
Typed Closure Conversion Preserves Observational Equivalence

Amal Ahmed Matthias Blume
Toyota Technological Institute at Chicago

{amal,blume}@tti-c.org

Abstract
Language-based security relies on the assumption that all potential
attacks are bound by the rules of the language in question. When
programs are compiled into a different language, this is true only if
the translation process preserves observational equivalence.

We investigate the problem of fully abstract compilation, i.e.,
compilation that both preserves and reflects observational equiv-
alence. In particular, we prove that typed closure conversion for
the polymorphic λ-calculus with existential and recursive types is
fully abstract. Our proof uses operational techniques in the form of
a step-indexed logical relation and construction of certain wrapper
terms that “back-translate” from target values to source values.

Although typed closure conversion has been assumed to be
fully abstract, we are not aware of any previous result that actually
proves this.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Security

Keywords equivalence-preserving compilation, full abstraction,
step-indexed logical relations, typed closure conversion

1. Introduction
Large software systems consist of hundreds or thousands of compo-
nents, and many of these components may be of uncertain origin.
To ensure reliable and secure operation, it is important to defend
against faulty or malicious code. Language-based security is built
upon the concept of abstraction: if access to some private imple-
mentation detail might enable an attack, then this detail is made
inaccessible by hiding it behind an abstract interface, for example
using an existential type.

Results such as Reynold’s abstraction theorem [26] provide the
theoretical justification for this. LetL be a language and P = C[A]
be a program written in L where A is the implementation of an
abstraction and C is its context, i.e., the “rest of the program”
within which A is used. Given some other implementation A′

of the same abstraction, the new program P ′ = C[A′] behaves
identically to P . The intuition here is that the implementation A of
the abstraction is contextually equivalent to the implementation A′.

To claim contextual equivalence one must consider the set of
all possible contexts—i.e., the set of all the (well-typed) contexts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

that can be written down in language L. This corresponds to the
programmer’s intuition, namely that using the abstraction facilities
of L implies that any code interacting with the abstraction is bound
by the rules of L.

But what about contexts written in some other language? Com-
pilers routinely translate programs from one language L to pro-
grams in another language L′. Are programs that were contextually
equivalent before translation (in L) still contextually equivalent af-
ter translation (in L′)? This is a security-relevant question that pro-
grammers should care about! If it is possible to mount an attack
at the level of L′, then the original reasoning is invalid—unless
the translation preserves and reflects equivalences and is, therefore,
fully abstract.

If the set of possible contexts in L′ is restricted to those that
can be obtained by translating L-contexts, then the answer to the
above question would be “yes,” and the programmer’s reasoning
based on source language rules would be correct. Unfortunately,
this is often not the case. For instance, Java programs [6] are often
distributed in the form of bytecode for the Java Virtual Machine,
and such code can be generated by means other than compiling
Java source code; Microsoft’s Common Language Runtime (CLR)
was specifically designed to be the target of compilers for multiple
languages [9]; most traditional compilers generate machine code,
which can then be linked with other machine code. In all these
situations it is easily possible that target contexts are too powerful
in the sense that they can make observations that source contexts
cannot. Indeed, Kennedy describes a number of ways in which
abstractions were broken in the process of compiling C] to the
CLR intermediate language [14]. Similar problems with Java have
previously been examined by Abadi [1].

As Kennedy points out, there are at least three approaches to re-
pairing failures of full abstraction. First, we could enrich the source
language itself so that every target-level observation has a source-
level counterpart. But succeeding with this idea would be a rather
questionable victory, since it merely amounts to weakening the ab-
straction facilities of the source language. The second approach is
to weaken the target language to the point where, in some sense,
it becomes merely an alternative notation for source programs,
thereby guaranteeing that the only expressible target contexts triv-
ially correspond to source contexts. In some specialized situations
this might work, but it does not apply to foreign-function interfaces,
plugin-architectures, or multi-lingual frameworks such as .NET.

The third—and most appealing—approach is to engineer the
translation itself so that it uses target-level abstraction facilities
in a clever enough fashion so that well-typed target contexts have
no choice but to respect the original abstractions. Of course, this
requires at least some abstraction facilities to be present in the
target language. JVM bytecode and the CLR have been explicitly
designed for this. Typed Assembly Language (TAL) [21] is one
approach of bringing abstraction mechanisms even to low-level
machine code.

Assuming that the translation can be engineered in this way, the
remaining problem is to show that the result really is fully abstract.
While Kennedy describes solutions to those C]-to-CLR translation
bugs he found, he also points out that we do not yet have a proof of
the absence of other, still undiscovered bugs.

In this paper we examine closure conversion—a key step in the
translation from System F to TAL [21]. We show that the translation
scheme based on existential quantification over the type of the
closure environment is, indeed, fully abstract and develop a method
for proving this to be true in a language that has universally and
existentially quantified types as well as recursive types.

The case of closure conversion. The basic idea of closure conver-
sion is to collect the free variables of a λ-expression in a data struc-
ture (e.g., a record) called the closure environment and to pass this
data structure as an additional argument to the λ-expression, thus
turning it into a closed term. Typed closure conversion, which goes
back to Minamide, Morrisett and Harper [20], holds the type of the
closure environment abstract by existentially quantifying over it.
In general, such existential quantification is necessary to make the
translation term type-check at all. For instance, λx : int. x+y and
λx : int. z x y have the same type (assuming the types of y and z
are int and int→ int→ int, respectively), but their closure envi-
ronments have different types given that in this case not even their
lengths match. Typed closure conversion hides the difference be-
hind an existential quantifier.

As we have discussed, full abstraction is at least as much a prop-
erty of the translation as it is one of the target language. Therefore, a
particular translation scheme can fail to be fully abstract even if the
source- and target languages are identical. As we will see, keeping
the closure environment completely under the existential quantifier
has the desired property of making the translation fully abstract.
However, it is not hard to craft variants of this “natural” transla-
tion that reveal intensional aspects of the closure, thus failing to be
fully abstract. For example, the translation could expose the size of
the closure environment as an additional non-abstract field of type
int. Such a scheme might have benefits for data representation or
downstream optimizers. But such a conversion also enables target
contexts to distinguish between the λ-expressions shown above—
even if z happens to be bound to a value such as λxy. x+y that
renders the source terms equivalent—and thus is not fully abstract.

In this paper we consider the polymorphic call-by-value λ-
calculus with existential and recursive types, and show that a typed
closure conversion such as the one used by Morrisett et al. [21] is
fully abstract. Though this has been believed to be true, we are not
aware of any previous proof of this property. Parts of proofs elided
in this paper can be found in the accompanying technical report [5].

2. Proving Translations Fully Abstract
Suppose we have a source language S equipped with a notion
of contextual equivalence ≈S, and a target language T with its
own notion of such an equivalence ≈T. Moreover, let there be a
translation procedure s ; t that constructs a T -term t from a given
S-term s.

Consider two terms and their translations: s1 ; t1 and s2 ;

t2. We want ; to be equivalence-preserving—meaning that s1 ≈S

s2 implies t1 ≈T t2, and equivalence-reflecting—meaning that
t1 ≈T t2 implies s1 ≈S s2. Equivalence reflection captures the
usual notion of correctness (i.e., preservation of semantics as in
Leroy [15]): a translation is clearly not correct if it maps non-
equivalent source terms to equivalent target terms. However, cor-
rect translations are often not equivalence-preserving. A translation
is said to be fully abstract if it has both properties.

Because of the universal quantification over contexts, it is dif-
ficult to work with contextual equivalence directly. Therefore, the

first step is to find a characterization of equivalence that is easier to
work with. In this paper we will use logical relations [29, 25, 24],
specifically, a step-indexed logical relation that is sound and com-
plete with respect to contextual equivalence [4].

To show preservation of equivalence we need a way of making
use of s1 ≈S s2 when showing t1 ≈T t2. The idea is to define
a relation s ∝ t that—at the very least—holds whenever t is the
result of translating s (i.e., s ; t). If we can also prove that given
s ∝ t we have s′ ∝ t iff s ≈S s′ and s ∝ t′ iff t ≈T t′ (that
is, if we can show that ∝ respects ≈S on the left and ≈T on the
right), then we can read the proof for full abstraction directly off
the following commuting diagram:

s1

∝
��

oo ≈S // s2

∝
��

t1 oo ≈T // t2

The techniques for showing such properties (assuming they hold)
clearly depend on details of S, T , and ;. However, if we assume
both S and T to contain λ-expressions (or λ-like expressions), a
common problem is likely to surface: to prove that two λ-terms t1
and t2 in T are related, one has to show that they map any related
arguments vt

1 and vt
2 to related results. The main fact to use here

is that s1 and s2, i.e., the source-level λ-terms whose translations
generated t1 and t2, are related. This means that s1 and s2 map any
related source values vs

1 and vs
2 to related source results. How can

we make use of this fact given that what we have are related target
values, not source values? Given any vt that can be an argument to
a λ-term t, we must be able to show the existence of a vs such that
vs ∝ vt. (In the opposite direction this would be easy, since we
could simply translate vs using ;.)

The ability to “back-translate” any vt of translation type—
including those target values that are not in the image of the trans-
lation, possibly even containing subterms not of translation type—
into a vs seems crucial to proving that translations preserve equiva-
lences. Roughly speaking, if we can back-translate values, then we
can also back-translate entire contexts. (Think of the context as a
function that is “applied” to the term in its hole.) Thus, to show that
s1 ≈S s2 implies t1 ≈T t2 we can use proof by contradiction: a
context Ct that distinguishes t1 from t2 can be back-translated to a
context Cs that distinguishes s1 from s2, contradicting the premise.
Therefore, the translation must have been equivalence-preserving.

2.1 Language choice
The back-translation problem does not disappear even when the
translation is from S into S itself (i.e., when T = S), because in
general the type of a translation term t does not match the type of
its corresponding source term s. This is certainly the case for clo-
sure conversion, but also for other translations such as CPS trans-
formation. However, if S = T , then—as we will see shortly (Sec-
tion 2.2)—it is sometimes possible to characterize the relation∝ as
an isomorphism whose mediating coercion functions are definable
as terms of the language itself.

Moreover, when S 6= T it is often the case that T has a
fairly straightforward one-to-one correspondence with a subset T ′

of S. Usually the target language has fewer high-level features,
making the “forward” translation problem (from S to T) non-trivial
since some source constructions have to be “translated away.” The
opposite direction (from T to S) is often much simpler due to
the above-mentioned isomorphism between T and a subset of S.
Thus, instead of considering the translation from S to T one can
equivalently consider the corresponding translation from S to T ′.

The situation is depicted in Figure 1. Consider the intended
translation from source language S to target language T . Let there
be a sub-language T ′ of S that is isomorphic to T . For the purpose

S

T'

T

S
identical language

isomorphic language

intended translation

actual translation

S - source language

T - intended target language

T' - actual target (T' ⊂ S)

Figure 1. Languages

of comparing programs for contextual equivalence, it does not
matter if one considers a term t ∈ T or its counterpart t′ ∈ T ′.
But every t′ ∈ T ′ is also a program in S, and any context C in T ′

that distinguishes a t′1 from a t′2 (both in T ′) is also a distinguishing
context in S. Thus, if programs are not equivalent in T , then their
counterparts in T ′ and S are also not equivalent, neither within just
T ′ nor in S. Conversely, if we can prove that t′1 is equivalent to t′2
in S, then they are also equivalent within T ′.1

Relying on this observation we will for the rest of the paper
consider a direct translation from S to a subset of itself. The
advantage of this approach is that we do not have to develop
the machinery for reasoning about equivalence for two languages
separately. Moreover, as hinted above and explained in much more
detail below, it lets us characterize∝ as a pair of coercion functions
within S.

Notice, however, that equivalence in S is a stronger property
and potentially more difficult to prove than equivalence in the tar-
geted subset of S alone. At least for the case of closure conversion,
this turns out not to be a problem and is outweighed by the above-
mentioned advantages.

2.2 Wrapping
In this paper, we give a precise instance of our general proof outline
for the case of closure conversion where S and T are the same typed
language. Since terms contain types, the translation will have a type
component that maps source types τ to corresponding target types
τ+. The translation types τ+ form a strict subset of all possible
target-level types.

We implement back-translation by giving a constructive method
for generating source values from arbitrary target values (of trans-
lation type) and vice versa. Since S and T are the same language,
we do so by using the language itself to define for each source
type τ total functions W−

JτK (mapping from target to source) and
W+

JτK (mapping from source to target). The terms W±
JτK are called

wrappers. Similar wrappers have been used in many other settings,
including contracts [11, 7], multi-language interoperability2 [18],
or representation analysis [16, 28].

Our central result is that a translation s ; t can be “faked”
using wrappers; that is, we show that if s ; t then the result

1 Of course, this form of reasoning cannot establish equivalence reflection,
i.e., the preservation of non-equivalences. But for that it suffices to show
how a distinguishing source-context can be translated into a distinguishing
target context, which is usually easy given the general source-to-target
translation mechanism.
2 In essence, our wrappers provide interoperability between S and T .

Types τ, σ ::= α | int | ∀[ᾱ](τ̄)→σ | ∃α.τ |
τ1 × · · · × τn | τ1 + τ2 | µα.τ

Sugar τ1→τ2 = ∀[](τ1)→τ2

∀α.τ = ∀[α]()→τ

Contexts ∆ ::= · | ∆, α

Γ ::= · | Γ, x : τ

Exprs e ::= x | c | λ[ᾱ](x : τ). e | e0[τ̄](ē) |
pack [σ, e]as ∃α.τ | unpack [α, x] = e1 in e2 |
(e1, . . ., en) | πi(e) | inl(e) | inr(e) |
(case e0 of inl(x1) ⇒ e1 | inr(x2) ⇒ e2) |
fold[µα.τ]e | unfold e

Sugar λx : τ. e = λ[](x : τ). e
λx. e = λx : τ. e ; τ inferred from context

id = λx. x
e1 e2 = e1[](e2)

letx = e1 in e2 = (λx. e2) e1

e1 ◦ e2 = (λx1. λx2. λx. x1(x2(x))) e1 e2

letrec f : τ→τ ′ = λx. F and g : σ→σ′ = λy. G in H =8>>>>><>>>>>:

let f∗ = λp : τp. λx : τ.
let u = unfold p in F [(π1(u) p)/f, (π2(u) p)/g]

g∗ = λp : τp. λx : σ.
let u = unfold p in G[(π1(u) p)/f, (π2(u) p)/g]

p = fold[τp](f∗, g∗)
in H[(f∗ p)/f, (g∗ p)/g]

where τp = µα.(α→τ→τ ′)× (α→σ→σ′)

Figure 2. Syntax of types and expressions

t of the translation is always equivalent to a suitably wrapped
version W [s] of the source term s (written t ≈T W [s]). This
means that t and W [s] behave identically in any target context Ct.
Now, let s1 ; t1 and s2 ; t2. If s1 ≈S s2, then no context,
including the source context Ct[W [·]], can distinguish between
them. But Ct[W [s1]] ≈T Ct[t1] and Ct[W [s2]] ≈T Ct[t2],
hence, Ct[t1] ≈T Ct[t2], i.e., t1 ≈T t2.

The relation ∝, which we do not have to define separately for
this style of proof, can be recovered using W− and W+:

s ∝ t =def s ≈S W−(t)

We will also be able to show that this is equivalent toW+(s) ≈T t.

3. Language
As we have explained, we use a single language in two roles, as
both the source and the target of closure conversion. In addition to
the technical advantages mentioned earlier, this also makes it easy
to use closure conversion in a translation pipeline with other con-
version steps, and provided these steps also preserve equivalences,
the entire pipeline will be fully abstract. For example, one such
other step is CPS-conversion. (While the basic idea behind a proof
of full abstraction for CPS is the same, the details turn out to be
substantially different. We plan to report on these separately.)

Types. The language is essentially the polymorphic λ-calculus
(System F), with integers, products, sums, and existential as well as
recursive types (see Figure 2). Unlike in most accounts of System
F, however, we combine the universal quantifier ∀ and the function
type constructor → into a single construct ∀[ᾱ](τ̄) → τr which
accommodates multiple formal type parameters3 ᾱ = α1, . . . , αm

3 Throughout the paper we will use a line above a syntactic element as in ᾱ
or x : τ to indicate lists of repeated instances of this element.

Values v ::= c | λ[ᾱ](x : τ). e | pack [σ, v]as∃α.τ |
(v1, . . . , vk) | inl(v) | inr(v) | fold[µα.τ]v

Eval. E ::= [·] | E[τ̄](ē) | v[τ̄](v̄, E, ē) |
contexts pack [σ, E]as∃α.τ | unpack [α, x] = E in e |

(v̄, E, ē) | πi(E) | inl(E) | inr(E) |
(caseE of inl(x1) ⇒ e1 | inr(x2) ⇒ e2) |
fold[µα.τ]E | unfoldE

Step rule

e ↪→ e′

E[e] −→1 E[e′]

Reductions (λ[ᾱ](x : τ). e)[σ̄]v̄ ↪→ e[σ/α][v/x]
unpack [α, x] = pack [σ, v]as ∃α.τ in e ↪→ e[σ/α][v/x]

πi(v1, . . . , vn) ↪→ vi

case inl(v)of inl(x1) ⇒ e1 | inr(x2) ⇒ e2 ↪→ e1[v/x1]
case inr(v)of inl(x1) ⇒ e1 | inr(x2) ⇒ e2 ↪→ e2[v/x2]

unfold (fold[µα.τ]v) ↪→ v

Figure 3. Operational semantics

as well as multiple value arguments of type(s) τ̄ = τ1, . . . , τn.
The difference is not so much fundamental as stylistic, since either
approach can easily be simulated using the other. However, as we
will see, a combined ∀ → constructor makes it easy to express
closure conversion as a translation from the language into itself,
and it would also let us express CPS-conversion without the need
to introduce more curried functions. Morrisett et al. [21] use the
same approach in their “System F to TAL” work for the CPS- and
closure-conversion target. A kinding judgment of the form ∆ ` τ
states that τ is well-formed in context ∆. For brevity the usual rules
for deriving such judgments are elided.

Expressions. The expression language (see Figure 2) includes
variables and constants as well as introduction- and elimination
forms for all the type constructors. In particular, λ[ᾱ](x : τ). e is
a polymorphic function with type parameters ᾱ = α1, . . . , αm and
term parameters x̄ = x1, . . . , xn of types τ̄ = τ1, . . . , τn. The
corresponding elimination form is the combined type- and term ap-
plication e0[σ̄](ē) where σ̄ = σ1, . . . , σm is a list of types and
ē = e1, . . . , en is a list of expressions. As usual, the introduction
form of ∃α.τ is pack [σ, e]as ∃α.τ where σ is the witness type
and e is an expression of type τ [σ/α]. The corresponding elimina-
tion form is unpack [α, x] = e1 in e2 where α and x are type-
and term variables, respectively, e1 is an expression of type ∃α.τ ,
and e2 is an expression that has access to the “unpacked” value of
e1 under the name x of type τ . We use an iso-recursive account of
recursive types, using the fold- and unfold-forms as the mediat-
ing isomorphism between µα.τ and τ [µα.τ/α].

Typing judgments have the form ∆;Γ ` e : τ where ∆ is the
kinding environment (listing free type variables of Γ, e and τ), and
where Γ is the typing environment (assigning types to the free term
variables of e). Figure 6 shows inference rules for extended typing
judgments ∆;Γ ` e : τ ; e′ that also show the closure conversion
e′ for each source term e. Rules for ordinary typing judgments can
be obtained by eliding the ; e′ part from these rules.

Operational semantics. In Figure 3 we give a conventional, call-
by-value, small-step operational semantics for our language as
a context-sensitive rewrite system in the style of Felleisen and
Hieb [10].

Syntactic Sugar. Figure 2 also shows some syntactic sugar that
we will use throughout the paper. Most of it can be seen as straight-
forward “macros.” The definition of letrec is more involved, but
ultimately just implements the well-known fixpoint solution for
two mutually recursive functions. Using the techniques described
in Section 4, it is relatively straightforward to justify a derived re-
duction rule for letrec. Let us write L for the context letrec f :

τ → τ ′ = F and g : σ → σ′ = G in [·]. Then L[H] and
H[L[f]/f, L[g]/g] are contextually equivalent.

4. A Step-Indexed Logical Relation
In this paper, we prove equivalence of programs using a slight
variant of the step-indexed logical relation developed by the first
author in prior work [4]. In this section, we briefly explain the
essential elements of the construction.

The relational interpretation V JτK of a closed type τ is a set of
triples of the form (k, v1, v2) where k is a natural number (called
the approximation index or step index), and v1 and v2 are (closed)
values. Intuitively, (k, v1, v2) ∈ V JτK says that in any computation
running for no more than k steps, v1 approximates v2 at the type τ .

Preliminaries. A context C is an expression with a single hole [·]
in it. Typing judgments for contexts have the form (∆; Γ ` τ) ⇒
(∆′; Γ′ ` τ ′) where (∆; Γ ` τ) indicates the type of the hole (see
context typing in Figure 4).

Definition 4.1 (contextual equivalence)
Let ∆;Γ ` e1 : τ and ∆;Γ ` e2 : τ .

∆; Γ ` e1 ≈ctx e2 : τ =def

∀C, τ ′. ` C : (∆; Γ ` τ)⇒ (·; · ` τ ′) ⇒ (C[e1] ⇓⇔ C[e2] ⇓)

Evaluation contexts E (Figure 3) are a subset of general con-
texts C. Since only closed terms can be placed in an evaluation
context, the type of the hole always has the form ·; · ` τ .

In defining appropriate candidate sets—i.e., sets that can serve
as valid interpretations of types (see below)—for the logical rela-
tion, we make use of the notion of ciu-equivalence (uses of closed
instantiations) introduced by Mason and Talcott [17], which can be
shown to be equivalent to contextual equivalence but is easier to
work with since it cuts down the number of contexts under con-
sideration. Here we only need to define ciu-equivalence for closed
values — hence, what we are defining is just use-equivalence since
the values are already closed. Two closed values v and v′ of type
τ are said to be ciu-related if, for any evaluation context E with a
hole of type τ , if E[v] ⇓ then E[v′] ⇓ (Figure 4). Notice that ciu-
relatedness is an approximate notion. Two values v and v′ of type
τ are ciu-equivalent if v 4 v′ : τ and v′ 4 v : τ .

We use the meta-variable χ to denote sets of tuples of the form
(k, v1, v2), where v1 and v2 are closed values (v1,v2 ∈ CVal).
We define candidate sets Typeτ1,τ2

(where τ1 and τ2 are closed
types) as sets of those sets χ ⊆ N × CVal × CVal that have the
following three properties: if (k, v1, v2) ∈ χ, then v1 and v2 must
be well-typed with types τ1 and τ2 respectively; χ must be closed
with respect to decreasing step-index; and χ must be equivalence-
respecting (strictly speaking, approximation-respecting), which re-
quires that if (k, v1, v2) ∈ χ and v2 4 v′2 : τ , then (k, v1, v

′
2) ∈ χ.

This last requirement is needed for completeness of the logical re-
lation with respect to contextual equivalence [4].

For any set χ such that for all (k, v1, v2) ∈ χ we have that
·; · ` v2 : τ , we use the notation χ∗ciuτ to denote the transitive
closure of χ under ciu-relatedness (see Figure 4).

Finally, we use the meta-variable ρ to denote type substitutions.
These are partial maps from type variables α to triples (τ1, τ2, χ)
where τ1 and τ2 are closed types. We define abbreviations for
projecting the different components of the triple in Figure 4. In
the next section, we give the interpretation of open types τ . These
interpretations are parametrized by a type substitution ρ such that
FTV(τ) ⊆ dom(ρ). We note that our interpretations ensure that if
ρ(α) = (τ1, τ2, χ) then χ ∈ Typeτ1,τ2

.

context typing: ` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ ′) =def ∀e. ∆; Γ ` e : τ ⇒ ∆′; Γ′ ` C[e] : τ ′

ciu-relatedness: v 4 v′ : τ =def ∀E, τ1. (` E : (·; · ` τ)⇒ (·; · ` τ1) ∧ E[v] ⇓) ⇒ E[v′] ⇓
candidate relations: Typeτ1,τ2

= {χ ⊆ N× CVal× CVal | ∀(j, v, v′) ∈ χ. ` v : τ1∧ ` v′ : τ2 ∧
∀i < j. (i, v, v′) ∈ χ ∧
∀v′′. v′ 4 v′′ : τ2 ⇒ (j, v, v′′) ∈ χ }

ciu-closure: χ∗ciuτ =def {(k, v, v′′) | (k, v, v′) ∈ χ ∧ v′ 4 v′′ : τ}
rho components: Let ρ(α) = (τ1, τ2, χ). Then ρ1(α) =def τ1, ρ2(α) =def τ2, ρrel(α) =def χ.

Figure 4. Auxiliary definitions for the logical relation

V JαK ρ = ρrel(α)

V JintK ρ = { (k, i, i) | i ∈ Z }

Vµ
q
k′, µα.τ

y
ρ = { (k, fold[µα.ρ1(τ)]v1, fold[µα.ρ2(τ)]v2) |

k ≤ k′ ∧ ∀j < k.(j, v1, v2) ∈ V JτK ρ[α 7→ (µα.ρ1(τ), µα.ρ2(τ), χ)] where χ = Vµ Jj, µα.τK ρ }

V Jµα.τK ρ =
[

k′≥0

Vµ
q
k′, µα.τ

y
ρ

V Jτ1 × · · · × τnK ρ = { (k, (v11, . . . , v1n), (v21, . . . , v2n)) | ∀i ∈ {1, . . . , n}. (k, v1i, v2i) ∈ V JτiK ρ }
V Jτ1 + τ2K ρ = { (k, inl(v1), inl(v2)) | (k, v1, v2) ∈ V Jτ1K ρ } ∪

{ (k, inr(v1), inr(v2)) | (k, v1, v2) ∈ V Jτ2K ρ }

V J∀[ᾱ](τ̄)→τrK ρ
ᾱ = α1, . . . , αm

τ̄ = τ1, . . . , τn

= { (k, λ[ᾱ](x : ρ1(τ)). e1, λ[ᾱ](x : ρ2(τ)). e2) |
∀j < k. ∀p ∈ {1, . . . , m}. ∀σ1p, σ2p. ∀χp ∈ Typeσ1p,σ2p

.

let ρ′ = ρ[α1 7→ (σ11, σ21, χ1), . . . , αm 7→ (σ1m, σ2m, χm)]
if ∀q ∈ {1, . . . , n}. (j, v1q , v2q) ∈ V JτqK ρ′

then (j, e1[σ1/α][v1/x], e2[σ2/α][v2/x]) ∈ C JτrK ρ′ }

V J∃α.τK ρ = { (k,pack [τ1, v1]as∃α.ρ1(τ),pack [τ2, v2]as∃α.ρ2(τ)) |
∀j ≤ k. ∀f1, f2, τ0. if dom(ρ) ` τ0 ∧ (j, f1, f2) ∈ V J∀[α](τ)→τ0K ρ

then (j, f1[τ1]v1, f2[τ2]v2) ∈ C Jτ0K ρ }

C JτK ρ = { (k, e1, e2) | ∀j < k. ∀v1. if e1 −→j v1 then ∃v2. e2 −→∗ v2 ∧ (k − j, v1, v2) ∈ V JτK ρ }

D J·K = { ∅ }
D J∆, αK = { ρ[α 7→ (τ1, τ2, χ) | ρ ∈ D J∆K ∧ χ ∈ Typeτ1,τ2

}

G J·K ρ = { (k, ∅, ∅) }
G JΓ, x : τK ρ = { (k, γ1[x 7→ v1], γ2[x 7→ v2]) | (k, γ1, γ2) ∈ G JΓK ρ ∧ (k, v1, v2) ∈ V JτK ρ }

∆; Γ ` e1 ≤ e2 : τ =def ∆; Γ ` e1 : τ ∧ ∆; Γ ` e2 : τ ∧
∀k ≥ 0. ∀ρ ∈ D J∆K . ∀(k, γ1, γ2) ∈ G JΓK ρ. (k, ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ C JτK ρ

∆; Γ ` e1 ≈ e2 : τ =def ∆; Γ ` e1 ≤ e2 : τ ∧ ∆; Γ ` e2 ≤ e1 : τ

Figure 5. Step-indexed logical relation

Value relations. Figure 5 gives the relational interpretations of
types V JτK ρ. This is a set of triples (k, v1, v2) where ·; · ` v1 :
ρ1(τ) and ·; · ` v2 : ρ2(τ). (We elide these typing requirements
from the definitions in Figure 5.)

Two values v1 and v2 are related at the type α for k steps, if
(k, v1, v2) ∈ ρrel(α). Two integers are related at the type int for
any number of steps if they are equal.

The values fold[]v1 and fold[]v2 (eliding types for the mo-
ment) are related at the type µα.τ for k steps if v1 and v2 are
related at the type τ [µα.τ/α] for k − 1 steps (or equivalently, for
all j < k steps). This requirement can equivalently be written as
(k− 1, v1, v2) ∈ V JτK ρ[α 7→ (µα.ρ1(τ), µα.ρ2(τ), χ)] where χ
is the set of all values related at the type µα.τ for i < k steps. Thus,
notice that to determine if (k,−,−) ∈ V Jµα.τK ρ, we require a χ
that contains all tuples (i,−,−) ∈ V Jµα.τK ρ whose index i is
strictly less than k. Hence our interpretation of recursive types is
well-founded (as the formal definition in Figure 5 makes clear).

Functions are suspended computations that take both type and
value arguments. They are related if for any suitable instantiation to

type and value arguments their bodies are related as computations
at the result type τr (under the augmented type substitution ρ′ that
takes type arguments into account). To be related for k steps, the
functions’ bodies must be related for the remaining j < k steps at
any time in the future when the function might be applied. Since
function application itself takes up one step, j < k (as opposed to
j ≤ k) suffices. A “suitable” type instantiation consists of any two
types σ1 and σ2, together with an arbitrary relation χ drawn from
Typeσ1,σ2

. A suitable value instantiation picks arguments that are
themselves related at type τ1 (also under ρ′) for the required j steps.

The interpretation of existential types is defined in terms of the
interpretation of universal types. Intuitively, one can think of this
as a “semantic” use of the dual encoding of existentials in terms
of universals. To show that the values pack [τ1, v1]as ∃α.ρ1(τ)
and pack [τ2, v2]as ∃α.ρ2(τ) are related for k steps at the type
∃α.τ we proceed as follows. We pick two arbitrary functions
f1 = λ[α](x : τ). e1 and f2 = λ[α](x : τ). e2 such that f1 and
f2 are related for j ≤ k steps at the type ∀[α](τ) → τ0 where
α /∈ FTV(τ0). (Thus, f1 and f2, like the body of an unpack,

behave parametrically with respect to α.) We must show that
e1[τ1/α][v1/x] and e2[τ2/α][v2/x] are related for j − 1 steps as
computations of type τ0 (or equivalently: (j, f1[τ1]v1, f2[τ2]v2) ∈
C Jτ0K ρ). Intuitively, this definition is just trying to capture how
the elim form for existentials (i.e., unpack) works.

It may not be readily obvious that this interpretation of existen-
tial types is well-founded. One concern may be that we have picked
an arbitrary type τ0. Since our language has impredicative quanti-
fied types, τ0 may be ∃α.τ itself, i.e., the type whose interpreta-
tion we are trying to define! (In fact, τ0 may even be a larger type
than ∃α.τ .) As in the recursive types case, induction on the step-
index (and not just on types) is crucial here for well-foundedness.
But this leads to a second concern: the definition requires only that
j ≤ k (rather than j < k). To see that the definition is well-founded
regardless, notice that it is equivalent to the following (more ver-
bose, but clearly well-founded) definition, which we get by “macro-
expansion” of the clause (j,−,−) ∈ V J∀[α](τ)→τ0K ρ, and by
replacing the clause (j,−,−) ∈ C Jτ0K ρ with an equivalent form:

∀j ≤ k. ∀f1, f2, τ0.
if f1 = λ[α](x : τ). e1 ∧ f2 = λ[α](x : τ). e2 ∧

dom(ρ) ` τ0 ∧
(∀i < j. ∀σ1, σ2, χ ∈ Typeσ1,σ2

.
let ρ′ = ρ[α 7→ (σ1, σ2, χ)]
∀(i, v11, v22) ∈ V JτK ρ′.

(i, e1[σ1/α][v11/x], e2[σ2/α][v22/x]) ∈ C Jτ0K ρ′)
then (j − 1, e1[τ1/α][v1/x], e2[τ2/α][v2/x]) ∈ C Jτ0K ρ }

Intuitively, the last line above is equivalent to (j, f1[τ1]v1, f2[τ2]v2)
∈ C Jτ0K ρ since beta-reduction consumes a step.

The interpretation of existential types that we use here is differ-
ent from an earlier account [4] which, we discovered, did not satisfy
the equivalence-respecting property mentioned above (see [3] for
details). As a result, that logical relation was incomplete with re-
spect to contextual equivalence at existential types. (The proof that
the interpretation of ∃α.τ in Figure 5 is equivalence-respecting is
given in our technical report [5].)

In Section 7, when proving Lemma 7.1, we make repeated
use of the fact that all our type interpretations are equivalence-
respecting.

Lemma 4.2 (Valid Type Interpretations)
If ∆ ` τ and ρ ∈ D J∆K, then V JτK ρ ∈ Typeρ1(τ),ρ2(τ).

Computation relation. Two closed expressions e1 and e2 are
related as computations of type τ for k steps (written (k, e1, e2) ∈
C JτK ρ) if the following holds. If e1 evaluates to v1 in j < k
steps, then e2 must evaluate to some value v2 (in any number of
steps), and furthermore, the values v1 and v2 must be related for
the remaining k − j steps.

Asymmetric and symmetric relation. We say e1 logically approx-
imates e2, written ∆;Γ ` e1 ≤ e2 : τ (see Figure 5), when e1 and
e2 are both well-typed, and for all k ≥ 0 steps, if ρ is a type substi-
tution inD J∆K and γ1, γ2 are mappings from variables x to closed
values that are related for k steps at the types prescribed by Γ, then
γ1(e1) and γ2(e2) are related for k steps as computations of type
τ . We say e1 and e2 are logically equivalent (the symmetric rela-
tion, written ∆;Γ ` e1 ≈ e2 : τ) if they logically approximate
one another. The proofs of the following lemmas essentially follow
those given in earlier work [3]; proofs of cases that involve exis-
tential types (as well as sum types, which were not considered in
Ahmed’s earlier work [4, 3]) are given in our technical report [5].

Lemma 4.3 (Fundamental Property)
If ∆;Γ ` e : τ then ∆;Γ ` e ≤ e : τ .

Lemma 4.4 (Sound&Complete w.r.t. Contextual Equivalence)
∆;Γ ` e1 ≈ e2 : τ iff ∆;Γ ` e1 ≈ctx e2 : τ .

5. Typed Closure Conversion
Closure conversion provides mappings from source values v of type
τ to corresponding target values of type τ+. We refer to τ+ as the
translation type corresponding to type τ . The rules for mapping τ
to τ+ (and Γ to Γ+) are as follows.

α+ = α
int+ = int

(∃α.τ)+ = ∃α.(τ+)

(τ1 × · · · × τk)+ = τ+
1 × · · · × τ+

k
(τ1 + τ2)+ = τ+

1 + τ+
2

(µα.τ)+ = µα.(τ+)

(∀[ᾱ](τ̄)→σ)+ = ∃η.(∀[ᾱ](τ̄+, η)→σ+)× η

(·)+ = ·
(Γ, x : τ)+ = Γ+, x : τ+

Each function turns into an existential package that abstracts over
the values of the function’s free variables, i.e., its closure environ-
ment. The package itself contains a pair consisting of the function
pointer and the closure environment. The closure environment is
a tuple of values corresponding to the free variables. The function
pointer is a closed function that takes the closure environment as
an additional argument. The witness type of the package, abstractly
represented by η, is the type of the closure environment. Notice that
we use the same technique for closure conversion that was used in
System F to TAL [21], which simplifies the approach taken by Mi-
namide et al. [20] by closing only over free term variables, not over
free type variables.

Figure 6 shows the rules for closure conversion in combination
with declarative typing rules for the source language. To this end,
the typing judgment ∆;Γ ` e : τ is extended to a translation
judgment ∆;Γ ` e : τ ; ê which states that the term e of type
τ translates to the closure-converted term ê that—under Γ+—has
type τ+. Most of the rules are straightforward, the interesting ones
being those for λ and application.

6. Wrappers
Given some type τ we want to construct function terms that map
source values of type τ− to translation values of type τ+ and vice
versa.4 The construction proceeds in a syntax-directed way, using
the structure of the type τ itself.

To illustrate the idea, consider the type τ = int→ int. In this
case, τ+ = ∃η.((int, η)→ int)× η. To obtain a source value of
type τ , we must unpack a closure of type τ+, extract its compo-
nents (a closed function and an environment), and yield a λ-term
that takes an int argument x and applies the extracted function to
both the argument x and the extracted environment. Similarly, we
can turn a function f of type τ into a closure of translation type τ+

by packing it with an environment that consists only of the original
f . Thus, the two translation terms W+

JτK (function from τ to τ+)
and W−

JτK (function from τ+ to τ) are:

W+
Jint→intK = λf : int→ int. pack int→ int, (λ(x, f). f x, f)

as ∃η.((int, η)→ int)× η

W−
Jint→intK = λy : ∃η.((int, η)→ int)× η.

unpack [ζ, z] = y inλx : int. (π1(z)) (x, π2(z))

Of course, if the co-domain of the function is more complicated
than just int, then the function result must be further mapped ap-
propriately. Similarly, if the domain is a structured type, then argu-
ment values must also be mapped—but, as usual in such situations,
in the opposite direction: the polarity of the translation changes in
contravariant positions.

4 To be able to give a unified account of many of the symmetric construc-
tions, we use the convention that τ− is the same as τ .

∆; Γ ` e : τ ; ê

Γ(x) = τ

∆; Γ ` x : τ ; x
VAR

∆; Γ ` c : int ; c
CONST

∆, ᾱ; Γ, x : τ ` e : σ ; ê y1, . . . , ym = FV(λ[ᾱ](x : τ). e)

∆; Γ ` λ[ᾱ](x : τ). e : ∀[ᾱ](τ̄)→σ

; pack [Γ(y1)+ × · · · × Γ(ym)+, (λ[ᾱ](x : τ+, z : Γ(y1)+ × · · · × Γ(ym)+).
let y1 = π1(z) in . . . let ym = πm(z) in ê,

(y1, . . . , ym))]
as ∃η.(∀[ᾱ](τ̄+, η)→σ+)× η

∀→-I

∆; Γ ` e0 : ∀[ᾱ](τ1, . . . , τn)→τ ; ê0 ∆ ` σ ∆; Γ ` e1 : τ1[σ/α] ; ê1 · · · ∆; Γ ` en : τn[σ/α] ; ên

∆; Γ ` e0[σ̄](e1, . . . , en) : τ [σ/α] ; unpack [ζ, z] = ê0 inπ1(z)[σ̄+](ê1, . . . , ên, π2(z))
∀→-E

∆; Γ ` e : τ [σ/α] ; ê ∆ ` σ

∆; Γ ` pack [σ, e]as ∃α.τ : ∃α.τ ; pack [σ+, ê]as∃α.τ+
∃-I

∆ ` τ ′ ∆; Γ ` e1 : ∃α.τ ; ê1 ∆, α; Γ, x : τ ` e2 : τ ′ ; ê2

∆; Γ ` unpack [α, x] = e1 in e2 : τ ′ ; unpack [α, x] = ê1 in ê2
∃-E

∆; Γ ` e : τ [(µα.τ)/α] ; ê

∆; Γ ` fold[µα.τ]e : µα.τ ; fold[µα.τ+]ê
µ-I

∆; Γ ` e : µα.τ ; ê

∆; Γ ` unfold e : τ [(µα.τ)/α] ; unfold ê
µ-E

∆; Γ ` e1 : τ1 ; ê1 · · · ∆; Γ ` en : τn ; ên

∆; Γ ` (e1, . . . , en) : τ1 × · · · × τn ; (ê1, . . . , ên)
×-I

∆; Γ ` e : τ1 × · · · × τn ; ê

∆; Γ ` πi(e) : τi ; πi(ê)
×-E

∆; Γ ` e : τ1 ; ê ∆ ` τ2

∆; Γ ` inl(e) : τ1 + τ2 ; inl(ê)
+l-I

∆; Γ ` e : τ2 ; ê ∆ ` τ1

∆; Γ ` inr(e) : τ1 + τ2 ; inr(ê)
+r -I

∆; Γ ` e0 : τ1 + τ2 ; ê0 ∆; Γ, x1 : τ1 ` e1 : τ ; ê1 ∆; Γ, x2 : τ2 ` e2 : τ ; ê2

∆; Γ ` case e0 of inl(x1) ⇒ e1 | inr(x2) ⇒ e2 : τ
; case ê0 of inl(x1) ⇒ ê1 | inr(x2) ⇒ ê2

+-E

Figure 6. Closure conversion

W±
Jα;RK =

R±(α) ; if α ∈ dom(R)
λx : α. x ; if α 6∈ dom(R)

W±
Jint;RK = λx : int. x

W±
J∃α.τ ;RK = λx : ∃α.τ∓. unpack [α, y] = x inpack [α,W±

Jτ ;RK(y)]as ∃α.τ±

W±
Jτ1×···×τk;RK = λx : τ∓1 × · · · × τ∓k . (W±

Jτ1;RK(π1(x)), . . . ,W±
Jτk;RK(πk(x)))

W±
Jτ1+τ2;RK = λx : τ∓1 + τ∓2 . casexof inl(x1) ⇒ inl(W±

Jτ1;RK(x1)) | inr(x2) ⇒ inr(W±
Jτ2;RK(x2))

W±
Jµα.τ ;RK = letrec r− : µα.τ+→µα.τ = λx. fold[µα.τ](W−

Jτ ;R[α 7→(r−,r+)]K(unfoldx))

and r+ : µα.τ→µα.τ+ = λx. fold[µα.τ+](W+

Jτ ;R[α 7→(r−,r+)]K(unfoldx))

in r±

W−
J∀[ᾱ](τ̄)→σ;RK = λx : ∃η.(∀[ᾱ](τ+, η)→σ+)× η. unpack [ζ, z] = x inλ[ᾱ](x : τ).W−

Jσ;RK(π1(z)[ᾱ](W+
Jτ ;RK(x), π2(z)))

W+
J∀[ᾱ](τ̄)→σ;RK = λf : ∀[ᾱ](τ̄)→σ. pack [∀[ᾱ](τ̄)→σ, (λ[ᾱ](x : τ+, f : ∀[ᾱ](τ̄)→σ).W+

Jσ;RK(f [ᾱ](W−
Jτ ;RK(x))), f)]

as∃η.(∀[ᾱ](τ̄+, η)→σ+)× η

Figure 7. Type-directed wrapper construction

The overall construction is shown in Figure 7. There are two
difficulties, each having to do with type variables and their binding
sites: abstract types and recursive types.

Abstract types. Translation works directly on the syntax of the
source term. Therefore, it can—and does—manipulate the internals
of abstractions, including the bodies of λ- or pack-expressions.
Wrappers, on the other hand, have no access to the internal term
structure of their arguments. They themselves are just terms within
the language and have to respect abstractions. This seemingly seri-
ous limitation manifests itself as follows: type variables bound by

∀ or ∃ represent abstract types. When our type-directed wrapper
construction encounters an abstract type α, it has no way of know-
ing anything about the values inhabiting α. Therefore, it has no
choice but to leave such values unchanged. In other words, wrap-
pers can never go “under an abstraction.” Or, using the terminology
of Section 2, wrappers are unable to “back-translate” values that are
abstract. Fortunately, the problem is its own solution here: no con-
text can observe this failure to back-translate since, after all, these
values are abstract!

Recursive types. Type variables bound by µ are not abstract; they
represent recursive types. When constructing a wrapper for µα.τ
it is tempting to unfold and rely on the corresponding wrapper
for τ [µα.τ/α]. While in principle this seems like the right idea,
it does not work because the construction would not be well-
founded. The solution is to defer the unfolding step until the time
when the wrapper is actually applied. We do this by mirroring the
recursive type structure using a recursive term structure: we define
the wrappers for µα.τ using a pair of letrec-bound recursive
functions r− and r+. Within the body τ of the recursive type, any
occurrence of α is to be treated not as an abstract type but as the
same recursive type for which we have r− and r+ in place. For
this, the construction of the wrapper for τ carries a mapping R that
associates α with the pair (r−, r+) of function names.

Formally, suppose ∆ ` τ . Let ∆ be partitioned into disjoint sets
of variables ∆a (for abstract types) and ∆r (for recursive types),
and let R be a mapping from the variables in ∆r to pairs of (pos-
sibly open) terms (r−, r+) which we will refer to as R−(α) and
R+(α), respectively. Then W+

Jτ ;RK denotes the forward-wrapper
term constructed for τ and R, whileW−

Jτ ;RK denotes the backward-
wrapper term.

The only place where we need to concern ourselves with types
that have open recursive type variables is when we construct wrap-
pers and—to make inductions go through—when we prove certain
facts about them. Once the machinery is in place (i.e., once the
required lemmas have been proved), we will consider only cases
where ∆r = dom(R) = ∅. For this, we write W±

JτK to mean
W±

Jτ ;∅K.

6.1 Wrapper contexts
Let ∆;Γ ` e : τ ; ê. In the general case, the translation term ê
is not well-typed under the source-level environment Γ. To make it
well-typed, we can consider it in a context that let-binds each of
its free variables to a suitable translation. The notion of wrapper
contexts makes this idea precise. The context W±

JΓK consists of a
sequence of let-bindings of the form letx = W±

JτK(x) in · · ·, one
for each x : τ in Γ. Formally:

W±
J·K = [·]

W±
JΓ,x:τK = letx = W±

JτK(x) inW±
JΓK

6.2 Properties of wrappers
We will now establish a number of facts about wrappers. These
facts will play a crucial role in our investigation of how wrap-
pers relate to closure conversion. We start with the typing of
wrappers, then discuss wrapper termination (the fact that wrapper
functions are total), and wrapper cancellation (the fact that pairs
(W+

JτK,W
−
JτK) establish an isomorphism between the equivalence

classes of τ and τ+). Then, to make it easier to work with wrappers
at recursive types, we state a wrapper unfolding lemma. Finally, we
will discuss wrapper parametricity, which is the essential property
that justifies the behavior of wrappers at abstract types.

Typing. Let ∆ = ∆a]∆r and dom(R) = ∆r . Let also δr � ∆r

(meaning δr is a type assignment to variables in ∆r) and a typing
environment Γr such that ∆a; Γr ` R±(α) : δr(α)∓→ δr(α)±.
Constructed wrappers then satisfy the following typing judgment:

∆a; Γr ` W±
Jτ ;RK : δr(τ)∓→δr(τ)±

For types without open recursive variables this gives:

∆; · ` W±
JτK : τ∓→τ±

Termination. We show that wrapper functions are total:

Lemma 6.1 (wrapper termination)
Let ∆ ` τ and δ � ∆. If ` v : δ(τ±), then there is some finite j

and some v′ of type δ(τ∓) such that (δ(W∓
JτK)) v −→j v′.

Proof: By induction on the structure of v. 2

A consequence of wrapper termination is that wrapper con-
texts may be freely duplicated and, therefore, distributed, for ex-
ample as in W+

JΓK[e1 e2] ≈ (W+
JΓK[e1]) (W+

JΓK[e2]). Similarly, one
can drop unneeded bindings from wrapper contexts. In particular,
W+

JΓK[x] ≈ W+
JΓ(x)K(x).

Cancellation. W−
JτK and W+

JτK are inverses of each other. They,
therefore, mediate an isomorphism between (the equivalence classes
of) τ and τ+.

Because of recursion we have to state and prove this property
in terms of our step-indexed logical relation. We start with the
definition of f− ./τ

k f+. Intuitively, it states that the cancellation
property holds for (f−, f+) at source type τ for at least k steps:

Definition 6.2 (cancellation)
Let ∆ ` τ and ∆; · ` f± : τ∓→τ±.

f− ./τ
k f+ =def ∀ρ ∈ D J∆K .

(k, v1, v2) ∈ V
q
τ±

y
ρ ⇒ (k, v1, ρ2(f±(f∓ v2))) ∈ C

q
τ±

y
ρ

f− ./τ f+ =def ∀k. f− ./τ
k f+

If two values cancel for any number of steps, then they are inverses
of each other: if v1 ./τ v2, then ∆; · ` v1 ◦ v2 ≈ id : τ → τ and
∆; · ` v2 ◦ v1 ≈ id : τ+→τ+.

To deal with the distinction between abstract and recursive type
variables, we define the notion of a type partition:

Definition 6.3 (type partition)
Let ∆ be a set of type variables. We write ∆ ./

k (∆a, ∆r, δr, R, γr)
if there exists a Γa such that the following holds:

∆ = ∆a]∆r ∧ dom(R) = ∆r ∧
∀α ∈ ∆r. ∆a; Γr ` R±(α) : δr(α)∓→δr(α)± ∧

γr(R
−(α)) ./

δr(α)
k γr(R

+(α))

This definition should be read as follows: ∆ is partitioned into
sets of abstract variables ∆a and recursive variables ∆r . The type
substitution δr maps each α ∈ ∆r to its corresponding type,5

which itself must be well-formed in ∆a. The mapping R assigns
two terms to each recursive type variable: the backward-wrapper
R(α)− and the forward-wrapper R(α)+. Since these terms may
contain free variables, we need a typing environment Γr relative
to which they have the correct types. Finally, we have a closing
substitution γr that respects Γr and turns each of the wrapper pairs
in R into a canceling pair.

Given a type τ that is well-formed in ∆ together with a type
partition of ∆, the corresponding wrapper pair cancels:

Lemma 6.4
Let ∆ ` τ . For any k ≥ 0, if ∆ ./

k (∆a, ∆r, δr, R, γr),
then γr(W−

Jτ ;RK) ./
δr(τ)
k γr(W+

Jτ ;RK).

Proof: By outer induction on k and inner induction on τ . 2

For types without open recursive variables this leads to the
following much simpler statement:

Lemma 6.5 (wrapper cancellation)
Let ∆;Γ ` e : τ±. Then ∆;Γ ` e ≈ W±

JτK(W
∓
JτK(e)) : τ±.

5 This type will always turn out to be of the form µα.τ for some τ .

W−[+]
{τ,σ/α} = (W−

JτK)[σ/α] ◦W+
Jτ [σ/α]K : τ [σ/α]→τ [σ+/α]

W−[−]
{τ,σ/α} = W−

Jτ [σ/α]K ◦ (W+
JτK)[σ

+/α] : τ [σ+/α]→τ [σ/α]

W+[+]

{τ+,σ/α} = W+
Jτ [σ/α]K ◦ (W−

JτK[σ/α]) : τ+[σ/α]→τ+[σ+/α]

W+[−]

{τ+,σ/α} = (W+
JτK)[σ/α] ◦W−

Jτ [σ/α]K : τ+[σ+/α]→τ+[σ/α]

Figure 8. Combination wrappers

Proof: Using Lemma 6.4 and the trivial partition ∆ ./
k (∆, ∅, ∅, ∅, ∅).

2

Unfolding. As we have explained, the point of the letrec-
construction is for W+

Jµα.τK to be a finite term. However, that term
still should relate to W+

Jτ [µα.τ/α]K as if it had been constructed
using the unfolding of µα.τ . The property in question is formally
expressed in Lemma 6.7 below.

To prove it, we must again strengthen the induction hypothesis
and make use of step-indexing. This leads to the following lemma:6

Lemma 6.6
Let ∆ ` µα.τ , and τu = τ [µα.τ/α]. For any k ≥ 0, if ∆ ./

k

(∆a, ∆r, δr, R, γr), then

∀ρ ∈ D J∆aK .
∀(k, v1, v2) ∈ V

q
δr(τ

+
u)

y
ρ.

(k, ρ1(γr(W−
Jτu;RK(v1))), ρ2(γr(W−

Jτ ;R′K(v2))))

∈ C Jδr(τu)K ρ
where R′ = R[α 7→ (W−

Jτu;RK,W
+
Jτu;RK)]

Proof: By outer induction on k and inner induction on τ . 2

Lemma 6.7 (wrapper unfolding)
Let τu = τ [µα.τ/α]. If ∆;Γ ` e : τ+

u , then

∆;Γ ` W−
Jµα.τK(fold[µα.τ+]e)

≈ fold[µα.τ](W−
JτuK(e)) : µα.τ.

Proof sketch: We use the observation, implied by Lemma 6.6, that
W−

Jτu;RK ≈ W−r
τ ;R[α 7→(W−

Jτu;RK,W+
Jτu;RK)]

z. 2

Lemma 6.7 can be stated in several other ways, all of which are
inter-derivable by equivalent transformations:

fold[µα.τ+](W+
JτuK(e)) ≈ W+

Jµα.τK(fold[µα.τ]e)

unfold (W−
Jµα.τK(e)) ≈ W−

JτuK(unfold e)

W+
JτuK(unfold e) ≈ unfold (W+

Jµα.τK(e))

Parametricity. Consider the instantiation τ [σ/α] of some type
τ with a free type variable α. Consider two wrappers, one for
the fully instantiated type (W+

Jτ [σ/α]K) and the other for unwrap-
ping τ while holding α abstract ((W−

JτK)[σ/α]). Their composition
(W−

JτK)[σ/α] ◦ W+
Jτ [σ/α]K is a wrapper for σ that acts just at the

occurrences of α in τ . Let us use the notation W−[+]

{τ,σ/α} for this
combination. Other possible combinations are shown is Figure 8.

The logical relation gives rise to several inter-derivable free the-
orems stating that combination wrappers can be “pushed through”

6 It is convenient to reuse the ./
k notation here. This makes Lemma 6.6

slightly weaker than it could be—but still strong enough to prove
Lemma 6.7.

applications of polymorphic functions. For example, given a func-
tion f : ∀[α](τ)→τr we have:

W−[+]

{τr,σ/α}(f [σ]v) ≈ f [σ+](W−[+]

{τ,σ/α}(v))

The following lemma states this more generally (but still, w.l.o.g.,
only for the first type argument):

Lemma 6.8 (wrapper parametricity)
Let ∆;Γ ` e0 : ∀[α1, ᾱ](τ̄)→ τr and ē = e1, . . . , en such that
∆;Γ ` ei : τi[σ1/α1, σ/α] for 1 ≤ i ≤ n. Then

∆; Γ ` e0[σ±1 , σ̄](W−[±]

{τ [σ/α],σ1/α1}
(e)) ≈

W−[±]

{τr [σ/α],σ/α}
(e0[σ∓1 , σ̄](ē)) : τr[σ±1 /α1, σ/α]

An analogous statement holds for W+[±].

Proof sketch: By instantiating the definition of the logical rela-
tion for the type of e0, mapping α1 to (σ±1 , σ∓1 , χ∗ciu

σ∓1
) such that

(i, v, v′) ∈ χ iff W∓
Jσ1Kv −→

∗ v′. 2

By the same argument, the following corollary concerning existen-
tials holds as well:

Lemma 6.9 (wrapper abstraction)
If ∆;Γ ` e : τ [σ/α]±, then

∆;Γ ` W∓
J∃α.τK(pack [σ±, e]as ∃α.τ±) ≈
pack [σ∓,W∓

Jτ [σ/α]K(e)]as ∃α.τ∓ : ∃α.τ∓

7. Translation is Equivalent to Wrapping
The main result of this paper, namely that typed closure conversion
is equivalence-preserving, is a consequence of the fact that the
translation ê of a term e is related (i.e., observationally equivalent)
to the corresponding wrapped source term. For closed e : τ and
ê : τ+, this fact an be written simply as: e ≈ W−

JτK(ê), or,
equivalently, as ê ≈ W+

JτK(e). Free variables, given by the typing
environment Γ, can be accounted for by adding the appropriate
context wrappers W+

JΓK and W−
JΓK, giving rise to the following

lemma:

Lemma 7.1 (Translation and wrapping are equivalent)
Let ∆;Γ ` e : τ ; ê. Then ∆;Γ ` e ≈ W+

JΓK[W
−
JτK(ê)] : τ and

∆;Γ+ ` ê ≈ W−
JΓK[W

+
JτK(e)].

Proof:
The proof for Lemma 7.1 proceeds by induction on the step

index and cases on e. In all cases we rely on those properties of
wrappers discussed in Section 6.2 and perform equivalent transfor-
mations on the right-hand side until the induction hypothesis ap-
plies directly. Figure 9 shows the proof for the most interesting
cases, in particular: constants, variables, λ and application (each,
w.l.o.g. shown with only one type- and one term argument), and
finally pack and unpack. The proof for the remaining cases is
given in the accompanying technical report [5].2

8. Fully Abstract Translation
Our main result, namely that closure conversion is fully abstract,
follows directly from the above translation-wrapper equivalence
lemma (Lemma 7.1) and the fact that the equivalence relation
≈ is sound and complete with respect to contextual equivalence
(Lemma 4.4).

Case c : int Consider right-hand side: W+
JΓK[W

−
JintK(c)] ≈ c 2

Case x : τ Have Γ(x) = τ . Right-hand side: W+
JΓK[W

−
JτK(x)] ≈ W−

JτK(W
+
JΓ(x)K(x)) ≈ W−

JτK(W
+
JτK(x)) ≈ x 2

Case e0 = λ[α](x : τ1). e : τ0 where τ0 = ∀[α](τ1)→τ and τ+
0 = ∃η.∀[α](τ+

1 , η)→τ+ × η.

Let FV(e0) = {y1, . . . , ym} and T = Γ(y1)× · · · × Γ(ym). Have ∆, α; Γ, x : τ1 ` e : τ and
ê0 = pack [T+, (λ[α](x : τ+

1 , z : T+). let y1 = π1(z) . . . ym = πm(z) in ê, (y1, . . . , ym))]as τ+
0 .

Consider right-hand side:

W+
JΓK[W

−
Jτ0K(ê0)]

≈ W+
JΓK[unpack [ζ, w] = ê0 inλ[α](x : τ1).W−

JτK(π1(w)[α](W+
Jτ1K(x), π2(w)))] (Def. W−

Jτ0K, β-reduce)

≈ W+
JΓK[λ[α](x : τ1).W−

JτK((λ[α](x : τ+
1 , z : T+). let y1 = π1(z) . . . ym = πm(z) in ê)[α](W+

Jτ1K(x), (y1, . . . , ym)))]

(unpack)
≈ W+

JΓK[λ[α](x : τ1).W−
JτK(letx = W+

Jτ1K(x) in ê)] (β-reduce, project)

≈ λ[α](x : τ1).W+
JΓ,x:τ1K[ê[τ]W−

JτK]| {z }
≈e

(env. wrapper)

≈ λ[α](x : τ1). e 2 (IH)

Case e0[σ]e1 : τr Let τ0 = ∀[α](τ1) → τ, τa = τ1[σ/α], τr = τ [σ/α]. Have: ∆; Γ ` e0 : τ0 ; ê0 and ∆; Γ ` e1 : τa ; ê1 as well as

∆; Γ ` e0[σ]e1 : τr ; unpack [ζ, z] = ê0 inπ1(z)[σ+](ê1, π2(z)).
Consider right-hand side:

W+
JΓK[W

−
JτrK(unpack [ζ, z] = ê0 inπ1(z)[σ+](ê1, π2(z)))]

≈ W+
JΓK[unpack [ζ, z] = ê0 inW−

JτrK(π1(z)[σ+](ê1, π2(z)))] (rearrange)

≈ W+
JΓK[unpack [ζ, z] = ê0 inW−

JτK[σ/α](W+
JτK[σ/α](W−

JτrK(π1(z)[σ+](ê1, π2(z)))))] (Lemma 6.5)

≈ W+
JΓK[unpack [ζ, z] = ê0 inW−

JτK[σ/α](W+[−]

{τ+,σ/α}(π1(z)[σ+](ê1, π2(z))))] (def. W+[−]

{τ+,σ/α})

≈ W+
JΓK[unpack [ζ, z] = ê0 inW−

JτK[σ/α](π1(z)[σ+](W+[−]

{τ+
1 ,σ/α}

(ê1), π2(z)))] (Lemma 6.8)

≈ W+
JΓK[unpack [ζ, z] = ê0 inW−

JτK[σ/α](π1(z)[σ+](W+
Jτ1K[σ/α](W−

JτaK(ê1)), π2(z)))] (def. W+[−]

{τ+
1 ,σ/α}

)

≈ W+
JΓK[(λ[α](x : τ1).unpack [ζ, z] = ê0 inW−

JτK(π1(z)[α](W+
Jτ1K(x), π2(z))))[σ](W−

JτaK(ê1))] (inv. β)

≈ W+
JΓK[(unpack [ζ, z] = ê0 inλ[α](x : τ1).W−

JτK(π1(z)[α](W+
Jτ1K(x), π2(z))))[σ](W−

JτaK(ê1))] (rearrange)

≈ W+
JΓK[W

−
Jτ0K(ê0)[σ](W−

JτaK(ê1))] (def. W−
Jτ0K)

≈ (W+
JΓK[ê0[τ0]W−

Jτ0K]| {z }
≈e0

)[σ](W+
JΓK[ê1[τa]W−

JτaK]| {z }
≈e1

) (distrib. W+
JΓK)

≈ e0[σ]e1 2 (IH)

Case pack [σ, e]as∃α.τ where e : τp and τp = τ [σ/α]:

W+
JΓK[W

−
J∃α.τK(pack [σ+, ê]as∃α.τ+)]

≈ W+
JΓK[pack [σ,W−

JτpK(ê)]as ∃α.τ] (Lemma 6.9)

≈ pack [σ,W+
JΓK[W

−
JτpK(ê)]| {z }

≈e

]as∃α.τ (distrib. W+
JΓK)

≈ pack [σ, e]as∃α.τ 2 (IH)

Case unpack [α, x] = e1 in e2 : τ2 , where ∆; Γ ` e1 : ∃α.τ , and ∆, α; Γ, x : τ ` e2 : τ2:

W+
JΓK[W

−
Jτ2K(unpack [α, x] = ê1 in ê2)]

≈ W+
JΓK[unpack [α, x] = ê1 inW−

Jτ2K(ê2)] (rearrange)

≈ W+
JΓK[unpack [α, x] = W+

J∃α.τK(W
−
J∃α.τK(ê1)) inW−

Jτ2K(ê2)] (Lemma 6.5)

≈ W+
JΓK[unpack [α, x] = (unpack [α, x] = W−

J∃α.τK(ê1) inpack [α,W+
J∃α.τK(x)]as∃α.τ+) inW−

Jτ2K(ê2)]

(def. W+
J∃α.τK)

≈ W+
JΓK[unpack [α, x] = W−

J∃α.τK(ê1) inunpack [α, x] = pack [α,W+
JτK(x)]as∃α.τ+ inW−

Jτ2K(ê2)]

(rearrange)
≈ W+

JΓK[unpack [α, x] = W−
J∃α.τK(ê1) in letx = W+

JτK(x) inW−
Jτ2K(ê2)] (unpack)

≈ unpack [α, x] = W+
JΓK[W

−
J∃α.τK(ê1)]| {z }
≈e1

inW+
JΓ,x:τK[W

−
Jτ2K(ê2)]| {z }

≈e2

(distrib. W+
JΓK)

≈ unpack [α, x] = e1 in e2 2 (IH)

Figure 9. Selected proof cases for Lemma 7.1.

T ξ
V Jτ1→τ2K ρ = { (k, λx : τ1. e1,pack [σ, ((λ(x : τ+

1 , z : σ). e2), v)]as∃η.((τ+
1 , η)→τ+

2)× η) |
∀j < k. ∀v1, v2. if (j, v1, v2) ∈ T ξ

V Jτ1K ρ then (j, e1[v1/x], e2[v2/x][v/z]) ∈ T ξ
C Jτ2K ρ }

T ξ
V J. . .K ρ = . . .

T ≤C JτK ρ = { (k, e1, e2) | ∀j < k. ∀v1. if e1 −→j v1 then ∃v2. e2 −→∗ v2 ∧ (k − j, v1, v2) ∈ T ≤V JτK ρ }

T ≥C JτK ρ = { (k, e1, e2) | ∀j < k. ∀v2. if e2 −→j v2 then ∃v1. e1 −→∗ v1 ∧ (k − j, v1, v2) ∈ T ≥V JτK ρ }
· · ·

∆; Γ ` e1 ∝ e2 : τ =def ∆; Γ ` e1 ∝≤ e2 : τ ∧ ∆; Γ ` e1 ∝≥ e2 : τ

Figure 10. Step-indexed definition of the cross-language relation ∝.

Theorem 8.1 (Fully Abstract Closure-conversion)
Let ∆;Γ ` e1 : τ ;c ê1 and ∆;Γ ` e2 : τ ;c ê2. Then
∆;Γ+` ê1 ≈ctx ê2 : τ+ if and only if ∆;Γ `e1≈ctx e2 : τ .

Proof: (⇐) Let Ĉ be an arbitrary, suitably typed target context.
Consider Ĉ[ê1] and Ĉ[ê2]: By Lemma 7.1 these are the same as
C′[e1] and C′[e2] where C′ = Ĉ[W−

JΓK[W
+
JτK([·])]]. Therefore,

e1 ≈ctx e2 implies ê1 ≈ctx ê2.
(⇒) Let C be an arbitrary, suitably typed source context. Consider
C[e1] and C[e2]: By Lemma 7.1 these are the same as Ĉ′[ê1] and
Ĉ′[ê1] with Ĉ′ = C[W+

JΓK[W
−
JτK([·])]]. Therefore, ê1 ≈ctx ê2

implies e1 ≈ctx e2. 2

9. Discussion
Using a target language that is identical to the source language has
potential disadvantages and advantages. The main disadvantage is
the fact that by making the target language bigger than strictly nec-
essary, the property to be proved becomes stronger because there
are more contexts available that could be used to distinguish be-
tween translation terms, making the proof itself potentially harder.
On the flip side, by making it possible to have terms of both the
source and the target coexist as sub-terms of a larger expression,
our wrapper technique becomes viable, offsetting the disadvantages
of having to prove a stronger theorem.

Also, given a proof for the bigger target language, full abstrac-
tion for a smaller target is not immediate. However, preservation of
equivalence is an immediate corollary. Let Tsmall be a sub-language
of Tlarge. As explained in Section 2.2, if two Tsmall-terms are con-
textually equivalent in Tlarge, then they are also contextually equiv-
alent in Tsmall, since Tsmall provides fewer contexts that could
make distinguishing observations.

The other direction, reflection of equivalence, is not as immedi-
ate. However, it is also the easier direction, as it can be proved as
a consequence of the correctness of the translation from source to
Tsmall. Observe that for every source context C there exists a tar-
get (Tsmall) context C′—which can be obtained from C by an easy
generalization of the translation mechanism to contexts—such that
C′[e′] is the translation of C[e] whenever e′ is the translation of e.
The rest now follows from correctness: if there exists a C that dis-
tinguishes between e1 and e2 at the source, then the corresponding
C′ will distinguish between e′1 and e′2 in Tsmall.

In the case where source and target are not identical, our general
approach requires that we give a direct definition of the cross-
language relation ∝. For the present case7, this can be done in the
same style in which we defined ≈, i.e., by defining a step-indexed
binary relation. This involves defining asymmetric relations ∝≤
and ∝≥ whose intersection is then taken to be ∝. However, since
left-hand and right-hand sides of ∝ belong to different languages

7 i.e., ignoring for the moment that S and T are in fact the same language

(and/or have different types), ∝≥ cannot be obtained from ∝≤ by
simply swapping the arguments. Each has to be defined separately.

We have sketched out a direct definition of∝ in Figure 10 (only
showing the most basic form of a function type with only a single
value argument and no type parameters). Since∝ is not symmetric,
we define the two “halves” of the relation separately (cf., T ≤C J·K
and T ≥C J·K, respectively). Even if—as shown in the figure—we
cut down on some of the notational duplication by abstracting over
the “direction” in the definitions of T ≤V J·K and T ≥V J·K, unifying
them into the definition of T ξ

V J·K, we are still faced with a formal
framework several times larger than the one needed for the single-
language plus wrappers scenario, because in addition to ∝ we also
need to define ≈S and ≈T separately.

Approaching the full abstraction proof. After setting up the
formalism, we are ready to state a number of lemmas that ulti-
mately lead to a proof of equivalence-preserving and equivalence-
reflecting translation.

First, there are two lemmas that connect ∝ to ≈S and ≈T. The
first of them states that∝ respects equivalences both on the left and
on the right:

Lemma 9.1
∆; Γ ` e1 ≈S e2 : τ ∧ ∆; Γ ` e1 ∝ e′ : τ ⇒ ∆; Γ ` e2 ∝ e′ : τ .
∆; Γ+ ` e′1 ≈T e′2 : τ+ ∧ ∆; Γ ` e ∝ e′1 : τ ⇒ ∆; Γ ` e ∝ e′2 : τ .

The other lemma expresses that being related to the same term via
∝ implies equivalence (both on the left and on the right):

Lemma 9.2
∆; Γ ` e1 ∝ e′ : τ ∧ ∆; Γ ` e2 ∝ e′ : τ ⇒ ∆; Γ ` e1 ≈S e2 : τ .
∆; Γ ` e ∝ e′1 : τ ∧ ∆; Γ ` e ∝ e′2 : τ ⇒ ∆; Γ+ ` e′1 ≈T e′2 : τ+.

The last lemma justifies the construction of ∝ and is analogous to
Lemma 7.1 by stating that it relates a source term to its translation:

Lemma 9.3 (Fundamental property of ∝)
If ∆;Γ ` e : τ ; ê, then ∆;Γ ` e ∝ ê : τ .

Obviously, the laborious part of the overall full abstraction proof
is in the individual proofs for these five lemmas. It seems advisable
to use the wrapper approach whenever possible, since it simplifies
the formal setup and cuts down on the overall size of the proof.
Nevertheless, if the wrapper approach cannot be made to work, the
above proof outline might be a viable alternative, possibly using a
different (but similar) setup for defining ∝ together with suitably
modified Lemmas 9.1 and 9.3.

10. Conclusions and Related Work
Language-based security solutions that rely on programming lan-
guage abstraction facilities have seen a considerable increase in
popularity. Inherently, the approach relies on the assumption that

all potential attacks are bound by the rules of the language in ques-
tion. But programs are routinely translated (compiled) from one
language to another. Thus, attacks can be launched at the level of a
target language with different rules and weaker protection.

Nevertheless, for programmers it is much more convenient to
reason about the behavior of their code in terms of the source
language alone. This is justified if the translation process is fully
abstract, meaning that no target context can make more observa-
tions than any source context. This is the problem of equivalence-
preserving compilation.

In this paper, we have shown that typed closure conversion in
the style of Morrisett et al. [21] is fully abstract. Recall from Sec-
tion 2 that this also implies that the translation is correct (i.e.,
semantics-preserving). Proofs of correctness (but not of full ab-
straction) for functional closure conversion have been given by
others (e.g., Minamide et al. [20]), although none of these results
consider recursive types. Our proofs are based on operational tech-
niques, in particular, a step-indexed logical relation. They do not
involve game semantics or other denotational approaches.

Glew [12] showed a form of closure conversion for an object
calculus and proved it fully abstract. But object closure conversion
is simpler than functional closure conversion. Specifically, Glew
notes that the latter can be encoded as the composition of (1)
encoding functions as objects, (2) object closure conversion, and
(3) an object encoding. Hence, for full abstraction of functional
closure conversion, one would also need to prove encodings (1)
and (3) fully abstract.

Riecke [27] investigates fully abstract translations between call-
by-name, call-by-value, and lazy PCF. The proofs rely on fully ab-
stract denotational models of the languages. Each of the languages
includes the parallel conditional. This is needed to make the models
fully abstract.

There has been a great deal of work on fully abstract denota-
tional models of languages (e.g., [22, 19, 8, 13, 2]). Our emphasis
is somewhat different in that we focus on type-directed and type-
preserving compilation. Given a sufficiently “clever” type trans-
lation, the types of compiled terms can impose well-behavedness
constraints on any target-level term that might interact with the re-
sult of the translation, thus ensuring that target contexts cannot vi-
olate source-level abstractions.

Our proof relies on the ability to “back-translate” target val-
ues into source values. As we have shown, in the setting where
source language S and target language T are identical, this can be
achieved by defining wrappers, i.e., terms within the language that
implement the back-translation. In Section 2 and later in Section 9
we discussed the general outline of a different approach involving
an explicitly defined cross-language relation ∝ between terms of
S and T . However, we suspect that the details highly depend on
the particular choice of S, T , and the translation ; between them.
We are pessimistic about the existence of a general “framework”
for proofs of full abstraction that can simply be “instantiated” to
concrete S, T , and ;.

In the future, we plan to prove a similar result for typed
CPS conversion and later to extend our fully abstract compila-
tion pipeline down to TAL. At the TAL level we will have to deal
with state, pointers, and heaps. We hope that a TAL based on Hoare
Type Theory [23] can provide the necessary parametricity proper-
ties in the presence of state that let us show such translations fully
abstract.

References
[1] M. Abadi. Protection in programming-language translations.

In ICALP ’98, pages 868–883, London, UK, 1998.
[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstrac-

tion for PCF. Inf. Comput., 163(2):409–470, 2000.

[3] A. Ahmed. Step-indexed syntactic logical relations for recur-
sive and quantified types. Technical Report TR-01-06, Har-
vard University, Mar. 2006. ttic.uchicago.edu/∼amal.

[4] A. Ahmed. Step-indexed syntactic logical relations for recur-
sive and quantified types. In ESOP ’06, Mar. 2006.

[5] A. Ahmed and M. Blume. Typed closure conversion preserves
observational equivalence. Technical Report TR-2008-07,
Department of Computer Science, University of Chicago, July
2008.

[6] K. Arnold, J. Gosling, and D. Holmes. Java(TM) Program-
ming Language, The (4th Edition). Addison-Wesley, 2005.

[7] M. Blume and D. McAllester. Sound and complete models of
contracts. J. Funct. Prog., 16(4-5):375–414, 2006.

[8] R. Cartwright and M. Felleisen. Observable sequentiality and
full abstraction. In POPL ’92, pages 328–342, 1992.

[9] ECMA. ECMA-335: Common Language Infrastructure
(CLI). ECMA (European Association for Standardizing Infor-
mation and Communication Systems), Geneva, Switzerland,
third edition, June 2005.

[10] M. Felleisen and R. Hieb. A revised report on the syntactic
theories of sequential control and state. Theor. Comput. Sci.,
103(2):235–271, 1992.

[11] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In ICFP ’02, pages 48–59. ACM Press, 2002.

[12] N. Glew. Object closure conversion. In Higher-Order Opera-
tional Techniques in Semantics (HOOTS ’99), Sept. 1999.

[13] A. Jeffrey. A fully abstract semantics for a concurrent func-
tional language with monadic types. In LICS ’95, 1995.

[14] A. Kennedy. Securing the .NET programming model. Theor.
Comput. Sci., 364(3):311–317, 2006.

[15] X. Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. In POPL’06,
Jan. 2006.

[16] X. Leroy. Unboxed objects and polymorphic typing. In POPL
’92, pages 177–188. ACM Press, Jan. 1992.

[17] I. A. Mason and C. L. Talcott. Equivalence in functional
languages with effects. J. Funct. Prog., 1(3):287–327, 1991.

[18] J. Matthews and R. B. Findler. Operational semantics for
multi-language programs. In POPL ’07, Jan. 2007.

[19] A. R. Meyer and K. Sieber. Towards fully abstract semantics
for local variables. In POPL ’88, pages 191–203, 1988.

[20] Y. Minamide, G. Morrisett, and R. Harper. Typed closure
conversion. In POPL ’96, pages 271–283, Jan. 1996.

[21] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System
F to Typed Assembly Language. In POPL ’98, pages 85–97,
Jan. 1998.

[22] K. Mulmuley. Full abstraction and semantic equivalence.
MIT Press, 1987.

[23] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Ab-
stract predicates and mutable ADTs in Hoare Type Theory. In
ESOP ’07, pages 189–204, 2007.

[24] A. M. Pitts. Existential types: Logical relations and opera-
tional equivalence. In ICALP ’98, pages 309–326, 1998.

[25] G. D. Plotkin. Lambda-definability and logical relations.
Memorandum SAI–RM–4, Univ. of Edinburgh, Oct. 1973.

[26] J. C. Reynolds. Types, abstraction, and parametric polymor-
phism. Information Processing, pages 513–523, 1983.

[27] J. G. Riecke. Fully abstract translations between functional
languages. In POPL ’91, pages 245–254, 1991.

[28] Z. Shao. Flexible representation analysis. In ICFP ’97, pages
85–98. ACM Press, 1997.

[29] W. W. Tait. Intensional interpretations of functionals of finite
type I. J. of Symbolic Logic, 32(2):198–212, June 1967.

