
A Step-Indexed Model of Substructural State

Amal Ahmed
Harvard University

amal@eecs.harvard.edu

Matthew Fluet∗

Cornell University
fluet@cs.cornell.edu

Greg Morrisett∗

Harvard University
greg@eecs.harvard.edu

Abstract
The concept of a “unique” object arises in many emerging program-
ming languages such as Clean, CQual, Cyclone, TAL, and Vault. In
each of these systems, unique objects make it possible to perform
operations that would otherwise be prohibited (e.g., deallocating
an object) or to ensure that some obligation will be met (e.g., an
opened file will be closed). However, different languages provide
different interpretations of “uniqueness” and have different rules
regarding how unique objects interact with the rest of the language.

Our goal is to establish a common model that supports each of
these languages, by allowing us to encode and study the interac-
tions of the different forms of uniqueness. The model we provide
is based on a substructural variant of the polymorphicλ-calculus,
augmented with four kinds of mutable references: unrestricted, rel-
evant, affine, and linear. The language has a natural operational
semantics that supports deallocation of references, strong (type-
varying) updates, and storage of unique objects in shared refer-
ences. We establish the strong soundness of the type system by
constructing a novel, semantic interpretation of the types.

Categories and Subject DescriptorsD.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; D.3.3 [Pro-
gramming Language]: Language Constructs and Features

General Terms Languages

Keywords substructural type system, mutable references, step-
indexed model

1. Introduction
Consider the following imperative code fragment, written with
SML syntax:

1. fun f(r1:int ref, r2:int ref):int =
2. (r1 := true ;
3. !r2 + 42)

At line 1, we assume ref cellsr1 and r2 whose contents are
integers. At line 2, we update the first cell with a boolean. Then,

∗ This material is based upon work supported by the Air Force Office of
Scientific Research under Award No. F49620-03-1-0156 and Award No.
F49620-01-1-0298 and by the Office of Naval Research under Award No.
N00014-01-1-0968. Any opinions, findings, and conclusions or recommen-
dations expressed in this publication are those of the author and do not
necessarily reflect the views of these organizations or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

at line 3, we read the second cell, using the contents in a context
expecting an integer. If the function is called with actual arguments
that are different ref cells, then there is nothing in the function that
will cause a run-time type error.1 Yet, if the same ref cell is passed
for each formal argument, then the update on line 2 will change the
contents of bothr1 andr2, causing a run-time type error to occur
at line 3.

SML (and most imperative languages) reject the above program,
because references areunrestricted, that is, they may be freely
aliased. In general, reasoning about unrestricted references is hard
because we need additional information to understand what other
values are affected by an update. In the absence of this information,
we must be conservative. For instance, in SML, we must assume
that an update to anint ref could affect any otherint ref. To
ensure type soundness, we must therefore require the type of the
ref’s contents be preserved by the update. In other words, most type
systems can only track invariants on refs, instead of program-point-
specific properties. As a result, we are forced to weaken the type of
the ref to cover all possible program points. In the example above,
we must weakenr1’s type to “(int + bool) ref” and pay the
costs of tagging values, and checking those tags when the pointer
is dereferenced.

Unfortunately, in many settings, this weakened invariant is in-
sufficient. Hence, researchers have turned to more powerful sys-
tems that do provide a means of ensuring exclusive access to state.
In particular, many projects have introduced some form of linearity
to “tame” state. Linear logic [15] and other substructural logics give
rise to more expressive type systems, because they are designed to
precisely account for resources.

For instance, the Clean programming language [26] relies upon
a form of uniqueness to ensure equational reasoning in the pres-
ence of mutable data structures. The Cyclone programming lan-
guage [17] uses unique pointers to allow fine-grained memory
management. For example, a unique pointer may be updated from
uninitialized to initialized, and its contents may also be deallocated:

1. x = malloc(4); // x: --- *‘U
2. *x = 3; // x: int *‘U
3. free(x); // x: undefined

In both of these languages, a unique object may be implicitly
discarded, yielding a weak form of uniqueness calledaffinity.

The Vault programming language [13] uses tracked keys to en-
force resource management protocols. For example, the following
interface specifies that opening a file returns a new tracked key,
which must be present when reading the file, and which is con-
sumed when closing the file:

1. interface IO {
2. type FILE;
3. tracked($F) FILE open(string) [+$F];
4. char read (tracked($F) FILE) [$F];
5. void close (tracked($F) FILE) [-$F]; }

1 We assume that values are represented uniformly so that, for instance, unit,
booleans, and integers all take up one word of storage.

Because tracked keys may be neither duplicated nor discarded,
Vault supports a strong form of uniqueness technically termed
linearity, which ensures that an opened file must be closed exactly
once. Other projects [32, 12] have also incorporated linearity to
ensure that memory is reclaimed.

Both forms of uniqueness (linearity and affinity) supportstrong
updates, whereby the type of a stateful object is changed in re-
sponse to stateful operations. For example, the Cyclone code frag-
ment above demonstrates the type of the unique pointer changing
from uninitialized to initialized (with an integer) in response to the
assignment. The intuitive understanding is that a unique object can-
not be duplicated, and thus there are no aliases to the object; hence,
no other portion of the program may observe the change in the ob-
ject’s type, so it is safe to perform a strong update.

Yet, programming in a language with only unique (i.e., linear or
affine) objects is much too painful. In such a setting, one can only
construct tree-like data structures. Hence, it is not surprising that
both Cyclone and Vault allow a programmer to put unique objects
in shared objects, with a variety of restrictions to ensure that these
mixed objects behave in a safe manner. In fact, understanding the
various mechanisms by which unique objects (with strong updates)
may safely coexist and mix with shared objects is currently an
active area of research [5], though much of it has focused on
high-level programming features, often without a complete formal
account.

Therefore, it is natural to study a core language with mutable
references of all sorts mentioned above: linear, affine, and unre-
stricted. The study of substructural logics immediately suggests
one more sort —relevant, which describes data that may be dupli-
cated but not implicitly discarded. Having made these distinctions,
a number of design questions arise: What does it mean to duplicate
or to discard a reference? What operations may be safely performed
with the different sorts of references? What combinations of sorts
for a reference and its contents are safe?

A major contribution of this paper is to answer these questions,
giving an integrated design of references for all of these substruc-
tural sorts (Section 3). Our design allows unique (linear and affine)
values to be stored in shared (unrestricted and relevant) references,
while preserving the desirable feature that resources are tracked
accurately. Our language extends a coreλ-calculus with a straight-
forward type system that provides data of each of the substruc-
tural sorts mentioned above (Section 2). The key idea, present in
other substructural type systems, is to break out the substructural
sorts as type “qualifiers.” Rather than prove soundness via a syn-
tactic subject-reduction proof, we adopt an approach compatible
with that used in Foundational Proof Carrying Code [6, 7]. We con-
struct a step-indexed model (Section 4) where types are interpreted
as sets of store description / value pairs, which are further refined
using an index representing the number of steps available for future
evaluation. We believe this model improves on previous models of
mutable state, contributing a compositional notion of aliasing and
ownership that directly addresses the subtleties of allowing unique
values to be stored in shared references. Furthermore, we achieve a
simple model, in comparison to denotational and domain-theoretic
approaches, that easily extends to impredicative polymorphism and
first-class references. Constructing a (well-founded) set-theoretic
model means that our soundness and safety proofs are amenable
to formalization in the higher-order logic of Foundational PCC.
Hence, our work provides a useful foundation for future extensions
of Foundational PCC, which currently only supports unrestricted
references, but is an attractive target for source languages wishing
to carry high-level security guarantees, enforced by type states and
linear resources, through to machine code.

2. λURAL: A Substructural λ-Calculus
Advanced type systems for state rely upon limiting the ordering
and number of uses of data and operations to ensure that state is
handled in a safe manner. For example, (safely) deallocating a data
structure requires that the data structure is never used in the future.
In order to establish this property, a type system may ensure that the
data structure is usedat most once; after one use, the data structure
may be safely deallocated, since there can be no further uses.

A substructuraltype system provides the core mechanisms nec-
essary to restrict the number and order of uses of data and opera-
tions. A conventional type system, such as that employed by the
simply-typedλ-calculus, with a typing judgement likeΓ ` e : τ ,
satisfies three structural properties:

Exchange If Γ1, x:τx, y:τy ,Γ2 ` e : τ ,
thenΓ1, y:τy , x:τx,Γ2 ` e : τ .

Contraction If Γ1, x:τz , y:τz ,Γ2 ` e : τ ,
thenΓ1, z:τz ,Γ2 ` e[z/x][z/y] : τ .

Weakening If Γ ` e : τ , thenΓ, x:τx ` e : τ .

In contrast, a substructural type system is designed so that one or
more of these structural properties do not hold in general. Among
the most widely studied substructural type systems are thelinear
type systems [29, 24], derived from Girard’s linear logic [15], in
which all variables satisfyExchange, but linearly typed variables
satisfy neitherContraction norWeakening.

In this section, we present asubstructuralpolymorphic λ-
calculus, similar in spirit to Walker’s linear lambda calculus [30].
In our calculus, types and variables are qualified as unrestricted
(U), relevant (R), affine (A), or linear (L). All variables will sat-
isfy Exchange, while only unrestricted variables will satisfy both
Contraction andWeakening, allowing such variables to be used
an arbitrary number of times. We will require
• linear variables to satisfy neitherContraction norWeakening,

ensuring that such variables are used exactly once,
• affine variables to satisfyWeakening (but not Contraction),

ensuring that such variables are used at most once, and
• relevant variables to satisfyContraction (but notWeakening),

ensuring that such variables are used at least once.2

The diagram below demonstrates the relationship between these
qualifiers, inducing a lattice ordering�.

linear(L)

����
��

��?
??

?

affine(A)

��?
??

? relevant(R)

����
��

unrestricted(U)

2.1 Syntax

Figure 1 presents the syntax for our core calculus, dubbed the
λURAL-calculus. Most of the types, expressions, and values are
based on a traditional polymorphicλ-calculus.

Kind and Type Levels We structure our typesτ as a qualifier
ξ applied to a pre-typeτ , yielding the four sorts of types noted
above. The qualifier of a type dictates the structural operations that
may be applied to values of the type, while the pre-type dictates
the introduction and elimination forms. The pre-types1�, τ1 � τ2,
andτ1 (τ2 correspond to the unit, pair, and function types of the
polymorphicλ-calculus.

2 In the logic community, it is perhaps more accurate to use the qualifier
“strict” for such variables. However, “strict” is already an overloaded term
in the functional programming community; so, like Walker [30], we use
“relevant.”

Kind Level:
Kinds κ ::= QUAL | ? | ?

Type Level:
Constant Qualifiers q ∈ Quals = {U,R,A, L}
Qualifiers ξ ::= α | q
PreTypes τ ::= α | 1� | τ1 � τ2 | τ1 (τ2 | ∀α:κ. τ
Types τ ::= α | ξτ
Type-level Terms ι ::= ξ | τ | τ

Expression Level:
Values v ::= x | 〈〉 | 〈v1, v2〉 | λx. e | Λ. e
Expressions e ::= v | let 〈〉 = e1 in e2 | let 〈x1, x2〉 = e1 in e2 | e1 e2 | e []

Figure 1. λURAL Syntax

Polymorphism over qualifiers, pre-types, and types is provided
by a single pre-type∀α:κ. τ ; we introduce a kind level to distin-
guish among the type-level terms that may be used to instantiate a
polymorphic pre-type (with kindsQUAL, ?, and? for qualifiers,
pre-types, and types, respectively).

In an accompanying technical report [3], we show that it is also
easy to extend our results to include sum (τ1 � τ2), existential
(∃α:κ. τ), and recursive (µα:?. τ) pre-types and recursive func-
tions in the calculus, though we elide such constructs in this pre-
sentation.

This structuring of types as a qualifier applied to a pre-type fol-
lows that of Walker [30], but differs from other presentations of
linear lambda calculi that use exactly one modality (!τ) to distin-
guish unrestricted from linear types. It seems possible to introduce
alternative modalities (e.g,−τ for affine and+τ for relevant), but
then we would have to consider their interaction (e.g., what does
−!+τ denote?). Also, with four distinct qualifiers, it is natural to
introduce qualfier polymorphism, which is best formulated by sep-
arating qualifiers from pre-types.

Expression Level Each pre-type has an associated value intro-
duction form. The pattern matching expression formslet 〈〉 =
e1 in e2 andlet 〈x1, x2〉 = e1 in e2 are used to eliminate units
(1�) and pairs (�), respectively. As usual, a function with pre-type
τ1 (τ2 is eliminated via applicatione1 e2, while a type-level ab-
straction∀α:κ. τ is eliminated via instantiatione [].

Note that expressions are not decorated with type-level terms.
This simplifies the semantic model presented in Section 4, where
soundness is with respect to typing derivations, and is appropriate
for an expressive “internal” language. We leave as an open problem
the formulation of appropriate inference and elaboration algorithms
yielding derivations in the type system of the next section, which
would likely require some type-level annotations on expressions in
a “surface” language.

2.2 Static Semantics

The goal of the type system forλURAL is to approximate the re-
quirements of languages like Vault and Cyclone, which ensure that
linear values are used exactly once, affine values are used at most
once, and relevant values are used at least once. Dually, the type
system should ensure that only unrestricted and relevant values are
duplicated and only unrestricted and affine values are discarded. To
prevent values from being implicitly copied or dropped when their
containing value is duplicated or discarded, the type system must
also ensure that a (functional) value with a qualifier lower in the
lattice may not contain values with qualifiers higher in the lattice.
For example, an affine (A) pair may not contain linear (L) compo-
nents, since we could end up dropping the linear components by
dropping the pair, so the type sytem must rule out expressions of
typeA(Lτ1 � Lτ2).

∆ ` ξ1 � ξ2

∆ ` α : QUAL

∆ ` U � α

q1 � q2

∆ ` q1 � q2

∆ ` α : QUAL

∆ ` α � L

∆ ` ξ : QUAL

∆ ` ξ � ξ

∆ ` ξ1 � ξ′ ∆ ` ξ′ � ξ2

∆ ` ξ1 � ξ2

∆ ` τ � ξ

∆ ` α : ?

∆ ` α � L

∆ ` τ ′ : ? ∆ ` ξ′ � ξ

∆ ` ξ′τ ′ � ξ

∆ ` Γ � ξ

∆ ` ξ : QUAL

∆ ` • � ξ

∆ ` Γ � ξ ∆ ` τ � ξ

∆ ` Γ, x:τ

Figure 4. λURAL Statics (Sub-Qual Rules)

Despite these requirements, the type system is relatively simple.
λURAL typing judgements have the form∆;Γ ` e : τ where the
contexts∆ andΓ are defined as follows:

Type-level Term Context ∆ ::= • | ∆, α:κ
Value Context Γ ::= • | Γ, x:τ

Thus,∆ is used to track the set of type-level variables in scope
(along with their kinds), whereasΓ, as usual, is used to track the
set of (expression-level) variables in scope (along with their types).
There may be at most one occurrence of a type-level variableα in
∆ and, similarly, at most one occurrence of a variablex in Γ.

Figure 2 presents theλURAL kinding rules and Figure 3 presents
theλURAL typing rules. In order to ensure the correct relationship
between a data structure and its components, we extend the lattice
ordering on constant qualifiers to types and contexts (see Figure 4).
In the presence of qualifier and type polymorphism, we include the
rules∆ ` U � α and∆ ` α � L, a conservative extension,
sinceU andL are the bottom and top of the lattice. A more general
approach would incorporate bounded qualifier constraints, which
we believe is straightforward, but doing so does not add to the
discussion at hand.

As is usual in a substructural setting, our type system relies
upon a judgement∆ ` Γ ; Γ1 � Γ2 that splits the assumptions
in Γ between the contextsΓ1 andΓ2 (see Figure 5). Splitting the
context is necessary to ensure that variables are used appropriately
by sub-expressions. Note that� ensures that anA or L assumption
appears in exactly one sub-context. On the other hand,U andR
assumptions may appear in both sub-contexts, corresponding to
implicit duplication of the variables.

∆ ` ι : κ

(VarKn)
α:κ ∈ ∆

∆ ` α : κ
(Qual)

∆ ` q : QUAL
(Type)

∆ ` ξ : QUAL ∆ ` τ : ?

∆ ` ξτ : ?

(MUnitPTy)
∆ ` 1� : ?

(MPairPTy)
∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 � τ2 : ?
(FnPTy)

∆ ` τ1 : ? ∆ ` τ2 : ?

∆ ` τ1 (τ2 : ?
(AllPTy)

∆, α:κ ` τ : ?

∆ ` ∀α:κ. τ : ?

Figure 2. λURAL Statics (Kinding Rules)

∆; Γ ` e : τ

(Var)
∆ ` τ : ?

∆; •, x:τ ` x : τ
(MUnit)

∆ ` ξ : QUAL

∆; • ` 〈〉 : ξ1�
(MPair)

∆ ` Γ ; Γ1 � Γ2 ∆ ` ξ : QUAL
∆; Γ1 ` v1 : τ1 ∆ ` τ1 � ξ
∆; Γ2 ` v2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` 〈v1, v2〉 : ξ(τ1 � τ2)

(Fn)
∆ ` ξ : QUAL ∆ ` Γ � ξ ∆; Γ, x:τ1 ` e : τ2

∆; Γ ` λx. e : ξ(τ1 (τ2)
(All)

∆ ` ξ : QUAL ∆ ` Γ � ξ ∆, α:κ; Γ ` e : τ

∆; Γ ` Λ. e : ξ∀α:κ. τ

(Let-MUnit)

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξ1� ∆; Γ2 ` e2 : τ

∆; Γ ` let 〈〉 = e1 in e2 : τ
(Let-MPair)

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξ(τ1 � τ2) ∆; Γ2, x1:τ1, x2:τ2 ` e2 : τ

∆; Γ ` let 〈x1, x2〉 = e1 in e2 : τ

(App)
∆ ` Γ ; Γ1 � Γ2 ∆; Γ1 ` e1 : ξ(τ1 (τ2) ∆; Γ2 ` e2 : τ1

∆; Γ ` e1 e2 : τ2
(Inst)

∆; Γ ` e : ξ∀α:κ. τ ∆ ` ι : κ

∆; Γ ` e [] : τ [ι/α]

(Weak)
∆ ` Γ ; Γ1 � Γ2 ∆; Γ1 ` e : τ ∆ ` Γ2 � A

∆; Γ ` e : τ

Figure 3. λURAL Static Semantics (Typing Rules)

∆ ` Γ ; Γ1 � Γ2

∆ ` • ; •� •
∆ ` Γ ; Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2

∆ ` Γ ; Γ1 � Γ2 ∆ ` τ : ?

∆ ` Γ, x:τ ; Γ1 � Γ2, x:τ

∆ ` Γ ; Γ1 � Γ2 ∆ ` τ � R

∆ ` Γ, x:τ ; Γ1, x:τ � Γ2, x:τ

Figure 5. λURAL Statics (Context Split Rules)

The rule(MPair) is representative: the context is split by� to
type each of the pair components, and the types of each component
are bounded by the qualifier assigned to the pair. Intuitively, the
L and A assumptions in the context are exclusively “owned” by
exactly one of the two components. Likewise, in the rule(Fn), the
free variables ofΓ, which constitute the closure of the function,
must be bounded by the qualifier assigned to the function. Note that
the qualifier assigned to a function type is unrelated to the types
of the argument and result; rather, it is related to the abstracted
components that are used when the function is executed.

The rule(Weak) splits the context into a sub-context used to
type the expressione and a discardable sub-context, consisting of
U andA variables, that are not required to type the expression. Note
that the rule(Weak) acts as a strengthenedWeakening property,
allowing an arbitrary number ofU andA variables to be dropped
at once. The corresponding strengthenedContraction property is

incorporated into the judgement∆ ` Γ ; Γ1 � Γ2, which allows
an arbitrary number ofU andR variables to be copied at once.

3. λrefURAL: A Substructural λ-Calculus with
References

Languages like Vault and Cyclone include objects that change state
(e.g., file descriptors), so it is natural to include some stateful
values. We consider the difficult case of references, which can serve
as mutable containers for both functional values and stateful values.
Hence, we extend theλURAL-calculus with mutable references, to
yield theλrefURAL-calculus. The reference pre-typeref τ may be
combined with a qualifierξ to yield the four sorts (U, R, A, L)
of references discussed earlier. We also introduce operations to
allocate (newq) and deallocate (free) references, as well as to read
(rd), write (wr), and swap (sw) their contents. Not all of these
operations can be safely performed with all sorts of references,
as we discuss in Section 3.2. The syntactic extensions to support
references are as follows:

Type Level:
PreTypes τ ::= . . . | ref τ

Expression Level:
Locations l ∈ Locs
Values v ::= . . . | l
Expressions e ::= . . . | newq e | free e |

rd e | wr e1 e2 | sw e1 e2

3.1 Operational Semantics

Figure 6 gives the small-step operational semantics forλrefURAL

as a relation between configurations of the form(s, e), where

Store s ::= {l1 7→ (q1, v1), . . . , ln 7→ (qn, vn)}

(let-munit) (s, let 〈〉 = 〈〉 in e) 7−→ (s, e)

(let-mpair) (s, let 〈x1, x2〉 = 〈v1, v2〉 in e) 7−→
(s, e[v1/x1][v2/x2])

(app) (s, (λx. e) v) 7−→ (s, e[v/x])

(inst) (s, (Λ. e) []) 7−→ (s, e)

(new) (s, newq v) 7−→ (s] {l 7→ (q, v)}, l)
(free) (s] {l 7→ (q, v)}, free l) 7−→ (s, v)

(read) (s] {l 7→ (q, v)}, rd l) 7−→
(s] {l 7→ (q, v)}, 〈l, v〉)

(write) (s] {l 7→ (q, v1)}, wr l v2) 7−→
(s] {l 7→ (q, v2)}, l)

(swap) (s] {l 7→ (q, v1)}, sw l v2) 7−→
(s] {l 7→ (q, v2)}, 〈l, v1〉)

(ctxt)
(s, e) 7−→ (s′, e′)

(s, E[e]) 7−→ (s′, E[e′])

Figure 6. λrefURAL Operational Semantics

s is a global store mapping locations to qualifiers and values.3

The notations1] s2 denotes the disjoint union of the storess1
and s2; the operation is undefined if the domains ofs1 and s2
are not disjoint. We use evaluation contextsE (omitted in this
presentation) to lift the primitive rewriting rules to a standard, left-
to-right, innermost-to-outermost, call-by-value interpretation of the
language.

Most of the rules are standard, so we highlight only those in-
volving references. The expressionsnewq e and free e perform
the complementary actions of allocating and deallocating mutable
references in the global store. Specifically, the expressionnewq e
evaluatese to a valuev, allocates a fresh (unallocated) locationl
to store the qualifierq and valuev, and returnsl. The expression
free e performs the reverse: it evaluatese to a locationl, deallo-
catesl, and returns the value previously stored atl.

The expressions for reading and writing a mutable reference
implicitly duplicate and discard (respectively) the contents of the
reference. The expressionrd e evaluatese to a locationl, duplicates
the valuev stored atl, and returns〈l, v〉, leaving the value stored at
l unchanged. Meanwhile,wr e1 e2 evaluatese1 to a locationl and
e2 to valuev2, storesv2 at locationl, discards the value previously
stored atl, and returnsl.

In languages with only unrestricted (ML-style) references, it is
customary forrd to return only the contents ofl and forwr to re-
turn 〈〉. However, we do not wish to consider reading or writing a
linear (resp. affine) reference as the exactly-one-use (resp. at-least-
one-use) of the value. Therefore, therd andwr (andsw) operations
return the locationl that was read or written, which remains avail-
able for future use. The behavior of ML-style references may be
recovered by implicitly discarding the returned location.

The expressionsw e1 e2 combines the operations of dereferenc-
ing and updating a mutable reference, but has the attractive property
that it neither duplicates nor discards a value. Notice that perform-
ing a write or swap operation on a location may change the type
of the location’s contents. The static semantics will permit weak
(type-invariant) updates on all references (with some additional
caveats), but will restrict strong (type-varying) updates to unique
references.

3 We writesqual(l) andsval(l) for the respective projections ofs(l).

shared

8>>>>><
>>>>>:

unique

8>>>>><
>>>>>:

Ref Ops Contents and Ops
U R A L

U
newU

(weak updates)

rd
wr
sw

" wr
sw

"

R
newR

(weak updates)

rd
wr
sw

rd
sw

wr
sw

sw

A
newA

free
(strong updates)

rd
wr
sw

" wr
sw

"

L
newL

free
(strong updates)

rd
wr
sw

rd
sw

wr
sw

sw

Figure 7. Operations for Substructural State

The reader may well wonder why each reference is “stamped”
with a qualifier at its allocation when the remainder of the opera-
tional rules are entirely agnostic with respect to a reference’s qual-
ifier. Essentially, the qualifier is a form of instrumentation, which,
when combined with the semantic model presented in Section 4,
allows us to guarantee that linear and relevant references cannot be
implicitly discarded. Such a property is difficult to capture exclu-
sively in the operational semantics (i.e., by ensuring that the ab-
stract machine “gets stuck” when a linear or relevant reference is
implicitly dropped). On the other hand, the abstract machine does
“get stuck” when attempting to access a reference after it has been
deallocated.

3.2 Static Semantics

As with the type system forλURAL, we would like the type system
for λrefURAL to ensure the property that no linear or affine value is
implicitly duplicated and no linear or relevant value is implicitly
discarded. With that in mind — and noting that only unrestricted
and relevant references may be implicitly copied (by the∆ `
Γ ; Γ1 � Γ2 judgement), while only unrestricted and affine
references may be implicitly dropped (by the(Weak) rule) — we
now answer the questions we laid out in Section 1: What operations
may be safely performed with the different sorts of references?
What combinations of sorts for a reference and its contents are
safe? These answers are summarized in Figure 7.

First, consider what it means to duplicate a reference. Opera-
tionally, a reference is a location in the global store. Therefore, du-
plicating an unrestricted or relevant referencel, simply yields two
copies ofl — while the value stored atl is not duplicated. Since
duplicating a shared reference does not alter the uniqueness of its
contents, it is not only reasonable but also extremely useful to al-
low shared references to store unique values. In particular, it per-
mits the sharing of (large) unique data structures without expensive
copying.

On the other hand, dropping an unrestricted or affine referencel
effectively drops its contents, since this reference may (must, in the
case of affine) have been the only copy ofl. If the contents were a
linear or relevant value, then the exactly-one-use and at-least-one-
use invariants (respectively) would be violated. Hence, we cannot
allow linear and relevant values (which cannot be discarded) to be
stored in unrestricted or affine references (which can be discarded).

Considering yet another axis, we note that linear and affine
references must be unique. Hence, we canfree unique references,
and also perform strong updates on them. Shared references, on the
other hand, can never be deallocated and can only support weak
updates.

As we noted above, therd operator induces an implicit copy
while thewr operator induces an implicit drop. Therefore, whether

∆ ` ι : κ

(RefPTy)
∆ ` τ : ?

∆ ` ref τ : ?

∆; Γ ` e : τ

(New(U,A))
q � A ∆; Γ ` e : τ ∆ ` τ � A

∆; Γ ` newq e : qref τ
(New(R,L))

R � q ∆; Γ ` e : τ

∆; Γ ` newq e : qref τ

(Free)
∆; Γ ` e : ξref τ ∆ ` A � ξ

∆; Γ ` free e : τ
(Read)

∆; Γ ` e : ξref τ ∆ ` τ � R

∆; Γ ` rd e : L(ξref τ � τ)

(Write(Strong))

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ1 ∆ ` τ1 � A ∆ ` A � ξ
∆; Γ2 ` e2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` wr e1 e2 : ξref τ2
(Write(Weak))

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ ∆ ` τ � A
∆; Γ2 ` e2 : τ

∆; Γ ` wr e1 e2 : ξref τ

(Swap(Strong))

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ1 ∆ ` A � ξ
∆; Γ2 ` e2 : τ2 ∆ ` τ2 � ξ

∆; Γ ` sw e1 e2 : L(ξref τ2 � τ1)
(Swap(Weak))

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ
∆; Γ2 ` e2 : τ

∆; Γ ` sw e1 e2 : L(ξref τ � τ)

Figure 8. λrefURAL Static Semantics (Kinding and Typing Rules)

we can read from or write to a reference depends entirely on
the qualifier of its contents:rd is permitted if the contents are
unrestricted or relevant (i.e., duplicable),wr is permitted if the
contents are unrestricted or affine (i.e., discardable). The operation
sw is permitted on any sort of reference, regardless of the qualifier
of its contents. As noted above, strong writes and strong swaps,
which change the type of the contents of the location, are only
permitted on unique references.

Figure 8 gives the additional typing rules forλrefURAL. We note
that the typing rules for coreλURAL terms remain unchanged. There
is no rule for locations, as locations are not allowed in the external
language. Also note that the(New) and(Free) rules act as the in-
troduction and elimination rules forξref τ types, while the(Read),
(Write), and(Swap) rules maintain an exactly-one-use invariant on
references by consuming a value of typeξref τ1 and by producing
a value of typeξref τ2 (possibly withτ1 = τ2).

Finally, we note thatwr may be encoded using an explicitsw
and an implicit drop:4

(Write(Weak))

∆ ` Γ ; Γ1 � Γ2

∆; Γ1 ` e1 : ξref τ ∆ ` τ � A
∆; Γ2 ` e2 : τ

∆; Γ ` wr e1 e2 : ξref τ
def
= let 〈r, x〉 = sw e1 e2 in // using(Swap(Weak))

// dropx, noting∆ ` τ � A
r

However,rd may not be encoded using an explicitsw and an
implicit copy, as a suitable (discardable) dummy value cannot in
general be synthesized.

(Read)
∆; Γ ` e : ξref τ ∆ ` τ � R

∆; Γ ` rd e : L(ξref τ � τ)
def
= let 〈r, x〉 = sw e ? in // where∆; Γ ` ? : τ

// copyx, noting∆ ` τ � R
let 〈r, y〉 = sw r x in // using(Swap(Weak))
// dropy, but not necessarily∆ ` τ � A
〈r, x〉

4 The encoding of awr typed by the(Write(Strong)) rule makes use of the
same term, but an alternate typing derivation.

4. A Step-Indexed Model
We prove the type soundness ofλrefURAL in a manner similar to that
employed by Appel’s Foundational PCC project [6]. The technique
uses syntactic logical relations (that is, relations based on the op-
erational semantics) where relations are further refined by an index
that, intuitively, records the number of steps available for future
evaluation. This stratification is essential for modeling the recur-
sive functions (available via backpatching unrestricted references)
and impredicative polymorphism present in the language.

4.1 Background: A Model of Unrestricted References

Our model is based on the indexed model of ML-style references
by Ahmed, Appel, and Virga [1, 4], henceforth AAV. In their
model, the semantic interpretationT JτK of a (closed) typeτ is
a set of triples of the form(k,Ψ, v), where,k is a natural number
(called theapproximation indexor step index), Ψ is a (global) store
typing that maps locations to (the interpretation of) their designated
types, andv is a (closed) value. Intuitively,(k,Ψ, v) ∈ T JτK
says that in any computation running for no more thank steps,v
cannot be distinguished from values of typeτ . Furthermore, since
dereferencing a location consumes an execution step, in order to
determine whetherv has typeτ for k steps it suffices to know the
type of each store location fork − 1 steps; hence,Ψ need only
specify each location’s type to approximationk − 1. We use a
similar indexing approach which is key to ensuring that our model
is well-founded (as we shall demonstrate in Section 4.3).

4.2 Towards a Model ofλrefURAL

Aliasing and Ownership Though our model is similar to AAV,
the presence of shared and unique references places very differ-
ent demands on the model, which we illustrate by considering
the interpretation of product types in various settings. In a lan-
guage withonly unrestrictedreferences (e.g. AAV), one would say
(k,Ψ, 〈v1, v2〉) ∈ T Jτ1 � τ2K if and only if (k,Ψ, v1) ∈ T Jτ1K
and(k,Ψ, v2) ∈ T Jτ2K, where the store typingΨ describesevery
location allocated by the program thus far. In this setting, every lo-
cation (inΨ) may bealiased; hence, the model allowsv1 andv2 to
point to data structures that overlap in the heap.

x

}}{{{

l1 L

l2 A

��

l3 U

��

?????

l4 A

��

l5 A

��

(a) (k,Ψ,Ω1, x) ∈ T Jτ1K

y

!!C
CC

l6 L

l3 U

��

l4 A

��

l5 A

��

(b) (k,Ψ,Ω2, y) ∈ T Jτ2K

〈x, y〉
||yyy ""E

EE

l1 L l6 L

l2 A

��

l3 U

BBBBBB ��

�����������

l4 A

��

l5 A

��

(c) Problem:Ω1] Ω2 = undefined

Figure 9. Unique References in Shared References: Aliased or Owned?

In a language withonly linear references [23, 2], however, one
must ensure that the set of (linear) locations reachable fromv1 is
disjoint from the set of locations reachable fromv2. This mirrors
the fact that we can only construct tree-like data structures in this
setting. Furthermore, it guarantees the safety of strong updates
by providing a notion ofexclusive ownership. Hence, to model
a language with only linear references, it is useful to replace the
global store descriptionΨ with a description of only theaccessible
(reachable) locations in the store, sayΩ. Intuitively, when we write
(k,Ω, v) ∈ T JτK, we intend forΩ to describe only the subset of
store locations that are accessible from, and hence, “owned” byv.
Thus, one would say(k,Ω, 〈v1, v2〉) ∈ T Jτ1 � τ2K if and only if
(k,Ω1, v1) ∈ T Jτ1K and(k,Ω2, v2) ∈ T Jτ2K, where theΩ is the
disjoint union ofΩ1 andΩ2.

For theλrefURAL-calculus, we tried to build a model that supports
both aliasing and ownership as follows. We defined the semantic
interpretation of a typeT JτK as the set of tuples of the form
(k,Ψ,Ω, v) whereΨ describes everyU andR location allocated
by the program andΩ describes only thoseA andL locations that
are reachable from (and owned by)v. The interpretation ofτ1 � τ2
then naturally yields:(k,Ψ,Ω, 〈v1, v2〉) ∈ T Jτ1 � τ2K if and only
if (k,Ψ,Ω1, v1) ∈ T Jτ1K and(k,Ψ,Ω2, v2) ∈ T Jτ2K, where the
Ω is the disjoint union ofΩ1 andΩ2.

Unfortunately, the above model did not suffice forλrefURAL,
since it assumes that every unique location reachable fromv is ex-
clusively owned byv, which is not the case when unique references
may be stored in shared references.

Unique References in Shared References: Aliased or Owned?
Consider the situation depicted in Figure 9(a) wherex maps to
l1 and locationsl1 through l5 are reachable fromx. Locations
“owned” byx are shaded. Notice thatl1 andl2 are unique locations
owned byx, while l4 and l5 are unique locations thatx must
consider aliased, since they can be reached (from other program
subexpressions) via the unrestricted locationl3. Figure 9(b) depicts
such a subexpression,y. Note thaty maps tol6 whose contents
aliasl3, makingl4 andl5 reachable fromy.

In λrefURAL we may safely construct the pair〈x, y〉 (shown in
Figure 9(c)), but the interpretation ofτ1 � τ2 that we proposed
above prohibits such a pair since locationsl4 andl5 occur in both
Ω1 andΩ2, violating the requirement that their domains be disjoint.

To model theλrefURAL-calculus, we tried to further refine our
model so that the interpretation of a typeT JτK is a set of tuples of

the form(k,Ψ,Ω,Θ, v) whereΨ is as before, but nowΩ describes
uniqueownedlocations, (i.e., those reachable fromv without in-
directing through a shared reference), whileΘ describes unique
aliasedlocations, (i.e., those thatcannotbe reached without indi-
recting through a shared cell). The intuition is that the interpretation
of τ1 � τ2 splitsΩ into disjoint pieces for each component of the
pair, but allows each component to useΨ andΘ unchanged.

This proposal, however, is fraught with complications. In par-
ticular, whether a unique location belongs inΩ or Θ depends on
the configuration of the entire program, rather than just the type of
the location. This limits the compositionality of the model. For in-
stance, considerl5 in Figure 9(c). Clearlyl5 must appear inΘ as
it is reachable from an unrestricted location. However, if locations
l1, l2, l3, andl6 did not exist, thenl5 could appear inΩ. In the next
section, we propose a far simpler solution that we consider one of
the main technical contributions of our work.

4.3 A Model with Local Store Descriptions

In our model of theλrefURAL-calculus, the semantic interpretation
of a typeT JτK is a set of tuples of the form(k, q, ψ, v), where
the local store descriptionψ describes only a part of the global
store. Intuitively,ψ is the set of “beliefs” about the locations that
appear as sub-expressions of the valuev. Such locations are said to
bedirectly accessiblefrom the valuev. Conversely, locations that
are indirectly accessiblefrom the valuev are those locations that
are reachable fromv only by indirecting through one (or more)
references. The local store descriptionψ says nothing about these
indirectly-accessible locations. This enhances the compositionality
of our model, making it straightforward to combine local store
descriptions with one another.

4.3.1 Definitions

We use the meta-variableχ to denote sets of tuples of the form
(k, q, ψ, v) and the meta-variableψ to denote partial maps from
locationsl to tuples of the form(q, χ).5 Whenχ corresponds to the
semantic interpretation of a type and(k, q, ψ, v) ∈ χ, we intend
thatq is the qualifier ofv, ψ is the local store description ofv, and
v is a closed value. Whenψ corresponds to a local store description
andψ(l) = (q, χ), we intend thatq is the qualifier of the reference
andχ is the semantic interpretation of the type of its contents.

5 We writeψqual(l) andψtype(l) for the respective projections ofψ(l).

(a) PreType/Type Interpretation (Notation)χ ::= {(k, q, ψ, v), . . .}
Local Store Description (Notation) ψ ::= {l 7→ (q, χ), . . .}

(b) CandAtomk
def
= {(j, q, ψ, v) ∈ N×Quals ×

S
j<k CandLocalStoreDescj × CValues |

j < k ∧ ψ ∈ CandLocalStoreDescj}

CandUberTypek
def
= 2CandAtomk

CandLocalStoreDesck
def
= Locs ⇀ Quals × CandUberTypek

CandAtomω
def
=

S
k≥0 CandAtomk

CandUberTypeω
def
= 2CandAtomω ⊇

S
k≥0 CandUberTypek

CandLocalStoreDescω
def
= Locs ⇀ Quals × CandUberTypeω ⊇

S
k≥0 CandLocalStoreDesck

(c) bχck
def
= {(j, q, ψ, v) | j < k ∧ (j, q, ψ, v) ∈ χ}
∈ CandUberTypeω → CandUberTypek

bψck
def
= {l 7→ (q, bχck) | l ∈ dom(ψ) ∧ ψ(l) = (q, χ)}
∈ CandLocalStoreDescω → CandLocalStoreDesck

P(q, ψ)
def
= ∀l ∈ dom(ψ). ψqual(l) � q
∈ Quals × CandLocalStoreDescω → P

R(ψ)
def
= ∀l ∈ dom(ψ). (ψqual(l) � A ⇒ ∀(, q′, ,) ∈ ψtype(l). q′ � A)
∈ CandLocalStoreDescω → P

(d) Atomk
def
= {(j, q, ψ, v) ∈ CandAtomk | ψ ∈ LocalStoreDescj ∧ P(q, ψ)} ⊆ CandAtomk

PreTypek
def
= {χ ∈ 2Atomk | ∀(j, q, ψ, v) ∈ χ. ∀i ≤ j. (i, q, bψci, v) ∈ χ} ⊆ CandUberTypek

Typek
def
= {χ ∈ PreTypek | ∃q′ ∈ Quals. ∀(, q, ,) ∈ χ. q = q′} ⊆ CandUberTypek

LocalStoreDesck
def
= {ψ ∈ Locs ⇀ Quals × Typek | R(ψ)} ⊆ CandLocalStoreDesck

PreType
def
= {χ ∈ CandUberTypeω | ∀k ≥ 0. bχck ∈ PreTypek} ⊇

S
k≥0 PreTypek

Type
def
= {χ ∈ CandUberTypeω | ∀k ≥ 0. bχck ∈ Typek} ⊇

S
k≥0 Typek

Figure 10. λrefURAL Model (Definitions)

Well-Founded & Well-Behaved Interpretations If we attempt to
näıvely construct a set-theoretic model based on these intentions,
we are led to specify:

Type = 2N×Quals×LocalStoreDesc×CValues

LocalStoreDesc = Locs ⇀ Quals × Type

However, there is a problem with this specification: a simple di-
agonalization argument will show that the setType of type inter-
pretations has an inconsistent cardinality (i.e., it’s an ill-founded
recursive definition).

We can eliminate the inconsistency by stratifying our defini-
tions, making essential use of the approximation index. To simplify
the development, we first constructcandidatesets, which are well-
founded sets of our intended form. Next, we define some useful
functions and predicates on these candidate sets. Finally, we con-
struct our semantic interpretations by filtering the candidate sets,
making use of the functions and predicates defined in the previous
step. Our semantic interpretations impose a number of constraints
(e.g., relating the qualifier of a reference to the qualifier of its con-
tents) that are ignored in the construction of the candidate sets.

Figure 10(b) defines our candidate sets by (strong) induction on
k. Note that elements ofCandAtomk are tuples with approxima-

tion index j strictly less thank. Hence, our definitions are well-
defined atk = 0:

CandAtom0 = ∅
CandUberType0 = {∅}

CandLocalStoreDesc0 = Locs ⇀ Quals × {∅}

While our candidate sets establish the existence of sets of our in-
tended form, our semantic interpretations will need to be well-
behaved in other ways. There are key constraints associated with
atoms, pre-types, types, and local store descriptions that will be en-
forced in our final definitions. Functions and predicates supporting
these constraints are given in Figure 10(c).

For any setχ, we define thek-approximation of the set (written
bχck) as the subset of its elements whose indices are less thank; we
extend the notion pointwise to local store descriptionsψ (written
bψck). Note thatbχck and bψck necessarily yield elements of
CandUberTypek andCandLocalStoreDesck.

Figure 10(c) defines our semantic interpretations, again by
(strong) induction onk. Note that our semantic interpretations can
be seen as filtering their corresponding candidate sets. Next, we
examine each of these filtering constraints.

Recall that we intend forAtomk to define tuples of the form
(j, q, ψ, v) whereq is the qualifier ofv andψ is the local store

K JQUALK = Quals K J?K = PreType K J?K = Type

T J∆ ` α : κK δ = δ(α)

T J∆ ` q : QUALK δ = q

T J∆ ` 1� : ?K δ = {(k, q, {}, 〈〉)}

T J∆ ` τ1 � τ2 : ?K δ = {(k, q, ψ, 〈v1, v2〉) | ψ = (ψ1 �k ψ2) ∧
(k, q1, ψ1, v1) ∈ T J∆ ` τ1 : ?K δ ∧ q1 � q ∧
(k, q2, ψ2, v2) ∈ T J∆ ` τ2 : ?K δ ∧ q2 � q}

T J∆ ` τ1 (τ2 : ?K δ = {(k, qc, ψc, λx. e) | ψc ∈ LocalStoreDesck ∧ P(qc, ψc) ∧
∀j < k, qa, ψa, va.

(j, qa, ψa, va) ∈ T J∆ ` τ1 : ?K δ ∧ (ψc �j ψa) defined⇒
Comp(j, (ψc �j ψa), e[va/x], T J∆ ` τ2 : ?K δ)}

T J∆ ` ∀α:κ. τ : ?K δ = {(k, q, ψ,Λ. e) | ψ ∈ LocalStoreDesck ∧ P(q, ψ) ∧
∀j < k, I ∈ K JκK .

Comp(j, bψcj , e, T J∆, α:κ ` τ : ?K δ[α 7→ I])}

T J∆ ` ref τ : ?K δ = {(k, q, {l 7→ (q, χ)}, l) | χ = bT J∆ ` τ : ?K δck ∧
(q � A ⇒ ∀(, q′, ,) ∈ χ. q′ � A)}

T
q
∆ ` ξτ : ?

y
δ = {(k, q, ψ, v) | q = T J∆ ` ξ : QUALK δ ∧

(k, q, ψ, v) ∈ T J∆ ` τ : ?K δ}

Comp(k, ψs, es, χ)
def
= ∀j < k, ss, ψr, sf , ef .

ss :k (ψs �k ψr) ∧ (ss, es) 7−→j (sf , ef) ∧ irred(sf , ef) ⇒
∃qf , ψf .
sf :k−j (ψf �k−j ψr) ∧ (k − j, qf , ψf , ef) ∈ χ

Figure 11. λrefURAL Model (Interpretations)

description ofv. Filtering CandAtomk by the predicateP(q, ψ)
enforces the requirement that ifv is a value with qualifierq, then
each location directly accessible fromv must have a qualifierq′

such thatq′ � q. We further require the local store descriptionψ to
be a member ofLocalStoreDescj .

We definePreTypek as thoseχ ∈ 2Atomk ⊆ CandUberTypek
that are closed with respect to a decreasing step-index. We define
Typek by further requiring that all values inχ share the same quali-
fier. Looking ahead, we will need to extend our semantic interpreta-
tions to a predicateComp(k, ψ, e, T JτK), wheree is a (closed) ex-
pression. Intuitively, an expressione that is indistinguishable from
a value of typeτ for k steps must also be indistinguishable for
j < k steps. Since we will define the predicateComp(·, ·, ·, ·) on
elements ofType, we incorporate this closure property into the de-
finition of PreTypek.

Finally, we defineLocalStoreDesck using the predicateR(ψ),
which requires that every unrestricted or affine location inψ is
mapped to a type with only unrestricted and affine values. The
predicateR(ψ) disallows relevant or linear values as the contents
of unrestricted or affine locations (recall Figure 7).

4.3.2 Semantic Interpretations

Figure 11 gives our semantic interpretation of kindsK JκK, quali-
fiersT JqK, pre-typesT JτK, and typesT JτK.6 The interpretation
of the kinds? and? are the semantic interpretationsPreType and

6 Since our language supports polymorphic types, we must give the inter-
pretations of type-level terms with free variables. While, technically, we
should writeT J∆ ` ι : κK δ, where the substitutionδ is in the interpreta-
tion of the term context∆ (seeD J∆K in Figure 17), we will use the more
concise notationT JιK in the text.

Type respectively, while the interpretation of the kindQUAL is the
set of (constant) qualifiersQuals.

Units: No Location Beliefs Consider the interpretation of the
pre-type1�. Clearly, no locations appear as sub-expressions of the
value〈〉; hence, the interpretation of1� demands an empty local
store description{}. Furthermore, the value〈〉may be ascribed any
qualifierq.

References: Single Location BeliefsNext, consider the interpre-
tation of the pre-typeref τ . From the valuel, the only directly-
accessible location isl itself. Hence, the local store descriptionψ
for the locationl in the interpretation ofref τ must take the form
{l 7→ (q, χ)}. Furthermore,χ, the semantic interpretation of the
type ofl’s contents, must matchT JτK.

Figure 12 graphically depicts the local store descriptionψ =
{l 7→ (q, T JτK)} (slightly abusing notation in the interest of
brevity). Our intention is to express the idea thatψ “believes” thatl
is allocated with qualifierq and contents of typeτ , butψ “believes”
nothing about any other location in the store, represented by “?”.

(k, q, ψ = {l 7→ (q, T JτK)}, l) ∈ T Jref τK

ψ

? ? ?

?
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l 7→ (q, T JτK) ?

? ? ?

Figure 12. A Local Store Description inT Jref τK

Note that the definition ofT Jref τK requires that ifl is an
unrestricted or affine location, thenχ should never contain local

ψ1 �k ψ2
def
=

8>>>><
>>>>:

{l 7→ bψ1ck(l) | l ∈ dom(ψ1) ∩ dom(ψ2)}
] {l 7→ bψ1ck(l) | l ∈ dom(ψ1) \ dom(ψ2)}
] {l 7→ bψ2ck(l) | l ∈ dom(ψ2) \ dom(ψ1)}

if ∀l ∈ dom(ψ1) ∩ dom(ψ2). bψ1ck(l) = bψ2ck(l)
and∀l ∈ dom(ψ1). A � ψqual

1 (l) ⇒ l /∈ dom(ψ2)

and∀l ∈ dom(ψ2). A � ψqual
2 (l) ⇒ l /∈ dom(ψ1)

undefined otherwise

Figure 13. λrefURAL Model (Join Partial Function)

(a) (k, q1, ψ1 = {l1 7→ (q1, T Jτ1K)}, l1) ∈ T Jq1 ref τ1K
(k, q2, ψ2 = {l2 7→ (q2, T Jτ2K)}, l2) ∈ T Jq2 ref τ2K

ψ1

?
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l1 7→ (q1, T Jτ1K)

? ?

J ψ2

? ?
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l2 7→ (q2, T Jτ2K) ?

=

ψ1 � ψ2

?
_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
l1 7→ (q1, T Jτ1K)

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
l2 7→ (q2, T Jτ2K) ?

(b) (k,U, ψ1 = {l 7→ (U, T JτK)}, l) ∈ T
q

Uref τ
y

(k,U, ψ2 = {l 7→ (R, T Jτ ′K)}, l) ∈ T
q

Rref τ ′
y

ψ1

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l 7→ (U, T JτK)

? ?

J ψ1

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l 7→ (U, T JτK)

? ?

=

ψ1 � ψ1

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l 7→ (U, T JτK)

? ?

ψ1

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l 7→ (U, T JτK)

? ?

J ψ2

?
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l 7→ (R, T Jτ ′K)

? ?

= undefined

(c) (k, L, ψa = {l1 7→ (U, T Jτ1K), l2 7→ (L, T Jτ2K), va = 〈l1, l2〉) ∈ T
q

L(Uref τ1 � Lref τ2)
y

(k, L, ψb = {l1 7→ (U, T Jτ1K), l3 7→ (L, T Jτ3K), vb = 〈l1, l3〉) ∈ T
q

L(Uref τ1 � Lref τ3)
y

(k, L, ψc = {l3 7→ (L, T Jτ3K), vc = 〈l3, 〈〉〉) ∈ T
q

L(Lref τ3 � U1�)
y

ψa

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l1 7→ (U, T Jτ1K)
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l2 7→ (L, T Jτ2K) ?

J ψb

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l1 7→ (U, T Jτ1K)

?
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l3 7→ (L, T Jτ3K)

=

ψa � ψb

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l1 7→ (U, T Jτ1K)
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l2 7→ (L, T Jτ2K)

_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l3 7→ (L, T Jτ3K)

ψb

?
_ _ _ _ _ _�
�

�
�

_ _ _ _ _ _
l1 7→ (U, T Jτ1K)

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l3 7→ (L, T Jτ3K)

J ψc

? ?

?
_ _ _ _ _ _�
�

�
�_ _ _ _ _ _

l3 7→ (L, T Jτ3K)
= undefined

Figure 14. ψ1 � ψ2 Examples

store descriptions that include relevant or linear locations; i.e., the
definition ofT Jref τK incorporates the predicateR(·) specialized
to {l 7→ (q, χ)}.

Pairs: Compatible Location Beliefs A pair 〈v1, v2〉 (such that
(k, q1, ψ1, v1) ∈ T Jτ1K and (k, q2, ψ2, v2) ∈ T Jτ2K) is in the
interpretation ofτ1 �τ2 if and only if the pair is ascribed a qualifier
greater than that of its components and the two sets of beliefs
about the store,ψ1 andψ2, can be combined into a single set of
beliefs sufficient for safely executingk steps (writtenψ1�kψ2, see
Figure 13). Informally, local store descriptions can be combined
only if they arecompatible; that is, if the beliefs in one local
store description do not contradict the beliefs in the other store
description.

Clearly, ifψ1 andψ2 have disjoint sets of beliefs about the store,
thenψ1�kψ2 is defined and equal to the union of their beliefs (see
Figure 14(a)). In the more general case, where the same location
may be found in the domain of bothψ1 andψ2, there are two
requirements enforced by the definition ofψ1 �k ψ2.

First, we require that for any locationl that is described by both
ψ1 andψ2, it must be the case thatψ1 andψ2 have identical beliefs
aboutl to approximationk. Note thatψ1 andψ2 must agree on
both the qualifier of the location as well as the type of the location’s
contents (see Figure 14(b)).

The second requirement is more subtle, having to do with the
notion of directly-accessible locations. Suppose thatl3 is a linear
or affine location mapped byψb. Therefore, a valuevb with local
store descriptionψb must containl3 as a sub-expression. Sincel3 is
linear or affine, this occurrence ofl3 in the valuevb must be the one
(and only) occurrence ofl3 in the entire program state. Now, sup-
pose thatl3 is also in the domain of a local store descriptionψc. As
before, a valuevc with local store descriptionψc must containl3 as
a sub-expression. If we were to attempt to form the value〈vb, vc〉,
then we would have a value with two distinct occurrences ofl3,
violating the uniqueness of the locationl3. Hence, we considerψb
andψc to represent incompatible (contradictory) beliefs about the
current store (see Figure 14(c)).

Functions & Abstractions: Closure Location Beliefs Since
functions and abstractions are suspended computations, their in-
terpretations are given in terms of the interpretation of types as
computations (see below). A functionλx. e with qualifier qc and
local store descriptionψc (whereψc describes the locations di-
rectly accessible from the function’s closure and, hence, must sat-
isfy P(qc, ψc)) is in the interpretation ofτ1 (τ2 for k steps if, at
some point in the future, when there arej < k steps left to execute,
and there is an argumentva such that(j, , ψa, va) ∈ T Jτ1K and
the beliefsψc andψa are compatible, thene[va/x] looks like a
computation of typeτ2 for j steps. The interpretation of∀α:κ. τ is
analogous, except that we quantify over (type-level term) interpre-
tationsI ∈ K JκK.

Store Satisfaction: Tracing Location Beliefs The interpretation
of types as computations (Comp) makes use of an auxiliary relation
s :k ψ (given in Figure 15), which says that the stores satisfies
local store descriptionψ (to approximationk). We motivate the
definition ofs :k ψ by drawing an analogy with the specification
of a tracing garbage collector(see Figure 16). As described above,
ψ corresponds to (beliefs about) the portion of the store directly
accessible from a value (or multiple values, whenψ corresponds
to �k-ed store descriptions). Hence, we can considerdom(ψ) as
a set of root locations. In the definition ofs :k ψ, S corresponds
to the set of reachable (root and non-root) locations in the store
that would be discovered by the garbage collector. The function
Fψ maps each location inS to a local store description, while the
functionFq maps each location to a qualifier. It is our intention that,
for each locationl, Fq(l) is an appropriate qualifier andFψ(l) is
an appropriate local store description for the valuesval(l). Hence,
we can considerdom(Fψ(l)) as the set of child locations traced
from the contents ofl.

Having chosen the setS and the functionsFψ andFq, we
require that they satisfy three criteria. Thecongruity criteria en-
sures that our choices are both internally consistent and consistent
with the stores. The “global” store descriptionψ∗ combines the
local store descriptions of the roots with the local store descrip-
tions of the contents of every reachable location; the implicit re-
quirement thatψ∗ is defined ensures that the local beliefs of the
roots and individual store contents are all compatible. The clause
dom(ψ∗) = S requires thatS and Fψ are chosen such that
S includesall the reachable locations (and not justsomeof the
reachable locations), while the clausedom(s) ⊇ S requires that
all of the reachable locations are actually in the store. Finally,
(j,Fq, bFψ(l)cj , sval(l)) ∈ bψtype

∗ (l)ck ensures that the contents
of l, with the qualifier assigned byFq and local store description
assigned byFψ, is in the type assigned by the global store descrip-
tionψ∗ (for j < k steps).

Theminimalitycriteria ensures that our choice for the setS does
not contain any locations not reachable from the roots. For exam-
ple, in Figure 16, includingl11 in S would not violate congruity,
but would violate minimality. Finally, thereachabilitycriteria en-
sures that every linear and relevant location is reachable from the
roots (and, hence, has not been implicitly discarded).

Computations: Relating Current to Future Beliefs Informally,
the interpretation of types as computationsComp(k, ψs, es, χ) (see
Figure 11) says that if the expressiones (with beliefsψs, again,
corresponding to the locations appearing as sub-expressions ofes)
reaches an irreducible state in less thank steps, then it must have
reduced to a valuevf (with beliefsψf) that belongs to the type
interpretationχ. More precisely, we pick a starting storess such
that ss :k (ψs �k ψr), whereψr is the set of beliefs about the
store held by the rest of the computation (alternatively, the set of
beliefs held byes’s continuation). If(ss, es) steps to an irreducible
configuration(sf , ef) in j < k steps, then the following conditions

D J•K = {∅}
D J∆, α:κK = {δ[α 7→ I] | δ ∈ D J∆K ∧ I ∈ K JκK}

G J∆ ` •K δ = {(k, q, {}, ∅)}
G J∆ ` Γ, x:τK δ =

{(k, q, ψ, γ[x 7→ v]) |
ψ = (ψΓ �k ψx) ∧
(k, qΓ, ψΓ, γ) ∈ G J∆ ` ΓK δ ∧ qΓ � q ∧
(k, qx, ψx, v) ∈ T J∆ ` τ : ?K δ ∧ qx � q}

J∆; Γ ` e : τK def
=

∀k ≥ 0. ∀δ, qΓ, ψΓ, γ.
δ ∈ D J∆K ∧ (k, qΓ, ψΓ, γ) ∈ G J∆ ` ΓK δ ⇒
Comp(k, ψΓ, γ(e), T J∆ ` τ : ?K δ)

Figure 17. λrefURAL Model (Additional Interpretations)

hold. First,ef must be a value with a qualifierqf and a set of
beliefsψf such that(k− j, qf , ψf , ef) ∈ χ. Second, the following
two sets of beliefs must be compatible:ψf (whatef believes) and
ψr (what the rest of the computation believes — note that these
beliefs remain unchanged). Third, the final storesf must satisfy
the combined set of these beliefs.

Note that sinceψr is an arbitrary set of beliefs compatible
with ψs, one instantiation ofψr is the local store description that
includes all of the shared locations ofψs. By requiring thatψf and
sf are compatible withψr, we ensure that the types and qualifiers
and allocation status of shared locations are preserved.

Judgements: Type SoundnessFinally, the semantic interpreta-
tion of a typing judgementJ∆;Γ ` e : τK (see Figure 17) asserts
that for allk ≥ 0, if δ is a mapping from type-level variables to an
element of the appropriate kind interpretation, andγ is a mapping
from variables to closed values, andψΓ is a local store description
for the values in the range ofγ, then(k, ψΓ, γ(e)) is in the inter-
pretation ofτ as a computation (Comp(k, ψΓ, γ(e), T JτK)).

Our extended technical report [3] gives the proof of the follow-
ing theorem which shows the soundness of theλrefURAL typing rules
with respect to the model.

THEOREM 1. (λrefURAL Soundness)

If ∆;Γ ` e : τ , thenJ∆;Γ ` e : τK.

An immediate corollary is type-safety ofλrefURAL. Another in-
teresting corollary is that if we evaluate a closed, well-typed term
of base type (e.g.,q1�) to a value, then the resulting store will have
no linear or relevant references.

COROLLARY 2. (λrefURAL Safety)

If •; • ` e1 : τ and({}, e1) 7−→∗ (s2, e2),
then either∃v2. e2 ≡ v2 or ∃s3, e3. (s2, e2) 7−→ (s3, e3).

COROLLARY 3. (λrefURAL Collection)

If •; • ` e1 : q1� and({}, e1) 7−→∗ (s2, v2),
then∀l ∈ dom(s2). s

qual
2 (l) � A.

Proof (λrefURAL Safety)

Suppose•; • ` e1 : τ and({}, e1) 7−→∗ (s2, e2).
If ¬irred(s2, e2), then∃s3, e3. (s2, e2) 7−→ (s3, e3).
If irred(s2, e2), then∃i. ({}, e1) 7−→i (s2, e2).
Theorem 1 applied to•; • ` e1 : τ yieldsJ•; • ` e1 : τK.
J•; • ` e1 : τK instantiated withi+ 1 ≥ 0, ∅ ∈ D J•K,

and(i+ 1,U, {}, ∅) ∈ G J•K ∅
yieldsComp(i+ 1, {}, e1, T J• ` τ : ?K ∅).

Comp(i+1, {}, e1, T J• ` τ : ?K ∅) instantiated withi < i+1,
s1 :i+1 ({} �i+1 {}), ({}, e1) 7−→i (s2, e2),

s :k ψ
def
= ∃S : 2Locs .

∃Fψ : S → LocalStoreDesc.
∃Fq : S → Quals.

letψ∗ = (ψ �k
Jl∈S
k Fψ(l)) in

dom(ψ∗) = S ∧ dom(s) ⊇ S ∧
∀l ∈ S.
∀j < k. (j,Fq(l), bFψ(l)cj , sval(l)) ∈ bψtype

∗ (l)ck ∧
squal(l) = ψtype

∗ (l) ∧

9>>>>=
>>>>;

congruity

∀S† ⊆ S.
dom(ψ) ⊆ S† ∧ (∀l ∈ S†. dom(Fψ(l)) ⊆ S†) ⇒ S = S† ∧

�
minimality

∀l ∈ dom(s).
R � squal(l) ⇒ l ∈ S

�
reachability

Figure 15. λrefURAL Model (Store Satisfaction)

s

l0 7→ (q0, v0) l4 7→ (q4, v4)

��

l7 7→ (q7, v7)

��

l11 7→ (q11, v11)

l1 7→ (q1, v1)

BC
GF //

l5 7→ (q5, v5)

BC
GF //

BC
GF
��

l8 7→ (q8, v8) l12 7→ (q12, v12)

l2 7→ (q2, v2) l9 7→ (q9, v9)

��

l13 7→ (q13, v13)

UU

��
l3 7→ (q3, v3) // l6 7→ (q6, v6)

BC
GF //

l10 7→ (q10, v10)

UU

l14 7→ (q14, v14)

:

ψ_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l0 7→ (q0, T Jτ0K) ? ? ?

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
l1 7→ (q1, T Jτ1K) ? ? ?

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l2 7→ (q2, T Jτ2K) ? ? ?

_ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _
l3 7→ (q3, T Jτ3K) ? ? ?

≡

s : ψ_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

l0 7→ (q0, v0 : T Jτ0K)
_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

l4 7→ (q4, v4 : T Jτ4K)

��

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

l7 7→ (q7, v7 : T Jτ7K)

��

l11 7→ (q11, v11)

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l1 7→ (q1, v1 : T Jτ1K)

BC
GF //

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l5 7→ (q5, v5 : T Jτ5K)

BC
GF //

BC
GF
��

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l8 7→ (q8, v8 : T Jτ8K) l12 7→ (q12, v12)

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l2 7→ (q2, v2 : T Jτ2K)

_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l9 7→ (q9, v9 : T Jτ9K)

��

l13 7→ (q13, v13)

UU

��_ _ _ _ _ _ _ _�
�

�
�

_ _ _ _ _ _ _ _
l3 7→ (q3, v3 : T Jτ3K) //

_ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _

l6 7→ (q6, v6 : T Jτ6K)
BC
GF //

_ _ _ _ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _ _ _ _

l10 7→ (q10, v10 : T Jτ10K)

UU

l14 7→ (v14, v14)| {z }
dom(ψ)| {z }

dom(ψ∗) = S

where
Fψ(l1)

?
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l4 7→ (q4, T Jτ4K) ? ?

? ? ? ?

? ? ? ?

? ? ? ?

Fψ(l5)

? ?
_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l7 7→ (q7, T Jτ7K) ?

? ? ? ?

? ? ? ?

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

l3 7→ (q3, T Jτ3K) ? ? ?

etc.

Figure 16. s : ψ Example

andirred(s2, e2)
yieldsq2 andψ2 such thats2 :1 (ψ2 �1 {})
and(1, q2, ψ2, e2) ∈ T J• ` τ : ?K ∅.

Recall thatT J• ` τ : ?K ∅ ∈ Type
andType ⊆ CandUberTypeω = 2CandAtomω .

Hence,(1, q2, ψ2, e2) ∈ CandAtomω =
S
k≥0 CandAtomk,

which implies thate2 ∈ CValues and∃v2. e2 ≡ v2. ut
Proof (λrefURAL Collection)

Suppose•; • ` e1 : q1� and({}, e1) 7−→∗ (s2, v2).
By the reasoning above,(1, q2, ψ2, v2) ∈ T J• ` q1� : ?K ∅,

which implies thatq2 = q, ψ2 = {}, andv2 = 〈〉.
Recall thats2 :1 ({} �1 {}) ≡ s2 :1 {} ≡ ∃S,Fψ,Fq.
The minimality criteria ofs2 :1 {} instantiated with∅ ⊆ S,

dom({}) ⊆ ∅, and(∀l ∈ ∅. dom(Fψ(l)) ⊆ ∅)
yieldsS = ∅.

The reachability criteria ofs2 :1 {}
yields∀l ∈ dom(s2). R � squal

2 (l) ⇒ l ∈ ∅,
which implies∀l ∈ dom(s2). s

qual
2 (l) � A. ut

4.4 Discussion

A key difference in the model presented here, as compared to previ-
ous models of mutable state, is thelocalizationof the store descrip-
tion. Recall that we identify the local store description of a value
with those locations that are directly accessible from the value. This
is in contrast to the AAV model of unrestricted references [1, 4],
where the global store description of any value describeseverylo-
cation that has been allocated. It is also in contrast to our previous
model of linear references [23, 2], where the store description of a
value describes thereachablelocations from that value.

The transition from a global store description to a local store de-
scription is motivated by the insight that storing a unique object in
a shared reference “hides” the unique object in some way. Note that
the shared reference must mediate all access to the unique object.
The authors have found it hard to construct a model where the store
description of a value (in the interpretation of a type) describes the
entire store or even the store reachable from the value. When one
attempts to describe the entire store, there is a difficulty identify-
ing where the “real” occurrence of a unique location is to be found.
When one attempts to describe the reachable store, there is a diffi-
culty defining the� relation; it cannot be defined point-wise, and
one is required to formally introduce the notions of directly- and
indirectly-accessible locations. Furthermore, the reachable store is
a property of the actual store, not of the type; hence, it seems bet-
ter to confine reachability to the store satisfaction relation. We fur-
ther note that the model of mutable references given in this paper
subsumes the models of mutable references cited above. Hence,
the technique of localizing the store description subsumes the tech-
niques used by previous approaches.

Although our model of substructural references is different from
the previous model of unrestricted references, our model retains the
spirit of the step-indexed approach used in Foundational PCC [6, 7]
and may be applicable in future extensions of FPCC. This ap-
proach, in which the model mixes denotational and operational
semantics, offers a number of distinct advantages over a purely
syntactic approach to type soundness. One obvious advantage of
this approach is that it gives rise to a simpler set of typing rules;
note that our typing judgement requires neither a store description
component nor a rule for locations. A less obvious advantage of
this approach is that it gives rise to stronger meta-theoretic results.
For example, the impredicative polymorphism ofλrefURAL implies a
strong parametricity theorem: an element ofT J∀α: ? . τK behaves
uniformly onall elements ofType, which includes elements that do
not correspond to the interpretation of any syntactic type. This ap-
proach also naturally extends to union and intersection types and to

an inclusion interpretation of subtyping. Finally, a (well-founded)
set-theoretic model means that soundness and safety proofs are
amenable to formalization in the higher-order logic of FPCC.

While we are partial to the step-indexed approach, we acknowl-
edge that there is no fundamental difficulty in adopting a purely
syntactic approach to proving the type soundness of substructural
state. However, we believe thatanyproof of type soundness must
adopt many of the insights presented here. For example, we conjec-
ture that the typing rule for well-typed configurations would natu-
rally take the form:

ψ∗ = ψ �
Kl∈S

Fψ(l)

dom(ψ∗) = S dom(s) ⊇ S
∀l ∈ S. ·; ·;Fψ(l) ` sval(l) : ψtype

∗ (l) ∧
squal(l) = ψqual

∗ (l)

` s : ψ ·; ·;ψ ` e : τ

` (s, e) : τ

Note that the judgement̀ s : ψ mirrors the store satisfaction pred-
icate given in Figure 15. The store typing component complicates
the judgement∆;Γ;ψ ` e : τ , which must further rely upon an
operatorψ1 � ψ2 = ψ to split the locations inψ between the store
typingsψ1 andψ2. Splitting the store typing is necessary to ensure
that a given unique location is used by at most one sub-expression.
The� operator in the syntactic approach would need to satisfy
many of the same properties as the�k operator in the step-indexed
approach (e.g., identical beliefs about locations in the common do-
main and no unique locations in the common domain).

5. Related Work
Our λURAL is most directly influenced by the presentation of sub-
structural type systems by Walker [30], which in turn draws upon
the work of Wansbrough and Peyton-Jones [33] and Walker and
Watkins [32]. Relative to that work, we have added both relevant
and affine qualifiers, which is necessary to account for the var-
ied forms of linearity found in higher-level programming-language
proposals.

A related body of work is that on type systems used to track
resource usage [28, 22, 33, 21, 16, 19]. We note that the usage
subsumption found in these systems (e.g., a “possibly used many
times” variable may be subsumed to appear in a context requiring
a “used exactly once” value) is not applicable in our setting (e.g., it
is clearly unsound to subsumeUref τ to Lref τ), due to differences
in the interpretation of type qualifiers.

Section 1 noted a number of projects that have introduced some
form of linearity to “tame” state. An underlying theme is that
linearity and strong updates can be used to provide more effective
memory management (c.f. [10, 18, 9, 8]).

More recent research has explored other ways in which unique
and shared data may be mixed. For example, Cyclone’salias
construct [17] takes a unique pointer and returns a shared pointer
to the same object, which is available for a limited lexical scope.
Vault’s focus and CQuals’srestrict constructs [14, 5] provide
the opposite behavior: temporarily giving a linear view of an object
of shared type. Both behaviors are of great practical significance.

Our model’s semantic interpretations seem strongly related to
the logic of Bunched Implications (BI) [20] and Reynolds’ separa-
tion logic [25]. In particular, our interpretation of� and(resem-
ble the resource semantics for the∗ and−∗ connectives in BI.

Finally, Boyland and Retert have recently proved the soundness
of a variation of Vault by giving an operational semantics of “adop-
tion” [11]. The authors note that adoption may be used to embed
a unique pointer within another object; their notion of uniqueness
most closely resembles our affine references, as access keys may
be dropped.

6. Conclusion and Future Work
We have presented theλrefURAL-calculus, a substructural polymor-
phic λ-calculus with mutable references of unrestricted, relevant,
affine, and linear sorts. We motivated the design decisions, gave
a type system, and constructed a step-indexed model ofλrefURAL,
where types are interpreted as sets of store description / value pairs,
which are further refined using an index representing the number of
steps available for future evaluation.

In previous work [23, 2], we separated the typing components
of a mutable object into two pieces: an unrestrictedpointer to the
object and a linearcapability for accessing the contents of the
object. We believe that we can extend the current language and
model in the same way. The advantage of this approach is that
separating the name of a reference from what it currently holds
gives us a model of alias types [27, 31].

As noted in the previous section, allowing a unique pointer to
be temporarily treated as shared (and vice versa) can be useful
in practice. Understanding how to model these advanced features
is a long-term goal of this research. A promising aproach is to
model regions as a linear capability to access objects in the region
and allow changes in reference qualifiers to be mediated by this
capability.

Acknowledgments
We would like to thank Dan Grossman, Aleks Nanevski, and Dan
Wang for their helpful comments.

References
[1] Amal Ahmed, Andrew W. Appel, and Roberto Virga. An indexed

model of impredicative polymorphism and mutable references.
Available athttp://www.cs.princeton.edu/∼appel/papers/
impred.pdf, January 2003.

[2] Amal Ahmed, Matthew Fluet, and Greg Morrisett.L3: A linear
language with locations. Technical Report TR-24-04, Harvard
University, October 2004.

[3] Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed
model of substructural state. Technical Report TR-16-05, Harvard
University, July 2005.

[4] Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD
thesis, Princeton University, 2004.

[5] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi.
Checking and inferring local non-aliasing. InProc. Programming
Language Design and Implementation (PLDI), pages 129–140, June
2003.

[6] Andrew W. Appel. Foundational proof-carrying code. InProc. Logic
in Computer Science (LICS), pages 247–258, June 2001.

[7] Andrew W. Appel and David McAllester. An indexed model
of recursive types for foundational proof-carrying code.ACM
Transactions on Programming Languages and Systems, 23(5):657–
683, September 2001.

[8] David Aspinall and Adriana Compagnoni. Heap bounded assembly
language.Journal of Automated Reasoning, 31:261–302, 2003.

[9] David Aspinall and Martin Hofmann. Another type system for
in-place update. InProc. European Symposium on Programming
(ESOP), pages 36–52, March 2002.

[10] Henry Baker. Lively linear LISP—look ma, no garbage.ACM
SIGPLAN Notices, 27(8):89–98, 1992.

[11] John Tang Boyland and William Retert. Connecting effects and
uniqueness with adoption. InProc. Principles of Programming
Languages (POPL), pages 283–295, January 2005.

[12] James Cheney and Greg Morrisett. A linearly typed assembly
language. Technical Report 2003-1900, Department of Computer
Science, Cornell University, 2003.

[13] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols
in low-level software. InProc. Programming Language Design and
Implementation (PLDI), pages 59–69, June 2001.

[14] Manuel F̈ahndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. InProc. Programming
Language Design and Implementation (PLDI), pages 13–24, June
2002.

[15] Jean-Yves Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[16] Jörgen Gustavsson and Josef Svenningsson. A usage analysis with
bounded usage polymorphism and subtyping. InProc. International
Workshop on Implementation of Functional Languages (IFL), pages
140–157, September 2001.

[17] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim.
Experience with safe manual memory-management in Cyclone. In
Proc. International Symposium on Memory Management (ISMM),
pages 73–84, October 2004.

[18] Martin Hofmann. A type system for bounded space and functional
in-place update. InProc. European Symposium on Programming
(ESOP), pages 165–179, March 2000.

[19] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In
Proc. ACM Principles of Programming Languages (POPL), pages
331–342, January 2002.

[20] Samin Ishtiaq and Peter O’Hearn. BI as an assertion language
for mutable data structures. InProc. Principles of Programming
Languages (POPL), pages 14–26, January 2001.

[21] Naoki Kobayashi. Quasi-linear types. InProc. Principles of
Programming Languages (POPL), pages 29–42, January 1999.

[22] Torben Æ. Mogensen. Types for 0, 1 or many uses. InProc.
International Workshop on Implementation of Functional Languages
(IFL), pages 112–122, 1998.

[23] Greg Morrisett, Amal Ahmed, and Matthew Fluet.L3: A linear
language with locations. InProc. International Conference on Typed
Lambda Calculi and Applications (TLCA), pages 293–307, April
2005.

[24] Peter W. O’Hearn and John C. Reynolds. From Algol to polymorphic
linear lambda-calculus.Journal of the ACM, 47(1):167–223, 2000.

[25] John C. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. InProc. Logic in Computer Science (LICS), pages
55–74, July 2002.

[26] Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and
Rinus J. Plasmeijer. Guaranteeing safe destructive updates through
a type system with uniqueness information for graphs. InDagstuhl
Seminar on Graph Transformations in Computer Science, volume
776 ofLecture Notes in Computer Science, pages 358–379. Springer-
Verlag, 1994.

[27] Fred Smith, David Walker, and Greg Morrisett. Alias types. InProc.
European Symposium on Programming (ESOP), pages 366–381,
March 2000.

[28] David N. Turner, Philip Wadler, and Christian Mossin. Once upon
a type. InProc. Functional Programming Languages and Computer
Architecture (FPCA), pages 1–11, June 1995.

[29] Philip Wadler. Linear types can change the world! InProgramming
Concepts and Methods, April 1990. IFIP TC 2 Working Conference.

[30] David Walker. Substructural type systems. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 1,
pages 3–43. MIT Press, Cambridge, MA, 2005.

[31] David Walker and Greg Morrisett. Alias types for recursive data
structures. InProc. Workshop on Types in Compilation (TIC), pages
177–206, September 2000.

[32] David Walker and Kevin Watkins. On regions and linear types. In
Proc. International Conference on Functional Programming (ICFP),
pages 181–192, September 2001.

[33] Keith Wansbrough and Simon Peyton-Jones. Once upon a polymor-
phic type. InProc. Principles of Programming Languages (POPL),
pages 15–28, January 1999.

