components and
software, upon powering the device, it boots into the secure
world, and after executing the secure boot and verifying the
signature of the boot image, it can attest that the software has not
been modifi ed.

To determine the state of the CPU, an extra bit is added to the
Secure Confi guration Register (SCR), called the non-secure (NS)
bit, which indicates the security context of the CPU. When the
NS bit is zero, the CPU is in the secure world mode, and when
the NS bit is set to 1, the CPU is in the normal mode.

Previous work has looked at the use and application of TrustZone
for a wide range of domains. For example, to regulate devices in
restricted spaces [10], for cache-assisted secure execution [11],

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

and for enabling a Samsung mobile security solution called
KNOX.

As noted in ARM TrustZone, the TCB is much larger than SGX.
The larger size of TCB can lead to errors and ultimately
vulnerabilities. Furthermore, a trusted system stack, including
OS, fi rmware, and libraries, needs to be implemented and
trusted by all the users.

3. INTEL SOFTWARE GUARD EXTENSIONS
(SGX)
Intel SGX allows the creation of secure enclaves that can keep
and be trusted with a secret. In the context of SGX, enclaves are
isolated execution units, with encrypted code and data. At the
beginning, enclaves have no secret, since they can be
disassembled and viewed like any other normal program. After
their launch, the enclaves need to be provisioned, to retrieve the
secret data. The following is an overview of SGX [12] (Figure 1
provides a diagram of the procedure and lifecycle of an SGX
enclave):

F igure 1: Diagram of the SGX enclave lifecycle.

• Step 1 (Launch): the untrusted application loads the
enclave code and instantiates it. During this process a log is
created called the enclave’s measurement. This
measurement is used in the verifi cation by the remote party
(service provider).

• Step 2 (Attestation): the enclave contacts the service
provider for provisioning and retrieving the secrets. As
mentioned earlier, the enclave does not contain any secret
information before provisioning. The enclave presents its
attested measurement to the service provider, which
identifi es the hardware environment and the enclave.

• Step 3 (Provisioning): after verifying the attestation
provided by the enclave in step 2, the service provider
establishes a secure communication channel with the
enclave. The service provider uses the key exchange
information in the attestation. After establishing the secure
channel, the service provider sends the secure data to the
enclave.

• Step 4 (Sealing/Unsealing): to allow an enclave to access
the secret material in a secure and confi dential way, the
data can be sealed (encrypted) and stored on persistent
storage. Later, based on the policies defi ned by the service
provider, the data can be decrypted into an enclave without
going through the remote attestation and provisioning
again.

3.1 New instructions and data structures
The two main challenges to enable the functionalities of SGX
are memory access semantics and protection of the address
mappings [13]. To address this, new instructions, data
structures, and a new mode of execution have been introduced.

The 18 new instructions can be categorized into fi ve groups: fi ve
instructions to build and destroy enclaves, four instructions to
enter and exit enclaves, fi ve instructions to move enclave pages
to and from memory, two instructions to debug enclaves, and
two instructions for the security operation of enclaves, including
key generation and the measurement of the enclaves.

Six new data structures have been introduced to hold the
enclave’s data and metadata:

• The Enclave Page Cache (EPC) is a protected memory
region used to hold the protected code and data, in 4k pages.
The EPC is encrypted through the Memory Encryption
Engine (MME), and is managed by the OS/VMM.

• The Enclave Page Cache Map (EPCM) contains the
metadata of the enclave pages, and is used by the CPU to
keep track of the content of EPC pages. The EPCM is
controlled by the CPU and is not directly accessible by the
software or devices.

• The SGX Enclave Control Store (SECS) and Thread
Control Structure (TCS) hold the metadata for each
enclave, and each thread, respectively.

• The Version Array (VA) of evicted pages.

• The SIGSTRUCT record, which is responsible for the
signature and sealing identity of the enclave.

The new mode (enclave mode) is activated when a process
moves into an enclave. In this mode, extra memory access
checks are performed to ensure the confi dentiality and
protection of the enclave’s memory from other processes.

3.2 Types of enclaves
Enclaves are the secure computation units that run in ring
level 3 (user level). They have no privileged access, yet they are
protected against the higher level, privileged programs,
including the OS, VMM and hypervisor. Since enclaves run in
ring 3, and do not have direct access to peripheral and I/O
devices, they cannot harm systems [7]. The enclaves are
designed to work on multi-core platforms, since multiple
enclaves can run at the same time. Furthermore, the enclave and
the untrusted application can run in simultaneous threads. SGX
provides isolation between enclaves, and mitigates against
replay attack, by checking for the freshness and integrity of the
pages, through the MEE. To ensure the security of enclaves,
access control mechanisms make sure that the enclave data is
protected from other software while it is in the register and the
cache inside the CPU. Not even exits from enclaves or
exception handling leak information about them.

The secrets will be provisioned into the enclaves after the
remote attestation is complete. Special ‘architectural enclaves’
are involved in this process to generate a measurement report
and attestation of the enclave. After this set-up, the service
provider can provision their secret into the enclave. To avoid

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

going through the remote attestation each time and provisioning
the enclave, SGX provides a sealing mechanism. Sealing binds
the data and key to the enclave and the CPU. In the future the
enclave will be able to access the protected content without
going through the provisioning and remote attestation process.
The attestation process uses the Enhanced Privacy ID (EPID)
and group signature algorithm to preserve the privacy of the
individuals, since each private key belongs to a much larger set
of private keys that correspond to a public key, therefore it will
not be possible to identify or track an individual in the set.

To create an enclave, fi rst the ECREATE instruction creates and
initializes the SECS structure. EADD adds the pages to the
enclave; after the page is added, EEXTEND measures the
content, and EINIT fi nalizes the creation of the enclave.

3.2.1 Architectural enclaves
There are two types of enclaves, the ‘architectural enclaves’,
which are provisioned and belong to Intel, and the normal/user
enclaves, which are created by the user or service provider. The
architectural enclaves facilitate the attestation, provisioning and
licensing capabilities. Only these enclaves have access to the
keys that are inside the CPU.

3.2.1.1 Provisioning enclave

The provisioning enclave uses EGETKEY to access the
provisioning key that is provided by Intel to the CPU. It is used
to authenticate the CPU to the Intel provisioning service [6].
The Intel provisioning service generates an attestation key and
returns it to the provisioning enclave which is encrypted with
the provisioning seal key for storage on the platform.

3.2.1.2 Quoting enclave

The quoting enclave creates the EPID key that is used to sign
the platform attestations. Only this enclave has access to the
EPID key inside the CPU fuse (by calling the EGETKEY
instruction). This key also indicates the trustworthiness of the
platform. The EPID key is bound to the device’s fi rmware
version. The quoting enclave and underlying keys facilitate the
remote attestation procedure.

3.2.1.3 Licensing enclave

This is used to produce the code in the deployment mode,
otherwise the program is compiled and run in debug mode,
which means it does not utilize the full power of the SGX
capability and the protection it provides. All public keys need to
be registered with Intel (at least in the current generation of
SGX – in future generations, this process might be moved to
other domains, for example an enterprise could be in charge of
its own licensing server). As of now, Intel claims, this is a
security measure, and it is not intended to marginalize service
providers who have not paid enough licence fee to develop and
deploy SGX-capable software. This is one of the less discussed
aspects of SGX that has raised some concerns [14].

3.2.2 Normal/user enclaves
The other type of enclaves are the ones that are created by the
user or service providers. These enclaves do not have access to

the keys inside the fuses. They rely on the architectural enclaves
for attestation. Note that the enclave code should not contain
any secret, since they can be disassembled just like any other
binary. The secret should be provisioned in the enclaves after
instantiation and provisioning.

3.3 Attestation
Attestation is used to ensure that the software and enclaves are
instantiated on a genuine Intel SGX platform [12] [15]. There
are two modes of attestation: local attestation and remote
attestation. In the former, one enclave wishes to prove and
authenticate to another on the same platform that it is also
running on the same platform. In the latter, an enclave wishes to
prove to a remote third party the authenticity of itself and the
platform on which it is being instantiated.

For attestation and sealing, SGX has access two measurement
registers. MRENCLAVE holds the identity of the code and data.
It is a SHA-256 digest of the enclave creation log. It includes
code, data, stack, heap, and the position of the pages and the
security fl ags. MRSIGNER, which acts as the identity of the
signer authority, is a structure which contains a signed enclave
certifi cate (SIGSTRUCT) and the expected value for the
MRENCLAVE. If the checks in the hardware pass, then the
public key of the signer is stored in MRSIGNER.

3.3.1 Local attestation
Local attestation is used when a developer wants two enclaves
to operate together on the same platform. The two enclaves can
authenticate each other, and ensure that they are running on the
same platform.

When an enclave invokes the EREPORT instruction, it creates a
signed structure called REPORT that contains the identity of the
enclave, attributes, and additional information that the developer
has specifi ed to be passed on to the target enclave, as well as the
Message Authentication Code (MAC). The target enclave would
verifi es the MAC of the report, to ensure that the enclave that
created the report runs on the same platform. The MAC is
created using AES128-CMAC, and the key is a shared
symmetric key retrieved by calling the EREPORT instruction on
the source enclave and EGETKEY on the target enclave.

The REPORT structure also has a 256-bit fi eld for user data,
which can be used, for example, to authenticate randomly
generated Diffi e-Hellman keys that two enclaves now share and
can use for further secure communication and data sharing.

3.3.2 Remote attestation
The secrets are provisioned into an enclave after a remote
service provider has verifi ed the enclave based on the remote
attestation that the quoting enclave generates. Therefore, the
remote attestation is of paramount importance. The remote
attestation is mostly used at the beginning for the provisioning,
and after that the data can be sealed to the platform and stored
on the persistent storage. The remote attestation also allows the
establishment of a secure communication channel between the
service provider and the enclave, by negotiating authenticated
Diffi e-Hellman keys. This is analogous to the key negotiation
procedure in SSL/TLS.

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Fi gure 2: Flow diagram of remote attestation.

Figure 2 depicts the attestation procedure. First, the service
provider (challenger) asks the application to provide an
attestation (step 1). Then the application asks its enclave to
create an attestation (step 2), and the enclave returns the local
attestation to the application (step 3). To transform the local
attestation to a remote attestation, the application sends it to the
quoting enclave (step 4). The quoting enclave replaces the MAC
of the REPORT with a signature created with the CPU’s private
key, using the EPID group signature. The newly created
structure is called QUOTE. The QUOTE is returned to the
application (step 5). The application returns the remote
attestation (QUOTE) to the challenger (step 6). To verify the
remote attestation, the service provider contacts the attestation
verifi er server (step 7).

3.4 Sealing/unsealing

After an enclave is provisioned with a secret, the confi dentiality
of the secret is guaranteed within the CPU and TCB boundary.
However, after the enclave exits, or after a power outage, when
the enclave is destroyed, the secret that resided within the
protected memory is also removed. To allow access to the
secrets in the future, SGX provides the sealing functionality,
where the data can be encrypted, using the sealing keys
provided by EGETKEY, and stored on persistent storage. There
are two sealing policies supported by SGX: sealing to the
enclave and sealing to the author/sealing identity [12].

When sealing to the enclave identity, EGETKEY keys are based
on the enclave measurement (MRENCLAVE). Therefore, it
provides an isolation for data access between different versions
of the same enclave. Additionally, any changes to an enclave
that result in a different measurement make the data unusable,
since the key also changes. This makes the migration of the data
between software upgrades harder.

When choosing to seal the data to the sealing identity,
EGETKEY returns keys based on the value of MRSIGNER, and
the enclave’s version. This approach allows easy migration of
data between different versions of an enclave. Furthermore, it
allows the transparent sharing of the sealed data between
different enclaves created by the same developer/service
provider (sealing identity). The sealing authority still has the
option to limit the data sharing between enclaves of same
security version number (SVN), by specifying this attribute in
EGETKEY.

3.5 Memory Encryption Engine (MEE)
In SGX, only the CPU and its internals are in the TCB, and the
memory is not. Therefore, to protect the contents of EPC while
in the RAM, it needs confi dentiality, integrity and freshness.
Merely encrypting the data is not enough, it also needs to be
integrity checked and mitigated against replay attacks [16].
However, in many physical attacks, such as the cold boot attack,
merely encrypting the memory contents is suffi cient.

The Memory Encryption Engine (MEE) is an extension of the
memory controller which provides the aforementioned
functionalities. The requests for memory access to the protected
memory pass through MEE, which encrypts/decrypts the data
before writing/reading it to/from RAM, and verifi es the integrity
and freshness of the data. The limit for protected memory is
128MB, but only 96MB is usable for the enclaves, because the
rest of the space is used to store the integrity tree and the MACs.
For encryption, MEE uses the AES block cipher in counter
mode (CTR), for increased speed and parallelization. The
MACs and the integrity tree tags are based on the
Carter-Wegman MAC.

Note that MEE is not an oblivious RAM, and it is not protected
against side channel attacks and traffi c analysis. MEE has the
following three properties [16]:

1. The keys are generated randomly at boot time and
never leave the TCB boundary.

2. The authentication and encryption keys are different.

3. The MME enforces the drop-and-lock policy, meaning
that if the MAC verifi cation of a page fails, MEE issues
a fault and it drops the transaction immediately. This
causes the system to stop and require a reboot. At the
reboot time, new keys will be generated. Therefore, the
adversary has one trial per key.

The MEE introduces an overhead to the operations. According to
the measurement in [16], the performance overhead ranges from
2.2% to 14%, with an average of 5.5%. The statistics are based on
adapting SPECINT2006 v01 and the Graphene library OS.

3.6 Enhanced Privacy ID (EPID)
Due to privacy concerns with asymmetric signing schemes, Intel
created EPID, which is an extension of the Direct Anonymous
Attestation (DDA). The DDA scheme is a cryptosystem that
provides anonymous signatures, specifi cally designed for the
Trusted Platform Module (TPM). EPID improves DDA by
adding revocation capabilities, and improved effi ciency.

In EPID, one group key corresponds to many private keys. Each
one of the private keys can generate a signature that can be
verifi ed by the group public key. The issuer does not need to
know the members’ private keys. Moreover, the signatures are
anonymous, meaning the verifi er cannot determine who created
the signature. Furthermore, an important difference between
EPID and other group signatures is that the EPID signatures are
untraceable, meaning that not even the issuer can determine the
group member who created the signature [17].

EPID is used by the quoting enclave to sign the enclave’s
remote attestations. In the context of Intel SGX, the group refers

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

to the set of CPUs of the same type. For example, CPUs from
the core i3, i5, or i7 families. Therefore, based on this grouping,
the size of a fully populated group would be a few million
platforms [18].

There are two signature modes, with different linkability
capabilities. For each signature a base is chosen; if the base of
two signatures is different, then the two signatures are unlinkable.
However, if the bases for two signatures are the same, then it is
possible to determine if the signatures are generated by the same
key. Note that it is still not possible to identify the specifi c key
that generated the signature, but only whether the same key has
generated the signatures. The two modes discussed are called
Random Base Mode, and Name Base Mode.

From the security point of view, the Name Base Mode signatures
are preferred. Imagine a scenario where an EPID key is
compromised, and a malware writer is able to trick users into
using this enclave. If the Random Base Mode is used instead of
the Name Base Mode, the EPID owner will not be able to detect
that all the signatures belong to the same key, or even notify users
about the key. Therefore, the Name Base Mode is preferred [18].

One of the enhancements to EPID is the revocation capability.
There are four supported revocation mechanisms/modes. Private
key revocation (if Intel receives a private EPID key), verifi er
local revocation (if a key is noticed to be compromised, the key
can be revoked locally, which is possible when the Name Base
Mode is used), signature-based revocation (when evidence is
provided to a revocation authority that a key is compromised,
the corresponding certifi cate will be added to the Certifi cate
Revocation List (CRL), which is available in both the Random
Base, and Named Base modes), and fi nally, group-based
revocation (when a group is no longer valid, e.g. if the group
master key is compromised).

4. USE CASES
In this section we look at a few use cases for the SGX technology.
SGX is an evolution of trusted code execution and trusted
platform. Compared to previous technologies such as ARM
TrustZone, the TCB is much smaller in SGX, and the only source
of trust is Intel and the CPU boundaries. Such confi guration
makes it a very attractive and promising technology for digital
rights management (DRM), where the content provider and
distributors can be assured of the protection of their content from
theft. Another venue where SGX is attracting attention is in
trusted code execution on untrusted cloud platforms, since the
users do not need to trust the cloud service provider, the OS or
the VMM. Furthermore, they have the capability to attest their
enclaves remotely. Note that, at the time of writing this paper, the
fi rst generation of SGX is not available on server-end CPUs and
is targeted towards client computers.

4.1 Digital rights management (DRM)
Digital rights management (DRM) refers to techniques and
mechanisms used to restrict access to digital content and
material, mostly sought after by content distributors for profi t
and revenue. There are many DRM technologies available,
proposed and deployed by different companies and alliances to
address different issues and mitigate against evolving and ever

more complex DRM circumvention tools and techniques. For
example, Google products use Wivedine; Netfl ix and Microsoft
products rely on Microsoft’s Play Ready; and Apple uses the
in-house FairPlay. DRM technologies are mostly based on a
few functionalities, namely key management, rights
management, and a secure playback mechanism for audio and
video [19]. To address the incompatibility issue of different
DRM technologies, in 2011, Intel introduced UltraViolet in the
‘Sandy Bridge’ family of CPUs. UltraViolet is not a DRM, but a
cloud-based system that contains several DRMs to unify
different schemes [19].

Given the capability of the enclaves to guarantee the secrecy of
their data and availability of remote attestation, content
providers and distributors can use SGX to deploy a DRM
technology. Furthermore, to secure the transmission of the
content on the bus to the GPU, they can use Intel’s Protected
Audio Video Path (PAVP) and High-bandwidth Digital Content
Protection (HDCP). These technologies protect the audio and
video fl ow in the graphic processor unit (GPU) by sending the
GPU the encrypted data and having the GPU decrypt the data.
Even though DRM technologies can rely on TrustZone as well,
its two shortcomings are persistent non-volatile storage for
device keys and installed licences, and secure audio and video
path [19]. Intel SGX can make the whole process easier because
of the remote attestation, secure execution and sealing.

4.2 Trusted execution on untrusted cloud
platforms

As mentioned earlier, as of now, server-end SGX-capable CPUs
are not yet available. However, previous studies have looked at
the utilization of SGX functionalities and services for trusted
verifi able code execution on untrusted cloud providers, as
discussed in the following.

VC3 [20] allows the execution of Hadoop Map-Reduce jobs on
an untrusted platform, while keeping the data and code secret.
VC3 excludes the OS, hypervisor and Hadoop framework from
the TCB, and works on the unmodifi ed Hadoop platform. VC3
relies on SGX functionalities and services, such as memory
isolation, to achieve this. To deploy tasks, users implement their
map-reduce code in C++, encrypt them, bind them to the code
that implements the VC3 protocol, and upload their encrypted
code to the cloud. After the code is loaded, the map and reduce
functions will be decrypted, and the distributed computations
will run. To ensure the integrity of the computations, VC3 uses a
job execution protocol where nodes produce a summary of their
computations and aggregate them. Later, the user can verify that
the cloud provider did not interfere with the computations, by
reviewing the aggregate summaries.

Haven [21] introduces the concept of shielded execution, a
reverse sandboxing mechanism to protect the confi dentiality and
integrity of the application from a malicious OS, or hypervisor.
It ensures the secrecy and confi dentiality of the application’s
code and data. Furthermore, if the application executes, it will
produce verifi able correct results. This means that the users can
be assured that the software executed correctly. Haven allows
the shielded execution of unmodifi ed software on the Windows
platform. It relies on SGX for isolation and protection of the

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

software from the privileged system software, Iago attacks [22],
and other unprivileged software and processes.

5. SGX SOFTWARE DEVELOPMENT AND
LIBRARIES
As of the time of writing this paper, the SGX capability is only
available for the Microsoft Windows platform. However,
according to Intel, a Linux Software Development Kit (SDK),
will be available in June 2016 [23]. Currently, only Visual
Studio Integrated Development Environment (IDE) has support
for SGX programming. Furthermore, there is an SGX simulator
available for the Windows platform, which allows the simulation
of SGX programs on non-SGX CPUs. Note that the simulator is
neither performant, nor does it provide the actual SGX secrecy
guarantees, since it works at the software level.

Even though the whole program can run inside an enclave, this
is not the recommended approach, since: 1) the enclaves’
memory size is very limited, 2) enclaves do not have direct
access to the peripherals, I/O devices and some of the system
calls, and 3) increasing the size of TCB can lead to a higher
error rate and an increase in vulnerabilities. The recommended
SGX programming model is to redesign ad split applications
into two different sections. One section for secure and
information-sensitive functionalities that run inside an enclave,
and another section for general operations. The SGX does not
support dynamic library loading for enclaves. Programs need to
be statically linked, and the libraries also should not have
external dynamic dependency. Everything should be compiled
as a single static binary blob. The calls from the untrusted
application to inside an enclave are called ECalls, and the calls
from inside an enclave to the untrusted application are called
OCalls. These interfaces enable the interaction between the
enclave and the application.

The Intel SGX SDK provides a set of trusted static libraries that
can be used inside an enclave. These libraries provide sets of
functionalities, such as standard C library (sgx_tstdc.lib),
standard C++ libraries and STL (sgx_tstdcxx.lib), cryptographic
functions (sgx_tcrypto.lib), and trusted key exchange (sgx_
tkey_exchange.lib) [24].

CONCLUSION
SGX is a new functionality introduced by Intel, in its
sixth-generation CPUs (code-named Skylake), which allows the
launch and execution of secure enclaves. In this paper, we have
presented an overview of the SGX internals, its use cases, the
programming model, and the available libraries. SGX can be
used for a range of sensitive applications, from digital rights
management to trusted code execution on untrusted platforms.
As of the time of writing this paper, SGX is limited to the
Windows operating system. Furthermore, at this moment the
only IDE available for SGX programming is Visual Studio 2012.
Even though SGX does not provide any security measure against
side channel attack, power analysis attack, and low-level
hardware attacks, it would be interesting to evaluate the
diffi culty and accuracy of such attacks. Another issue that may
limit the adoption and deployment of the SGX platform is the
current licensing mechanism. However, unlike many other

previous TEE attempts, SGX has the potential of gaining
widespread adoption because of its small TCB and affordable
low cost.

REFERENCES
[1] Chen, X.; Garfi nkel, T.; Lewis, E. C.; Subrahmanyam,

P.; Waldspurger, C. A.; Boneh, D.; Dwoskin, J.; Ports,
D. R. Overshadow: A Virtualization-Based Approach to
Retrofi tting Protection in Commodity Operating
Systems. International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2008.

[2] Hofmann, O. S.; Kim, S.; Dunn, A. M.; Lee, M. Z.;
Witchel, E. InkTag: Secure Applications on an
Untrusted Operating System. International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2013.

[3] Zhang, F.; Chen, J.; Chen, H.; Zang, B. CloudVisor:
Retrofi tting Protection of Virtual Machines in Multi-
tenant Cloud with Nested Virtualization. Symposium
on Operating Systems Principles (SOSP), 2011.

[4] Sahai, A. Computing on Encrypted Data. International
Conference on Information Systems Security, 2008.

[5] Gentry, C. A fully homomorphic encryption scheme.
2009.

[6] Intel. Intel Trusted Execution Technology: White Paper.

[7] Davenport, S.; Ford, R. SGX: the good, the bad and the
downright ugly. 2014. https://www.virusbulletin.com/
virusbulletin/2014/01/sgx-good-bad-and-downright-
ugly.

[8] Rutkowska, J. Thoughts on Intel’s upcoming Software
Guard Extensions (Part 1). 2013.
http://theinvisiblethings.blogspot.com/2013/08/
thoughts-on-intels-upcoming-software.html.

[9] Rutkowska, J. Thoughts on Intel’s upcoming Software
Guard Extensions (Part 2). 2013.
http://theinvisiblethings.blogspot.com/2013/09/
thoughts-on-intels-upcoming-software.html.

[10] Brasser, F.; Kim, D.; Liebchen, C.; Ganapathy, V.;
Iftode, L.; Sadeghi, A.-R. Regulating ARM TrustZone
Devices in Restricted Spaces. ACM International
Conference on Mobile Systems, Applications, and
Services (MobiSys), 2016.

[11] Zhang, N.; Sun, K.; Lou, W.; Hou, Y. T. CaSE:
Cache-Assisted Secure Execution on ARM Processors.
37th IEEE Symposium on Security and Privacy
(Oakland), 2016.

[12] Anati, I.; Gueron, S.; Johnso, S. P.; Scarlata, V. R.
Innovative Technology for CPU Based Attestation and
Sealing. International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP),
2013.

[13] McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas,
C.; Shafi , H.; ShanbhogueV.; Savagaonkar, U.

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

Innovative Instructions and Software Model for
Isolated Execution. 2nd International Workshop on
Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[14] Costa, V.; Devadas, S. Intel SGX Explained.
Cryptology ePrint Archive: Report 2016/086, 2016.

[15] Intel. Intel Software Guard Extensions: Intel Attestaion
Service API. 2016.

[16] Gueron, S. A Memory Encryption Engine Suitable for
General Purpose Processors. Cryptology ePrint
Archive, Report 2016/204, 2016.

[17] Brickell, E.; Li, J. Enhanced Privacy ID from Bilinear
Pairing for Hardware Authentication and Attestation.
IEEE Second International Conference on Social
Computing (SocialCom), 2010.

[18] Johnson, S.; Scarlata, V.; Rozas, C.; Brickell, E.;
Mckeen, F. Intel Software Guard Extensions: EPID
Provisioning and Attestation Services. Intel, 2016.

[19] Ruan, X. Platform Embedded Security Technology
Revealed, Apress, 2014, p. 272.

[20] Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.;
Peinado, M.; Mainar-Ruiz, G.; Russinovich, M. VC3:
Trustworthy Data Analytics in the Cloud using SGX.
Symposium on Security and Privacy, 2015.

[21] Baumann, A.; Peinado, M.; Hunt, G. Shielding
Applications from an Untrusted Cloud with Haven.
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2014.

[22] Checkoway, S.; Shacham, H. Iago attacks: why the
system call API is a bad untrusted RPC interface.
Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[23] Z. Dan. Intel Software Guard Extensions SDK for
Linux Availability Update. 11 4 2016.
https://software.intel.com/en-us/blogs/2016/04/11/
intel-software-guard-extensions-sdk-for-linux-
availability-update.

[24] Intel. Intel Software Guard Extensions Evaluation SDK
for Windows OS. 2016.

