
Verified Compilers for a Multi-Language World∗

Amal Ahmed

Northeastern University
amal@ccs.neu.edu

Abstract
Though there has been remarkable progress on formally verified compilers in recent years, most
of these compilers suffer from a serious limitation: they are proved correct under the assumption
that they will only be used to compile whole programs. This is an unrealistic assumption since
most software systems today are comprised of components written in different languages—both
typed and untyped—compiled by different compilers to a common target, as well as low-level
libraries that may be handwritten in the target language.

We are pursuing a new methodology for building verified compilers for today’s world of
multi-language software. The project has two central themes, both of which stem from a view
of compiler correctness as a language interoperability problem. First, to specify correctness of
component compilation, we require that if a source component s compiles to target component
t, then t linked with some arbitrary target code t′ should behave the same as s interoperating
with t′. The latter demands a formal semantics of interoperability between the source and target
languages. Second, to enable safe interoperability between components compiled from languages
as different as ML, Rust, Python, and C, we plan to design a gradually type-safe target language
based on LLVM that supports safe interoperability between more precisely typed, less precisely
typed, and type-unsafe components. Our approach opens up a new avenue for exploring sensible
language interoperability while also tackling compiler correctness.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, D.3.1 Formal
Definitions and Theory, D.3.4 Processors

Keywords and phrases verified compilation; compositional compiler correctness; multi-language
semantics; typed low-level languages; gradual typing

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Landscape of Verified Compilation

The field of compiler verification has witnessed considerable progress in the last decade
following the pioneering work on CompCert [32, 33]. The latter uses the Coq proof assistant
to both implement and verify a multi-pass optimizing compiler from C to assembly, proving
that the compiler preserves semantics of source programs. Several other compiler verification
efforts have successfully followed CompCert’s lead and basic methodology to verify increasingly
sophisticated compilers for increasingly realistic languages, for instance, focusing on just-
in-time compilation [40], multithreaded Java [34], C with relaxed memory concurrency [49],
LLVM passes [62], and imperative functional languages [18, 31].

Unfortunately, all of the above projects prove correctness assuming that the compiler
will only be used to compile whole programs. But this assumption contradicts the reality of
how we use these compilers. The whole programs that we actually run are almost never the
output of a single compiler: they are composed by linking code from various places, including

∗ This work is supported by the National Science Foundation and a Google Faculty Research Award.

© Amal Ahmed;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Verified Compilers for a Multi-Language World

the runtime system, libraries, and foreign functions, all potentially compiled using different
compilers and written in different languages (e.g., Java, Python, C, and even handcrafted
assembly). For today’s world of multi-language software, we need verified compilers that
guarantee correct compilation of components.

Formally verifying that components are compiled correctly—often referred to as com-
positional compiler correctness—is a difficult problem. A key challenge is how to state the
compiler correctness theorem for this setting. CompCert’s compiler correctness theorem is
easy to state thanks to the whole program assumption: informally, it says that if a source
program PS compiles to a target program PT , then running PS and PT results in the same
trace of observable events. The same sort of theorem does not make sense when we compile
a component eS to a component eT : we cannot “run” a component since it is not a complete
program.

Part of the challenge is that any correct-component-compilation theorem should satisfy
two important properties: (1) it should allow compiled components to be linked with target
components of arbitrary provenance, including those compiled from other languages (dubbed
horizontal compositionality in the literature); and (2) it should support verification of multi-
pass compilers by composing proofs of correctness for individual passes (dubbed vertical
compositionality). These are nontrivial requirements. There have been several notable efforts
at compositional compiler verification in recent years but none offer a proof methodology
that fully addresses the dual challenges of horizontal and vertical compositionality. The
earliest work, by Benton and Hur [15, 16, 29], specifies compiler correctness in a way that
does not scale to multi-pass compilers. Both that work and the recent work on Pilsner [44]
only supports linking with separately compiled components from the same source language.
The recent work on Compositional CompCert [52] supports linking across the languages in
CompCert’s compilation pipeline, but all of these share the same memory model; it is not
clear how to extend the approach to support linking across languages with different memory
models. (We discuss related work in detail in §3.2.)

Let us look at why compiler correctness becomes challenging in the context of multi-
language software. The issue is that real software systems often link together components
from multiple languages with different expressive power and different guarantees. When
compiling source language S, what does it mean for the compiler to “preserve the semantics
of source code” when a compiled component eT may be linked with some e′

T from a language
S′ that is more expressive or provides fewer guarantees as compared to S?

Suppose S does not support first-class continuations (call/cc) but S′ does. For instance, e′
T ,

compiled from language S′, might be a continuation-based web server that provides call/cc-
based primitives that a web programmer can use for creating client-server interaction
points [48, 30, 2, 1]. The programmer, meanwhile, might use language S to develop
her web application—making use of the afore-mentioned primitives which allow her to
write her program in a more direct style [48, 30]—and compile it to eT . When we link
these components and run, e′

T disrupts the control flow of eT in a way that is useful
and desirable but does not mirror any whole-program behavior in the source language S.
How, then, do we specify that the compiler “preserves semantics of source code”?
Suppose S supports strong static typing (e.g., ML) while S′ is dynamically typed (e.g.,
Scheme) or weakly typed (e.g., C). Again, linking e′

T with eT might result in code that
does not mirror any whole-program behavior in the source language S. For instance, (1)
the C component may try to access memory it has already freed; (2) the C component
may write past the end of a C array, but in doing so overwrite a memory location owned
by an ML module; or (3) the Scheme component may apply an ML function that expects

A. Ahmed 3

an argument of type ∀α.α → α to the boolean negation function, thus violating ML’s
guarantee that a function of this type will behave parametrically with respect to its
input. The first interaction (with C) seems entirely reasonable since the error is in C
code and does not affect the behavior of the ML component. The second interaction
(with C) is clearly unacceptable as it can violate ML’s type safety guarantee. The
third interaction (with Scheme) may or may not be considered reasonable: it does not
violate ML’s type safety guarantee, but it does violate ML’s parametricity guarantee. In
what sense, then, can we say that the compiler “preserves semantics of source code”?

The above examples suggest that we need a novel way of understanding and specifying
what we mean by compiler correctness in the context of multi-language software.

2 Our Approach and Research Goals

My research group at Northeastern is working on techniques for building realistic, multi-
pass verified compositional compilers that guarantee correct compilation of components and
formally support linking with arbitrary target code, no matter its source. We follow the tenet
that compositional compiler correctness is a language interoperability problem.
We are in the early stages of a project that will require years of investigation and evaluation.
Our long-term vision, depicted in Figure 1, is to have verified compositional compilers from
languages as different as C, Python, ML, Rust, Coq’s Gallina, and Hoare Type Theory
(HTT) [41, 43, 42] to a common low-level target language that supports safe interoperability
between more precisely typed, less precisely typed, and type-unsafe components. Our current
focus is on laying the groundwork for realizing this vision through two central contributions:
1. Development of a proof methodology for verifying compositional compilers. The defining

feature of our approach is that the specification of compositional compiler correctness
relies on a formal semantics of interoperability between source components and target
code using multi-language semantics in the style of Matthews and Findler [36].(We have
already done extensive work on developing this methodology [47]; we give further details
in §3.) To demonstrate the viability of this approach, we plan to verify compositional
type-preserving compilers for subsets of ML and Rust.

2. Design of a gradually type-safe LLVM-like target language (dubbed GTVM, see Figure 1)
that supports safe interoperability between components that are statically type-safe (e.g.,
produced by our type-preserving ML and Rust compilers), dynamically type-safe (e.g.,
compiled from Python or Scheme), or potentially unsafe (e.g., compiled from C). We plan
to build on Vellvm (verified LLVM) [3, 61, 62] by first developing TTVM (tightly typed
LLVM), a statically type-safe version of the LLVM IR formalized in Vellvm, and then
design GTVM as a gradually typed extension of TTVM. GTVM will make use of casts
(think: coercions or contracts) to ensure safe interoperability between the more precisely
typed, less precisely typed, and type-unsafe parts of the language—the latter unsafe
part is just standard LLVM IR which has types but is not type-safe. We will compile
GTVM to the LLVM IR, inserting wrappers that perform dynamic checks to ensure
safe coercion. Thus, compilers targeting our gradually type-safe LLVM can continue to
leverage the optimizations provided by the LLVM compiler infrastructure [55] or the
verified optimizations provided by Vellvm [3, 62].

4 Verified Compilers for a Multi-Language World

GTVM

casts

LLVM backend
(optimizations, code gen)

Link (add casts/coercions)
Compile

(insert
 wrappers
for safe

coercion)

compiler
verified
compiler

verified
compiler

verified
compiler

LLVM IR

LLVM IR type-safe LLVM IR dependently typed

ML Coq / HTT / F*C/C++ Rust

casts

Project Focus Future workCurrently

Figure 1 Research planned as part of this project and potential future work

Specifying compositional compiler correctness for a multi-language world Informally, if
a component eS compiles to a component eT then compiler correctness should require that
eS is “equivalent” to eT . But how can we formalize this notion of “equivalence” between
source and target components? Observe that to use a compiled component eT , we will
link it with some other target-level component e′

T to obtain a whole program that can
be run. Intuitively, therefore, compiler correctness should guarantee that the operational
behavior of this resulting target program is the same as the operational behavior of eS
linked with e′

T . Therefore, to formally state that “a component is compiled correctly,” we
need to formalize the semantics of interoperability between source and target code. For a
multi-pass compiler we propose to do this in a modular fashion. For instance, if the compiler
consists of two passes, from source language S to intermediate language I to target language
T , we define a combined language SIT that embeds these three languages and formalizes
the semantics of interoperability between each pair of adjacent languages using boundaries
in the style of Matthews and Findler’s multi-language semantics [36]. We can stack these
boundaries to allow interoperability between the source and target of the compiler, e.g.,
SI(IT (eT)), which we abbreviate to SIT (eT), allows a target component eT to be used from
within an S-language expression. Compiler correctness can now be stated as observational
equivalence in the combined language: if eS compiles to eT , then eS is observationally
equivalent to SIT (eT). Direct proofs of observational equivalence—also known as contextual
equivalence—are known to be intractable. Therefore, we define a logical relation for the
combined language that corresponds to contextual equivalence and use that to carry out
the proof of compiler correctness. Note that we do not use the multi-language semantics
for running actual multi-language programs; its purpose is to serve as a specification of the
desired source-target relationship, allowing us to state and prove compiler correctness. This
specification also enables reasoning about the whole-program behavior of eT linked with e′

T

in terms of the whole-program behavior of eS linked with SIT (e′
T). Most importantly, note

that we have not imposed any restrictions on the provenance of e′
T . We give further details

in §3.

A. Ahmed 5

Why ML and Rust? All of the existing work on compositional compiler correctness has
either (a) focused on unsafe C-like source languages [52, 59] or (b) assumed that code produced
by a verified compiler from a type-safe language will only be linked with code produced by
another verified compiler from the same source language [15, 16, 29, 44]. We instead focus
on compiling the statically typed languages ML and Rust while allowing linking with code
of arbitrary provenance. This is a real-world scenario with interesting semantic challenges
for interoperability—specifically, how to maximize interoperability with less precisely typed
and type-unsafe components while ensuring that those interactions respect the ML or Rust
type system. We believe that these interoperability challenges make compositional compiler
correctness harder to establish for these languages. Languages that provide fewer guarantees
(e.g., C) are less picky in terms of what they can interoperate with, which makes it less
semantically challenging to ensure correct compositional compilation.

Rust is a systems programming language with type-system support for safe memory
management. In essence, it supports affine types which indicate that a resource—in this
case, memory cells—can be used at most once. Since ML does not support affine types, we
will have to ensure that ML respects Rust’s affine typing guarantees.

GTVM: a gradually type-safe LLVM IR As the above discussion suggests, to prove compiler
correctness in the context of multi-language software, we must specify a formal semantics of
interoperability (1) between source and target code, and (2) between more precisely typed,
less precisely typed and type-unsafe code. For instance, for our ML compiler, we will have to
specify how an ML source component eS interoperates with a target component e′

T that may
have been compiled from Scheme or C. We believe that safe interoperability between more
and less typed and type-unsafe should be investigated at the level of the target language so
that the benefits of this effort can be reaped by all compilers that target the language. That
is the philosophy underlying our investigation of GTVM.

To understand the design of GTVM, it is useful to think of it in two layers: (1) a statically
type-safe core, TTVM (tightly typed LLVM), and (2) a gradual typing extension, GTVM,
that extends TTVM with dynamically type-safe code of type dyn and unsafe, standard LLVM
IR code of type un. Our goal is a gradual type system that ensures that the typing (and
parametricity) guarantees provided by more precise types cannot be violated by the less
precisely typed parts of the language.

The statically type-safe core language, TTVM, should provide a rich enough type system
to adequately serve as a target for type-preserving compilers from different statically typed
languages. Since we wish to compile ML and Rust, our TTVM will need to support at least
type abstraction and affine types in addition to the standard LLVM types. Even within this
TTVM core, we will need a system of casts (contracts) to mediate between more precise and
less precise types to support interoperability between code compiled from different source
languages. For instance, we wish to allow code compiled from ML and Rust to interoperate,
which means we will need to design casts (probably along the lines of Tov and Pucella [56])
that protect an affinely typed resource (from Rust) from being used more than once, even if
it is passed to a function (from ML) that knows nothing about affine types and might freely
duplicate the resource.

GTVM will let compiler writers choose whether to target the statically type-safe, dynam-
ically type-safe, or unsafe parts of the language (or some mix of the three) depending on the
nature of their source language, and depending on how restrictive a form of interoperability
they want. The lever that provides control over interoperability is the compiler’s
type translation. For instance, when compiling ML, picking the most informative type

6 Verified Compilers for a Multi-Language World

translation (relative to source types) will guarantee that interoperability with other languages
respects the source type system—including parametricity guarantees, as long as the compiler
doesn’t monomorphize. At the other extreme, translating all ML code to the type un says
that interoperability with other code need not respect ML’s type system guarantees.

Our longer-term goal is to enrich the statically typed core of GTVM with dependent
types in the style of Hoare Type Theory (HTT) [41, 43]. HTT incorporates specifications—in
the style of Hoare logic or separation logic—into types and makes it possible to formally
specify and reason about effects. A type system based on HTT would allow us to express rich
invariants about memory layout, separation, and resource usage, which will be important for
specifying low-level conventions that affect interoperability at the LLVM level.

Enabling secure compilation via target-level types Compiler correctness is about preserva-
tion of dynamic semantics, but we are interested in an architecture that can also support the
development of secure (or fully abstract) compilers. Informally, secure compilation guarantees
that compiled components will remain as secure as their source-level counterparts when
executed within target contexts of arbitrary origin. More formally, a fully abstract compiler
guarantees that if two source components have the same observable behavior in all well-typed
source contexts then their compiled versions must have the same observable behavior in all
appropriately-typed target contexts. In prior work [7], we studied how compilers can be
made fully abstract by changing the compiler’s type translation to ensure that compiled
code is never linked with target contexts whose behavior does not match that of some source
context. By equipping GTVM with an expressive type system, we wish to offer compiler
writers the facility to pick different degrees of protection of compiled components from their
target contexts—ranging from no protection at all (when compiled code has type un and the
verified compiler only guarantees preservation of dynamic semantics), all the way through
fully abstract compilation—via their choice of type translation.

The rest of this paper explains our approach to specifying compiler correctness (§3) and
then outlines our research plans and anticipated challenges (§4).

3 Proof Methodology for Verified Compilation of Components

In recent work [47], we have demonstrated the viability of our multi-language-semantics
approach, using it to prove correctness of a two-pass compiler that performs closure conversion
and heap allocation, translating a polymorphic source language with recursive types to a
target that also features dynamically allocated mutable memory. In particular, we support
linking of compiled code with code that performs state effects that cannot be expressed in
the source. This work was the first multi-pass, compositional compiler-correctness result. We
believe that it is, to date, the only approach that supports linking with code that cannot be
expressed in the verified compiler’s own source language. We plan to use this methodology to
build verified compositional compilers for ML and Rust. Below, we explain our approach in
more detail, compare it to related work, and illustrate our methodology using typed closure
conversion [37, 39, 6] as a case study.

3.1 Specifying compiler correctness using multi-language semantics
The compiler correctness theorem should say that if a component eS compiles to eT , then
some desired relationship eS ' eT holds between eS and eT—intuitively, they should “behave
the same.” But how do we formally specify eS ' eT ? To answer this question, consider how

A. Ahmed 7

the compiled component is actually used: it needs to be linked with some e′
T , creating a

whole program that can be run. This e′
T may have been handwritten in the target language

or produced by another compiler, possibly from a different source language. Of course, it
doesn’t make sense to link with any e′

T : at the very least, e′
T should adhere to the same

calling conventions that eT does. Moreover, since our target language is typed—with types
dyn and un in additional to the more standard types—that means that eT can only be
linked with components of a certain type because we want the resulting whole program to
be well typed. Informally, then, the compiler correctness theorem should guarantee that if
we link eT with an appropriately typed e′

T then the resulting target-level program should
correspond to the source component eS linked with e′

T . Formally speaking, what does it
mean to “link a source component with a target component” and what are the rules for
running the resulting source-target hybrid? We have argued that these questions demand a
semantics of interoperability between the source and target languages. Next, we explain how
to specify such semantics.

Consider a two-pass compiler from a source language S (in blue) to intermediate language
I (in red) to target language T (in purple). The first pass translates S components eS of type
τ to I components eI of type τI , where τI denotes the type translation of τ . As is usual
with type-preserving compilation, the type τI provides a simple means of expressing any
compiler invariants about representation and/or layout of the transformed term eI that are
useful to keep track of as we compile. The second pass analogously translates I components
eI of type τ to T components eT of type τT , where τT is the type translation of τ .

To define the semantics of interoperability between these languages, we embed them all
into one language, SIT , and add syntactic boundary forms between each pair of adjacent
languages in the style of Matthews and Findler [36] and our own prior work [7, 47]. For
instance, the term ISτ (eS) allows an S component eS of type τ to be used as an I component
of type τI , while τSI(eI) allows an I component eI of translation type τI to be used as
an S component of type τ . Similarly, we have boundary forms T I and IT for the next
language pair. Non-adjacent languages can interact by stacking up boundaries: for example,
SI(IT eT) (abbreviated SIT (eT)) allows a T component eT to be embedded in an S term.

Design principles for multi-language system Our goal is for the SIT interoperability
semantics to give us a useful specification of when a component in one of the embedded
languages should be considered equivalent to a component in another language. But how
do we know if that specification is correct? There are three essential properties that the
combined language must satisfy.

First, the operational semantics of SIT must be designed so that the original languages are
embedded into SIT unchanged: running an SIT program that’s written solely in one of the
embedded languages is identical to running it in that language alone. For instance, execution
of the T program eT proceeds in exactly the same way whether we use the operational
semantics of T or the augmented semantics for SIT . Second, the typing rules must be
similarly embedded: a component that contains syntax from only one underlying language
should typecheck under that language’s individual type system if and only if it typechecks
under SIT ’s type system. The final property we need is boundary cancellation which says that
wrapping two opposite language boundaries around a component yields the same behavior as
the underlying component with no boundaries: for example, any eS : τ must be contextually
equivalent to τSI(ISτeS), and any eI : τI must be equivalent to ISτ (τSIeI). Note that
two components e1 and e2 are considered contextually equivalent in language SIT (written
e1 ≈ctxSIT e2) if there is no well-typed SIT program context that can tell them apart.

8 Verified Compilers for a Multi-Language World

Compiler correctness We state the correctness criterion for our compiler as a contextual
equivalence: if eS : τ compiles to eI, then eS ' eI, where: eS ' eI

def= eS ≈ctxSIT
τSI(eI) : τ

and similarly for the next pass:
if eI : τ compiles to eT, then eI ' eT, where: eI ' eT

def= eI ≈ctxSIT
τIT (eT) : τ .

Since contextual equivalence is transitive, our framework achieves vertical compositionality
immediately: it is easy to combine the two correctness proofs for the individual compiler
passes, to get the correctness result for the entire compiler:

if eS compiles to eT, then eS ≈ctxSIT
τSIT (eT) : τ .

All of the above properties are stated as contextual equivalences but direct proofs of contextual
equivalence are usually intractable. We use the standard technique of defining a logical
relation for the combined language SIT that is sound and complete with respect to contextual
equivalence. Defining the logical relation becomes more challenging as the demands of
interoperability increase: e.g., when all the interoperating languages support type abstraction.
(See the paper [47] for details.)

Reasoning about linking Our approach enjoys a strong horizontal compositionality prop-
erty: we can link with any target component e′

T that has an appropriate type, with no
requirement that e′

T was produced by any particular means or from any particular source
language. Specifically, if eS : τ ′ → τ expects to be linked with a component of type τ ′

and compiles to eT, then eT will expect to be linked with a component of type ((τ ′)I)T .
If e′

T has this type, then using our compiler correctness theorem, we can conclude that:
(eS

τ ′SIT (e′
T)) ≈ctxSIT SIT (eT e′

T) : τ .

3.2 Comparison with related work
The literature on compiler verification spans almost five decades but is mostly limited
to whole-program compilation. We refer the reader to the bibliography by Dave [19] for
compilation of first-order languages, and to Chlipala [18] for compilation of higher-order
functional languages. Here we discuss only recent work on compositional compiler correctness.

The approach advocated by Benton and Hur [15, 16] involves formalizing correct compila-
tion of components using a logical relation that specifies when a source term eS semantically
approximates target code eT and vice versa (written eS ' eT). Using this approach, they
verifed a compiler from STLC with recursion (and later from System F) to an SECD machine,
proving that if source component eS compiles to target code eT , then eS and eT are logically
related. Later, Hur and Dreyer [29] used essentially the same strategy to verify a compiler
from an idealized ML to assembly. However, this strategy of setting up a logical relation
between source and target has two serious drawbacks. First, the approach does not scale to
multi-pass compilers because the source-target logical relations defined for each pass do not
compose. Second, if we compile an S component eS to eT and then wish to link eT with
some arbitrary e′

T , the only way to check if it’s okay to link with e′
T (i.e., if the compiler

correctness theorem allows it) is to come up with a source-level component e′
S and show that

e′
S ' e′

T . It may be possible to come up with e′
S when e′

T is a few lines long, but it would be
infeasible when e′

T consists of hundreds of lines of assembly. Worse, the question of whether
such an e′

S exists in language S is undecidable: for instance, there is no e′
S in the case of the

continuation-based web server example discussed in §1. By comparison, our approach simply
requires type-checking e′

T to ensure that it can be sensibly linked with t.
Neis et al. [44] recently developed Pilsner, a verified separate compiler from a typed,

higher-order imperative language to an untyped target. Pilsner also suffers from the second

A. Ahmed 9

drawback discussed above for the Benton-Hur and Hur-Dreyer work—put another way,
Pilsner assumes that compiled code will only be linked with code compiled by a (possibly
different) verified compiler from the same source language. Instead of a logical relation
between source and target code, Pilsner uses parametric inter-language simulations (PILS)
between the source and target of each compiler pass. Unlike Kripke logical relations, PILS
do compose transitively and can be used to verify a multi-pass compiler.

Stewart et al. [52] recently reported on Compositional CompCert, a verified separate
compiler for C. (This generalizes their prior work [17] which allowed shared-memory system
calls from C, but could not accommodate mutually recursive inter-module dependencies.)
Whereas we define a multi-language semantics for interoperability between source and
target, Stewart et al. have devised an interaction semantics, a protocol-oriented operational
semantics that accommodates interoperation between different languages. They have shown
that CompCert’s intermediate languages—all of which share the same C-like memory model—
can be “plugged into” this interaction semantics. It is not clear how to extend interaction
semantics to support interoperability between C and high-level, strongly typed languages
like ML, or more generally, to accommodate compilers whose source and target languages
use different memory models.

3.3 Our proof methodology applied to closure conversion
As an example, we show how our methodology can be used to prove compositional correctness
of typed closure conversion [37, 39] for the simply-typed lambda calculus (STLC). (We elide
many details; see [47].)

Step 0: Specify the source language The source language S is call-by-value STLC with
booleans. The syntax of the language is as follows:

Types σ ::= bool | σ1→σ2

Values v ::= x | true | false | λx :σ. e
Expressions e ::= v | if e then e1 else e2 | e1 e2

Step 1. Pick appropriate target language and define translation Closure conversion is a
compiler transformation that collects a function’s free variables in a tuple called a closure
environment that is passed as an additional argument to the function, thus turning the
function into a closed term. The closed function is paired with its environment to create a
closure. The basic idea of typed closure conversion goes back to Minamide et al. [37], whom
we follow in using an existential type to abstract the type of the environment. This ensures
that two functions with the same type, but different free variables still have the same type
after closure conversion: the abstract type hides the fact that the closures’ environments have
different types. Thus our target language for closure conversion must support existential
types as well as tuples. It also supports multi-argument functions. We define the target
language T as follows:

Types τ ::= bool | (τ)→τ′ | 〈τ1, . . . ,τn〉 | α | ∃α .τ
Values v ::= x | true | false | λ(x :τ). e | 〈v1, . . . ,vn〉 | pack(τ,v) as ∃α .τ′

Expressions e ::= v | if e then e1 else e2 | e1(e) | 〈e1, . . . ,en〉 | πi e |
pack(τ, e) as ∃α .τ′ | unpack(α,x) = e1 in e2

The typing rules are standard (with judgments ∆; Γ ` e : τ), with one exception: since
language T is the target of closure conversion, we ensure via the function typing rule that

10 Verified Compilers for a Multi-Language World

Types ϕ ::= σ | τ

Terms e ::= . . . | σST e
e ::= . . . | TS σ e
e ::= e | e

Values v ::= v | v

Type Environments ∆ ::= · | ∆,α
Value Environments Γ ::= · | Γ, x : σ | Γ,x : τ

∆; Γ ` e : ϕ

. . .
∆; Γ ` e : σ+

∆; Γ ` σST e : σ
∆; Γ ` e : σ

∆; Γ ` TS σ e : σ+

e 7−→ e′

boolST true 7−→ true
boolST false 7−→ false
σ1→ σ2ST v 7−→ λx :σ1.

σ2ST (unpack(α,y) = v in π1 y (π2 y, TS σ1 x))

TS bool true 7−→ true
TS bool false 7−→ false
TS σ1→ σ2 v 7−→ pack(〈〉, 〈v, 〈〉〉) as ∃α .〈〈α, σ1

+〉→σ2
+, α〉

where v = λ(z : 〈〉,x :σ1
+).TS σ2 (v σ1ST x)

Figure 2 ST : Extensions to S and T syntax, static semantics, dynamic semantics

functions contain no free term variables. Thus, the typing rule for functions is as follows:

·; x : τ ` e : τ′

∆; Γ ` λ(x :τ). e : (τ)→τ′

Closure conversion maps source terms of type σ to target terms of type σ+. The definition
of the type translation (σ+) and environment translation (Γ+) is as follows:

(bool)+ = bool (·)+ = ·
(σ1→σ2)+ = ∃α . 〈〈α, σ1

+〉→σ2
+, α〉 (Γ, x : σ)+ = Γ+,x : σ+

We then define a type-directed term translation Γ ` e : σ ; e that translates a term e such
that Γ ` e : σ into a target term e such that ·; Γ+ ` e : σ+. For instance, x translates to
x and below we show how functions are translated into closures. (We elide the rest of the
translation as it is standard, e.g., see [37, 39, 47].)

y1, . . . , ym = free-vars(λx :σ. e) Γ ` y1 : σ1 . . . Γ ` ym : σm τenv = 〈σ1
+, . . . ,σm

+〉
Γ, x : σ ` e : σ′

; e v = λ(z :τenv,x :σ+). e[π1 z/y1]. . .[πm z/ym]
Γ ` λx :σ. e : σ→σ′

; pack(τenv, 〈v, 〈y1, . . . ,ym〉〉) as ∃α . 〈〈α, σ+〉→σ′+
, α〉

Step 2: Define interoperability semantics The language ST embeds the languages S and
T so that both languages have natural access to foreign values (i.e., values from the other
language). They receive foreign boolean values as native values, and can call foreign functions
as native functions. We extend the original core languages with boundary terms σST e and
TS σ e which mediate between the types σ on the source side and σ+ on the target side.
Figure 2 presents the new syntax, typing rules and reduction rules. Typing judgments for
ST have the form ∆; Γ ` e : ϕ where the environment Γ now tracks both source variables of
type σ and target variables of type τ. The typing rules include all the S typing rules, but
augmented with the additional environment ∆; all the T typing rules, unchanged; and rules
for the two boundary constructs, shown in Figure 2.

A. Ahmed 11

We evaluate under a boundary until we have a value. The reduction rules for boundaries
annotated bool convert boolean values from one language to the other. To convert functions
across languages, we use native proxy functions. We represent a target function v in the
source at type σ1→σ2 by a new function that takes an argument of type σ1 and first
translates this argument from source to target, then unpacks the closure v and applies the
code to its environment and the translated argument, and finally translates the result back
to source at type σ2. Notice that the direction of the conversion (and the boundary used)
reverses for function arguments.

Converting source functions to target functions is a bit more subtle. To represent a source
function v in the target at type (σ1→σ2)+ we have to construct a closure. Since these are
reduction rules, and since we only run closed programs, we know that v is closed. Hence, we
simply use an empty tuple type 〈〉 for the closure environment. The underlying function v
for this closure takes an environment of type 〈〉 and an argument of type σ1

+, translates
the argument to source, applies v to the translated argument, and finally translates the
result back to target. The use of an empty environment in this reduction rule illustrates the
difference between the translation done by boundaries in the multi-language and that done
by the compiler itself.

Step 3: Define logical relation for combined language (≈log
ST) and prove ≈log

ST ≡ ≈ctx
ST

Next, we define a logical relation for the combined language ST and prove it sound and
complete with respect to contextual equivalence (≈ctx

ST). In the process, we must prove the
boundary cancellation property described in §3.1—that is, this is the stage at which we
are required to prove that the combined language can sensibly serve as an interoperability
semantics.

Step 4: Prove translation is semantics preserving
If Γ ` e : σ ; e then ·; Γ ` e ≈log

ST
σST e′ : σ, where e′ is e with all x that are translations

of x : σ′ ∈ Γ replaced with TS σ′
x. Since ≈log

ST exactly captures ≈ctx
ST , this lemma immediately

yields the compiler correctness theorem we want.

4 Research Plan and Central Challenges

We plan to carry out this work in three stages, with the target language GTVM growing in
features and functionality across the three stages. Below we discuss the main tasks and the
challenges we anticipate, and describe some of the work done to date.

Verified compiler: ML to TTVM In the first phase, we plan to develop a verified compiler
from an idealized ML to a statically type-safe LLVM IR. The LLVM IR is a platform-
independent, static single assignment (SSA) language [55]. An LLVM compiler normally
translates a high-level language into LLVM IR. This can then be optimized using a series of
IR to IR transformations. LLVM provides a collection of such transformations which perform
optimizations and static analyses. The resulting LLVM IR can then be translated to a target
architecture using LLVM’s code generator or JIT-compiler.

LLVM programs consist of modules, which in turn contain function definitions and
declarations. A function consists of a sequence of basic blocks, which as usual are a sequence
of commands ending with a branch or return (ret) instruction. Commands include load,
store, malloc, and free instructions; alloca for stack allocation; and a function call
instruction. To be well formed, an LLVM program must be in valid SSA form. All components

12 Verified Compilers for a Multi-Language World

in the language are annotated with types, but the LLVM IR is not a type-safe language—like
C, it allows arbitrary casts, invalid memory access, and so on.

Vellvm [3] provides a mechanized formal semantics of LLVM’s IR, its static semantics,
and SSA form, all formalized in Coq, as well as a proof of static safety (modulo reaching
known stuck states) via preservation and progress theorems. It says that if the program
takes a step then it continues to be well formed SSA; and if the program is well formed then
either it can take a step or it is in one of the defined set of stuck states. Vellvm also provides
a set of tools to extract LLVM IR from Coq so it can be processed by the standard LLVM
tools. Vellvm provides us with a useful starting point; without the Vellvm formalization our
research plans would not be feasible.

We will first identify a statically type-safe subset of the LLVM IR (TTVM) and modify
Vellvm’s static safety theorems so that the progress lemma holds without the possibility of a
well formed program configuration being stuck. This will require eliminating arbitrary casts,
memory deallocation (free), and anything that leads to undefined behavior (undef) from
the language. We will then extend the type system with polymorphism, existential types,
and any other extensions needed to do type-preserving compilation from our idealized ML
(language M) to TTVM (language T).

Tentatively, the compiler will consist of four languages and three passes: a closure
conversion pass from M to C, an explicit allocation pass (where the data representation
strategy is made explicit) from C to A, and code generation pass from A to T. To state compiler
correctness, we will embed all four of the compiler’s languages into a combined language
MCAT by defining interoperability between the adjacent languages in the compilation pipeline.
The design of the interoperability semantics between M and C (for the closure conversion
pass) and between C and A (for the explicit allocation pass) is already well understood and
we can adapt the multi-language and logical relation from our recent work [47] which covers
closure conversion and explicit allocation for System F with recursive types. Moreover, in
recent work with Phillip Mates and James Perconti, we have already proved compositional
correctness of closure conversion in the presence of ML-style mutable references. The presence
of mutable references required a novel extension to our logical relation for the multi-language
system, which we plan to report on in the near future.

We anticipate that the design of an interoperability semantics between language A and
TTVM (i.e., for the code generation pass) will be the most challenging. In the language A,
code still has a compositional structure even though tuples and closures are allocated on
the heap—that is, a component is a simply a term eA. However, at the TTVM level, that
compositional structure is lost. To define interoperability between A components and T
(TTVM) components, we first have to identify what exactly constitutes a TTVM component—
that is, since there are no “terms” in TTVM, what is the shape of an eT that we can put
under a boundary AT eT ?

Fortunately, in preliminary work with Perconti, we have already answered this question
in the context of an idealized typed assembly language (TAL), which is even lower level that
TTVM. For the purpose of the multi-language semantics, a TAL (or TTVM) component
is comprised of a number of basic blocks. Thus, eT denotes a pair (b0, b) of the currently
executing basic block b0 and the rest of the blocks b that comprise that component (which
corresponds now to a TTVM function body). The next question is how do we run the
term AT eT ? As in §3, we want to run eT until we have a value vT and then convert that
value to the language A. But running the eT in TTVM will ultimately end with a return
instruction. How do we distinguish between a normal return within TTVM from a return
to language A? The solution is to introduce a special ret-to-A pseudo-instruction as part

A. Ahmed 13

of the extensions we make when defining the multi-language semantics. When AT eT has
reduced to AT (ret-to-A vT), we simply convert vT to an A value in the usual type-directed
manner. We are reasonably confident that we will be able to use ideas from our TAL work
to design interoperability between A and TTVM. We do not yet know if LLVM’s SSA form
will complicate matters.

GTVM: a gradually type-safe LLVM IR In the second phase, we aim to extend TTVM with
support for dynamically type-safe code, assigned type dyn, and type-unsafe code, assigned
type un. There is a significant body of work on contracts and gradual typing for high-level
languages [22, 50, 51, 35, 9, 20, 26, 54, 46, 23, 28, 58, 27, 45, 14] that we can leverage
when designing GTVM. The recent work on TS?, a gradual type system for JavaScript [53],
deserves special mention as it also mixes static, dynamic, and unsafe types (though their
dynamic type is called any).

As is usual in gradual type systems, interactions between type safe code and unsafe code
must be protected by wrappers (dynamically checked contracts). However, note that unsafe
code is just standard LLVM IR that may, for instance, be the output of a C program. To
prevent raw LLVM IR (or raw C) from breaking internal invariants of statically type safe
code (say from ML or Scheme), we need to ensure that C code cannot trample memory
cells that belong to the type-safe parts of the language. This is one of the most significant
challenges we face, but there are ideas that we can draw upon from the literature. One
option is to use some sort of software-based fault isolation (as in Google’s Native Client,
NaCl [60]) to ensure that the unsafe code adheres to a strict sandbox policy, though we
expect this to be too coarse-grained. Another option is to investigate whether we can devise
wrappers for GTVM similar to those used by TS? (adopted from Fournet et al. [25]), which
enforce a strict heap separation between unsafe and type-safe code. A third option is to
devise contracts based on separation logic predicates similar to the approach of Agten et
al. [4], who use these contracts to protect verified C modules from unverified C code, though
this approach comes with considerable performance overhead.

As mentioned earlier, we plan to develop a compiler from GTVM to LLVM IR that inserts
wrappers or safe coercions to ensure safe interoperability is preserved after the translation to
LLVM IR. TS? similarly provides a compiler to JavaScript. To prove that the translation
from TS? to JavaScript preserves properties such as memory isolation, the authors leverage
a dependently typed version of JavaScript (called JS*) in which memory layout invariants
can be specified. We conjecture that we should be able to carry out such a proof using our
logical relation for GTVM which will be based on much recent progress in scaling up logical
relations to so that they can be used to tractably prove sophisticated equivalences in the
presence of state [5, 8, 21, 57].

Verified compiler: Rust to GTVM In the third phase, we plan to extend the GTVM/TTVM
type system so that it can support type-preserving compilation from Rust, in particular,
adding features capable of expressing Rust’s region and ownership discipline. For the design
of the TTVM type system and logical relation, we can leverage ideas from our prior work
on linear and affine type systems for memory management [13, 12, 38, 10, 24, 11]. However,
instead of trying to shoehorn an appropriate notion of affine types or capabilities into TTVM,
it may be better to extend the TTVM type system with dependent types in the style of
HTT [41, 43]. This is a more challenging task, but a type system based on HTT might be a
better choice as it can be designed independent of Rust considerations and yet should be
expressive enough to serve as a target of typed compilation from Rust.

14 Verified Compilers for a Multi-Language World

5 Conclusion

Practically every software system, from safety-critical software to web browsers, uses com-
ponents written in multiple programming languages and stands to benefit from verified
compositional compilers. We have proposed a proof architecture for verifying compositional
compilers based on source-target interoperability and are working on demonstrating the
viability of this approach. We also propose to extend LLVM—increasingly the backend of
choice for modern compilers—to support compositional compilation from type-safe source
languages and principled linking with less precisely typed languages. This ambitious research
program consists of numerous technical challenges and we look forward to collaborating with
other groups in the community on various facets of this project.

Acknowledgements We thank the SNAPL anonymous reviewers, Andrew Appel, Matthias
Blume, Matthias Felleisen, Robby Findler, Bob Harper, Xavier Leroy, Guy McCusker, Greg
Morrisett, Aaron Turon, and members of IFIP WG 2.8 (Working Group on Functional
Programming) for valuable feedback on various aspects of this project. Jamie Perconti and
Phillip Mates did the bulk of the work completed to date. Current project members include
William Bowman, Max New, and Nick Rioux. This research is supported in part by the NSF
(grants CCF-1453796, CCF-1422133, and CCF-1203008) and a Google Faculty Research
Award.

References

1 Ocsigen. http://ocsigen.org.
2 Seaside. http://seaside.st.
3 Vellvm: Verifying the llvm. http://www.cis.upenn.edu/∼stevez/vellvm/.
4 Pieter Agten, Bart Jacobs, and Frank Piessens. Sound modular verification of c code

executing in an unverified context. In ACM Symposium on Principles of Programming
Languages (POPL), Mumbai, India, January 2015.

5 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.
In European Symposium on Programming (ESOP), pages 69–83, March 2006.

6 Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equiv-
alence. In International Conference on Functional Programming (ICFP), Victoria, British
Columbia, Canada, pages 157–168, September 2008.

7 Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via multi-
language semantics. In International Conference on Functional Programming (ICFP),
Tokyo, Japan, pages 431–444, September 2011.

8 Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-
pendence. In ACM Symposium on Principles of Programming Languages (POPL), Savan-
nah, Georgia, January 2009.

9 Amal Ahmed, Robert Bruce Findler, Jeremy Siek, and Philip Wadler. Blame for all. In
ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas, pages
201–214, January 2011.

10 Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model of substructural
state. In International Conference on Functional Programming (ICFP), Tallinn, Estonia,
pages 78–91, September 2005.

11 Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3 : A linear language with locations.
Fundamenta Informaticae, 77(4):397–449, June 2007.

A. Ahmed 15

12 Amal Ahmed, Limin Jia, and David Walker. Reasoning about hierarchical storage. In
IEEE Symposium on Logic in Computer Science (LICS), Ottawa, Canada, pages 33–44,
June 2003.

13 Amal Ahmed and David Walker. The logical approach to stack typing. In ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI), pages 74–85, January
2003.

14 João Filipe Belo, Michael Greenberg, Atsushi Igarashi, and Benjamin C. Pierce. Polymor-
phic contracts. In European Symposium on Programming (ESOP), March 2011.

15 Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correct-
ness. In International Conference on Functional Programming (ICFP), Edinburgh, Scot-
land, September 2009.

16 Nick Benton and Chung-Kil Hur. Realizability and compositional compiler correctness for
a polymorphic language. Technical Report MSR-TR-2010-62, Microsoft Research, April
2010.

17 Lennart Beringer, Gordon Stewart, Robert Dockins, and Andrew W. Appel. Verified com-
pilation for shared-memory C. In European Symposium on Programming (ESOP), April
2014.

18 Adam Chlipala. A verified compiler for an impure functional language. In ACM Symposium
on Principles of Programming Languages (POPL), Madrid, Spain, January 2010.

19 Maulik A. Dave. Compiler verification: A bibliography. ACM SIGSOFT Software Engi-
neering Notes, 28(6), 2003.

20 Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete monitors for
behavioral contracts. In European Symposium on Programming (ESOP), March 2012.

21 Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order state and control
effects on local relational reasoning. Journal of Functional Programming, 22(4&5):477–528,
2012.

22 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
International Conference on Functional Programming (ICFP), Pittsburgh, Pennsylvania,
pages 48–59, September 2002.

23 Cormac Flanagan. Hybrid type checking. In ACM Symposium on Principles of Program-
ming Languages (POPL), January 2006.

24 Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you need. In
European Symposium on Programming (ESOP), pages 7–21, March 2006.

25 Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves Strub,
and Benjamin Livshits. Fully abstract compilation to JavaScript. In ACM Symposium on
Principles of Programming Languages (POPL), Rome, Italy, pages 371–384, 2013.

26 Kathryn E Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability
through mirrors and contracts. In ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), 2005.

27 Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest.
In ACM Symposium on Principles of Programming Languages (POPL), Madrid, Spain,
pages 353–364, January 2010.

28 Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and Cormac Flanagan.
Sage: Hybrid checking for flexible specifications. In Scheme and Functional Programming
Workshop (Scheme), pages 93–104, September 2006.

29 Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly.
In ACM Symposium on Principles of Programming Languages (POPL), Austin, Texas,
January 2011.

16 Verified Compilers for a Multi-Language World

30 Shriram Krishnamurthi, Peter Walton Hopkins, Jay Mccarthy, Paul T. Graunke, Greg
Pettyjohn, and Matthias Felleisen. Implementation and use of the PLT Scheme web server.
2007.

31 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML : A veri-
fied implementation of ML. In ACM Symposium on Principles of Programming Languages
(POPL), San Diego, California, January 2014.

32 Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with
a proof assistant. In ACM Symposium on Principles of Programming Languages (POPL),
Charleston, South Carolina, January 2006.

33 Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

34 Andreas Lochbihler. Verifying a compiler for Java threads. In European Symposium on
Programming (ESOP), March 2010.

35 Jacob Matthews and Amal Ahmed. Parametric polymorphism through run-time sealing,
or, theorems for low, low prices! In European Symposium on Programming (ESOP), pages
16–31, March 2008.

36 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language
programs. In ACM Symposium on Principles of Programming Languages (POPL), Nice,
France, pages 3–10, January 2007.

37 Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In
ACM Symposium on Principles of Programming Languages (POPL), St. Petersburg Beach,
Florida, pages 271–283, January 1996.

38 Greg Morrisett, Amal Ahmed, and Matthew Fluet. L3 : A linear language with locations.
In Typed Lambda Calculi and Applications (TLCA), Nara, Japan, pages 293–307, April
2005.

39 Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and Systems, 21(3):527–
568, May 1999.

40 Magnus O. Myreen. Verified just-in-time compiler on x86. In ACM Symposium on Princi-
ples of Programming Languages (POPL), Madrid, Spain, January 2010.

41 Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract predi-
cates and mutable ADTs in Hoare Type Theory. In European Symposium on Programming
(ESOP), pages 189–204, March 2007.

42 Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of information
flow and access control policies with dependent types. In IEEE Symposium on Security
and Privacy, pages 165–179, 2011.

43 Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal.
Ynot: Dependent types for imperative programs. In International Conference on Functional
Programming (ICFP), Victoria, British Columbia, Canada, pages 229–240, 2006.

44 Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and
Viktor Vafeiadis. Pilsner: A compositionally verified compiler for a higher-order imperative
language. Available at: http://www.mpi-sws.org/∼dreyer/papers/pilsner/paper.pdf,
February 2015.

45 Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. Dependent interoperability.
In Programming Languages meets Program Verification (PLPV), January 2012.

46 Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with
dependent types. In IFIP International Conference on Theoretical Computer Science, pages
437–450, August 2004.

47 James T. Perconti and Amal Ahmed. Verifying an open compiler using multi-language
semantics. In European Symposium on Programming (ESOP), April 2014.

A. Ahmed 17

48 Christian Queinnec. Inverting back the inversion of control or, continuations versus page-
centric programming. SIGPLAN Not., 38(2):57–64, February 2003.

49 Jaroslav Sevcik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and
Peter Sewell. Relaxed-memory concurrency and verified compilation. In ACM Symposium
on Principles of Programming Languages (POPL), Austin, Texas, 2011.

50 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop (Scheme), pages 81–92, September 2006.

51 Jeremy G. Siek and Walid Taha. Gradual typing for objects. In European Conference on
Object-Oriented Programming (ECOOP), 2007.

52 Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Composi-
tional compcert. In ACM Symposium on Principles of Programming Languages (POPL),
Mumbai, India, 2015.

53 Nikhil Swamy, Cédric Fournet, Aseem Rastogi, Karthikeyan Bhargavan, Juan Chen, Pierre-
Yves Strub, and Gavin M. Bierman. Gradual typing embedded securely in JavaScript. In
ACM Symposium on Principles of Programming Languages (POPL), San Diego, California,
pages 425–438, 2014.

54 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In ACM Symposium on Object
Oriented Programming: Systems, Languages, and Applications (OOPSLA), 2012.

55 The LLVM Development Team. The LLVM reference manual. http://llvm.org/docs
/LangRef.html.

56 Jesse Tov. Stateful contracts for affine types. In European Symposium on Programming
(ESOP), March 2010.

57 Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. Logical
relations for fine-grained concurrency. In ACM Symposium on Principles of Programming
Languages (POPL), Rome, Italy, pages 201–214, January 2013.

58 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Euro-
pean Symposium on Programming (ESOP), pages 1–16, March 2009.

59 Peng Wang, Santiago Cuellar, and Adam Chlipala. Compiler verification meets cross-
language linking via data abstraction. In ACM Symposium on Object Oriented Program-
ming: Systems, Languages, and Applications (OOPSLA), October 2014.

60 Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. Communications of the ACM, 53(1):91–99, 2010.

61 Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formaliz-
ing the LLVM intermediate representation for verified program transformations. In ACM
Symposium on Principles of Programming Languages (POPL), Philadelphia, Pennsylvania,
January 2012.

62 Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formal
verification of SSA-based optimizations for LLVM. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Seattle, Washington, June
2013.

	Landscape of Verified Compilation
	Our Approach and Research Goals
	Proof Methodology for Verified Compilation of Components
	Specifying compiler correctness using multi-language semantics
	Comparison with related work
	Our proof methodology applied to closure conversion

	Research Plan and Central Challenges
	Conclusion

