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Abstract

The concept of a “unique” object arises in many emerging program-
ming languages such as Clean, CQual, Cyclone, TAL, and Vault. In
each of these systems, unique objects make it possible to perfor
operations that would otherwise be prohibited (e.g., deallocating
an object) or to ensure that some obligation will be met (e.g., an
opened file will be closed). However, different languages provide
different interpretations of “uniqueness” and have different rules
regarding how unique objects interact with the rest of the language.

Our goal is to establish a common model that supports each of

these languages, by allowing us to encode and study the interac-

tions of the different forms of uniqueness. The model we provide
is based on a substructural variant of the polymorphizalculus,

augmented with four kinds of mutable references: unrestricted, rel-
evant, affine, and linear. The language has a natural operational
semantics that supports deallocation of references, strong (type

varying) updates, and storage of unique objects in shared refer-

ences. We establish the strong soundness of the type system b
constructing a novel, semantic interpretation of the types.
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at line 3, we read the second cell, using the contents in a context
expecting an integer. If the function is called with actual arguments
that are different ref cells, then there is nothing in the function that

mwill cause a run-time type errorYet, if the same ref cell is passed

for each formal argument, then the update on line 2 will change the
contents of botlr1 andr2, causing a run-time type error to occur
atline 3.

SML (and most imperative languages) reject the above program,
because references awarestricted that is, they may be freely
aliased. In general, reasoning about unrestricted references is hard
because we need additional information to understand what other
values are affected by an update. In the absence of this information,
we must be conservative. For instance, in SML, we must assume
that an update to aimt ref could affect any otheint ref. To

[ensure type soundness, we must therefore require the type of the
_ref's contents be preserved by the update. In other words, most type

systems can only track invariants on refs, instead of program-point-
pecific properties. As a result, we are forced to weaken the type of
he ref to cover all possible program points. In the example above,
we must weakerr1’s type to “(int + bool) ref” and pay the
costs of tagging values, and checking those tags when the pointer
is dereferenced.
Unfortunately, in many settings, this weakened invariant is in-

sufficient. Hence, researchers have turned to more powerful sys-

General Terms Languages tems that do provide a means of ensuring exclusive access to state.

Keywords substructural type system, mutable references, step- In particular, many projects have introduced some form of linearity
indexed model to “tame” state. Linear logic [15] and other substructural logics give
rise to more expressive type systems, because they are designed to
1. Introduction precisely account for resources. _ _
) o ) ) ] For instance, the Clean programming language [26] relies upon
Consider the following imperative code fragment, written with 3 form of uniqueness to ensure equational reasoning in the pres-

SML syntax: . ' ' ence of mutable data structures. The Cyclone programming lan-
1. fun f(l.’f:mt ref, r2:int ref):int = guage [17] uses unique pointers to allow fine-grained memory
g' (1:11«2: Z;‘;e ; management. For example, a unique pointer may be updated from

uninitialized to initialized, and its contents may also be deallocated:
1. x = malloc(4); // x: —-—— *‘U
2. *x = 3; // x: int *‘U
3. free(x); // x: undefined

*T_his _n_1ateria| is based upon work supported by the Air Force Office of |4 poth of these languages, a unique object may be implicitly
Scientific Research under Award No. F49620-03-1-0156 and Award No. discarded, yielding a weak form of uniqueness cadifihity.

F49620-01-1-0298 and by the Office of Naval Research under Award No. -
N00014-01-1-0968. Any opinions, findings, and conclusions or recommen- The Vault programming language [13] uses tracked keys to en-

dations expressed in this publication are those of the author and do not [OTCE resource management protocols. For example, the following
necessarily reflect the views of these organizations or the U.S. Government,'nterface specifies that opening a l_‘lle returns a new tr_ack_ed key,
which must be present when reading the file, and which is con-

sumed when closing the file:
1. interface I0 {

At line 1, we assume ref cells1 and r2 whose contents are
integers. At line 2, we update the first cell with a boolean. Then,

2 type FILE;
Permission to make digital or hard copies of all or part of this work for personal or 3 tracked($F) FILE open(string) [ +$F 1;
classroom use is granted without fee provided that copies are not made or distributed 4. char read (tracked($F) FILE) [ $F 1;
for profit or commercial advantage and that copies bear this notice and the full citation 5 void close (tracked($F) FILE) [ -$F ]’ }

on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26-28, 2005, Tallinn, Estonia.

Copyright(© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

1We assume that values are represented uniformly so that, for instance, unit,
booleans, and integers all take up one word of storage.



Because tracked keys may be neither duplicated nor discarded,2. )\URAL- A Substructural \-Calculus
Vault supports a strong form of uniqueness technically termed
linearity, which ensures that an opened file must be closed exactly
once. Other projects [32, 12] have also incorporated linearity to

Advanced type systems for state rely upon limiting the ordering

and number of uses of data and operations to ensure that state is

handled n s safe manner, For xample (sael)dealocaing a deta
Both forms of uniqueness (linearity and affinity) suppstrong In order to establish this property, a type system may ensure that the

updates whereby the type of a stateful object is changed in re- .
sponse to stateful operations. For example, the Cyclone code frag-data structure is usest most oncpafter one use, the data structure
may be safely deallocated, since there can be no further uses.

ment above demonstrates the type of the unique pointer changing A substructuratype system provides the core mechanisms nec-

from uninitialized to initialized (with an integer) in response to the essarv o restrict the number and order of uses of data and opera-
assignment. The intuitive understanding is that a unique object can- ry . p
tions. A conventional type system, such as that employed by the

not be duplicated, and thus there are no aliases to the object; henceg. Iv-tvped-calcul ith a tvping iud (e o -
no other portion of the program may observe the change in the ob- ITipfiy yt%er Ct? Cl: urS,I er art%’p'f]g judgement i e
ject’s type, so it is safe to perform a strong update. sausties three structural properties.

Yet, programming in a language with only unique (i.e., linear or Exchange If 'y, @70, yimy, T2 e 7,
affine) objects is much too painful. In such a setting, one can only thenl'y, y:7y, 270, 2 Fe: 7.
construct tree-like data structures. Hence, it is not surprising that ~ Contraction  If I'y,x:7;,y:72, o e 7,
both Cyclone and Vault allow a programmer to put unique objects thenl'y, z:72, T2  elz/x][2/y] : T.

in shared objects, with a variety of restrictions to ensure that these Weakening IfT'Fe: 7, thenl, z:my F e : 7.

mixed objects behave in a safe manner. In fact, understanding they, contrast, a substructural type system is designed so that one or
various mechanisms by which unique objects (with strong updates) e of these structural properties do not hold in general. Among
may safely coexist and mix with shared objects is currently an yne most widely studied substructural type systems ardiribar
active area of research [5], though much of it has focused on e systems [29, 24], derived from Girard's linear logic [15], in
high-level programming features, often without a complete formal ;1o all variables satisfExchange but linearly typed variables

aCC_IE)#m'f o | d | ith bl satisfy neithelContraction nor Weakening
¢ ere ore],: 't”'s natural to stu dy abcor(? I.anguag;wn mé’ta € In this section, we present substructural polymorphic A-
references of all sorts mentioned above: linear, affine, and unre- .0 1ys similar in spirit to Walker's linear lambda calculus [30].

stricted. The study of substructural logics immediately SUggests |, oy calculus, types and variables are qualified as unrestricted
one more sort —elevant which describes data that may be dupli- (U), relevant R), affine ), or linear ). All variables will sat-

cated but not implicitly discarded. Having made these distinctions, jsq, Exchange while only unrestricted variables will satisfy both
a number of design questions arise: What does it mean to duplicatecqnraction andWeakening allowing such variables to be used
or to discard areference? What operations may be safely performed, arbitrary number of times. We will require

with the different sorts of references? What combinations of sorts . . . . . .

for a reference and its contents are safe? . Ilnear_varlables to satls_fy neith@ontraction nor Weakening,
A major contribution of this paper is to answer these questions, en;unng t.hat such var_lables are HSed exactly once, ]

giving an integrated design of references for all of these substruc- © affine variables to satisfyVeakening (but not Contraction),

tural sorts (Section 3). Our design allows unique (linear and affine) ~ €nsuring that such variables are used at most once, and

values to be stored in shared (unrestricted and relevant) references, e relevant variables to satisfyontraction (but notWeakening),

while preserving the desirable feature that resources are tracked ensuring that such variables are used at least dnce.

accurately. Our language extends a cbrealculus with a straight-  The diagram below demonstrates the relationship between these

forward type system that provides data of each of the substruc- qyalifiers, inducing a lattice ordering.

tural sorts mentioned above (Section 2). The key idea, present in

other substructural type systems, is to break out the substructural linear (L)

sorts as type “qualifiers.” Rather than prove soundness via a syn- / \

tactic subject-reduction proof, we adopt an approach compatible affine (A) relevant(R)
with that used in Foundational Proof Carrying Code [6, 7]. We con-

struct a step-indexed model (Section 4) where types are interpreted \ /

as sets of store description / value pairs, which are further refined unrestricted U)

using an index representing the number of steps available for future

evaluation. We believe this model improves on previous models of 2.1 Syntax

mutable state, cqntributing a compositional notion of aliasing gnd Figure 1 presents the syntax for our core calculus, dubbed the

ownershlpthatdlre(_:tly addresses the subtleties of allowing unique \URAL_qaicylus. Most of the types, expressions, and values are

vglues to be stc_Jred in shz_ared references_. Furthermore, we achlev_e Based on a traditional polymorphiecalculus.

simple model, in comparison to denotational and domain-theoretic

approaches, that easily extends to impredicative polymorphism andKind and Type Levels We structure our types as a qualifier

first-class references. Constructing a (well-founded) set-theoretic { applied to a pre-typ&, yielding the four sorts of types noted

model means that our soundness and safety proofs are amenablabove. The qualifier of a type dictates the structural operations that

to formalization in the higher-order logic of Foundational PCC. may be applied to values of the type, while the pre-type dictates

Hence, our work provides a useful foundation for future extensions the introduction and elimination forms. The pre-tyfges 71 ® 2,

of Foundational PCC, which currently only supports unrestricted andr; — 7 correspond to the unit, pair, and function types of the

references, but is an attractive target for source languages wishingpolymorphicA-calculus.

to carry high-level security guarantees, enforced by type states and

linear resources, through to machine code. 2In the logic community, it is perhaps more accurate to use the qualifier
“strict” for such variables. However, “strict” is already an overloaded term
in the functional programming community; so, like Walker [30], we use
“relevant.”
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Figure 1. AURAL Syntax

Polymorphism over qualifiers, pre-types, and types is provided

by a single pre-typ&a:«. 7; we introduce a kind level to distin-

guish among the type-level terms that may be used to instantiate a 2 @ : QUAL a1 =g At a:QUAL
polymorphic pre-type (with kindQUAL, %, andx for qualifiers, AFU=a Al q =g ArFa=xL
pre-types, and types, respectively).

In an accompanying technical report [3], we show that it is also A QUAL AF& ¢ AFE <6
easy to extend our results to include sum @ 72), existential AFE=E A& <&

(Ja:k. ), and recursive fa:x. 7) pre-types and recursive func-
tions in the calculus, though we elide such constructs in this pre-

sentation. _ - i Ak a:* AFT % AR =€
This structuring of types as a qualifier applied to a pre-type fol-

lows that of Walker [30], but differs from other presentations of Abazl ARST ¢
linear lambda calculi that use exactly one modallty) o distin-
- . . d : AFT =<
guish unrestricted from linear types. It seems possible to introduce
alternative modalities (e.g;7 for affine and+r for relevant), but AF£: QUAL AFT ¢ AFT=XE
then we would have to consider their interaction (e.g., what does AFe=<¢ AFT,z7

—!+7 denote?). Also, with four distinct qualifiers, it is natural to
introduce qualfier polymorphism, which is best formulated by sep-
arating qualifiers from pre-types.

Figure 4. AURAL Statics (Sub-Qual Rules)

Expression Level Each pre-type has an associated value intro-

duction form. The pattern matching expression formes () = . ) . . .
e1 in ez andlet (z1,72) = 1 in e are used to eliminate units Despite these requirements, the type system is relatively simple.

(1) and pairs §), respectively. As usual, a function with pre-type  A° - typing judgements have the forty; I - e : 7 where the

1 —o 72 is eliminated via application; e, while a type-level ab- ~ contextsA andI” are defined as follows:
stractionvea:x. 7 is eliminated via instantiatioa(]. Type-level Term Context A == o | A, s
Note that expressions are not decorated with type-level terms. Value Context L = eo|Tar

This simplifies the semantic model presented in Section 4, where Thus, A is used to track the set of type-level variables in scope
soundness is with respect to typing derivations, and is appropriate (along with their kinds), whereds, as usual, is used to track the
for an expressive “internal” language. We leave as an open problemset of (expression-level) variables in scope (along with their types).
the formulation of appropriate inference and elaboration algorithms There may be at most one occurrence of a type-level varialie
yielding derivations in the type system of the next section, which A and, similarly, at most one occurrence of a variabla I".

would likely require some type-level annotations on expressionsin  Figure 2 presents the’RAt kinding rules and Figure 3 presents

a “surface” language. the A\URAL typing rules. In order to ensure the correct relationship
between a data structure and its components, we extend the lattice
ordering on constant qualifiers to types and contexts (see Figure 4).
The goal of the type system for’R*" is to approximate the re-  In the presence of qualifier and type polymorphism, we include the
quirements of languages like Vault and Cyclone, which ensure thatrulesA - U < aandA + « =< L, a conservative extension,
linear values are used exactly once, affine values are used at mostinceU andL are the bottom and top of the lattice. A more general
once, and relevant values are used at least once. Dually, the typeapproach would incorporate bounded qualifier constraints, which
system should ensure that only unrestricted and relevant values areve believe is straightforward, but doing so does not add to the
duplicated and only unrestricted and affine values are discarded. Todiscussion at hand.

prevent values from being implicitly copied or dropped when their As is usual in a substructural setting, our type system relies
containing value is duplicated or discarded, the type system mustupon a judgemenf\ ~ I" ~» 'y H I'; that splits the assumptions
also ensure that a (functional) value with a qualifier lower in the in I between the contexfs; andI'> (see Figure 5). Splitting the
lattice may not contain values with qualifiers higher in the lattice. context is necessary to ensure that variables are used appropriately
For example, an affine)) pair may not contain linealLj compo- by sub-expressions. Note thHatensures that aA or L assumption
nents, since we could end up dropping the linear components by appears in exactly one sub-context. On the other hdndnd R
dropping the pair, so the type sytem must rule out expressions of assumptions may appear in both sub-contexts, corresponding to
type” (‘71 ® 7). implicit duplication of the variables.

2.2 Static Semantics
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Figure 3. AURAL Static Semantics (Typing Rules)
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Figure 5. AURAL Statics (Context Split Rules)

The rule(MPair) is representative: the context is split Bito
type each of the pair components, and the types of each componen
are bounded by the qualifier assigned to the pair. Intuitively, the
L and A assumptions in the context are exclusively “owned” by
exactly one of the two components. Likewise, in the 1iHe), the
free variables ofl", which constitute the closure of the function,
must be bounded by the qualifier assigned to the function. Note that
the qualifier assigned to a function type is unrelated to the types
of the argument and result; rather, it is related to the abstracted
components that are used when the function is executed.

The rule(Weak) splits the context into a sub-context used to
type the expressioa and a discardable sub-context, consisting of
U andA variables, that are not required to type the expression. Note
that the rule(Weak) acts as a strengthen&deakening property,
allowing an arbitrary number df andA variables to be dropped
at once. The corresponding strengthe@ahtraction property is

incorporated into the judgemen - I" ~» T'; B I's, which allows
an arbitrary number dff andR variables to be copied at once.

ArefURAL- A gybstructural \-Calculus with
References

Languages like Vault and Cyclone include objects that change state
(e.g., file descriptors), so it is natural to include some stateful
values. We consider the difficult case of references, which can serve
as mutable containers for both functional values and stateful values.
Hence, we extend thaVRAt-calculus with mutable references, to
yield the A\*URAL_calculus. The reference pre-typef + may be
combined with a qualifieg to yield the four sortsy, R, A, L)
of references discussed earlier. We also introduce operations to
allocate fiew,) and deallocatefree) references, as well as to read
(rd), write (wr), and swap €w) their contents. Not all of these
bperations can be safely performed with all sorts of references,
as we discuss in Section 3.2. The syntactic extensions to support
references are as follows:

Type Level:

PreTypes

3.

T oo | ref T
Expression Level:
Locations l
Values v
Expressions e ... | newge | freee |

rde | wrejez | swep e

3.1 Operational Semantics

Figure 6 gives the small-step operational semantics\fgPRAt

as a relation between configurations of the fofme), where



Store s = {li+— (q1,v1),.--,ln — (¢n,vn)} Ref Ops Contents and Ops
U|RJA|L
(let-munit) (s,let () = () ine) — (s,€) d
newy wr
(let-mpair) (s,let (z1,z2) = (v1,v2) in e) — u weskupdtes) | *F X oyl X
(s, e[vr/z1][v2/z2]) shared! SZ
(app) (s, (Az.€)v) — (s,ef[v/z]) R newg :;r rd | wr |
(inst) (S, (A 6) []) - (S, 6) (weak updates) sw SwW SW
(new) (s,mewg ) +— (s {l~ (g,0)},0) A |l BT e |
(free) (5 4 {l = (Q7 ’U)}, free l) — (S, U) unique (strong updates)| SW sw
(read) (sw{l—(¢,v)},rdl) — newp rd | ol er
(sW{l— (¢,0)}, (1,v)) Lo free 1vr gy |gu | SV
(strong updates) | SW
(write) (sW{l— (q,v1)},wrlve) — e
(sW{l— (q,v2)},1) Figure 7. Operations for Substructural State

(swap) (sw{l— (q,v1)},swlve) —
(sw{l — (q,v2)}, (I, v1))

The reader may well wonder why each reference is “stamped”

(ctxt) (s,€) — (¢',¢)) with a qualifier at its allocation when the remainder of the opera-

* (s, Ele]) — (s',E[e']) tional rules are entirely agnostic with respect to a reference’s qual-
ifier. Essentially, the qualifier is a form of instrumentation, which,

Figure 6. \refURAL Operational Semantics when combined with the semantic model presented in Section 4,

allows us to guarantee that linear and relevant references cannot be

implicitly discarded. Such a property is difficult to capture exclu-

sively in the operational semantics (i.e., by ensuring that the ab-
s is a global store mapping locations to qualifiers and vafues. stract machine “gets stuck” when a linear or relevant reference is

The notations; W s2 denotes the disjoint union of the stores implicitly dropped). On the other hand, the abstract machine does
and so; the operation is undefined if the domains «af and s; “get stuck” when attempting to access a reference after it has been
are not disjoint. We use evaluation contexfs(omitted in this deallocated.

presentation) to lift the primitive rewriting rules to a standard, left-
to-right, innermost-to-outermost, call-by-value interpretation ofthe 3.2 Static Semantics
language.

Most of the rules are standard, so we highlight only those in-
volving references. The expressionew, e and free e perform
the complementary actions of allocating and deallocating mutable
references in the global store. Specifically, the expressésr e
evaluates: to a valuev, allocates a fresh (unallocated) locatibn
to store the qualifieg and valuev, and returnd. The expression
free e performs the reverse: it evaluate$o a locationl, deallo-
cated, and returns the value previously stored.at

The expressions for reading and writing a mutable reference
implicitly duplicate and discard (respectively) the contents of the
reference. The expressiot e evaluates to a locatiori, duplicates
the valuev stored at, and returng!, v), leaving the value stored at
I unchanged. Meanwhilerr e; e; evaluates; to a location/ and
ez to valuew,, storesv, at locationl, discards the value previously
stored at, and returns.

In languages with only unrestricted (ML-style) references, it is

As with the type system fokUFAt, we would like the type system

for \fURAL to ensure the property that no linear or affine value is
implicitly duplicated and no linear or relevant value is implicitly
discarded. With that in mind — and noting that only unrestricted
and relevant references may be implicitly copied (by thet

I ~ T'y H I's judgement), while only unrestricted and affine
references may be implicitly dropped (by t&eak) rule) — we

now answer the questions we laid out in Section 1: What operations
may be safely performed with the different sorts of references?
What combinations of sorts for a reference and its contents are
safe? These answers are summarized in Figure 7.

First, consider what it means to duplicate a reference. Opera-
tionally, a reference is a location in the global store. Therefore, du-
plicating an unrestricted or relevant referercsimply yields two
copies ofl — while the value stored dtis not duplicated. Since
duplicating a shared reference does not alter the uniqueness of its
customary forrd to return only the contents éfand forwr to re- contents, it is not only reasonable_but also extremely _useful_to al-

low shared references to store unique values. In particular, it per-

trn 0- However, we do not wish to consider reading or writing a mits the sharing of (large) unique data structures without expensive
linear (resp. affine) reference as the exactly-one-use (resp. at-least-

. copying.
one-use) of the value. Therefore, theandur (andsw) operations. On the other hand, dropping an unrestricted or affine reference
return the locatior that was read or written, which remains avail-

able for future use. The behavior of ML-stvle references mav be effectively drops its contents, since this reference may (must, in the
recovered by im Iiéitl discarding the return):ed location y case of affine) have been the only copy.off the contents were a
Yy implicitly g . ) linear or relevant value, then the exactly-one-use and at-least-one-
The expressioBw e; e combines the operations of dereferenc-

. ; . use invariants (respectively) would be violated. Hence, we cannot
ing and updating a mutable reference, but has the attractive prOpertyallow linear and relevant values (which cannot be discarded) to be

itggt;vr\'/ﬁ't?%rr il\j\?zlalpc)zggzrr;t)i:)(rj]icnagjIsoiz;/t?clal;efn’:stfﬁatr?;é F;ﬁg?;?é stored in unrestricted or affine references (which can be discarded).
of the location’s contents. The static semantics will permit weak Considering yet an_other axis, we note thé.u linear and affine
(type-invariant) updates on all references (with some additional references must be unique. Hence, we ass unique references,
caveats), but will restrict strong (type-varying) updates to unique and also perform strong updates on them. Shared references, on the

! other hand, can never be deallocated and can only support weak
references.

updates.

As we noted above, thed operator induces an implicit copy
3We write s9U2! (1) ands*?'(1) for the respective projections efl). while thewr operator induces an implicit drop. Therefore, whether
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Figure 8. A™fURAL Static Semantics (Kinding and Typing Rules)

we can read from or write to a reference depends entirely on 4. A Step-Indexed Model

the qualifier of its contentsrd is permitted if the contents are
unrestricted or relevant (i.e., duplicabley; is permitted if the

contents are unrestricted or affine (i.e., discardable). The operation
sw is permitted on any sort of reference, regardless of the qualifier
of its contents. As noted above, strong writes and strong swaps
which change the type of the contents of the location, are only

permitted on unique references.
Figure 8 gives the additional typing rules faF"RAL. We note
that the typing rules for corg”RAt terms remain unchanged. There

is no rule for locations, as locations are not allowed in the external

language. Also note that t{&lew) and(Free) rules act as the in-
troduction and elimination rules féref T types, while théRead),
(Write), and(Swap) rules maintain an exactly-one-use invariant on
references by consuming a value of typef 7, and by producing
a value of typéref 1, (possibly withr; = 7).

Finally, we note thatir may be encoded using an explieit
and an implicit drog

AFT~ T HDy

ATi ke :érefr  AFT=<A
AT F :
(Write(Weak)) n2t et
A;T'Fwrepes: Sref r
def

=" let (r,z) = swej ez in /I using(Swap(Weak))
/I dropz, notingA F 7 <A
T

However,rd may not be encoded using an explisit and an

implicit copy, as a suitable (discardable) dummy value cannot in

general be synthesized.
AThHe:érefr  AFT=R

A;Thrde:"Crefr®7)

def let (r,z) =swe? in /[ whereA;T'F 7: 7

/I copyz, notingA +7 <R
let (r,y) =swra in // using(Swap(Weak))
/I dropy, but not necessariA - 7 < A

(r,z)

(Read)

4The encoding of ar typed by theWrite(Strong)) rule makes use of the
same term, but an alternate typing derivation.

We prove the type soundness)$fU*L in a manner similar to that
employed by Appel’s Foundational PCC project [6]. The technique
uses syntactic logical relations (that is, relations based on the op-
erational semantics) where relations are further refined by an index

'that, intuitively, records the number of steps available for future

evaluation. This stratification is essential for modeling the recur-
sive functions (available via backpatching unrestricted references)
and impredicative polymorphism present in the language.

4.1 Background: A Model of Unrestricted References

Our model is based on the indexed model of ML-style references
by Ahmed, Appel, and Virga [1, 4], henceforth AAV. In their
model, the semantic interpretatiGh[r] of a (closed) typer is

a set of triples of the fornfk, ¥, v), where,k is a natural number
(called theapproximation indexr step indek, ¥ is a (global) store
typing that maps locations to (the interpretation of) their designated
types, andv is a (closed) value. Intuitively(k, ¥, v) € T [7]
says that in any computation running for no more thkasteps,v
cannot be distinguished from values of typeFurthermore, since
dereferencing a location consumes an execution step, in order to
determine whethey has typer for & steps it suffices to know the
type of each store location fdr — 1 steps; hencey¥ need only
specify each location’s type to approximatién— 1. We use a
similar indexing approach which is key to ensuring that our model
is well-founded (as we shall demonstrate in Section 4.3).

4.2 Towards a Model of \"¢fURAL

Aliasing and Ownership Though our model is similar to AAV,

the presence of shared and unique references places very differ-
ent demands on the model, which we illustrate by considering
the interpretation of product types in various settings. In a lan-
guage withonly unrestrictedeferences (e.g. AAV), one would say

(k‘, \IJ, <'U1,'U2>) cT |I7'1 ® ’7'2]] if and onIy if (k, \I/,1)1) c T[[T1]]
and(k, U, v9) € T [72], where the store typing describesvery
location allocated by the program thus far. In this setting, every lo-
cation (in¥) may bealiased hence, the model allows andv; to

point to data structures that overlap in the heap.



ml

(a) (k, \I/,Ql,:c) € T[[Tl]]

s N
L l

l3I;IU
14@/4
l5|:|A

(b) (k,¥,Q2,y) € T [2]

l4|¥|A
l5|:|/—\

(c) Problem2; W Q2 = undefined

Figure 9. Unique References in Shared References: Aliased or Owned?

In a language wittonly linear references [23, 2], however, one
must ensure that the set of (linear) locations reachable frpi
disjoint from the set of locations reachable fram This mirrors

the form(k, ¥, Q, ©, v) whereV is as before, but nof2 describes
unigueownedlocations, (i.e., those reachable franwithout in-
directing through a shared reference), whidedescribes unique

the fact that we can only construct tree-like data structures in this aliasedlocations, (i.e., those thagannotbe reached without indi-
setting. Furthermore, it guarantees the safety of strong updatesrecting through a shared cell). The intuition is that the interpretation

by providing a notion ofexclusive ownershipHence, to model

of 11 ® T2 splitsQ into disjoint pieces for each component of the

a language with only linear references, it is useful to replace the pair, but allows each component to uBend® unchanged.

global store descriptiol with a description of only thaccessible
(reachable) locations in the store, $yintuitively, when we write
(k,Q,v) € T [r], we intend for(2 to describe only the subset of
store locations that are accessible from, and hence, “owned’ by
Thus, one would sagk, 2, (vi,v2)) € 7 [11 ® 2] if and only if
(k,Q1,v1) € T [m1] and(k, Q2,v2) € T [72], where the is the
disjoint union ofQ2; and(,.

This proposal, however, is fraught with complications. In par-
ticular, whether a unique location belongs{inor © depends on
the configuration of the entire program, rather than just the type of
the location. This limits the compositionality of the model. For in-
stance, considdg in Figure 9(c). Clearlyis must appear ir® as
it is reachable from an unrestricted location. However, if locations
l1, 12, I3, andls did not exist, therds could appear if2. In the next

For thex™fURAL_calculus, we tried to build a model that supports ~ section, we propose a far simpler solution that we consider one of
both aliasing and ownership as follows. We defined the semantic the main technical contributions of our work.

interpretation of a typeZ [r] as the set of tuples of the form
(k, U, Q,v) whereV describes every andR location allocated
by the program an€ describes only thos& andL locations that
are reachable from (and owned hy)The interpretation of; ® 2
then naturally yieldstk, ¥, Q, (v1,v2)) € T [r1 ® 2] if and only
if (k,¥,Q1,v1) €T [n] and(k, ¥,Q2,v2) € 7T [12], where the
Q is the disjoint union of2; andQ-.

Unfortunately, the above model did not suffice ffURAL,
since it assumes that every unique location reachable franex-

clusively owned by, which is not the case when unique references

may be stored in shared references.

4.3 A Model with Local Store Descriptions

In our model of thexfURAL_calculus, the semantic interpretation
of a type7 [r] is a set of tuples of the fornik, ¢, ¢, v), where

the local store description) describes only a part of the global
store. Intuitively,?) is the set of “beliefs” about the locations that
appear as sub-expressions of the valuBuch locations are said to
be directly accessiblérom the valuev. Conversely, locations that
areindirectly accessibldrom the valuev are those locations that
are reachable fronw only by indirecting through one (or more)
references. The local store descriptigrsays nothing about these
indirectly-accessible locations. This enhances the compositionality

Unique References in Shared References: Aliased or Owned? of our model, making it straightforward to combine local store

Consider the situation depicted in Figure 9(a) wherenaps to
1 and locationgl; throughls are reachable fromx. Locations
“owned” by x are shaded. Notice thatand!, are unique locations
owned byz, while I, and s are unique locations that must

consider aliased, since they can be reached (from other progral

subexpressions) via the unrestricted locatipririgure 9(b) depicts
such a subexpressiop, Note thaty maps tols whose contents
aliasis, makingi4 andls reachable fromy.

In \'URAL we may safely construct the paie, y) (shown in
Figure 9(c)), but the interpretation ef ® 7» that we proposed
above prohibits such a pair since locatidnsndis occur in both

Q; andQ, violating the requirement that their domains be disjoint.

To model the\™""*AL_calculus, we tried to further refine our
model so that the interpretation of a type[7] is a set of tuples of

m

descriptions with one another.

4.3.1 Definitions

We use the meta-variable to denote sets of tuples of the form
(k,q,%,v) and the meta-variable to denote partial maps from
locations! to tuples of the forng, x).> Wheny corresponds to the
semantic interpretation of a type af#, ¢,v,v) € x, we intend
thatq is the qualifier ofv, 1 is the local store description of and

v is a closed value. Whe corresponds to a local store description
andy (1) = (g, x), we intend thay is the qualifier of the reference
andy is the semantic interpretation of the type of its contents.

5We writep9u2 (1) andwy®Pe (1) for the respective projections gf(l).



(a) PreType/Type Interpretation (Notation) x == {(k,q,%,v),...}
Local Store Description (Notation) Y u= {l—(¢g,x),..-}
(b) CandAtomy, d§f {(4,q,%,v) € N X Quals x Uj<k CandLocalStoreDescj x CValues |
j < k Ay € CandLocalStoreDesc;}
CandUber Type,, def  candatom
CandLocalStoreDescy, d:8f Locs — Quals x CandUberType,,
def
CandAtom, = Ukzo CandAtomy,
CandUberType,, def 9 CandAtom., D Ugso CandUberType,,
CandLocalStoreDesc,, d:ef Locs — Quals x CandUberType,, 2 Ukzo CandLocalStoreDescy,

def . . .
(© Ixle = AU,av.v) | i<kA(q9,v) €x}

€ CandUberType, — CandUberType,,

def

[l = {l—(a, x]r) | L€ dom(y) Av(l) = (g, X)}
[S CandLocalStoreDesc,, — CandLocalStoreDescy,
def ual
Plg,¥) = Vi€ dom(y). v3(l) 2 ¢q
[S Quals x CandLocalStoreDesc,, — P
Rw) L' vie dom(w). (1) < A=V q, -, ) € UPPE(D). o < A)

[S CandLocalStoreDesc,, — P

(d) Atomy, = {(j,q,¢,v) € CandAtomy, | ¥ € LocalStoreDesc; ANP(q,¥)} C  CandAtomy
PreType,, def {x € 244%™k | Y(§,q,%,v) € x. Vi < j. (4,4, |4, v) € X} C  CandUberType;,
Type, %' {x € PreType,, | 3¢’ € Quals.¥(Lq,-) € x.a = '} C  CandUberType,
LocalStoreDescy, dzef {¥ € Locs — Quals x Type,, | R()} C  CandLocalStoreDescy,
PreType def {x € CandUberType,, | Vk > 0. |x|r € PreType,} 2 Ukzo PreType,,
Tye %' {x € CandUberType,, | vk >0. x|k € Twver} 2 Upso Towes
Figure 10. \™URAL Model (Definitions)
Well-Founded & Well-Behaved Interpretations If we attempt to tion index j strictly less thark. Hence, our definitions are well-
navely construct a set-theoretic model based on these intentions,defined att = 0:
we are led to specify: CandAtomg = 0
Des . CandUberType, = {0}
Type = 9NX Quals X LocalStoreDesc X C'Values CandLocalStoreDesco = Locs — Quals X {(D}

LocalStoreDesc Locs — Quals x Type

While our candidate sets establish the existence of sets of our in-
However, there is a problem with this specification: a simple di- tended form, our semantic interpretations will need to be well-

agonalization argument will show that the sBjpe of type inter- behaved in other ways. There are key constraints associated with
pretations has an inconsistent cardinality (i.e., it's an ill-founded atoms, pre-types, types, and local store descriptions that will be en-
recursive definition). forced in our final definitions. Functions and predicates supporting

We can eliminate the inconsistency by stratifying our defini- these constraints are given in Figure 10(c).
tions, making essential use of the approximation index. To simplify For any sely, we define thé-approximation of the set (written
the development, we first construzindidatesets, which are well- | x] ) as the subset of its elements whose indices are lesg thean
founded sets of our intended form. Next, we define some useful extend the notion pointwise to local store descriptigngnritten
functions and predicates on these candidate sets. Finally, we con-[¢]«). Note that| x|, and |¢ ], necessarily yield elements of
struct our semantic interpretations by filtering the candidate sets, CandUberType,, and CandLocalStoreDescy,.
making use of the functions and predicates defined in the previous  Figure 10(c) defines our semantic interpretations, again by
step. Our semantic interpretations impose a number of constraints(strong) induction ork. Note that our semantic interpretations can
(e.g., relating the qualifier of a reference to the qualifier of its con- be seen as filtering their corresponding candidate sets. Next, we
tents) that are ignored in the construction of the candidate sets.  examine each of these filtering constraints.

Figure 10(b) defines our candidate sets by (strong) induction on  Recall that we intend foritom, to define tuples of the form
k. Note that elements of'andAtom,, are tuples with approxima- (4,q,v,v) wheregq is the qualifier ofv and is the local store



K[QUAL] = Quals K[*x] = PreType Klx] = Type

T[AFa:k]6 = 6(a)
T[AFq:QUAL]S = ¢
T[AF1g:#]6 = {(kae{} )}
T[AFn®m:*[6 = {(kqgv,(v1,v2)) | ¥ = (Y1 Op th2) A
(kyqr,¥1,v1) ET[AE T x| Aqr 2 g A
(k,q2,¢2,v2) ET[AF T2 : %] 6 Ag2 = q}
T[AFT —o7m2:%x]d6 = {(k,gc,%e, Ax.€) | e € LocalStoreDescy A P(qe,e) A

Vi < k,qa,Ya,Va-
(4,9a,%a,va) €T [AF 71 : %] 8 A (Ve @f ¥a) defined=-
Comp(j, (Ye @j Ya); elva/z], T [AF 72 : %] 6)}

T[AFYVYak.7:%]6 = {(k,q,%,A.€)| ¥ € LocalStoreDescy, A P(q,¥) A
Vi < k,Z e K[x].
Comp(j, [¥]j,e, T [A,:k b 7 : %] §[a = TI]) }

T[AFrefr:5]6 = {(kq{i—= ()LD | x=[T[AF7:+]6]x A
(@2A=VY(,d ) €Ex ¢ A}
T[AarS7F:«]6 = {(k,qv,v)| a=T[AFE&:QUAL]SA
(kyq,¥,v) e T[AFT: %]}
def .
Comp(k,¥s,es,x) = Vj<k,ss,¥r,s5,€5. )
5s i (Vs Ok Pr) A (ss,es) —7 (sg,ef) Nirred(syg,ef) =
g5,y A
sf th—j (Y5 Or—j ¥r) Nk —J,a7,%r,er) €X
Figure 11. XfURAL Model (Interpretations)
description ofv. Filtering CandAtoms by the predicatéP(q, ) Type respectively, while the interpretation of the kiRdJAL is the
enforces the requirement thatufis a value with qualifieg, then set of (constant) qualifierQuals.

each location directly accessible frommust have a qualifieq’

such that’ < q. We further require the local store descriptiono Units: No Location Beliefs Consider the interpretation of the

, pre-typelg. Clearly, no locations appear as sub-expressions of the
be a member aLocalStoreDesc;. value (); hence, the interpretation dfy demands an empty local

We definePre Type,, as those € 24" C CandUber Type, store descriptiod }. Furthermore, the valu@ may be ascribed an
that are closed with respect to a decreasing step-index. We define ptiod}. ’ ug may Y

Type,, by further requiring that all values ipshare the same quali- qualifierg.

fier. Looking ahead, we will need to extend our semantic interpreta- References: Single Location BeliefsNext, consider the interpre-
tions to a predicat€omp(k, v, e, T [7]), wherec is a (closed) ex-  tation of the pre-typeef . From the valud, the only directly-
pression. Intuitively, an expressierthat is indistinguishable from  accessible location isitself. Hence, the local store descriptign
a value of typer for k steps must also be indistinguishable for for the location/ in the interpretation ofef — must take the form

j < k steps. Since we will define the predic&iemp(-, -, -,-) on {l — (¢, x)}. Furthermorey, the semantic interpretation of the

elements ofType, we incorporate this closure property into the de- type ofl’s contents, must match [r].

finition of PreType,,. Figure 12 graphically depicts the local store description=
Finally, we defineLocalStore Descy, using the predicat® (v), {l — (¢, 7T [7])} (slightly abusing notation in the interest of

which requires that every unrestricted or affine locationyins brevity). Our intention is to express the idea thidbelieves” thatl

mapped to a type with only unrestricted and affine values. The is allocated with qualifieg and contents of type, buts) “believes”
predicateR (1)) disallows relevant or linear values as the contents nothing about any other location in the store, represented by “?”.
of unrestricted or affine locations (recall Figure 7).

(k,q,9 ={l— (¢, T [t} 1) € T [ref 7]

4.3.2 Semantic Interpretations ¥

Figure 11 gives our semantic interpretation of kird$x], quali- ? ? ?
fiers 7 [q], pre-typesT [7], and typesT [r].° The interpretation

[ o
of the kindsx andx are the semantic interpretatio®se Type and ? |_l — (_q’z [[I]])_l ?

2 ? ?
6Since our language supports polymorphic types, we must give the inter- - —

pretations of type-level terms with free variables. While, technically, we Figure 12. A Local Store Description iff [ref 7]

should write7 [A |-« : k] 6, where the substitutiofi is in the interpreta- . . o

tion of the term context\ (seeD [A] in Figure 17), we will use the more Note that the definition off [ref 7] requires that ifl is an

concise notatio?” [] in the text. unrestricted or affine location, thep should never contain local



{t—= [1]k() | 1 € dom (1) N dom(y2)} if VI € dom(vp1) N dom(v2). [¥1 k(1) = [¥2]k (D)
def WAl [P1]k(l) |1 € dom(vr) \ dom(v2)}  andVi € dom(y1). A < ¢3(1) = 1 ¢ dom(h2)
Y1 Ok = W{l— [2]() [ L€ dom(y2) \ dom(¥1)}  angvi € dom (o). A < w“”a'(l) = 1 ¢ dom(y1)

undefined otherwise

Figure 13. \"URAL Model (Join Partial Function)

() (kyqu, 1 ={li (a1, T [11])},11) € T [T2ref 1]
(k,q2,%2 = {l2 = (g2, 7 [12])},12) € T [92ref 2]
v P2 oy
? l1 — (QhT[[Tl]]) o) ? L ? llf’_(qET_[[T_l]])_
? ? e @TlD) 7 (e Tm)] ?
(b) (kU1 ={l— (U, Tt} eT [[Uref Tﬂ
(k,U,9pp = {l— (R, T [7'D},1) € T [Rref ']
Y1 o Y1 . Pv1OYr
P UTED) o 7 - OTED) e O T,
? ? ? ? ? ?
v Y2
? Et’ T [[_T]])j o ? ET (B{[[_’]])j = undefined
? ? ? ?
() (k,Lia = {l1 — (U, T [11]),l2 — (L, T [2]),va = (l1,12)) € T L(Uref 71 ® Lref 72)]
(k,Lyop = {li — (U, T [11]), 13 — (L, T[[T3]]) =(l1,13)) € T[[ Uref 71 ® Lref 7'3)]]
(k, L, e = {l3 — (L, T [73]),ve = {3, <) €T [F(tref 3 ® V1g)]
Ya - Py - Ya © Py o
T gt he 0T - (b OTD)
o WTIRD) P b= GTIeD)) = TR (e LT D)
Y e = - e
? \_ZI_H(_U’Z[[TH)J © ? _ _?_ _ = undefined
ULICE O N S LI O )

Figure 14. ¥ ® 12 Examples

store descriptions that include relevant or linear locations; i.e., the  First, we require that for any locatidrihat is described by both
definition of 7 [ref 7] incorporates the predicafe(-) specialized 11 andyy, it must be the case thdt andiy. have identical beliefs
to{l — (g,x)} about/ to approximationk. Note thaty; and2 must agree on
both the qualifier of the location as well as the type of the location’s
contents (see Figure 14(b)).

The second requirement is more subtle, having to do with the
notion of directly-accessible locations. Suppose thas a linear
or affine location mapped by,. Therefore, a value, with local
store descriptiony, must contairiz as a sub-expression. Singas
linear or affine, this occurrence &fin the valuev, must be the one
(and only) occurrence df in the entire program state. Now, sup-
pose thats is also in the domain of a local store descriptian As
before, a value. with local store descriptiogh. must contairi; as
a sub-expression. If we were to attempt to form the vatuev.),
then we would have a value with two distinct occurrenceg;of
violating the uniqueness of the locatién Hence, we considep,
andi. to represent incompatible (contradictory) beliefs about the
current store (see Figure 14(c)).

Pairs: Compatible Location Beliefs A pair (v1,v2) (such that

(kv q1, wlv Ul) € T [[Tl]] and (kv q2, ¢27 UQ) S T [[T2]]) is in the
interpretation ofr; ® 7 if and only if the pair is ascribed a qualifier
greater than that of its components and the two sets of beliefs
about the storey; andi,, can be combined into a single set of
beliefs sufficient for safely executirigsteps (written); © 12, see
Figure 13). Informally, local store descriptions can be combined
only if they arecompatible that is, if the beliefs in one local
store description do not contradict the beliefs in the other store
description.

Clearly, if11 andiy, have disjoint sets of beliefs about the store,
theny © 12 is defined and equal to the union of their beliefs (see
Figure 14(a)). In the more general case, where the same location
may be found in the domain of bott; and -, there are two
requirements enforced by the definitiomaf © 2.



Functions & Abstractions: Closure Location Beliefs Since

functions and abstractions are suspended computations, their in-

terpretations are given in terms of the interpretation of types as
computations (see below). A functiox. e with qualifier g. and
local store description). (where. describes the locations di-

rectly accessible from the function’s closure and, hence, must sat-

isfy P(qc,v.)) is in the interpretation of; — 7> for k steps if, at
some point in the future, when there gre: & steps left to execute,
and there is an argumen} such that(j, -, ¥a,v.) € 7 [71] and

the beliefsy). and, are compatible, thea[v, /x] looks like a
computation of type- for j steps. The interpretation dtv:x. 7 is
analogous, except that we quantify over (type-level term) interpre-
tationsZ € K [«].

Store Satisfaction: Tracing Location Beliefs The interpretation

of types as computation€émp) makes use of an auxiliary relation

s 1 ¥ (given in Figure 15), which says that the stereatisfies
local store description) (to approximationk). We motivate the
definition of s :x v by drawing an analogy with the specification
of atracing garbage collectofsee Figure 16). As described above,
1 corresponds to (beliefs about) the portion of the store directly
accessible from a value (or multiple values, wherorresponds

to ®x-ed store descriptions). Hence, we can consitien () as

a set of root locations. In the definition ef:; ), S corresponds

Dle] = {0}
DA, a:k] = {dla—TZ]| e DIA]AT € K[k]}
GIAFes = {(ka{}h0)}

GIAFT, 7|6 =

{(k, q,1,v[z —v]) |
Y = (Yr Ok ¥z) A
(k’szwF”Y)Eg[[AFFH(SAqFjq/\
(k, Qs Yz, v) € T[AFT: 4]0 N ge 2 g}
[A;TEe:T] def

vk > 0.Y9,gr,Yr, -
d € DIA]A (k,qr,¢r,7) EG[AFT]s =
Comp(k, Yr,v(e), T [AF 7:%]9)

Figure 17. \*URAL Model (Additional Interpretations)

hold. First,e; must be a value with a qualifieyy and a set of
beliefsy ¢ such thalk — j, g7, ¥, e5) € x. Second, the following
two sets of beliefs must be compatiblg; (whate; believes) and
1, (What the rest of the computation believes — note that these
beliefs remain unchanged). Third, the final stegemust satisfy
the combined set of these beliefs.

Note that sincey, is an arbitrary set of beliefs compatible

to the set of reachable (root and non-root) locations in the store with ), one instantiation off, is the local store description that

that would be discovered by the garbage collector. The function
Fy maps each location i§ to a local store description, while the
functionF, maps each location to a qualifier. Itis our intention that,
for each locatiori, (1) is an appropriate qualifier anfl, (1) is
an appropriate local store description for the vadti&(l). Hence,
we can considetlom(Fy (1)) as the set of child locations traced
from the contents of.

Having chosen the sef and the functionsF, and F,, we
require that they satisfy three criteria. Thengruity criteria en-

sures that our choices are both internally consistent and consisten

with the stores. The “global” store description’.. combines the

local store descriptions of the roots with the local store descrip-
tions of the contents of every reachable location; the implicit re-
quirement that).. is defined ensures that the local beliefs of the

includes all of the shared locations®f. By requiring that); and
sy are compatible with),., we ensure that the types and qualifiers
and allocation status of shared locations are preserved.

Judgements: Type SoundnesgFinally, the semantic interpreta-
tion of a typing judgemenfA;T" F e : 7] (see Figure 17) asserts
that for allk > 0, if 6 is a mapping from type-level variables to an
element of the appropriate kind interpretation, and a mapping
from variables to closed values, anig is a local store description
for the values in the range of, then(k, ¢r,y(e)) is in the inter-
pretation ofr as a computationGomp(k, ¥r,vy(e), 7 [7]))-

Our extended technical report [3] gives the proof of the follow-
ing theorem which shows the soundness oftli&/RAt typing rules
with respect to the model.

roots and individual store contents are all compatible. The clause THeorem 1. (AfURA Soundness)

dom(v.) = & requires thatS and F, are chosen such that
S includesall the reachable locations (and not jsstmeof the
reachable locations), while the claudem(s) 2 S requires that
all of the reachable locations are actually in the store. Finally,
(4, Far [Fu(D)];,8(1)) € [4¥P(1)]x ensures that the contents
of I, with the qualifier assigned h¥, and local store description
assigned byF,, is in the type assigned by the global store descrip-
tion ¢, (for j < k steps).

Theminimalitycriteria ensures that our choice for the Setoes

not contain any locations not reachable from the roots. For exam-

ple, in Figure 16, includind:: in S would not violate congruity,
but would violate minimality. Finally, theeachability criteria en-

sures that every linear and relevant location is reachable from the

roots (and, hence, has not been implicitly discarded).

Computations: Relating Current to Future Beliefs Informally,
the interpretation of types as computati@wsnp(k, 1s, es, x) (see
Figure 11) says that if the expressien (with beliefsv;, again,
corresponding to the locations appearing as sub-expressieny of
reaches an irreducible state in less tlasteps, then it must have
reduced to a value; (with beliefs¢) that belongs to the type
interpretationy. More precisely, we pick a starting stoge such
thatss :x (¥s Ok ¥r), Where, is the set of beliefs about the
store held by the rest of the computation (alternatively, the set of
beliefs held bye,’s continuation). If(ss, e,) steps to an irreducible
configuration(ss, ey) in j < k steps, then the following conditions

IfA;TFe: 7, then[A; T Fe:7].

An immediate corollary is type-safety of<'"RAL Another in-
teresting corollary is that if we evaluate a closed, well-typed term
of base type (e.g%1g) to a value, then the resulting store will have
no linear or relevant references.

COROLLARY 2. (\URAL Safety)

If e;@ e :7and({},e1) —" (s2,e2),
then eitherﬂvg. ey = vg Or 383, es. (82, 62) — (83, 63).

COROLLARY 3. (AfURAL Collection)

Ife;ee1:91g and({},e1) —™ (s2,v2),
thenvl € dom(sz2). s3°'(1) < A.

Proof (\fURAL Safety)

Suppose; e - e; : T and({},e1) —" (s2,e2).
If ~irred(s2,e2), thendss, es. (s2,e2) — (83, €3).
If irred(s2, e2), thendi. ({},e1) —* (s2,e2).
Theorem 1 applied te; e - e; : 7 yields[e;e - ey : 7].
[e; e I e1 : 7] instantiated with +1 > 0,0 € D [e],
and(i +1,U,{},0) € G o] 0
yieldsComp(i + 1, {},e1,7 o - 7 : %] 0).
Comp(i+1,{},e1,7 [o - 7 : x] 0) instantiated with < i+1,
515001 (U @ia1 (), (Lher) — (53, €2),



def

kP

S :

gLocs

3Fy + S — LocalStoreDesc.
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: S — Quals.
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Figure 15. \fURAL Model (Store Satisfaction)
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Figure 16. s : ¢ Example



andirred sz, e2)
yields g2 and, such thatss :1 (2 ®1 {})
and(l,QQ,¢2,€2) cT [[. Fr: *ﬂ @
Recall that7 [e - 7 : %] ) € Type
and Type C CandUberType,, = 2¢mdAtome,
Hence,(1, g2, %2, e2) € CandAtom., = |J,~, CandAtomy,
which implies thaks € C'Values and3va. ez = vo. O

Proof (A\"fURAL Collection)

Suppose; e k- e; : 11g and({}, e1) —* (s2, v2).
By the reasoning abovél, g2, 12, v2) € T [e - 91g : +] 0,
which implies thaty, = ¢, ¥2 = {}, andvz = ().
Recall thats, 1 ({} ®1 {}) = S92 1 {} = 38, ‘7:1/)7‘7:(1' R
The minimality criteria ofs, :1 {} instantiated witt) C S,
dom({}) C 0, and(Vl € 0. dom(Fy (1)) C 0)
yieldsS = 0.
The reachability criteria of; :1 {}
yieldsVi € dom(ss). R < s3'(1) = 1 € 0,

an inclusion interpretation of subtyping. Finally, a (well-founded)
set-theoretic model means that soundness and safety proofs are
amenable to formalization in the higher-order logic of FPCC.

While we are partial to the step-indexed approach, we acknowl-
edge that there is no fundamental difficulty in adopting a purely
syntactic approach to proving the type soundness of substructural
state. However, we believe thanhy proof of type soundness must
adopt many of the insights presented here. For example, we conjec-
ture that the typing rule for well-typed configurations would natu-
rally take the form:

v =10 (O Fu0)
dom(¢x) =8 dom(s) 2 S
VIES. 5 Fy(l) b s(1) : 2P (1) A
(1) = ¢
s savkerT
F(s,e): T
Note that the judgemeht s : 1) mirrors the store satisfaction pred-

which impliesvi € dom(s2). sg“a'(z) <A O icate given in Figure 15. The store typing component complicates
) ) the judgemeni\; ;¢ F e : 7, which must further rely upon an
4.4 Discussion operaton); ©® 12 = 1 to split the locations in) between the store
Akey difference in the model presented here, as compared to previ-typingsiy: andq,. Splitting the store typing is necessary to ensure
ous models of mutable state, is tbealizationof the store descrip-  that a given unique location is used by at most one sub-expression.
tion. Recall that we identify the local store description of a value The @ operator in the syntactic approach would need to satisfy
with those locations that are directly accessible from the value. This many of the same properties as the operator in the step-indexed
is in contrast to the AAV model of unrestricted references [1, 4], approach (e.g., identical beliefs about locations in the common do-
where the global store description of any value descritvesylo- main and no unique locations in the common domain).
cation that has been allocated. It is also in contrast to our previous
model of linear references [23, 2], where the store description of a
value describes theeachableocations from that value. 5. Related Work

The transition from a global store description to a local store de- Our AURAL is most directly influenced by the presentation of sub-
scription is motivated by the insight that storing a unique object in structural type systems by Walker [30], which in turn draws upon
a shared reference “hides” the unique object in some way. Note thatthe work of Wansbrough and Peyton-Jones [33] and Walker and
the shared reference must mediate all access to the unique objectWatkins [32]. Relative to that work, we have added both relevant
The authors have found it hard to construct a model where the storeand affine qualifiers, which is necessary to account for the var-
description of a value (in the interpretation of a type) describes the ied forms of linearity found in higher-level programming-language
entire store or even the store reachable from the value. When oneproposals.
attempts to describe the entire store, there is a difficulty identify- A related body of work is that on type systems used to track
ing where the “real” occurrence of a unique location is to be found. resource usage [28, 22, 33, 21, 16, 19]. We note that the usage
When one attempts to describe the reachable store, there is a diffi-subsumption found in these systems (e.g., a “possibly used many
culty defining the® relation; it cannot be defined point-wise, and times” variable may be subsumed to appear in a context requiring
one is required to formally introduce the notions of directly- and a “used exactly once” value) is not applicable in our setting (e.g., it
indirectly-accessible locations. Furthermore, the reachable store isis clearly unsound to subsurtlesf 7 to Lref 7), due to differences
a property of the actual store, not of the type; hence, it seems bet-in the interpretation of type qualifiers.
ter to confine reachability to the store satisfaction relation. We fur- Section 1 noted a number of projects that have introduced some
ther note that the model of mutable references given in this paperform of linearity to “tame” state. An underlying theme is that
subsumes the models of mutable references cited above. Hencelinearity and strong updates can be used to provide more effective
the technique of localizing the store description subsumes the tech-memory management (c.f. [10, 18, 9, 8]).
niques used by previous approaches. More recent research has explored other ways in which unique

Although our model of substructural references is differentfrom and shared data may be mixed. For example, Cycloakins
the previous model of unrestricted references, our model retains theconstruct [17] takes a unique pointer and returns a shared pointer
spirit of the step-indexed approach used in Foundational PCC [6, 7] to the same object, which is available for a limited lexical scope.
and may be applicable in future extensions of FPCC. This ap- Vault's focus and CQuals'sestrict constructs [14, 5] provide
proach, in which the model mixes denotational and operational the opposite behavior: temporarily giving a linear view of an object
semantics, offers a number of distinct advantages over a purely of shared type. Both behaviors are of great practical significance.
syntactic approach to type soundness. One obvious advantage of Our model's semantic interpretations seem strongly related to
this approach is that it gives rise to a simpler set of typing rules; the logic of Bunched Implications (Bl) [20] and Reynolds’ separa-
note that our typing judgement requires neither a store descriptiontion logic [25]. In particular, our interpretation & and—o resem-
component nor a rule for locations. A less obvious advantage of ble the resource semantics for thand— connectives in Bl.
this approach is that it gives rise to stronger meta-theoretic results.  Finally, Boyland and Retert have recently proved the soundness
For example, the impredicative polymorphismtURAL implies a of a variation of Vault by giving an operational semantics of “adop-
strong parametricity theorem: an element/ofva: x . 7] behaves tion” [11]. The authors note that adoption may be used to embed
uniformly onall elements ofl’ype, which includes elementsthatdo  a unique pointer within another object; their notion of uniqueness
not correspond to the interpretation of any syntactic type. This ap- most closely resembles our affine references, as access keys may
proach also naturally extends to union and intersection types and tobe dropped.



6. Conclusion and Future Work

We have presented the*URAL_calculus, a substructural polymor-
phic A-calculus with mutable references of unrestricted, relevant,

affine, and linear sorts. We motivated the design decisions, gave

a type system, and constructed a step-indexed modgF&fAL,

where types are interpreted as sets of store description / value pairs,

which are further refined using an index representing the number of
steps available for future evaluation.

In previous work [23, 2], we separated the typing components
of a mutable object into two pieces: an unrestrigheihterto the
object and a lineacapability for accessing the contents of the

object. We believe that we can extend the current language and

[13] Robert DeLine and Manueifndrich. Enforcing high-level protocols
in low-level software. IrProc. Programming Language Design and
Implementation (PLDI)pages 59-69, June 2001.

[14] Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. Rroc. Programming
Language Design and Implementation (PLDdages 13—-24, June
2002.

[15] Jean-Yves Girard. Linear logicTheoretical Computer Science
50:1-102, 1987.

[16] Jorgen Gustavsson and Josef Svenningsson. A usage analysis with
bounded usage polymorphism and subtypingPioc. International
Workshop on Implementation of Functional Languages (/papes
140-157, September 2001.

model in the same way. The advantage of this approach is that [17] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim.

separating the name of a reference from what it currently holds
gives us a model of alias types [27, 31].
As noted in the previous section, allowing a unique pointer to

Experience with safe manual memory-management in Cyclone. In
Proc. International Symposium on Memory Management (ISMM)
pages 73-84, October 2004.

be temporarily treated as shared (and vice versa) can be useful[18] Martin Hofmann. A type system for bounded space and functional

in practice. Understanding how to model these advanced features

is a long-term goal of this research. A promising aproach is to

in-place update. IfProc. European Symposium on Programming
(ESOP) pages 165-179, March 2000.

model regions as a linear Capabmty to access Objects in the region [19] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In

and allow changes in reference qualifiers to be mediated by this
capability.
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