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1 The Language F*

1.1 Syntax, Dynamic Semantics and Static Semantics

Types T = a|unit|int|bool |71 X T2 |1 +T2 |71 — T2
Vo.r | Jo. 7 | po. 7 | ref T
Prim Ops o = 4| —|=]<]|<|...
Ezpressions e == z|(O)|l]|n]oler,...,en) |
true | false | if ethene; elsees |
(e1,e2) | fste | snde |
inle | inre | caseeof inlzy = €1 | inr s = €2
Az:T.e|erez | Aa.e | e[r] |
packTi,eas Jo. 7 | unpacke; asa, x ines |
folde | unfolde |
refe| le|er=e2 | e1==¢€2
Values v u= ()|l]|n]true|false | (v1,v2) | inlw | inrv
Az:7.e | Aa.e | packTi,vas3a.7 | foldv
Eval. Contexts E == []] o(vi,...,vi—1,E,€iq1,...,€n) |

if Fthene; elsees |

(E,e2) | (vi,E) | fst E | snd E |

inl F | inr E | case Fof inlx1 = e | inr 2 = eg |
Ee|vE | E[r]]|

packTi, FasJa.7 | unpack Fasa,xines | fold F |
refE | 'E | E:=e|v:=F | E==¢|v==F

Figure 1: F* Syntax



s,er— s’ v

s,if truethenej elsees +—— s,e€1

s,if falsethene; elsees +—— s,e2

s, £st (v1,v2) +— 8,01

s,snd (v1,v2) +—— S, V2
s,case (inlw)of inlzy = e; | inrxs = ez +—— s, [v/z1]er
s,case (inrv)ofinlzi = ey | inrzs = ez +—— s, [v/z2]es
ss(Az:T.e)v — s, [v/z]e

s,(Aa.e)[t] — s,[T/ale
s,unpack (packT,vas Ja.71)asa,zine +—— s, [7/a][v/z]e
s,unfold (foldv) +— s,v
s,l==1 +—— s,true

s,l==1" +—— s, false where [ # I’
I ¢ dom(s) s()y=wv l € dom(s)
s,refv — s[l — v],l s, 1 — s,v s,li=v — s[l—],()

/ /
s,e — s ,€e

s,Ele] — s, E[e]

Figure 2: F*' Dynamic Semantics

Notation The notation s,e — s, ¢’ denotes a single operational step. We write s,e —7 s’, €’ to denote
there there exists a chain of j steps of the form s,e — s1,e; — ... — s;,e; where s; = s’ and e; = ¢€’.
We also use the following abbreviations (where val(e) denotes that e is a value).

def
s,e—* s e = Fk>0.se—Fs e
def
s,edlsef = s,er—* s e’ A val(e)
def
s,ell = 3s.e.s,el s, e



Type Context A == -|A«
Value Context I == - |T,x:7
Store Typing ¥ == | X l:7 where FTV (1) =0
AT
a€ A VAN ot At 1y AT A 1o
A« A F unit A Fint A F bool AT X1 A1 +1
AT At 1o AabT AabT AabT AFT
AFT — 1 AFVYa. 1 AF3Ja.T A ¢ po. T AbFrefr
AFT
AT AT
Atk AT z: 7

Figure 3: F* Static Semantics I



AT Fe: T

M(z)=r1 () =7
AT bFa: T A;T5 3 F () : unit AT Erefr A;T; X Fncint

A;T; 3 F e bool AT X Fer T AT Y Fes: T

A;T; ¥ F true : bool A;T; ¥ F false : bool A;T; Y+ if ethene; elsees : T
ATy Y Fer:m ATy Y Fes:m AT Fe: X1 AT Fe:T X1
AT 3¢ (e, e2) i 71 X T2 AT} Y Ffste: A;T; Y Fsnde:
A;T;YkFe:n AT Y Fe: T
A;Ts Y Finle:m + 72 AT Y Finre:m + 72

AT Fe:m 4+ 72 ATz ;2 bFer s 7 AT xa im0 8 Fea: T

A;T; Y F caseeofinley = €1 |inrazs = ep 1 7

AT x:m; 2 e 7 ATs%Fer im0 — 71 AT Fea:ms
AT 2R A :iTmi.e:m1 — T2 AT Feres: T
Ao T8 Fe: T AT Y Fe:Va.r AFT1
AT Y F Aace : Vaur ATy SR eln]: [ /alT
AFT AT e [m/oT ATy Fer s Ja.m ArFT ATz ;8 Fea: 7
A;T; Y F packri,eas Ja. 7 : Ja. T A;T; Y F unpackej asa,x ineg : 7
AT E e [poT/alT AT Fe: poet
AT Y F folde : pa. 7 A;T; Y unfolde : [pa. 7/alT
AT Fe: T AT FHe:refr AT ey crefr AT Fes: T
A;T; X Frefe:refr AT R e T A;T; 3 Fep i=eg : unit

ATy Y ey crefr ATy Y Fegrefr
A;T; 3 F el ==es : bool

Vi € dom(X). ;X F s(l) : (1)
Fs: X

Figure 4: F* Static Semantics II



1.2 Contexts and Contextual Equivalence

Contexts

C

[] | 0(61,...,61_170761‘_‘_1,...,6”) |

if C'thenej elseey | if ethenCelsees | if ethene; elseC |

(C,e2) | (e1,C) | £st C | snd C' |

inlC | inr C | caseCof inlx1 = €1 | inrze = €2 |

caseeof inlzy = C' | inrxy = ey | caseeof inlx; = €1 | inrze = C |
M:7.C | Cel|eC | Aa.C|C[r]|

pack7i,CasJda. 7 | unpack C'as , z iney | unpacke; asa, zinC |
foldC' | unfold C |

refC | 1C|C:=e|e:=C | C==¢|e==C

Figure 5: F*' Syntax - Contexts



’l—C:(A;F;EI—T):>(A';F';E'|—T/)‘

ACA rcr’ TCy
[ H : (A;F;EFT):> (A,;F/;E/FT)

FC: (AT, F71)= (AT, 2 F bool) AT Y Fep 7 AT Y Fey:r
F if C'thene;elsees: (A TN F 1) = (A T2 1)

AT, %"+ e : bool FO: (AT S F71)= (AT Y Fr) AT S Feg 7
FifethenCelsees: (A7) = (AT Y 1)

AT, %"+ e : bool AT S Fey 7 FO:(AT;SF7)= (AT Y F1)
FifethenejelseC: (A ;S F7) = (AT Y F 1)

FC: (AT EET) = (AT E ) AT Y Fea:m
F{(C,ed) : (A T8 FT) = (A/;F/;Z' b7y X T2)

AT S Fer i FO:(AT;SkT7)= (AT Y F )
Fle,C): (A TS F 1) = (A T8 F X m)

FO: (AT EFT)= (AT Y Frox ) FO: (AT EFT)= (AT Y Frox )

FistC: (AT, F7) = (A TS Fry) FsndC: (AT, S F7)= (AT F )

FO:(AT;SF7)= (AT Y Fny) FO: (AT S FT)= (AT Y F )
FinlC: (A ;2 F 1) = (AT Y Fr+ 1) FinrC: (A T; 2 F 1) = (AT Y B+ 1)

FC:(A;F;EFT)é(A’;F';E'FTl + T2) ATz ;Y Fey o 7 AT xo im0 Feg: 7'
FcaseCofinlw = e1 | inras = ex: (A TN F 1) = (A T2 7))

AT Y Fe:m+m FO: (AT S F7)= (AT 2y ;2 1) AT om0 8 Fea: 7
Fcaseeofinlazy = C | inras = ea: (A;T; S 7) = (AT S 1)

AT Y Fe:m+m AT e Fey 7 FC: (AT, k7)= (AT 201 X 1)
Fcaseeofinlawy = e1 |inrzs = C: (AT} 7) = (AT 2 1)

FO: (AT ST = (AT 278 )
FAz:m.C: (AT 2 F 1) = (AT Y Fr— )

FC: (AT = (AT S Fn—7)  AYFe:n
FCer: (A T;SFT)= (AT Y F 1)

AT S Ferim— 7 FC: (AT F7)= (AT S F )
FerC: (AT 7)) = (AT S 1)

Figure 6: F* Static Semantics - Contexts I



FC: (AT SR 7)) = (AT F )| (contd.)

FCO: (AT 2 F7)= (Ao T8 7)) FCO: (AT 2 F7)= (AT Y FVa. ') A1
FAa.C: (A2 F 1) = (AT Y FVa.7) FCml: (AT, F71)= (AT S F [ /o))

A1 FC: (AT, 1) = (AT Y - /o))
Fpack7,Cas3a.7": (A;T;8F 1) = (AT 8 F 3a. 1)

FCO: (AT 2R 1) = (AT Y F o) AT AT ;Y Fey: 7'
FunpackCasa,zines : (A;T; 8 F7) = (AT 2 7))

AT Y Fey:3am A1 FC: (AT S F1) = (A oy Tz 2 F )
Funpackejasa,zinC: (AT F7) = (AT Y F 1)

FO: (AT 2 F7)= (AT Y F [pa. 7' /o)) FO: (AT S F7)= (AT Y Fua.r)
FfoldC: (AT} k7)) = (AT Y F pa. ') FunfoldC: (AT, S F7) = (AT S F [pa. 7' /a)T)

FO:(AT;SF7)= (AT Y Fr) FO: (AT k1) = (AT Y Fref 1)

FrefC: (A8 F71) = (AT Y Frefr') F1C: (AT, S F7) = (A TS Fr)

FC:(AT;ZF7)= (AT S Fref 1) AT S ey 7
FCi=es: (AT, 7) = (AT, 2 F unit)

AT Y ey crefr FO: (AT, 2 FT1)= (AT Y Fr)
Fei:=C:(A;T; 2 F 1) = (AT 2 - unit)

FCO: (AT k1) = (AT Y Fref ) AT Y ey :ref 7’
FCO==ex: (A;T;2F 1) = (AT, S F bool)

AT S ey :ref 7 FO: (AT 2 F7)= (AT Y Fref 1)
Fei:=C: (AT, F7)= (AT, Z F bool)

Figure 7: F* Static Semantics - Contexts IT

Definition 1.1. (Contextual Approximation & Equivalence)
Let A;Ts N Fey i1 and AT Feg: T

AT: Y e =6 ey T def VO, ¥ 1 s, FC (AT ERET) = (55X FT) A Fsi YA
5,Cle1] 4 = s,Clea] |

AT Fep =% eyt 7 def AT e X ey:i7 A AT S ey <oy o7
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Step-Indexed Logical Relation for F*

Type Interpretation x == {(k,W,e1,e2),...}
Store Relation v u= {(k,W,s1,82),...}
Population vV = {u,...}
Knowledge n  u= (P, V,31,%2)

Law L == {(mn),...}

Island w  u= (n,L)

World W ou= ({wi,...,wn)

Figure 8: Notation

Preliminaries

We write X - e : 7 as shorthand for -; ;X Fe: 7.
W = (w,...,wy,) and 1 < j < n, we write W{[j] as shorthand for w;.

If w = (n;, L£;) where n; = (¢4, Vi, i1, Xi2), we use the following shorthand to extract various elements
out of the island w:

wn = wV =V
w.L = ,CZ w.21 = Eil
wlﬁ = 1[)1 w.Eg = Eig

If W is a world with n islands, we also use the following shorthand:

5w)

o (W)

U1§jgn W[j].21

def .
= U1§j§n W[j].22

We write Val for the set of all values, Store for the set of all stores (finite maps from locations to
values), and StoreTy for the set of store typings (finite maps from locations to closed types).

We write Population for the set of all subsets of Val (i.e., Population ef P(Val)).

We write CTerm for the set of all closed terms, (i.e., terms that may contain locations, but no free
type or term variables.

We use the metavariable x to denote sets of the form (k, W, ey, es) where k is a natural number (the
step index), W is a world, and e; and ey are closed terms. Given a set x of this form, we write x*? to
denote the subset of y such that e; and e are values.

We write S; # S5 to denote that the sets S; and Sy are disjoint.



CandAtomr = {(j,W,e1,e2) € Nx;_;, CandWorld; x CTerm x CTerm |
j<k N W e CandWorld;}
CandType,, < p(CandAtomy)
CandStoreAtom;, {(G, W, s1,82) € Nx U, CandWorld; x Store x Store |
j<k AN We CandWorld;}
CandStoreRely, def P(CandStoreAtomy,)
CandKnowledge,, Lof CandStoreReli, x Population x StoreTy x StoreTy
CandLawAtoms {(3:n) € Nx U, CandKnowledge; | j <k A n € CandKnowledge,;}
CandLawy, def P(CandLawAtomy,)
CandIslandy, def CandKnowledge,, x CandLaw,
CandWorld, < {W € CandIsland}y, | n > 0}
CandAtom,, Uk CandAtomy,
CandType,, ef P(CandAtom?2") 2 Ugso CandType,,
CandStoreAtom,, def Ukzo CandStoreAtomy,
CandStoreRel,, def P(CandStoreAtom,,) B} Ukzo CandStoreRely,
CandKnowledge,, Lof CandStoreRel., x Population x StoreTy x StoreTy 2 |J,», CandKnowledge,,
CandLawAtom., def UkZO CandLawAtom;,

CandLaw,, def P(CandLawAtom,,) B) UkZO CandLawy,
Candlsland,, def CandKnowledge,, x CandLaw.,, D) UkZO CandIslandy
CandWorld,, def Ukzo CandWorldy,

e = {UG Werea)| <k A (5, Woer,e2) € X}
€ CandType, — CandType,

[k = {GWosis2) | G <k A (,W,s1,8) € ¢}
€ CandStoreRel,, — CandStoreRely

Il = ([, Vi 51, Ze) where n = (v, V, 31, T2)
€ CandKnowledge, — CandKnowledge,,
def . . .

Ll = AU i<k A () €L}
€ CandLaw, — CandLawy,

lwl = (In)e, 1£]8) where w = (1, £)

W € (lwile, - [wnle) where W = (w1, ..., wn)
€ CandWorld, — CandWorld

Figure 9: Auxiliary Definitions: Candidate Sets and k-Approximation
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W,V S D (@, V,5,5) € VOV AT D8 A SO,

def
M, £)3mL) = nInnL=L
(Wi, W) 3 (Wi, ..., wy) def m>0 A Vie{l,...,n}. w; Jw;

GWHY D (kW) L j<k AW I|W];, AW €World;, A W € Worldx
Atom|[ri, T2k = {(j, W, e1,e2) € CandAtomi | W € World; AN Si1(W)kei:m1 A Z(W)kEex: 1}
Type[T1, 2]k def {x € P(Atom[r1, 7=])}*) | V{4, W,v1,v2) € X.

V(i W) 3 (3, W). (i, W v1,v2) € x}

StoreAtomy % {(j, W, s1, s2) € CandStoreAtom; | W € World;}

C  CandStoreAtomy

StoreReli, = {¢ € P(StoreAtomy) | V(j, W, s1,82) € 9.
V(Z, Wl) ; (]7 W) (Zv Wl: S1, 32) € 1[)}
C  CandStoreRely,

Knowledge,, = {(¢,V,%1,%2) € CandKnowledge,, | 1 € StoreRelx A
(Vs1, 52, 81, S5.
(VI € dom(X1). s1(1) = s1(1) A VI € dom(X2). s2(l) = s5(1)) =
v, W. (j,‘/V,Sl,SQ) €Y — (.77 w, 3/173l2) € 1/’)}
C  CandKnowledge,,

LawAtomy, = {(j,n) € CandLawAtomy, | n € Knowledge,}
C  CandLawAtomy

Law, = {L € P(LawAtomy) | V(j,n) € L. Vi < j. (i,|n]:) € L}
C  CandLawy
Island), < {(n, L) € Knowledge,, x Lawy | (k,n) € L}
C  Candlslandy
Worldy, def {W e Island, | n>0 A
Va,be {l,...,n}. a#b =
dom(W{a].X1) #dom(Wb].21) A dom(W[a].X2) # dom(W[b].X2)}
C  CandWorldy

Typelri, 7] = {x € CandType,, | Vk > 0. |x|x € Type[r1, ma]i} 2 Ugso Type[r, 2]k

Figure 10: Auxiliary Definitions: World Extension and Well-Formedness Conditions
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S1, 82 ZkW d;f }—slzZl(W) A FSQIEQ(W) A

Yw € W.Vj < k. (4, |W];, s1,82) € wap

(W) DGW) = i<y A GW)DGW)

Figure 11: Auxiliary Definitions: Relational Store Satisfaction and Strict World Extension

Notation

e A type substitution p is a finite map from type variables « to triples (x,71,72), where 7y and 75 are
closed types and x € Type[r1, T2].

o If p(a) = (x, 71, 72), then p;(a) denotes 71 and pa(«) denotes 7o.

o Let p={a1 — (x1,711,712), - - -, ¥n — (X, Tn1, Tn2)}- Then
— p1 denotes {a1 — T11,...,apn — Tp1}
— p2 denotes {ag — T12,...,Qp > Tha}
— p1(7) is shorthand for [r1/aq, ..., T /an]T
— pa(7) is shorthand for [ra/a1,. .., Tha/ay]T
— p1(e) is shorthand for [r1 /a1, ..., Tw1/an]e
— pa(e) is shorthand for [T12/av, ..., Tha/an]e

e A relational value substitution ~ is a finite map from term variables x to pairs (v1,v2) where vy and
vy are closed values (i.e., values that may have free locations, but no free type or term variables).

o If v(z) = (v1,v2), then 71 (z) denotes v; and ~o(x) denotes vy.
o Let v = {x1 — (v11,v12),...,Zn — (Vp1,vp2)}. Then

— 71 denotes {x1 — v11,..., &y — Up1}
— 72 denotes {x1 — v12,..., %y — Una}
— 71(e) is shorthand for [v11/x1,...,vn1/2n]e

— v2(e) is shorthand for [vi2/z1, ..., vn2/2s]e

12



Vulrlp = Valrlp 0 Atom[pi(7), p2(7)]3

Volelp = x  where p(a) = (x, 71, 72)
Valunitlp = {(k,W,(),0)}
Vulintl]p = {(k,W,n,n)| veN}
Vnlboollp = {(k,W,v,v)| v=true V v==false}
Valr x7'lp = {(k, W, (vi,01), (v2,02)) | (k, W, v1,v2) € Vulr]p A (k, W, 01,02) € Vu[r'] p}

Viulr+77p = {(k,W,inlov1,inlva) | (k, W,v1,v2) € Vu[r]p}
U {(k,W,inrvy,inrvy) | (k,W,v1,v2) € Va[7'] p}

Valr = 71p = {(k,W, x:p1(7). €1, x:p2(7). €2) |
V(_], W’) a (k’, W) Yy, vs.
(G, W', v1,v2) € Vu[r] p =
(4, W', [v1/z]er, [v2/xe2) € EnlT'] p}

ValVa.m]p = {(k,W,Aa.e1,Aa.e2) |
Y, W) 2 (k,W). V¥11,72, X € Type[r1, T2].
(7, W', [r1/alex, [12/a]e2) € Enl[T] pla = (x, 71, 72)] }

Vel[B3a.7]p = {(k,W,packri, v as Ja. p1(7), pack T2, v2 as Ja. p2(7)) |
Ix € Type[r1, T2].
(k, W, v1,v2) € Valr] pla = (x, 7, 72)] }

Vnlua.t]p = {(k, W, foldvi,foldv:) | k<n A
Vi < k. (4, |W]j,v1,v2) € Vi[[pa.7/a]T] p}
Vilrefr]p = {(k,W,l1,l2) | k<n A wet(k,p,7,11,12) € W}
wref(ka Py T, l17 l2) = (77’ [’) where (1/)7 {}a {ll : pl(T)}7 {l2 : pZ(T)}) A

"7 =
G =W, s1,5) | (GW,s1(h),s2(12)) € Velrl p} A
c={G.lna) | 5 <k}

Enlrlp = {(k,W, e1,e2) € Atom[p1(7), p2(7)]n |
Vj < k. Vs1, s2, 81, v1.

s1,82 % W A s1,e1 — s, v =

Ish, va, W',
S2,€e2 —* shvg A
(k _ja W/) | (kaW) A
81,85 ik W' A
(k—j, W' vi,v2) € Vu[7] p}

Figure 12: Step-Indexed Logical Relations I
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VIrlp = U.soWalrle

Elrlp = U.soénlrle
D[] = {0}
DA o] = A{pla— 71,7 | peDIA] A x € Type[r,72] }
Gllp = {(kW,0)| We World, }
gIh,z:7]p = {(k Wz~ (v1,v2)]) |
(k,W,y)€G[T]p A (k,W,v1,v2) € V[r]p}
S[X] = {EW)| V(l:7)eX. (k,W,1,1) € V[ref 7] 0}
AT;S e <9 ey i 7 vk > 0. Vp,v, W.

peD[A] A (k,W,7) €G[T]p A (kW) eS[E] =
(k, W, p1(71(e1)), p2(12(e2))) € E[7] p

f

AT:X ke =% ey 7 ! AT ke ey:7 A AT S Fes =x%e; 7

Figure 13: Step-Indexed Logical Relations II
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3 Logical Relation Proofs

3.1 Basic Properties
3.1.1 Properties of Step-Indexed Construction

Lemma 3.1.

Let A+ 7 and p € D[A].
If j < k then V;[r] p = [Vil7l p;-

Proof

Proof by induction on the derivation A F 7. O

Lemma 3.2.

Let A+ 7 and p € D[A] and j, k € N.
Then |Vi[r] pl; € Vilr] p-

Proof
By definition of |x];. O

Lemma 3.3.

Let A+ 71 and p € D[A].
If j < k then | V;[7] plx = V;[7] p.
Proof
By definition of V;[7] p, for any (i, W, v1,v2) € V;[7] p, it must be that ¢ < j. Furthermore, since we
have j < k as a premise, it follows that i < k.

Thus, from the definition of | x|k, and since i < j and i < k, it follows that
(i"/VavlaU?) € LV][[T]] ka iff (ivwaU1»1)2) € Vj[[TH p- O

Lemma 3.4.

Let A+ 71 and p € D[A].
Then |V [7] plx = Vi[7] p-

Proof

VIl plx

= |UnsoWul7l o)k since V7] p = U, 5o Vul7l p

= UnsoWnl7]plk by distributivity of || over U
Unr Vall 018 U Uns Valrd o)
(Un<rxWnlrl o) U (Upsi Velrl p) since for k < n, |V,[7] plx = Vi[7] p by Lemma 3.1
UneValrlole) U Vil o
(Un<r Vulrlp) U Vilr]p since for n <k, [Vp[7] pli = Vu[7] p by Lemma 3.3
(Un<r kTl pln) U Vilr] p since for n < k, V,,[7] p = | Vk[7] p]n by Lemma 3.1

= Vilrlp since |Vi[7] pln € Vi[7] p by Lemma 3.2

15



Lemma 3.5.
If ¢ € StoreRely, then ¢ = | ]%.

Lemma 3.6.

If n € Knowledge,, then n = |n]k.

Lemma 3.7.

If £ € Lawy, then L = |L].
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3.1.2 Approximation Yields Valid Semantic Objects
Lemma 3.8. (Store Relation Approximation Valid)

If ¢ € StoreRely, and j < k, then |¢]; € StoreRel;.

Lemma 3.9. (Knowledge Approximation Valid)

If n € Knowledgey, and j <k, then |n]; € Knowledge,.

Lemma 3.10. (Law Approximation Valid)

If £ € Lawy, and j < k, then |L]; € Law;.

Lemma 3.11. (Island Approximation Valid)

If w € Islandy, and j < k, then |w]; € Island;.

Lemma 3.12. (World Approximation Valid)

If W € Worldy, and j <k, then |W |; € World,;.
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3.1.3 World Extension and Store Satisfaction Properties
Lemma 3.13. (Reflexivity: Island 1)

If w € Islandy, then w J w.

Lemma 3.14. (Reflexivity: World 1)

If W € Worldy, then W JW.

Lemma 3.15. (Reflexivity of World Extension)
If W € Worldy, then (k,W) 3 (k,W).

Lemma 3.16. (World Approximation is Valid Extension)
If W € Worldy, and j <k, then (4, |[W ;) 3 (k,W).
Proof

We are required to show that
o j <k,
which is a premise,

o W € Worldy,
which is a premise,

o |W|,; € World;,
which follows from Lemma 3.12 applied to W € Worldy and j < k, and

o [W]; 3 W],
which follows from Lemma 3.14 applied to |W],; € World;.

Lemma 3.17.

If (3, W') 2 (k,W) and j <1,
then (j, W') 2 (i, (W ],).

Lemma 3.18. (Transitivity of World Extension)

If (@6 W") 2 (G, W) and (5, W') 2 (k, W),
then (i, W) 3 (k,W).

Lemma 3.19. (Store Satisfaction Downward Closed)

Suppose W € Worldy,.
If 51,80 :x W oand j <k, then s1,s2 35 [W];.
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3.1.4 Validity of Type Interpretations
Lemma 3.20. (Closure Under World Extension)

Let A1 and p € D[A].
If (k, W, 01,02) € Vn[7] p and (5, W) 2 (k, W),
then (4, W' v1,v2) € Vp[7] p.

Proof

Proof by induction on n and nested induction on the derivation A+ 7.

Lemma 3.21. (Logical Relations Closed Under World Extension)

Let A+ 71 and p € D[A].
If (k,W,v1,v3) € V7] p and (j, W) 3 (k, W),
then (4, W' v1,v2) € V[7] p.

Proof

Follows from Lemmas 3.4 and 3.20.

Lemma 3.22.

Let AT and p € D[A].
If (k,W,y) € G[T] p and (j,W') 3 (k,W),
then (j,W',v) € G[I'] p.

Proof

Proof by induction on I'. Follows from Lemma 3.21.

Lemma 3.23.

If (k,W) € S[X] and (j,W') 3 (k, W),
then (3, W') € S[X].

Proof

Follows from Lemma 3.21.

Lemma 3.24. (Logical Relations Are Valid Type Interpretations)
If A7 and p € D[A], then V7] p € Typelp1(7), p2(7)].
Proof

Follows from Lemma 3.21.
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3.1.5 Substitution Property

Lemma 3.25. (Semantic Type Substitution)

Let AF 7" and p € D[A] and A ot 7.
Let x =V '] p.
Then V[r] pla = (x; pr(7"), pa (7)) = V7' /el 7] p.
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3.2 Fundamental Property

The Fundamental Property of the logical relation follows from the fact that the latter is a congruence [7]. To
establish congruence we have to show that the logical relation satisfies the compatibility and substitutivity
properties.

Note: Below we give detailed proofs of the compatibility lemmas that involve references—see Lemmas 3.29
(locations), 3.47 (allocation), 3.48 (dereferencing), and 3.49 (assignment). Proofs of the compatibility lemmas
that do not involve references essentially follow the proofs given in Ahmed’s earlier work [1].

Lemma 3.26. (Compatibility: Var)

IfT(x) =7 then A;T; X F o =19 22 7,

Lemma 3.27. (Compatibility: Unit)

AT X () =9 ()« unit.

Lemma 3.28. (Compatibility: Int)

AT Fn <M pnint.

21



Lemma 3.29. (Compatibility: Loc)
If (1) = 7 then A;T; S 1 <99 [ :ref 7.
Proof

Consider arbitrary k, p, v, W such that

o k>0,
o peD[A],
o (k,W,v) € G[I'] p, and
o (k,W)eS[].
We are required to show that (k, W, p1(71(1)), p2(72(1))) € € [ref ] p
= (k,W,1,1) € E[ref 7] p.

Consider arbitrary j, s1, s2, s}, v1 such that
o j <k,
® 51,50 :x W, and

o 51,1 —7 s vy,

Since [ is a value, we have that j = 0, s§ = s1, and v; = [.

Note that we have the following facts:

o W € Worldy,
which follows from (k, W,~) € G [T'] p above, and

o (k,W,11) € Vref 7] 0,
which follows from (k, W) € S [X] since X(I) = 7.

Take s, = s9, vo =1, and W/ = W.

We are required to show that

(1) s9,l—* s, vy
= 827l —" 827l7
which is immediate,
(2) (k—=0,W") 3 (k,W)
= (k,W) 3 (k,W),
which follows from Lemma 3.15 (reflexivity of J, page 18) applied to W € Worldy,
(3) 1,85 ko W'
=s1,825% W,
which follows from above, and
(4) (k—=0,W' v1,v9) € Vrefr]p
= (k,W,1,1) e Vref ] p
= (k,W,1,1) € V]ref 7] @ (since we can conclude from the premise that FTV (1) = ),
which follows from above.
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Lemma 3.30. (Compatibility: True)

A;T; T F true <9 true : bool.

Lemma 3.31. (Compatibility: False)

A;T; T I false <! false : bool.

Lemma 3.32. (Compatibility: If)

If AT S F erg =99 egg : bool, A;T; S e <99 ey 7, and A;T; S F egg <199 gy 1 7,
then A;T:; ¥ | if e1o theneqq else ego <'9 if eyp theneg; elseeny : 7.

Lemma 3.33. (Compatibility: Pair)

IfAT; S ey =9 eq i 7 and AT X ef b9 el 7,
then A;T; Y F (eg, ef) =199 (eg,eh) 1 7 x 7',

Lemma 3.34. (Compatibility: Fst)

IfFAT; S e =9 ey 7 x 7/,
then A;T; S F fste; <9 fstey : 7.

Lemma 3.35. (Compatibility: Snd)

IfFAT:S ke < ey 7 x 7,
then A;T; S F snde; <! sndey : 7.

Lemma 3.36. (Compatibility: Inl)

If AT S F ey 209 ey o7,
then A;T; Sk inley <9 inley : 7+ 7.

Lemma 3.37. (Compatibility: Inr)

IfFAT; S Feg =99 ey i/,
then A;T; S F inre; <'9 inres : 7+ 7'.

Lemma 3.38. (Compatibility: Case)

IfFAT; S e = eqo: 7+ 7, ATz : 78 ey 299 ey i 7", and AT, 2’ : 7/, 8 F e =99 ¢y o 77,
then A;T;Y - caseejgof inlx = e | inrz’ = ¢} =19 caseeypof inlx = ey | inra’ =€) : 7.
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Lemma 3.39. (Compatibility: Fun)

IfFAT, z: ;5 F e <9 ey : 7/,
then A;T:S F Az T.eq =99 Aa:T.eq: 7 — 7.

Lemma 3.40. (Compatibility: App)

IFAT; S el =9 e i 7 — 7" and A;T; S F ey <99 ey o7,
then A;T; Y F efeg =199 e ey 7/,

Lemma 3.41. (Compatibility: All)

IfA, ;T8 e =99 ey o 7,
then AT S F Ac.eq =9 Ao ey : Vo 7.

Lemma 3.42. (Compatibility: Type App)

IfFAT;YFe; =% ey : Va7 and A+ 7/,
then A;T; X Feq [7] =99 eo [7'] 1 [7'/alT.

Lemma 3.43. (Compatibility: Pack)

IfAFT and AT S eq =99 ey 1 [7//a]T,
then A;T; Y F pack 7, e; as Ja. 7 <9 pack 7/, epas Ja. 7 : Ja. 7.

Lemma 3.44. (Compatibility: Unpack)

IfFAT; S ey =9 ep i Fat, AT, and A, o, Tz : ;8 F e <199 €y
then A;T;Y - unpacke; as o,  ine} <!°9 unpackesasa,zinel : 7.

Lemma 3.45. (Compatibility: Fold)

If AT S ey =99 eyt [uae 7/alT,
then A;T; ¥ F folde, <! foldes : pa. 7.

Lemma 3.46. (Compatibility: Unfold)

IfFAT; S Fep =% eyt pa. ,
then A;T; Y - unfolde; <9 unfoldes : [ua.7/alT.
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Lemma 3.47. (Compatibility: Ref)

IfFAT: S Fep <% ey 7,
then A;T; ¥ F ref eq <9 refey : ref 7.

Proof

Consider arbitrary k, p, v, W such that

e k>0,

e peD[A],

e (k,W,~) € G[I'] p, and
o (K, W)eS[X].

We are required to show that (k, W, p1(v1(refer)), p2(y2(refes))) € EJref 7] p
— (K, W, ref (p1(71(e1))), ret (pa(2(e2))) €  [ref 7] p.

Consider arbitrary j, s1, s2, sj, v1 such that
o j <k,
e s1,59 : W, and
o s1,ref (pi(m1(er))) —7 s, v1

Hence, by inspection of the operational semantics, it follows that there exist ji, S14, V14, and Iy such
that

o si,p1(7i(er)) It S1q,V1a,
o Sia,ref v1g " s14[l1 — V14l 1,
Iy ¢ dom(s1q),

.j:j1+17

o 5| = 814[l1 — v14], and
o v =I[.
Instantiate the premise A;T; X - e; <9 ey : 7 with &, p, v, and W. Note that
e k>0,
e pc D[A],
o (k,W,v) € G[I'] p, and
o (K, W) e S[X].

Hence, (k, W, p1(71(e1)), p2(12(e2))) € E 7] p.
Instantiate this with j1, s1, S2, S14, V14. Note that

e j; < k, which follows from j; = j — 1 and j < k,

® S1,59 : W and
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e s1,p1(vi(er)) —It s14, V14

Hence, there exist sqq, V24, and W, such that

o s2,p2(72(e2)) —" 524, V2q,
. (kfjl»wa)g(k%w)a
® Sla;S2a ‘k—j; Wa7 and

b (k*thaavla;’UQa) € VHTH p-

Take s, = so4([la > va,], where Iy ¢ dom(sa,), and ve = lo.

If W, = (Wa1, .-, Wan), then

take W’ = <|_wa1Jk_j, ey I_waan_j,w/>,

where w' = (1, L),
n =@, 0.l pr(m)} {l2: p2(7)})
¢l = {(Zv WH? 3/1/7 8/2/) | (7;7 WH? Slll(ll)v S/ZI(ZQ)) € |_V [[TH ka*j}
L =A{(n']) | i <k—j}

Note that we have the following facts:

o Fs1,: X1 (W,) and F sg, 1 Xa(W,),
which follow from s14, 524 :k—j; Wa,

o W, € Worldy_;,,
which follows from (k — ji, W,) 3 (k, W) above,

o |Weilk—; € Islandy_; for all i such that 1 <i <n,
which follows from Lemma 3.11 (page 17) applied to

® wy; € Islandy_j,,
which follows from wg; € W, and the fact that W, € Worldj,_;,, and

o k—j<k-—j.

o W' e Worldy_j,
which follows from (i) and (ii) below:

(i) (lwatlk—js- - [Wanlr—j, ') € IslandZ'_";,

which follows from
o |Wailk—; € Islandy_; for all ¢ such that 1 < i <n,
which follows from above, and
o w' € Islandy_;,
which follows from (a), (b), and (c) below:
(a) 1" € Knowledge,,_;, which follows from
e ' € StoreRely,_;,
which follows from the closure of 1)’ under world extension; the latter, given the

definition of ¢’, follows from the closure of |V [7] p]x—; under world extension
(i.e., from Lemma 3.21 (page 19) applied to A+ 7 and p € D [A]).
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o Vs, 89,5, sh.
(Vll S dom(n’.Zl).sl(ll) = S/l(ll) A Vi € dom(n’.Eg).SQ(lg) = Sé(lg)) -
Vj”,W”. (j”,WN,Sl,SQ) c ¢/ PN (j”,W”,Sll,Slz) c wl)’
which is immediate from the definition of n’ since dom(n’.X;) = {l1} and
dom(n’.X2) = {l2} and since ' is defined to rely only on the contents of lo-
cation /i in the first store and the contents of Iy in the second store. More
formally, note that from the definition of v’ it follows that

(j//a W//751732) € 1// ~ (j//7 W”> 3/178/2) € W
= (" Whsi(h),s2(l2)) € (VITlpli—; & (G W7 s1(h), s2(l2)) € [V [7] p)i-

The latter is clearly a tautology when s1(l1) = s{(l1) and s3(l2) = s5(l2).
(b) £’ € Lawy_j,
which follows from the downward closure of £’ (i.e., the property that V(i,n) €
L.V <. (¢, |7 ]+) € L), which is immediate from the definition of £'.
(c) (k—j.n)el
=(k—7,n]k—;) € L (since n’ = |n'|k—; by Lemma 3.6 (page 16)
applied to 1’ € Knowledgey,_;),
which is immediate from the definition of £'.

(ii) Ve,d e {1,...,n+1}. c #d = dom(W'[c].X1) # dom(W'[d].X1) A
dom(W'[c].X2) # dom(W'[d].Xs),
which we conclude as follows:
Suppose ¢,d € {1,...,n} and ¢ # d. Note that

dom(W'[¢].X1) #dom(W'[d].£1) A dom(W'[c].X3) # dom(W'[d].X5)
dom(Wy[c].X1) # dom(W,[d].21) A dom(W,[c].X2) # dom(W,[d].X2)
(since W'[i].X1 = W, [i].X1 and W'[i].29 = W, [i].2s for i € {1,...,n}, by defn of W)
= dom(wge.X1) #dom(weg.X1) A dom(wge.X2) # dom(wgeq. o)
(since Wy [i] = wg; for i € {1,...,n})

Note that the latter follows from W, € Worldy_;, (which follows from above).
Thus, it remains for us to show that the last island in W', namely W'[n + 1] = w’ is such

that
Vie{l,...,n}. dom(w'.21) #dom(W'[i].E1) A dom(w’ Yo) # dom(W'[i].X2)
Vie{l,...,n}. dom(w'.3q) #dom(W,[i]. 1) A dom(w'.Xq)# dom(W,[i].X2)
= dom(w". 1) # dom(U, <;<,, Walil- 1) A dom(w’.Xs) # dom (U, <<, Wali].X2)
= dom(w’.%1) #dom (X (W,)) A dom(w'.Xs) # dom(3e(W,))
= {li} #dom(Z1 (W) A {la} # dom(Z2(W,))
= ll ¢ dom(El(Wa)) A lz ¢ dOI’H(EQ(Wa))

Note that from s14, 524 :k—j, W, it follows that F s14 : 31 (W,) and & sa, 1 2o (Wy).
Hence, it follows that dom(s1,) 2 dom(X1(W,)) and dom(ss,) 2 dom(X(Wy,)).
Hence, we can conclude that

o Iy & X1 (Wa),
which follows from I; ¢ dom(s1,) (from above) and dom(sy,) 2 dom(3(W,)), and

o Ir & Xa(Wa),
which follows from Iy ¢ dom(sg,) (from above) and dom(sa,) 2 dom(Xa(Wy,)).
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We are required to show that

(1) s2,ref (pa(r2(e2))) —* s5,v2
= s, ref (pa(2(e2))) —* sag[la — va4], l2,
which follows from
sy, ref (p2(v2(e2))) =" 524, ref U2,
1 soulla = v24],l2, where Iy ¢ dom(sg,) as required.

(2) (k—j,W’) 3 (k,W),
which follows from Lemma 3.18 (transitivity of J, page 18) applied to
hd (k _j7 W,) 3 (k _j17WG)7
which follows (by the definition of J) from:

e k—j <k — j, which follows from k — j =k — j; — 1 (since j = j1 + 1),

o W, € Worldy_j;,,
which follows from above,

o W' e Worldy,—;,
which follows from above, and

L4 W/ ; LWakaj
= <|_wa1J/€—j’ R I_waan—ja w/>
= <|_wa1Jk—ja ceey I_waan—ja wl>
which we conclude as follows:

Note that it suffices to show Vi € {1,...,n}. |wailk—j I |Wailk—;-
Applying Lemma 3.13 (page 18) to |wai]x—; € Islandy_; (from above), we conclude
that Lwaijk,j Q I_’LUM‘J k—j-

L(wal, e ,wan”k_j
<|_wa1Jk—j7 ceey I_waan—j>a

I

and
o (k—j1,Wa) 2 (k,W),
which follows from above.
(3) 81,85 ey W'
= s1a[l1 — Via), S24[l2 — V2] -y W,
which follows (by definition of the store satisfaction relation) from
o Fs14[ly — v1g] : B (W)
= VI c dom(El(W/)) °5 s El(W/) [ sla[ll (g Ula](l) . El(W,)(l),
which, since X1 (W') = 3, (Wy,) W {ly : p1(7)}, follows from (I) and (II) below:
(I) VI € dom(X1(Wy)). 51 (W) F s14[l1 — v1a](1) : (1 (W)(1),
which follows from:

Consider [ € dom(X1(W,)). Hence, note that I # I;.
We are required to show that

5 S (W) E sially = via] (1) + (B0 (W)) (1)
5 (W E sl : (Z1(WH) () (since I # 1 and I1 ¢ dom(s14))
B (W) Esia(l) « (B1(Wa))(l)  (since I # 1y and Iy ¢ dom(E1(Wa)))
s E(Wa) W{lh : pr(7)} E s10(0) = (B1(Wa)) (D)
which follows from -;-; 3, (W,) F sla( ) (B (Wa)(D),
which in turn follows from b s1, : 31 (W,) since I € dom(X4(W,,)).
(I1) Vi € dom({l1 : p1(7)}). 5521 (W") F s1a]l1 = v1a](D) = (Z1(W)(D)
= (W) F sialli = via](l) = (E:(W))(0)
=51 (W) Foig : pa(7),
which follows from -;+; 31 (W,) F v14 : p1(7),
which in turn follows from (k — j1, W, V14, v24) € V [7] p-
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o 594la = v24] 1 (W),

which follows by reasoning analogous to that used for F s14[l; — v14] : 31 (W’) above.
e Ywe W . Vi <k — 7. (7;’, LW/Ji’asla[ll = 'Ula],Sga[lQ = ’Uga]) € 'w.’(b,

which we conclude as follows:

Consider arbitrary w € W’ and i’ < k — j.

We are required to show (i', |W'];r, s14[l1 — v14)], $2a[l2 — v24]) € w.1).

Note that by the definition of W’, there are two cases to consider:

either w = W'[i] (where 1 <4 <n), or w=W'[n+1].

Case w = W'[i] = |wqi]k—; (where 1 <i<mn):

We are required to show that

—~

i’ [ W i, s1allt = vial, S2a[l2 — v24]) € ([Wailk—j) .0
(@, W' |ir, s10[li ¥ V1a], S20[l2 ¥ v24]) € |Wai® k-
(’Ll, LW,JW; Sla[ll — Ula], Sga[lg — Uga]) S wai.dJ (since ! < k— ])

Note that from 514,824 :k—j, W, it follows that

o Ywy € W,. Vil < k — J1- (i/, I_W/Ji/,Sla,Sga) € Wei..
Hence, since w,; € W, (where 1 < i < n) and since k — j < k — j; (which follows from
j=71+1), it follows that

o (k—7,IW']k—j,S51a:52a) € Wai-t.

Let wg;.201 = Xgs1 and let wgy;. 22 = Xgi2. Then it must be that

o [} ¢ dom(X4i1),
which follows from

o [} ¢ dom(X (W),
which follows from above, and
o Yai1 € E1(Wa),
which follows from the definition of 31 (W, ) since wy; € W, and wg;.X1 = Xgi1-
[ ] lg ¢ dom(Zaig),
which follows from

o [y ¢ dom(Xy(Wy,)),
which follows from above, and
o Yaio C X (W),
which follows from the definition of ¥5(W,) since wy; € W, and wg;.Xe = Xgio.
Hence, note that
o Vi e dom(Xyi1). $1a(l) = s14[l1 — v16](1), and
o Vi € dom(Xg2). $24(1) = s24[l2 — v24](1).

Note that wa;.n € Knowledge),_; , which follows from W, € Worldy_;, since W, [i] = wq;-
Now, from W,.n € Knowledge,,_; , together with

o Vi € dom(X4i1)- $1a(l) = s1allt — v1a](1),
o Vi € dom(Xyi2). $24(1) = S24[l2 — v24](1), and
o (k—7,\Walk—j,S1a, 524) € Wa;-¢ (from above),
it follows that (k — j, [Wa]k—j, S1alli — via], S24[l2 — v24]) € Wa;.1.

Note that

o (', [W']ir) 2 (k =, [Walr—j),
which follows from Lemma 3.18 (page 18) applied to
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o (', [W']ir) 2 (k =4, W),
which follows from Lemma 3.16 (page 18) applied to W’ € Worldj_; and i’ <
k —j, and
L4 (k - j7 Wl) ; (k _.ja I_WaJk—j)7
which follows from Lemma 3.17 (page 18) applied to
hd (k _j’ W/) J (k - jla Wa)’
which follows from above, and
o k—j5j<k—j.

Next, note that wg;.1) € StoreRelyj,, which follows from wg;.n € Knowledge,_;, .
Since wy;.1 is closed under world extension, and since we have that

o (k—7,[Walk—j,s1a[li = v1a], 82a[l2 = v24]) € wai.1 (from above) and
b4 (i/a I_W,JZ') g (k - j7 I_WaJk—j)a
it follows that (&', |W' |, s14[l1 — v1al, S24[l2 — v24]) € was.1 as required.

Case w=W'[n+1]=w':
We are required to show that

—~
~
<

W i, s1allh = V1a], S24[l2 = v24]) € W'
i’ [ W i, s1allh = v1als S2alla — v24]) € ¢ (since w'.ap = ")
liry s1alli = via](l1), 52all2 — v24](l2)) € [V [7] plr—; (by definition of ¢")
&, (W )i, v1a,v20) € [V [7] pli—;
Jirs v1asv2a) € V7] p (since ' < k —j)

NN S N
. NN .
N~ S TN X

—
-~

Note that
o (', [W']ir) 3 (k= j1, Wa),
which follows from Lemma 3.18 (page 18) applied to
o (', [W']ir) 2 (k =4, W)
which follows from Lemma 3.16 (page 18) applied to W’ € Worldy_; and i’ <
k —j, and
hd (k - j7 Wl) 3 (k _.j17Wa)7
which follows from above.
Applying Lemma 3.21 (page 19) to (k — j1, Wa,V1a,v24) € V[7] p (from above) and
(&, |[W']i) 3 (k— j1,W,), we conclude that (¢, |[W' |/, v14,v24) € V[7] p as required.

(4) (k—j, W' vi,v9) € V[refr]p
= (k—j, W' li,l2) € V[ref 1] p,
which follows (by the definition of V [ref 7] p) from

® wl’ef(k - j) Py T, ll7 ZQ) ew
=, L) eW (since wet(k —j, p,7l1,12) = (', L) = w’)
=w eW,
which follows from W'[n + 1] = w'.
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Lemma 3.48. (Compatibility: Deref)

IfAT; S F e =99 ey :ref 7,
then A:T; S F leg =M9 tey o 7.

Proof

Consider arbitrary &, p, v, W such that

e k>0,
e peD[A],
e (k,W,~) € G[I'] p, and
o (K, W)eS[X].
We are required to show that (k, W, p1(y1(e1)), p2(12(te2))) € E[r] p

(k, W, t(p1(mi(e1))), H(p2(r2(e2)))) € E[r] p.
Consider arbitrary j, s1, s2, s}, v1 such that

o j <k
® 51,80 W, and
e 51, (pr(7i(er))) —7 sy, 01

Hence, by inspection of the operational semantics, it follows that there exist ji, 14, and {; such that

o si,p1(ner)) —7 s,
o 514(l1) = v,

o Sia, M " s14,01,

e j=7+1, and

® s =514

Instantiate the premise A;T; X e; <9 e, : ref 7 with &, p, v, and W. Note that

e k>0,

e peD[A],

o (k,W,v) € G[I'] p, and

o (k,W)eS[X].
Hence, (k, W, p1(71(e1)), p2(72(€2))) € € [ref 7] p.
Instantiate this with ji, s1, S2, S14, l1. Note that

e j; < k, which follows from j; = j — 1 and j < k,

® 51,89 W and

o s1,p1(vi(er)) —It s14, 11
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Hence, there exist soq, v9,, and W, such that

e 59, p2(72(e2)) =" 524, V2a,

o (k—j1,Wa) 3 (k, W),

® Sig,52q k—j; Wa, and

o (k—j1,Wa,l1,v2q) € V[ref 7] p.

Hence, vy, = I5.
Note that we have the following facts:
o k—j<k—y,
which follows from j < k and j = j; + 1, and

o W, € Worldy_j,,
which follows from (k — ji, W,) 3 (k, W).

Also, note that wyef(k — 1, p, 7, l1,1l2) € W, (which follows from (k — j1, Wy, l1,v24) € V [ref 7] p),
where wyef(k — j1,p, 7, 11,12) = (0, L)

n=(, 0 {l:pi(r)} {l2: p2(7)})

v ={(W", sf,s5) | (i, W",s(l), s3(12)) € [V[7] pJr—j }

L={(,[nl)|i<k—j}
Note that

o Yw € Wa- Vi<k— jl' (Za I_WaJivslaas2a) € w-¢7
which follows from s14, 524 k—j; Wa-

Hence, since (1, L) € W,, it follows that

o Vi < k —jl. (Z, I_W(J,Jiy'SlCHSQG) € (777‘6)’(/)
=Vi<k—j1. (4, |Wali, S1a,824) € ¥ (since (n, L).9p = )

Hence, since k — j < k — j1, it follows that
o (k—7,\Walk—j,S1a,524) €V
Hence, from the definition of 1), it follows that
o (k=3 [Walr—jss1a(ln), 524(12)) € [V [7] pJi—js -

Note that, from the latter, it follows that Io € dom(sa,).
Take s5 = So4, V2 = S24(l2), and W' = [Wg]x—;.

We are required to show that

(1) s2, H(p2(r2(e2))) —" s5,v2
= 59, 1(p2(12(€2))) —* 524, 524(l2),
which follows from

s2, 1(pa(2(e2))) +—% Soq, lv2g

= S2a, !l2, where lo € dom(sg,) as required
1 504, 824 (12).
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(2) (k—5,W") 3 (kW)
= (k -J LWaJk—j) J (ka)7
which follows from Lemma 3.18 (transitivity of J, page 18) applied to
o (k - j7 LWaJk:—j) g (k - jla Wa)a
which follows from Lemma 3.16 (page 18) applied to W, € Worldy_;, and k —j < k — j,
and
L4 (k - jla Wa) g (kv W)7
which follows from above.
(3) 81,85y W'
= 514,520 ‘k—j [ Walk—j,
which follows from Lemma 3.19 (page 18) applied to Siq4, 824 ‘k—j; Wo and k —j < k — j1.
(4) (k - j7 W/avlv U2) eV [[T]] P
= (k= J, [Walr—j, s1a(l1), s2a(12)) € V[7] p,
which follows from (k — j, |[Wa]r—j, s1a(l1), 524(l2)) € [V [7] pli—j, (since k —j < k — ji).
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Lemma 3.49. (Compatibility: Assign)

IfAT; S F ey =99 ey iref T and A;T; S Fef <W9 ¢l 7
then A;T; X ey :=ef <199 ey :=ely : unit.

7

Proof

Consider arbitrary k, p, v, W such that

o k>0,
e peD[A],
o (k,W,v) € G[I'] p, and
o (K, W)eS[X].
We are required to show that (k, W, p1(v1(e1 :=€)), p2(12(e2 :=€}))) € € [unit] p

= (k, W, p1(m(e1)) :=p1(71(€1)), p2(v2(€2)) = p2(r2(e3))) € € [unit] p.
Consider arbitrary j, s1, s, sj, v1 such that

o j <Kk,
e s1,59 : W, and
e s1,p1(m(er)) :=pi(ni(eh)) —7 sh, 01

Hence, by inspection of the operational semantics, it follows that there exist j1, j2, S1a, S15, 1, and vy
such that

o s1,pi(nler)) —7* sia,l1,
® Siq, p1(71(€))) —72 515, v1p,
e [; € dom(syy),
o sl i=vp " sl = on), (),
e j=j1+Jj2+1,
o ) = s1p[ly — v1p), and
e vy = ().
Instantiate the premise A;T; Y F e <9 e, : ref 7 with &, p, v, and W. Note that

o k>0,

e peD[A],

o (k,W,7) € G p, and
o (k,W)eS[x].

Hence, (k, W, p1(y1(e1)), p2(v2(e2))) € & [ref 7] p.
Instantiate this with j1, s1, Sa2, S14, {1. Note that

e j; < k, which follows from j; = j — jo — 1 and j < k,

34



® S1,59 : W and
o s1,p1(71(e1)) —It s1a, 1.

Hence, there exist soq, v2,, and W, such that

® s2,p2(72(€2)) —" 524, V24,
o (k—j1,W,) 2 (k,W),
® Sig,52¢ (k—j; Wa, and

o (k—j1,Wa,l1,v2q) € V[ref 7] p.

Hence, vy, = I5.

Instantiate the premise A;T; Y I ¢ef =9 ¢} : 7 with k — jy, p, v, and W,. Note that

o k— jl 2 0)
which follows from j; = j — jo — 1 and j < k,

e pc D[A],

b (k 7j1,Wa,"Y) €g [[FH Ps
which follows from Lemma 3.22 (page 19) applied to (k, W,~) € G [I'] p and (k—3j1, W,) 3 (k, W),
and

b (k _tha) €S [[Eﬂv
which follows from Lemma 3.23 (page 19) applied to (k, W) € S[X] and (k — ji, W) 3 (k, W).

Hence, (k — ji, Wa, p1(11(€1)), p2(12(e3))) € E [7] p.
Instantiate this with jo, S14, S24, S1, V15- Note that

e jo <k—ji,
which follows from jo =j—j; — 1 and j < k,

® Sla;S2a ‘k—j; Wa,
which follows from above, and

® 514, p1(71(€))) 72 s15, 010,
which follows from above.

Hence, there exist sqp, v2p, and Wp, such that
o 524, p2(72(eh)) =" 525, vap,
o (k—j1— 42, Wp) 3 (k— j1, Wa),
® 515,82 ‘k—j,—jo W, and
o (k—j1— j2, Wy, v1p,v2) € V[7] p.
Note that we have the following facts:

o S1b - Zl(Wb) and F Sop - EQ(Wb),
which follow from s1p, 52 k—j;—jo Wh,
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k—j<k—=7j1—Jz
which follows from j < k and j = j; + jo + 1,

W, € WOTldk,jlsz,
which follows from (k — j; — jo, W) 3 (k — j1, Wa),

|_WbJ k—j € WO’I“ldk_j,
which follows from Lemma 3.12 (page 17) applied to W, € Worldy_;,—;, and k—j < k — j1 — ja2,

Suppose W, = (wa1, - . ., Wan). Then
Im e {1,...,n}. Wylm] = wees(k — j1,p, 7,11,12)

(or alternatively, wyef(k—j1, p, 7, 11,12) € W, which follows from (k—ji, Wy, 11, v2,) € V [ref 7] p),
where wyes(k — j1,p, 7,11, 12) = (n, L)

n=,0.{l: pa(7)},{l2: p2(7)})

=AW, s, s5) | (i, W, s (l),s5(l2)) € [V[r] pli—ji }

L={(@,[nl)i<k—ji}

{li : p1(7)} T X1 (W,) and {ls : p2(7)} C Xa(W,),
which follow from the definitions of 31 (W, ) and ¥5(W,) and the fact that (n,£) € W, (above)
where (1, £).21 = {l1 : p1(7)} and (9, £).E2 = {l2 : p2(7)}.

Zl(Wb) 2 Zl(Wa) and EQ(Wb) 2 EQ(Wa),
which follow from (k — j1 — jo, Wp) 3 (k — j1, Wa).

{li: pr(7)} © X0(Wh) and {lz : pa(7)} C Xa(W5),
which follow, respectively, from {l1 : p1(7)} C X1(W,) since X1(W;) D £1(W,), and from
{lg : pQ(T)} Q ZQ(Wa) since EQ(WZ)) 2 EQ(WQ).

ly € dOIn(SQb),
which follows from the fact that Vi € dom(Xo(Wp). 55 8a(Wy) B sop(l) :+ Xa(Wp) (1) (which
follows, by definition, from I sgp : X5(W3)), since ls € dom (o (W3)).

Take s5 = sap[la — vap), v2 = (), and W/ = |[Wy |j—;.

We are required to show that

(1) s2,(p2(72(e2))) :=(p2(12(e3))) =" 55,02
= 52, (p2(712(e2))) 1= (p2(r2(€y))) =" sapla = vap], (),
which follows from

*

s2, (p2(12(e2))) 1= (p2(r2(€3))) F—"  S2q,v2q 1= (p2(72(€3)))

524,12 1= (p2(2(€3)))

Sop, Ly 1= vy, where Iy € dom(sgp) as required
sap[l2 = vap), ()-

—
P—)l
= (k - j7 LWka—J) g (IC, W)7
which follows from Lemma 3.18 (transitivity of J, page 18) applied to

o (k—j, [Wylr—j) 3 (k—j1— jo, Wp),

which follows from Lemma 3.16 (page 18) applied to W, € Worldy_;,—;, and k — j <

k —j1—J2, and
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° (k - jl _j27Wb) g (k7W)a
which follows from Lemma 3.18 (transitivity of J, page 18) applied to
L4 (k _,jl _anWb) g (k _.j17WCL)a
which follows from above, and
L4 (k _jlvwa) ; (kaW)7
which follows from above.
(8) s1,8p iy W'
= s1p(l1 = v}, s2[l2 = vap) ki [ Wolk—js
which follows (by definition of the store satisfaction relation) from
® - Slb[ll — Ulb] : El(LWka,j)
= F syl v 2 21 (Wh)
= Viedom(Z1(Wh)). 5 X1 (Wh) F s1p[ls — v1p](1) : (B2 (W) (D),
which, since I; € dom(3;(W3)), follows from (I) and (II) below:
(I) Vi€ (dom(Z1(Wp)) \ {l1}). -5+ X1 (We) = s1p[ls = vip] (1) = (E1(We))(1),
which follows from:

Consider | € dom(X1(W;)) \ {l1}). Hence, note that | # [;.
We are required to show that

5y El(Wb) = Slb[ll — ’Ulb](l) : (El(Wb))(l)
= X (W) Fsip(l) : (Z1(W) () (since I # 1y)

which follows from VI € dom(X1(Wy)). -5+ E1(Wh) F s16(1) : (B1(Wy))(1),
which in turn follows from b s1;, : X1 (W) since I € dom(3, (W5)).
(II) Vi e {ll} B El(Wb) = Slb[ll — vlb](l) : (Zl(Wb)>(Z)
= 5 S (We) b osipls = vip](l)  (B0(W5)) (1)
= 5 S (Wh) Foogp 0 (S0(Wh)) (1)
= 55X (W) F o pr(7) (since {l1 : p1(7)} C X1 (W)
which follows from (k — j1 — ja, Wy, v1p, v2) € V [7] p.
[ ) }— Sgb[lg = vgb] : EQ(U/VZ,J]C,j)7
which follows by reasoning analogous to that used for - s1[l1 — v1p] : 31 (|Ws]r—;) above.
o Ywe W Vi'<k-— ] (i/, LW/Ji’aslb[ll — Ulb],SQb[lg — ’Ugb]) c U)?/)
=VYw € LWbJ k—j- Vi < k —j. (i’, LLWkafjJi’vslb[ll — ’Ulb],SQb[lQ = U2b]) S w.iﬂ
=VYw € |_ij k—j- Vil <k — 7 (’i/, LWin/, Slb[ll — Ulb]7 821,[12 — Ugb]) c ’w.lb,
which we conclude as follows:
Suppose W, = (wp1, . . ., Wpn/). Note that we have the following facts:
em<n<n,
which follows from (k — j1 — j2, Ws) 3 (k — j1, W,) together with 1 < m < n (from
above) and W, = (wq1, ..., Wan) (from above).

o Welk—j = (lwsr]k—j»- s [wonr ] ;)
which is immediate from the definition of world approximation.

Note that since W,[m] = (1, £) and since (k — j, |[Ws|r—;) 3 (k — j1, Wa), it follows from
the definition of the latter that there exist ', £’ such that

o (|[Wylk—j)[m] = (0", L") (or alternatively (n', L") € |[Wp]|r—;),

o (', L) 3 (L) ks,
which follows from (|W;]r—;)[m] 2 [Walk—;[m],
which in turn follows from |[W4|k—; 3 [Wa|k—j,
which in turn is immediate from the definition of (k — j, |W4 |k—;) 3 (k — j1, Wa),
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o (0, L") € Islandy,_;,
which follows from |Wy|,—; € Worldy_; since (', L") = (|[Wh|k—;)[m],
o {li:p(n)} C (0, L)%,
which follows from the fact that
e (n,£).% ={l1:pi(7)}, and
d (n/aﬁl)‘zl 2 (7775)21
=, L).E 2 [(n,L)]r—j- 2,
which follows, by definition, from (n',£") 3 [ (1, £) |k—;,
o {la:pa(7)} € (0, L) 2,
which follows from the fact that
o (7,£).32 = {lz: p2(7)}, and
b (n/aﬁl)'EQ = (7775)22
= (0, £)32 2 [(n, £) |r—j-To,
which follows, by definition, from (1, £") 3 [ (1, £)|x—;,
o L' =[L]k
which follows from (', £") 2 |(n, £)]x—;, and
o 7' = 1]k
which we conclude from:
(k—j,n)el (which follows from (0, L) € Island_;)
(k—7,7) € | L]k (since L = |L]r—;)
(k=gn) € {6 [n]) | i <k —ji}le—y (since £={([nl:) [ i <k—ji})
(k—j4,m)e{@, (nl)] i<k-j} (by the defn of law approximation)

o (', L)) = [v]k—j,
which follows from 1’ = [n],—; since n = (¢, (), {l1 : p1(7)}, {l2 : p2(7)}).
(Recall from above that ¢ = {(i, W", s, s5) | (i, W",s{(l1),s5(l2)) € | V[7] ple—s }-)

3

Consider arbitrary w € |[Wp]x—; and i’ < k — j.
We are required to show (i, [ Wi, s1p[l1 — v1p], S2b[l2 — vap]) € w.h.
There are two cases to consider: either w = (|W4|r—;)[i] where 1 <4 < n’ and i # m, or
w = ([Wh]r—j)lm].
Case w = (|[Wp]k—;)[i] = |wpi|r—; (where 1 <i<n'andi#m):
We are required to show that

—~

i [ Welir, s1p[li — vip), s2slla — vap]) € (|wpilp—j5)- ¢
(@, (W], su[ln — vis], s2p[l2 — vap]) € [wpith]p—;
(i/, I_WbJ i’y Slb[l1 — UlbL Sgb[lg = ’Ugb]) (S wbi.’lb (since i <k— ])

Note that from s1p, S2p 1x—j, —j, Wp it follows that

o Vw e W,. Vi’ <k—j1—jo. (', |Ws)ir, S1b, S2) € w.1).
Hence, since wy; € Wj, (where 1 < ¢ < n) and since k — j < k — j1 — jo (which follows
from j = j; + jo + 1), it follows that

o (k—34,[Wplr—j,S1a,524) € Wp;-P.
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Let wy;.21 = 21 and let wy;. X2 = ;2. Then it must be that
L] ll ¢ dom(Ebil)
= ll ¢ dom( |_ij k,j[i].Zl),
which follows from
e [ € dom( |_WbJ k—j [m]Zl)
=1, edom((n',L£').X1) (since |Wp]x—;lm] = (7', L))
which follows from {l; : p1(7)} C (', £').X1, and
o dom(|Wp|k—;[m].X1) # dom(|Wp|k—;[i].X1),
which follows from ¢ # m and |W3],—; € World,—; (since the locations that
distinct islands in [W;],—; “care about” must be disjoint),
° lg ¢ dom(Ebig)
= 12 ¢ dom( LWbJ k_]‘[i].zg),
which follows from
oy € dom( LWbJ k—j [m]ZQ)
=ly e dom((n', L').X2) (since |Wp]x—;im] = (', L))
which follows from {ls : po(7)} C (7, L"). X2, and
L] dom( LWbJ k—j [m]Eg) # dom(LWka,j [1]22)7
which follows from ¢ # m and |W3],—; € World,—; (since the locations that
distinct islands in |[W;|,—; “care about” must be disjoint),
Hence, note that
o Vi € dom(Zpi1). s16(1) = s1p[l1 — v15)(1), and
o V] e dom(Zbig). Sgb(l) = Sgb[lz — ’Ugb](l).

Note that wy;.n € Knowledgek7j17j2, which follows from W, € Worldy—_;, —;, since
Wb[Z] = Wp;-
Now, from Wy.n € Knowledge,_; _ ., together with
o Vi € dom(Zpi1). s16(1) = s1p[l1 — v15)(1),
o Vi € dom(Zpi2). sap(l) = sap[la — vap](1), and
o (k—7,[Wi]r—j, S1p, 526) € wp;.¢ (from above),
it follows that (/C -7, LWka,j, Slb[ll — ’Ulb], 821,[[2 — U2b]) S ’wbz’t/J

Note that
o (¢, [Wyli) 2 (k—J, [Welk—j)
= (@, [IWe]k—jlir) 3 (k= 4, [Wh]r—j) (since i’ <k —j)
which follows from Lemma 3.16 (page 18) applied to |Wy|x—; € Worlds_; and
i <k-—j.

Next, note that wy;.¢) € StoreRely—j, —j,, which follows from wy;.n € Knowledge,,_;, _ ;. .
Since wy;.1 is closed under world extension, and since we have that

o (k—7,[Whlrk—j,s1[l1 = v1], S2pll2 — vap]) € wpi-1 (from above) and
L4 (i/a I_WbJ’L'/) g (k _.j7 I_Wka—j)a
it follows that (&', | W], s1s[l1 — v1p), S2b[l2 — vap]) € we;.1p as required.
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Case w = ([Wy]s—j)lm] = (0, L) :
We are required to show that

—~

i [ Whir, s1p[la = vip), sap[le — vap]) € (0, L))

(@', [Wo]ir, sw[ln = vip)s saullo = vae]) € Y]k (since (0, L)Y = [¥]k—;)
(@', (W], s1u[ln — v1s), s28[l2 — vap]) € ¥ (since i’ < k — j)

(@, [Wh]ir, s1p[ln — v1p) (1), S2plla — vap](l2)) € [V [7] pli—j, (by definition of 1))

(@, | Wh]ar, s16[ls — v1p] (1), s2p[l2 — vap](l2)) € V7] p (since ¢/ < k — j1)

(i/, LWbe,vlb, ’Ugb) ey [[7']] P

Note that
o (', [Wylir) 2 (k— j1 — ja, Wh),
which follows from Lemma 3.18 (page 18) applied to
o (¢, [Wol) 3 (k—j, [Welr—j)
= (7, [[Wo]r—jlir) 2 (k= J, [We]r—;) (since i’ <k —j)
which follows from Lemma 3.16 (page 18) applied to |W;],—; € Worldy_; and
i’ <k—j, and
o (k—3j,[Wplk—j) 3 (k—j1 — j2, Wh),
which follows from above.
Applying Lemma 3.21 (page 19) to (k — j1 — j2, W, v1p,v25) € V [7] p (from above) and
(¢, [Wh]sr) 3 (k—j1—j2, Wh), we conclude that (', | W], v1p, v2p) € V [7] p as required.

(4) (k - j7 levlan) eV [[T]] p
= (k= 3, [Wh]i—j, (), ()) € V [unit] p,
which follows from the definition of V [unit] p since |Wy]|x—; € Worldy—; (from above) and since
it is immediate from the typing rules that X1 (|Wp]x—;) F () : unit and Xo([Ws|k—;) F () : unit.

a
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Lemma 3.50. (Compatibility: Ref Equality)

If AT, S ey =19 ep iref 7 and A;T; S F e <199 ¢y ref 7,
then A;T; X | eg ==} =<!99 ey ==¢), : bool.

Proof
To be filled in.
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Theorem 3.51. (Fundamental Property)
IfFAT;SFe:7 then A;T; N Fe <9 e 7.
Proof

Proof by induction on the derivation A; T X Fe: 7.
Each case follows from the corresponding compatibility lemma (i.e., Lemmas 3.26 through 3.50). O
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3.3 Soundness w.r.t. Contextual Equivalence

Lemma 3.52. (Logically Related Terms Are Related in Any Context)

IfFC: (A7) = (AT Y F 1) and AsT; S F ey <99 ey 7,
then A';T'; 3 = Cley] =99 Cleg) : 7.

Proof
Proof by induction on the derivation - C': (A;T; 2 F 7) = (A T3 F 7).
The base case (i.e., when C = []) follows easily from the premise A;T;%  e; <9 ey : 7. The
remaining cases follow from the induction hypothesis and application of the appropriate compatibility
lemma (i.e., one of Lemmas 3.32 through 3.50). O
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Value Parametricity and Store Parametricity

To prove that the logical relation is sound with respect to contextual equivalance, we will need a notion of
store parametricity (see Lemma 3.58 on page 46). Informally, this is the property that if F s : X and W is
a world comprised of one wy island for each location | € dom(X) (see Definition 3.55, page 45), then s is
related to itself at world W for any number of steps k. Notice that to prove this lemma, we will need to
show that if ¥(I) = 7, then the value stored at location ! in store s (where we know that ;X F s(l) : 7) is
related to itself at the type 7 (i.e., (k, W, (1), s(1)) € V[r] 0). To show the latter, we define a notion of value
relatedness below and prove that any well typed value is related to itself in the appropriate value relation
V [7] p, not just in the computation relation £ [7] p as established by the Fundamental Property.

Definition 3.53. (Value Relatedness)
Let AT Fop 7 and AT Fog o 7.

AT;S oy <0y 07 0 Wk > 0. Vp,y, W

peDIA] A (E,W,7)eG[l]p A (kW) eS[E] =
(k, W, p1(71(v1)), p2(12(v2))) € V7] p

Lemma 3.54. (Well-typed Values in Value Relation V [7])
IfFA TS Fo:7 then AT S o j\l,‘;‘f vT.
Proof

Proof by induction on the derivation A;T; X F v : 7.
The proofs of all cases are similar to the corresponding compatibility lemmas.

In all cases where the value v contains only values as subexpressions, the proof follows by application
of the induction hypothesis. However, this is not the case when the value v contains a term e as a
subexpression as in the case for functions and type abstraction (which we discuss next).

Consider the function case. Suppose A;T'; X F Ax:71.e: 7 — 75. Then we know that A;T,z: ;X F
e : T5. Here we make use of the Fundamental Property (Lemma 3.51, page 42) to conclude that
AT,z : 738 F e <9 e : 79, The rest of the proof is similar to the proof of Lemma 3.39 (compatibility
lemma for functions).

Similarly, in the case of type abstraction, suppose A;I;Y¥ F Aa.e : Va.7;. Then we have that
A,a;T;% F e : 71. Now from the Fundamental Property (Lemma 3.51, page 42) it follows that
A,o;T;Y e =< ¢ : 1. The rest of the proof is similar to that of the Lemma 3.41 (compatibility
lemma for type abstraction). O
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Definition 3.55. (Canonical World for Store Typing X)

IfFX={li:7m,...,ln: 7} and k > 0, then

Wean(k, X) def (w, ..., wy), where each w; = wyes(k, D, 74,1, 1;).

Lemma 3.56.
Wean(k, %) € Worldy,.

Proof
Let X ={l1:71,--,1n : Tn}. Then Wean(k, X) = (w1, ..., w,), where each w; = wyes(k, D, 74, 13, 1;).
From the definition of wyf, we have that each w; = (n;, £;) where

ni = (i {3 Al m}A{li: 1))
%‘ = {(.7’ W’,Sl,Sg) ‘ (.7’ W/asl(li)782(li)) € Vk[[Tiﬂ 0}
; {0, lmls) |5 <k}

L;
Let W = Wean(k, X). We are required to show that

o W € Island};, which follows from the fact that each w; € Islandy, which in turn follows from:

o (n;,L;) € Knowledge,, X Lawy, which follows from the definition of 7; and £;, and

o (k,mi) € L
= (k, [ni]x) € L; (since n; = [n;]r by Lemma 3.6 (page 16) applied to n; € Knowledge,,)
which is immediate from the definition of £;.

e n > 0, which is immediate since dom(X) contains n > 0 locations, and

e Va,be{l,....,n}. a#b = dom(W][a].X1) #dom(W[b].21) A dom(W]a].X2) # dom(W[b].X2),
which follows from our choice of W above, since dom(W{a].X1) = dom(Wla].22 = {l,} and
dom(W[b].31) = dom(W[b].Xo = {ls}, and I, # l;, whenever a # b.

O

Lemma 3.57.

Let W = Wean(k,X). Then (k,W) € S[X].
Proof

Suppose (I: 1) € X.

We are required to show that (k, W,1,1) € V [ref 7] 0.

By the definition of V [ref 7] 0, it suffices to show that wyes(k,0,7,1,1) € W.

The latter is immediate from the premise and the definition of We,, (k, X). O
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Lemma 3.58. (Store Parametricity)

IfFs: ¥ and W = Wen(k,X), then s, s, W.
Proof

Let X ={ly : 11, ...,ln: Tn}. Then W = Wean(k, X) = (wy, . .., wy,), where each w; = wyes(k, 0, 74, 1;, 1;).

From the definition of wyf, we have that each w; = (;, £;) where

ni = Wi, {5l Al 7))
i {3, W', s1,52) | (5, W', 51(L3), 52(15)) € Vi[r:] 0
L; {G, nidj) |7 < K}
Hence, note that w;.3X1 = w;. Yo = {l; : 7;}.
Furthermore, X1 (W) = U, <;<,, wi-21 = Uy <;<, {li : 7} = ¥, and
EQ(W) = Ulgiﬁn ’LUi.EQ = Ulgzgn{l1 . Ti} = E

Finally, note that W € Worldy,, which follows from Lemma 3.56 applied to Wean (k, X).

We are required to show that

o Fs: X (W)
= Fs:3
which is immediate,

o Fs: X (W)
= Fs:X,
which is again immediate, and

o Yw; € W.Vj <k.(j, [W];,s,5) € w.ih
= Yw;, € W.Vj < k.(j,|[W]j,s,s) €y,
which we conclude as follows:

Consider arbitrary w; and j such that w; € W and j < k.
From the definition of v; above, it suffices to show that (j, |W|;, s(l;), s(li)) € Vi[r:] 0.

Note that from F s : ¥ and X(I;) = 7, it follows that ;X F s(l;) : 7.
Applying Lemma 3.54 (page 44) to -;-; % F s(l;) : 7, we have that -5 % F s(l;) <29 s(l) : 7;.
Instantiate the latter with k, (), (), and W. Note that

o k>0,

e VD[],

o (k,W,0)€g[]0,
which follows from W € Worldy, (from above), and

o (k,W)eS[x],
which follows from Lemma 3.57 applied to Wean(k, X).

Hence, (k, W, s(l;),s(l;)) € V [r:] 0.
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Applying Lemma 3.21 (page 19) to
o -k Tis
e 0 e D[],
o (k,W,s(l;),s(l;)) € V[r:] 0, and

b (.7’ I_WJJ) = (kaW)’
which follows from Lemma 3.16 applied to W € Worldy,,
we conclude that (5, [W |, s(l;), s(l;)) € V[r] 0.
Hence, (4, [W];,s(li),s(l;)) € [V ][] 0]k since j < k.
Note that |V [7:] 0]k = Vi[r] 0 (from Lemma 3.4 (page 15) applied to - + 7; and § € D [-]).

Finally, from (5, |[W];,s(l;),s(l;)) € [V[r] 0], together with |V [r]0]x = Vi[r] 0, it follows
that (4, [W];,s(l), (L)) € Vi[7:] 0, as required.
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Theorem 3.59. (Soundness w.r.t. Contextual Equivalence)
IfFAT; S Fep = ey i1 then AT S Fep <% ey 7.
Proof
Consider arbitrary C, ¥, 7/, and s such that
o FC: (AT EET)= (55X BT,
e Fs:Y and
o 5,Cler] |.
Hence, there exists some store si, some value v1, and some k such that
o 5,Cle] —" 51,01,

We are required to show that s, Cles] |

Note that ;%' F Clei] =9 Cleg] : 7/, which follows from Lemma 3.52 (page 43) applied to - C :
(AT 7)) = (55X F ) and AT 8 F ey <99 eyt 7

Let W = Wean(k +1,5).
Note that W € Worldy1, which follows from Lemma 3.56 applied to Wean(k + 1,%).
Instantiate -; ;%' F Cleq] =9 Cleg] : 7/ with k + 1, (), (), and W. Note that

e k+12>0,

e P eD[],

o (k+1,W,0)€g[],
which follows from W € Worldj41 (from above), and

o b+ 1,W) eSS,
which follows from Lemma 3.57 applied to Wean(k + 1,%).

Hence (k, W, Cle1], Cles]) € € [7'] 0.

Instantiate the latter with k and s, s, s, and v;. Note that

o kL<k+1,

® 5,541 W,
which follows from Lemma 3.58 (page 46) applied to F s : ¥’ and W, and

L4 S,C[el] —F S1, V1,
which follows from above.

Hence, there exist ss, vo, and W’ such that

o 5, Clea] —* s9,v9,

o (k+1—kW)3(k+1,W),

® 51,89 ixr1—k W', and

o (k+1—Fk W v,uv)eV]r]p.

Hence, s,Cles] J. O
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4 A Small Catalogue of Examples

The following is a list of examples that can be proved equivalent with our logical relation. Besides the ones
considered in the main paper, it contains some additional cases from the literature, both monomorphic and
polymorphic.

For each example we give a suitable island definition and, where needed, type relations for existential
quantifiers, that form the core of the proof. In giving these definitions, we assume that kg is the current
step level at which we have to introduce the respective island in the proof. Furthermore, we assume that
the world at that point consists of p islands, so that the new one has index p + 1.

Full details for some of the examples can be found in Section 5.

4.1 Redundant State

This is the most basic example, which appears in Meyer & Sieber (Example 1) [6], Koutavas & Wand (Section
6.1) [5], and Benton & Leperchey [3]. It shows that unused local state is irrelevant.

e1 = ANz:T.Z

es = Mz:T.letx=refzinz

The store relation simply includes all possible stores:

Wpt1 = (Mkos Lho)
me = (U, 0, {}, {le:7})
¥, {(j,W,s,s") € StoreAtomy,}
Ly = {(n;) € LawAtomy}

4.2 Higher-Order Function

The next example is a simple higher-order function that appears similarly in Koutavas & Wand (Section
6.2) [5] and Bohr & Birkedal [4]. It shows that the content of a local reference cannot be changed by the
context.

er = Af:(unit — unit) — unit.
f(Az:unit. ()
true

es = Af:(unit — unit) — unit.

letx=ref(0in
f(Az:unit.x := 1z + 2);
lzmod2 =0

The island’s store relation simply includes all stores valid under the invariant:

Wpy1 = (Mko> Lio)
e = Wk, 0,{} {lo :int})
vy = {(4,W,s,s") € StoreAtomy, | In € N, s'(l,,) = 2n}
Ly = {(,n;) € LawAtomy}

The full proof for this example appears in Section 5.3.
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4.3 Private Location

The following example also is due to Meyer & Sieber (Example 6) [6]. Related to the previous example, it
demonstrates that the identity of a local reference cannot leak unexpectedly either.

er = Af:(refint — unit) — unit.
f(Qx:refint. ()
true

ea = Af:(refint — unit) — unit.

letz=reflin
f (A2’ :refint. if z==2'thenz :=0else());
1z >0

Again, the island’s store relation simply includes all stores that are faithful to the invariant:

Wp1 = (Tkos Lio)
e = (wkam’{}a{lib : int})
vy = {(4,W,s,s") € StoreAtomy, | s'(I) > 0}
Ly = {({,nj) € LawAtom}

4.4 Fixpoint

We show that Landin’s knot is a suitable implementation of a fixpoint operator by proving it equivalent to
a built-in fixpoint operator (which we assume has been added to the language with obvious semantics).

e7. = AaAS.fo(a—=PB)xa—0
fix(Ag:a — 8. \x:a. f{g,x))
A AB. f = (a—=p)xa—p
let g=ref (Az:«.diverge) in
g:=Ax:a. f(lg,x);
g

€2

The island definition for this example, is straightforward, it simply states that, once assigned, the location
l4 holds the same function in all future worlds:

Wpt+1 = (nko ) Ek?o )
M = (wlm@a{}’{lg :Tz; *)TLI?})
vy = {4, W,s,s") € StoreAtomy, | s'(1y) = (Av: 7). v3 (Mg, )}
Ly = {({J,n;) € LawAtomy}

We assume here that a and 8 have been instantiated with xo € Type[ra,7,] and xg € Type[rs, 75|, respec-
tively, and that vs, v} are passed for f.

The actual proof is not difficult, but unlike the others requires induction on the step level to show that
the two functions are related in all reachable future worlds.

4.5 Callback with Lock

The following example (from the main paper) is similar to the callback example given by Banerjee & Nau-
mann [2]. It is interesting because it involves state that can be accessed recursively through a higher-order
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argument.

e; = letb=reftruein
letz=refOin
(Af :unit — unit.
(if 'bthen (b:=false; f();x :=!x + 1;b:=true)else())
Az :unit. 'z)
es = letb=reftruein
letx=ref(0in
(Af :unit — unit.
(if 'bthen (b:=false;letn="'!zinf();z :=n+ 1;b:=true)else())
Az :unit. ')

As explained in the main paper, we establish an island that allows dynamic addition of time windows in
which the reference is locked and may not change.

gy > L)

Wpt1 =
= @YV {ly s bool, L, : int}, {1} : bool, I, - int})
,(/)](Ckn,kz,v) _ {(j,V[/’&S/) € StoreAtomy, | (k'l >ji>ky A s(lb) — S'(l{,) = false A 8(ln) = 3/([%) = U) V
(k1> ke > 37 Ns(lp) =5(1}) As(ln) = s'(17))}
Ek _ {(j n{(kl,k:i,'U1>:~-~7<knak7;wvn>}) c LCH,UAtOm | k > k/ > k > 000> k/ > k > k/}
M k 1 Z R 2 = = n—1 n = "n

The full proof can be found in Section 5.4.

4.6 Cell Object

The following is a polymorphic variation on the higher-order cell example from Koutavas & Wand (Section
6.3) [5] and Bohr & Birkedal [4]:

e1 = Aa.dz:a.
letx=refzin
N a(x=2),
Az’ unit. lz)
es = Aa.)dz:a.
letrg=reflin
letxi =refzin
letxo =ref zin
(A2':a.if 'axg = 1then (zg :=2; 29 :=2") else (xg :=1; 21 :=2'),
Az’ iunit.if 'zg = 1 then !z else !a3)

Assuming that « has been instantiated with x, € Type[ra, )], the island is straightforward:

Wpt1 = (Mkos Lio)
me = (U, 0,{le 7o}, {lo:int, 1y 70,0570}
Vg {(4, W, s,s") € StoreAtomy, | Fi € {1,2},5'(I{) =i A (j, W, (1), 8" (1)) € Xa}
Ly = {(,n;) € LawAtomy}
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4.7 Cell Class

We can also generalize the previous example to an encoding of an actual class (which is generic):

e1 = Aa.packrefq,
(\x:a.ref x,
Xo:refa. o,
Xo:refa. Az a.(0o:=x))aso

ea = Aa.pack(refint x (ref a x ref @),
(Ax:a. {ref 1, (ref x,ref x)),
Ao (refint x (ref o x ref a)).
if 1(fsto) =1
then !(fst (snd o))
else !(snd (sndo)),
Ao (refint x (ref oo x ref a)). Az : .
if !(fsto) =1
then (fst o :=2;snd (sndo) :
else(fsto:=1;fst (sndo):

o = 3B.(a—p) x (B — a)x (B — a— unit)

)

=x))aso

This time, the island definition is more involved, because arbitrary many objects can be allocated. The
allocated objects are recorded in the population, which also relates both sides:

Wp+1 = (ﬂgoa L)
ne = (@WF, L35, %)
vE = {(j,W,s,s) € StoreAtomy, | V{1, 1),1},15) € L,3i € {1,2},5' (1)) =i A (5, W, 5(1), ' (1)) € Xa}
X o= {l:7a | (,1,05,1) € L}
ro= {lyint, Tl T | (LG, 1L 15) € LY
Ly = {{, n]L) € LawAtomy,}
xs = {0, W11, 15,15)) € Atom|ref 7o, refint x ref 7., x ref 7)]x, | (1,10, 11,15) € W[p+1].V}

where all locations in a set L are disjoint.

4.8 Name Generator

This is the main example from our paper, where the interpretation of an abstract types depends on the
current state:

eg = letx=ref(Oin
packint, (A\z:unit. (z := 1z + 1; '),
Az:int.(z < 'z))aso
es = letx=ref(Oin
packint, (A\z:unit. (z :=1z + 1; '),
Az:int.true) aso

o = 3Fa.(unit — a) x (o — bool)

52



¢

The island’s population records the “valid” names generated s far:

wpr = (Mg Lio)
o= (W, Vi, {ly sint}, {IL « int})
ro= {(y,W,s,s") € StoreAtomy, | s(l,) = s'(IL,) = n}
Vi = {i|1<i<n}
Ly = {(,n}) € LawAtomy | n € N}
Xa = {(,W,i,i) € Atom[int,int]y, | i € W[p+1].V}

A fully detailed proof for this example is given in Section 5.1.

4.9 Dynamic Data Structures

The following variation of the name generator implements the counter using a mutable recursive type to
represent naturals. Although its use of actual mutation is limited, the example demonstrates the treatment
of dynamically allocated data structures.

e; = letx=ref(foldinl())in
pack pa. unit + ref a, (Az : unit. (z :=fold (inr ('x)); tolnt (1)),
Az:int. (z < tolnt ('z)))aso
egs = letx=ref(Oin
packint, (A\z:unit. (z := !z + 1; '),
Az :int.true) aso
o = Ha.(unit = a) x (e — bool)
We assume that the helper function tolnt : (pa. unit 4 ref @) — int is defined in the obvious way.

The law has to allow the data structure to grow, relative to some constraints on its inner structure, which
is encoded in the side condition of the store relation:

Wpt1 = (77207 ‘Cko)
{ll,...,l”} . {ll,...,l”} . . /oL
M = (Y Vi {lo : (pa. 14+ ref @), ... 1, (pa. 1+ ref )}, {l), : int})
1/),?1"""1"} = {(j,W,s,s") € StoreAtomy, | s'(I.,) =n A s(l,) = fold (inl())
AVie{0,...,n—1},s(l;) = fold (inrliyq)}
Ve, = {i|1<i<n}
Lr = {Gnt" oty € LawAtomy 1o ¢ {l1,... 1 }}
Xo = {4, W,i,i) € Atom][int,int]y, | i € W[p+1].V}

Here, [y is supposed to be the location allocated for x in e;.

4.10 Name Generator with References

Another implementation of a name generator relies on the generativity of references. We can show it
equivalent to the one using integers:

e1r = letx=ref(in
packint, (A\z:unit. (z :='z + 1; '),
Ap: (int x int). (fstp = sndp))aso

ea = packrefunit, (Az:unit. (ref ()),
Ap: (ref unit xref unit). (st p==sndp)) aso

o = Fa. (unit — a) X (@ x a — bool)

53



The island not only has to record the valid integer names, it also has to relate them to the references allocated
on the other side. We therefor encode a partial bijection in the population V:

Wp+1 = (7]1?07 L)

771<€117”'7l"> (W, AL ),y (g ) by L int}, Iy cunit, ... L, 2 unit})
v = {(j,W,s,s") € StoreAtomy, | s(l,.) = n}

L, = {{, 77]<-l1"”’l">) € LawAtomy, | n € N}

Xo = {4, W,i,1) € Atom[int, ref unit]g, | (i,1) € W[p+1].V}

We require that [, ...,[, are pairwise disjoint.
The full proof can be found in Section 5.2.

4.11 Twin Abstraction

An island may be associated with several abstract types, with non-trivial interdependencies:

eg = letx=ref(Oin
packint,int, (A\z:unit. (z :='z + 1; '),
Az :unit. (x =1z + 1; 1z),
Ap:(int X int). false)aso

es = letx=ref(Oin
packint,int, (Az:unit. (x 1=z + 1; 1z),
Az :unit. (x =1z + 1; 1z),
Ap: (int x int). (fstp = sndp))aso
o = o, B. (unit = @) x (unit = B) x (a x 3 — bool)

We need to establish that the values inhabiting the two abstract types are disjoint, which we do by parti-
tioning the island’s population properly:

Wpt1 = 772;07 L)
S = (W, Vs, {l s int}, {I - int})
v = {(4,W,s,s") € StoreAtomy, | s(l,) = s'(I,) =n}
Vos = {(Li)|ieStU{(2,4) |ie{l,....,n}\ S}
Ly = {(jm?’s) € LawAtomy, | S C{1,...,n}}
{(
{(

Xa J,W,i,i) € Atom][int,int]y, | (1,i) € W[p+ 1.V}
xs = {(,W.i,i) € Atom[int,int]y, | (2,7) € W[p+1].V}

4.12 Abstract References

We can prove invariants about references even if they leak to the context — as long as their content type is
hidden (we chose a rather trivial invariant for this example):

e; = letx=refT7in
packint, (x, Az :ref int. true) as o

es = letxr=ref7in
packint, (x, A\z:refint. ('z = '2))aso

o = da.refa x (a — bool)
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The island definition, but also the type relation, are straightforward in this case:

Wp1 = (Mkos Lro)
me = (g, 0,{ly :int}, {I} :int})
v = {(j,W,s,s") € StoreAtomy, | s(l,) = s'(IL,) =7}
Ly = {(J,n;) € LawAtom;}
Xa = {(,W,7,7) € Atom[int,int]y, }

4.13 Symbol

Finally, we give an island and type interpretation that would be suitable for proving the invariant of the
motivating Symbol example from the main paper (assuming an appropriate encoding of the example into
our language). Note that it is a straightforward generalization of the island for the name generator:

Wp+1
n
Mk

(s

Va
Ly
Xt

(ngoaﬁko)
(R, Vi, {lsize = int, Liaple : pov. unit + string X a}, {14, :int, U}, ¢ e unit + string X a})
{(4,W,s,s") € StoreAtomy, | $(lsize) = 8'(I1,e) = 1A

$(ltabte) = 8" (Lygpie) N

length(s(liapie)) = length(s'({,p.)) = 1}
{i|1<i<n}
{(4,n}) € LawAtomy, | n € N}
{(j, W,i,4) € Atoml]int,int]g, | i € W[p+1].V}

The auxiliary meta-function length computes the length of a list and is defined in the obvious way.

55



5 Example Proofs

In the following, we present several examples of reasoning with our logical relation in all gory detail. In
Section 5.1, we redo the proof for the name generator example from the main paper, with omissions filled
in. In the other subsections, we show a couple of other proofs for examples from the main paper and the
catalogue in Section 4.

5.1 Name Generator

Recall the name generator from the main paper:

e = P[lz:int.z < 2]
¢ = P[Az:int. true]
where P[E] = 1letxz=ref0in(packint,(\z:unit.(z:=!z+1;'x),E)aso)
o = Ha.(unit = @) x (a — bool)
We want to show that:
Fe<eée:o

By definition of approximation, we have to show:
Vko > 0, Wy, (ko,Wo,e,e’) € Ea] 0
By definition of € [7], we need to show:
Vk1 < ko, S0, Shs S1,V1, S0, 50 ko Wo A 80, PDziint.z < 1o v——ft 5y 0 =
3sh, v, Wi, s1, 81 the—ky W1 A sy, P[Az:int. true] —* sf,v] A

(k‘() — kl,Wl) | (k(),Wo) A (k’o — ]{Zl,Wh’Ul,’U/l) S V[[O’]](Z)

Assume s, sf 1k, Wo and sq, P[Az:int. z < 'z] —k1 51, v;. By definition of reduction, the following has to
hold for some [ ¢ dom(sg) and I’ ¢ dom(sg):

s1 = so[l—0], v1 = (packint, (Az:unit. (I :=11+1;1), z:int. 2 < l)aso)
st = syl — 0], vy = (packint, (Az:unit. (I’ := 1"+ 1;11'), Az :int. true) as o)
Assume Wy = (wy, ..., wp). Now let:
Wi = (wi,...,wp, wpi1)
where wpi1 = (M k> Lro—hy)

o = (Yp, Vo, {L:int}, {I" : int})

v = {(4,W,s,s") € StoreAtomy, | s(I) = s'(I') =n}

Ve = {i|l1<i<n}

Ly = {(,n;) € LawAtomy | n € N}

We have to show the necessary properties for this definition:
1. Wy € WO’}"ldkO,kli

o It is easy to see that, for all k and n, we have ¢} € StoreRel}, and V;, € Population.
e Hence, for all k and n, gy € Knowledge,, ;. .
e Note that, for all n, k, ¥’ < k, we have [¢} |x = ¥}, and thus also |1} | = n}.

e Hence, £ is downward closed and thus in Lawy.
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e Consequently, also (ko — kl,ngﬂ_kl) € Lig—k, -
o S0, wpy1 € Islandy,—p, -

e And since [ and I are fresh wrt. so and sy, and s, s, :x, Wo, we know that [ ¢ dom(X;(Wy)) and
l/ ¢ dom(Eg(Wo))

2. (ko — k1, W1) 3 (ko, Wo):
o Trivial, since ky — k1 < ko and wy, ..., w, are unchanged.
3. 81, 8% tko—ky Wh:
e Obviously, - sy : {l :int} and F s} : {I’ : int}.
e Clearly, for all j < ko — k1, (j, [W]j,51,51) € ¥R _j, = wpy1.0.

e From the definition of StoreRel and Island we know that w;.1, ..., w,.1) are downward closed. It
follows that for all 1 < ¢ < p and j < ko — k1, (j, [W1];,s1,51) € ¥(w;) (because for all j < k,
(U, [(W]k) 3 (k,W)).

Also note that, for all n’ > n and k' < k, it holds that 77,?,/ Jng.
By definition of V [Ja.7], it now remains to be shown that:

Iy € Typelint,int], (ko — k1, W1, {Az:unit. ([ :=11+ 1; 1), A\z:int. z < 1),
(Az:unit. (I := 1 4+ 1; 1), Az :int. true)) € V [(unit — @) x (o — bool)] p

for p = [a — (x, int,int)]. Define:
x = {(4,W,4,i) € Atom[int,int]g,—k, |4 € W[p+ 1.V}

We need to check that x € Typelint,int]y,—x,. That is straightforward:

e Assume (j, W,4,i) € x and (§/,W’) 3 (j, W).

e From the former it follows that i € W[p + 1].V.

e From the latter it follows that W'[p+1].V O W[p+1].V and j' < j.

e Hence, (j',W',i,i) € x.
By definition of V [r x 7'], we now have to show that:

1. (ko — k1, Wi, Azzunit. (T := 1+ 15 1), Az cunit. (I := 1+ 15 10)) € V [unit — o] p

2. (ko — k1, Wi, Azint. 2 < ', Az :int. true) € V [a — bool] p

First consider (1). By definition of V [t — 7'], we have to show that:

V(kQ,Wg) | (ko — kth), (kz,Wg,Uz,Ué) cy [[unit]]p —
(ko, Wo, (L:=114+ 1,00, ="+ 1;11") e Ea] p

Assume (kq, Wa) O (ko — k1, W1). By definition of € [7], we have to show:
Vks < kg, 52, 8, 83,V3, 52,55 tky Wo A so (Li= T4 1500) —P 53,05 =

sk, 05, W, 83,85 ko W3 A sy (U =1+ 1 0) —* s vl A
(kg — kg,Wg) _ (kQ,WQ) A (kz - kg,Wg,’Ug,’Ué) ey [[Oé]] 0
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Assume so, 85 1, Wa and so, (I :=11+ 1; 1) ——F3 53,03, From (kg, W) 3 (ko — k1, W) it follows that
Walp+1].L = [Whlp + 1].L]k, = | Lkg—ky | ks = Lk, From that, by definition of Islandy,, we know (k2, Wa[p+
1].n) € Ly,, and there exists n, such that

that is, Wa[p+1l.9p = ]
Walp+1J.V = V,

as defined above. Because ko > k3, apparently, ko > 0. From sa, s} :x, Wa and we can thereby conclude
(/452 -1, I_WQJk2_1, S9, 8/2) S ’lﬁ% and thus
s2(l) = s5(') = m

By definition of reduction, the following must hold:

|
S
+
—_

S3 so[l —n+1], V3
st = sh[l' —n+1], v

|
S
4
—_

Now choose W3 such that wpy; is updated as follows:

Wslp+1].L = Liy—k,

Walp+1l.n = nit,
that is, Wslp+1l.y = i
Wslp+ 1.V = Vo

Again, we have to show that this definition has the necessary properties:
1. W3 € WO?“lde,kSZ

e Follows by the same reasoning as above. In particular, it is obvious from the definition of £; that
W3 [p + 1]-77 € L‘CJ ko—ks — Ekz—k?ﬁ

2. (k?g — k‘3,W3) ; (k27W2):

e Obviously, W3[p + 1].V D Wa[p + 1].V. Hence, Ws[p + 1].n I Wa[p + 1]..
e Because Ws[p+ 1).L = [Wap + 1].L] ky—ks and ko — ks < ko, we have W5 J Wha.
3. 83,85 tko—ks Wit
o As before. Specifically, for all j < ko — ks, (4, [W3];,s3,55) € Q/JZ:—_lkS.
By definition of V [o], it remains to be shown that:
(ke — ks, W3,n+1,n+1) € x

Since ko — k3 < ko < ko — k1 and n+ 1 € Ws[p + 1].V, this follows directly from the definition of .
Now consider (2). By definition of V [7 — 7'], we have to show that:

V(kQ,WQ) | (k() - k17 W1)7U27U/27 (k27 W27’U27/U/2) eV ﬂaﬂ 4 g
(ko, Wa, Az:int. z < '], Az :int. true) € & [bool] p

Assume (ko, Wo) 3 (ko — k1, W1) and (kq, Wa,v,v5) € V[a] p. By definition of & [7], we are required to
show:
Vks < k2, 82,85, 82,03, 82,85 k, W2 A g, (vg S M) P 3,05 =
sk, 05, W, 83,85 tko—ks W3 A Sh,true —* shovh A
(kg — ks, Wg) _ (kg, Wg) A (kQ — ks, Wg,’Ug,’Ué) eV [[b00|]] P
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Assume so, 55 1, Wo and sg, (v2 < ') —F3 53,03, As for part (1), from (kg, Wy) 3 (ko — k1, W1) it follows
that there exist n and k > ko, such that

Walp+1lm = ng
that is, Walp+1j¢p = i
Walp+1J.V =V,

as defined above. From so, s4 1y, W2 and ks > k3 we can once more conclude (ko — 1, |Wa]g,—1, s2,85) € ¥}
and thus

s2(1) = sy(I') = m
By definition of V [a], from (ka, Wa,ve,v5) € V] p it follows that:
(ko, Wa,v2,v5) € X
and from the definition of x it follows that:
vy = vh =4 such that i € Walp+1].V
Because Wa[p + 1].V = V,,, clearly ¢ < n. By definition of reduction, it then must hold that:

S3 = 82, v3 = true
sh = s, v = true

Let W3 = Wa, which trivially is valid and extends Wa. Likewise, s3, 85 tk,—k, W3 is immediate. It remains
to be shown that
(k2 — k3, W3, true, true) € V [bool] p

which obviously is the case. O

5.2 Name Generator with References

Now let us go through the equivalence proof for the two different name generator implementations:

e = letz=ref0in(packint, (\z:unit.(z:='z+ 1;'x), Ap:int X int. fst p = sndp) aso)

!
(&

(pack ref unit, (Az : unit. ref (), Ap: ref unit X ref unit. fst p = snd p) as o)

where ¢ = Ja. (unit — a) X (a X a — bool)
We only show one direction, the other proceeds analogously. That is, we want to show that:
Fe<eée:o
By definition of approximation, we have to show:
Vko > 0, Wy, (ko,Wo,e,e’) € Ea]0
By definition of £ [7], we need to show:

Yk < ko, S0, S0, 51,1, 50,0 ke Wo A 80, PDziint.z < Vo] bt 5 0y =
3sh,v1, Wi, s1, 81 tho—k, Wh A sp, P[Az:int. true] —* sf,v] A
(ko—kl,Wl)g(ko,Wo) N (]{Zo—kl,Wh’Ul,’U/l)EV[[O']]@

Assume s, s{, :x, Wo and sg, Ple] "1 51, v1. By definition of reduction, the following has to hold for some
I ¢ dom(sg):

s1 = sp[l— 0], vy = (packint, (Az:unit. ([ :=!1+1;!1),A\p:int X int. fst p = sndp) as o)
!

sy = s, vp = e
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Assume Wy = (wy, ..., wp). Now let:

Wi = (wy,...,wp,wp41)
where wpy1 = (nko > Lo %)
nlill"u’m = (W5, Vi, A0 it} {ln s unit, ... 1, 2 unit})
v = {7, W s, s ) € StoreAtomy, | s(1) = n}
Vi, oty = {l L) [1<i<n}
Ly, = {{Un ll"”’l">) € LawAtomy, | n € N}
As a notational convention, we implicitly require that all locations in a list (l1,...,[,) used here are pairwise

disjoint. We have to show the necessary properties for this definition:

1. Wy € WO’}"ldkO,kli

Obviously, for all £ and n, we have ¢ € StoreRely and Vyy, ;. € Population.

Hence, for all k and n, n,ill""’l">

€ Knowledgey, ., -

Note that, for all n, k, k' < k, we have |¢} | = ¥}, and thus also Ln<l1’ N ">J = n,il,l’ oln),

Hence, L;, is downward closed and thus in Lawy,.

e Consequently, also (ko — kl,n,?o_kl) € Lig—k,-
® S0, wpy1 € Islandy, g, -
e And since [ is fresh wrt. sq, and sg, 8} i, Wo, we know that [ ¢ dom(3,(Wp)).

2. (ko — k1, W1) 3 (ko, Wo):
e Obvious, since ky — k1 < ko and wy, ..., w, are unchanged.
3. 81,81 tko—ky Wh:
e Obviously, - s1 : {l :int} and F s} : {}.
o Clearly, for all j < ko — ky, (j, (W]}, 51.85) € ¥ . = wps1.9.

e From the definition of StoreRel and Island we know that w;.1, ..., w,.1) are downward closed. It
follows that for all 1 <4 < p and j < ko — k1, (J, [W1l,,81,81) € ¥(w;) (because for all j < k,
(U, W k) 2 (k,W)).

Also note that, for all n’ > n, k' < k, it holds that 77<l1’ o) 5 n,i
By definition of V [3a.7], it remains to be shown that:

Ix € Typelint, ref unit], (ko — k1, Wi, (Az:unit. (I := 11+ 1; '), Ap:int X int. £st p = snd p),
(Az:unit.ref (), A\p: ref unit x ref unit. fst p = snd p))
€ V [(unit — a) x (o — bool)] p
for p = [+ (), int, ref unit)]. Define:
x = {(J, W,i,1) € Atom]int, ref unit]p,—x, | (¢,1) € Wip+ 1.V}
We need to check that x € Typelint,int],—x,. That is straightforward:
e Assume (j, W,i,1) € x and (5/,W') 3 (j, W).

e From the former it follows that (i,l) € W[p + 1].V
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e From the latter it follows that W/[p+ 1.V 2 W[p+ 1].V and j’ < j.
e Hence, (j/,W',i,1) € x.
By definition of V [7 x 7'], we now need to show that:
1. (ko — k1, Wi, Az :unit. (I := 1+ 15 1), Az :unit.ref () € V Junit — o] p
2. (ko — k1, Wi, Ap:int X int. £st p = snd p, Ap: ref unit X ref unit. fst p = sndp) € V[a X a — bool] p

First consider (1). By definition of V [ — 7], we have to show that:

V(k‘g,Wg) | (k’o — /{Jl,Wl), (k‘g,Wg,vz,’Ué) S V[[Uﬂit]]p —
(ko, Wa, (L:=11+1;11),ref () € E[a] p

Assume (kq, Wo) 3 (ko — k1, W1). By definition of £ [7], we have to show:

Vks < kg, 82, 85, 83,V3, Sa,8h 1k, Wa A so, (L= +1500) —F8 53,05 =
s, v, Ws,  S3,85 thy—ks W3 A sy, ref () —* s v5 A
(ko — k3, W3) 3 (kg, Wa) A (kg — k3, Ws5,v3,05) € V [a] 0

Assume sg, 85 1, Wa and sg, (I :=11 + 1; 1) ——k2 s3,03. From (kg, W2) 3 (ko — k1, W1) it follows that
Walp + 11.L = [Walp+1].Lk, = |Lrko—ky ks = Lk, and Walp + 1l.p 3 [Wilp+ 1].n]k,. From that, by
definition of Island, we know (ko, Walp + 1].n) € Lk,, and there exists (I1,...,1,) , such that

Wz[p—l— 1].77 = n]il; """ In)
that is, Walp+ 1.y = oy,
Wolp+1].V = Vi,
Walp+ 1.8 = {l; :unit,..., I, : unit}

as defined above. Because ko > k3, apparently ko > 0. From so, s, :x, Wo we can thereby conclude
(ko — 1, [Wa]g,—1, 52, 85) € ¢, and thus

so(ly=n A {l1,...,1,} C dom(s)
By definition of reduction, the following must hold, for some [,,11 ¢ dom(s5):

s3 = so[l—n+1], v3 = n+1
$ = = 0L v = b

Now choose W3 such that wpy; is updated as follows:

Walp+ 1. = gl
that is, Wslp+1J.0 = il
Walp+1.V = Vi i
Wslp+1].82 = {ly :unit,...,l,41 : unit}

Again, we have to show that this definition has the necessary properties:
1. W5 € WOTldk-Q_k:;:

e Follows by the same reasoning as above. In particular, it is obvious from the definition of £y that
(kQ — ks, W3[p + 1]77) € [’k2—k3'

2. (kg - ]{33,Wg) ; (kg,Wg):
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e Obviously, Ws[p + 1.V D> Wap + 1].V and Ws[p + 1].X2 D Wa[p + 1].X3. Hence, Wi[p+ 1].n 3
Walp + 1].1.
e Because Ws[p + 1].L = Wa[p+ 1].L£ and kg — k3 < ko, we have W3 J Wh.
3. 83,85 tho—ks W3t
o As before. Specifically, for all j < ko — ks, (4, [W3];,s3,55) € w,?;lkg.
By definition of V [¢], it remains to be shown that:
(k‘g — ]{?3, Wg,n + 1,ln+1) SIS

Since ko — k3 < ko < kg — k1 and (n+ 1,1,,41) € W3[p + 1].V, this follows directly from the definition of .
Now consider (2). By definition of V [7 — 7'], we have to show that:

V(kz,WQ) ] (ko_kl,W1),U2,'U/2, (kQ,WQ,’Ug,’UIQ) eV [[OL X Ol]] p
(ko, Wa, Ap:int X int. £st p = snd p, Ap: ref unit X ref unit. £st p = snd p) € & [bool] p

Assume (ko, Wa) O (ko — k1, W1) and (k2, Wa, va,v5) € V[a X o] p. By definition of &€ [7], we are required
to show:
Vks < kg, S2, 85, 82,03, 82,85 ik, Wa A 82, (fstvg = sndvy) 8 53,03 =

ds5, 05, W3, 83,85 thy—ks W3 A sh, (fstvh = sndw)) —* 5,05 A
(kQ - k‘3,W3) | (k27W2) A\ (kQ — ]Cg,W3,U3,Ué) eV [[bOOl]] p

Assume sg, 85 :x, Wo and so, (fst vy = sndvg) —F* s3,v3. As for part (1), from (kg, W) 2 (ko — k1, W1)
it follows that there exist (l1,...,l,) and k, such that

Walp + 1] piheotnd

that is, Walp+ 1] = o}
Walp+11.V = Vi, 0

as defined above. From sg, s4 13, W and ks > k3 we can once more conclude (ke — 1, |Wa]g,—1, S2,85) € ¥}
and thus
sa(l) =m

By definition of V [ x 7'], from (ko2, Wa,v2,v5) € Vo x o] p it follows that:

vy = <U21, U22>

Ué = <U§17 U§2>

for some wva1, V92, vy, vh,, such that

(Ko, Wa,v21,v51) € V][] p
(Ko, Wa,v92,v55) € V[ p

From the definition of V [a] we hence know:

(ko, Wa,v21,v5) € X
(ka, Wa, va2,v55) € X

and from the definition of x it follows that:
vo1 =i A vy, =1; such that (i,0;) € Wa[p+1].V
vag = j Ay =1; such that (j,1;) € Walp+ 1.V
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Because Walp 4+ 1.V = Viu,,..1,y and the assumption was that all locations are disjoint, we know that
i =j < l; = l;. By definition of reduction, it either of the following must then hold:

S3 = 83, v3 = true

s = s, v = true
or

S3 = 8o, vy = false

sh = sbh, vy = false

Let W3 = Wa, which trivially is valid in both cases and extends Wa. Likewise, s3, 5 t,—k, W3 is immediate.
It remains to be shown that both

(kg — ks, W3, true, true) € V [bool] p
(ko — k3, W3, false, false) € V [bool] p

hold, which obviously is the case. g

5.3 Higher-Order Function

The next example is a variation on Koutavas & Wand, Section 6.2:

e = Af:(unit — unit) — unit.letx =ref Oin (f (Az:unit.z := 1z + 2); 'xmod 2 = 0)

/

e = Af:(unit — unit) — unit. (f (Az:unit. ()); true)

We want to show that:
Fe <€ : ((unit — unit) — unit) — bool

By definition of approximation, we have to show:
Vko > 0, Wy, (ko, Wo,e,€') € €[((unit — unit) — unit) — bool] 0
Since e and ¢’ are values, it suffices to show, by definition of V [r — 7']:

V(kl, Wl) - (ko, WO)7U17UI1’ (k17W17’Ula/U/1) S V [[(Uhlt — Unit) — Unit]] @ >
(k1,Wi,eq,¢€)) € € [bool] §

where e; = (letx=ref Oinwv; (Az:unit.z:=!z + 2);'zmod2 = 0) and €} = (v] (A\z:unit.()); true). By
definition of &£ [r], this requires showing that:

/ ! . k
Vky < ki,81,87,52,02, 51,87 iy Wi A 81,61 "2 89,19 =
! / I . ! / * / !
Js5,v5, Wa,  Sa,85 tky—ky, Wa A sy, e] T shuh A

(kl — kg, Wg) | (kl,Wl) A\ (kl — kQ,WQ,’Ug,’Ué) cy HbOO'H 0

Assume s1,$] ik, W1 and s1,e; "2 55 v9. We see that the first step in reducing e; must be, for some
label I ¢ dom(sy):

s1,e1 — 511+ 0], (letz=1linv; (\z:unit.z := !z + 2); !zmod 2 = 0)

The proof proceeds as follows. Before doing the higher-order call to vy, we have to set up a new island
controlling that !z is even. Call the new world W7, and observe that s;[l — 0], s} :x,—1 W{. Then show that

3sh, 05, Wa,  S2,8% ik —ky Wo A sy el —* sh vl A
(kl — ]CQ,WQ) J (kl — 17W1/) A (kl — kQ, WQ,’UQ,UIQ) cVy [[bOOl]] 0

This is possible, because we know that f will terminate in less than ks — 1 steps and return in a future world
of W/ where !z is still even. The original proof obligation then follows by transitivity of world extension.
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Assume W7 = (w1, ..., w,). Now define:

Wi = (wi,..., Wy, Wpt1)
where wpr1 = (Mg -1, Lki—1)

me = (Y, 0,{l:int},{})
vy = {(j,W,s,s") € StoreAtomy, | In € N, s(l) = 2n}
Ly = {(j,n;) € Lawy}

We can show the following properties for this definition:

1. Wi € Worldy, 1:

Obviously, for all k, we have ¥y, € StoreRel.

Hence, for all k, np € Knowledge,, ;.
Note that, for all n, k, k' < k, we have [t |r = ¢, and thus also |ng |k = i

Hence, Lj, is downward closed and thus in Lawy,.

e Consequently, also (k1 — 1,7k, -1) € Lk, -1

e S0, wpy1 € Islandy, 1.

e And since [ is fresh wrt. s1, and s1, 8] :x, W1, we know that [ ¢ dom(2;(W7)).

2. (k1 — 1, W) 3 (ky, Wh):
e Obvious, since k; —1 < k; and wy, ..., w, are unchanged.
3. s1[l 0], 8] k-1 W1t
e Obviously, - s1[l — 0] : {I :int} and - s} : {}.
e Clearly, for all j < ky — 1, (4, [W];,s1[l—0],5}) € ¢1<<>171 = Wpt1.1.

e From the definition of StoreRel and Island we know that wi.4, ..., wy.¢) are downward closed. It
follows that for all 1 < ¢ < pand j < ky — 1, (4, [W{];,s1[l = 0],s}) € ¥(w;) (because for all
J<k, (G, [IW]k) 2 (k,W)).

We next show that (ky — 1, W{, (Az:unit.l := 11 4 2), (Az:unit. ())) € V [unit — unit] 0:
e By definition of V [r — 7'], this amounts to showing;:

V(ko, W) 3 (k1 — 1, W), (k2, Wa,ve,v5) € V [unit] =
(ka, Wa, (1 := 11 +2), () € & [unit]

e By definition of & [r], this requires showing;:

Vks < kg, 82, 55, 53,V3, 82,8 ik, Wo A sg,(Li=1142) — 53,03 =
Jsh,vh, Wa,  S3,85 thy—kg W3 A sh () —* shuh A
(k2 — k3, W3) I (k2, Wa) A (k2 — k3, W3, v3,v3) € V [unit] 0

e Assume sg,5) i, Wo and sq, (I := 1] + 2) ——*3 s3,v3. By inspection of the reduction relation we see
that:
vy = ()7 83232[ZH82(Z)+2]
vy = (), sy=sh

e Let W3 = Wa. Then obviously (k2 — ks, W3) 3 (ka, Wa). We have to show s3, s tg,—ks Wa:
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From (kz, WQ) | (k’l -1, W{) it follows that Wg[p + 1]£ = |_W1/[p + 1]£J ks = |_£k171Jk2 = £k2~
— From that, by definition of Island, we know (ko, Wa[p + 1].7) € Lk,, S0

Walp+1lm = g,
that is, Wa[p + 1].4 (o

as defined above.

From $3, 8% ik, Wa and k2 > k3 > 0 we can conclude (k2 — 1, |Wa|,—1, S2, 85) € 1k, and thus
s2(l) =2n

— Because s3(I) = 2(n + 1), clearly, for all j < ko — ks, (4, |W3];, s3,55) € ¥k, = Wslp+ 1].9.
e Finally, it is trivial that
(kg — kg, Wg, (), ()) eV [[unit]] @

Now, because (k1, W1,v1,v7) € V[(unit — unit) — unit] @ and (k; — 1,W]) 3 (k1,W1), by definition of
V [r — 7'] we can conclude that v; = Az :unit — unit. e3 and v} = Az :unit — unit. e}, and:

(k1 — 1, W, [(Az:unit. 1 := 11+ 2)/z]eq, [(Az :unit. () /z]e}) € & [unit] O

Because we know that s1, e; terminates in k5 steps, and performs at least one further step after returning from
vy, there exists j < ko — 2 such that s1[l — 0], [(Az:unit.l := 1]+ 2)/z]e; terminates in j steps. Furthermore,
the final state of the former computation has to be so, because there are no further assignments in e. From
the definition of €[] it follows that s}, [(Az:unit.())/z]e] terminates likewise, in state s, such that

52,8/2 :kl—l—j W2 A (k‘l -1 —j, Wg) ; (k‘l — 1,W1/)

Because k; —1 —j > ki — ks > 0, we can conclude that (k1 —j — 2, [Wa]g,—j_2,52,55) € Wa[p + 1].4) for
some n € N, i.e.,
so(l) =2n

Thus the result of the whole computation is vy = true. Because the other side terminates as well, v5 = true,

and obviously,
(k1 — ko, Wo, true, true) € V [bool]

Finally, because 1 4 j < k3, we have:
(k1 — ko, Wa) O (ks — 1 — 5, Wa) 3 (k1 — 1,W}) 3 (k1, Wh)

and thanks to downward closure also
!
52,89 ky—ko W 2

which is all that we needed to conclude (k1, W1, e1,€}) € € [bool] p. O

5.4 Callback with Lock

The last proof addresses the callback example from the main paper:

e = Plf();z:=1z+1]
¢ = Plletn='zinf();z:=n+1]
where P[E] = 1letb=reftrueinletz=ref0in
(Af :unit — unit. (if not (1b) then () else (b:=false; E;b :=true)), Az: unit. !z)
7 = ((unit — unit) — unit) x (unit — int)
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We want to show that:
Fe<eée:T

By definition of approximation, we have to show:
VkO Z 03 W07 (k()y WOa €, el) et IIT]] @
By definition of € [7], we need to show:

Vky < ko, 80, 50,51, V1, 50,50 ko Wo A so, PIf sz i=to+ 1] —M 51,0, =
3sh, vy, Wi, s1, 81 tho—ky Wh A spy, Plletn=!zinf();x:=n+ 1] —* sj,v] A
(ko — k1, W1) 2 (ko, Wo) A (ko — k1, Wh,v1,07) € V[r]0

Assume sg, sf) :x, Wo and sg, P[f ();z :='2+ 1] —*1 s1,v;. By definition of reduction, the following has to
hold for some Iy, 1, ¢ dom(sp) and Ij,1/, ¢ dom(s():

s1 = So[lp — true,l; — 0], vy = Pllpyls, fO5lp :=1 + 1]
sy = sllf — true,l, — 0], vi = Pl letn="1 inf();l, :=n+1]

where P'[l1, 12, E] (Af :unit — unit. (if not (!11) then () else (I; :=false; F;l; :=true)), Az : unit. !3)

Assume Wy = (wy, ..., w,). Now let:
W1 = <’LL117 .. wp,wp+1>
ko, ko,
Wyp1 = (n {é oklo 0)} Lio—1y)
o= @MYV, {l, : bool, 1, : int}, {lj : bool, I/, : int})
1/),(€k1’k2’v) = {(j,W,s,s") € StoreAtomy, | (k1 > j > ko A s(ly) = s'(I}) = false As(l,) =5 (I,) =v)V
(k1 > ko> 5 As(ly) =5'(1}) As(ln) =s8(10))}
r _ . {(k1,kyv1) s (B Kl ) ’ ’ ’
o= {0 ) € LawAtomy | ky > ki > ke > - >kl >k, > kl,}

where min(V') denotes the (kq1, ks, v) € V with the smallest k1 (by the definition of Ly, it will also have the
smallest ko). We have to show the necessary properties for this definition:

1. Wi € Worldg,—g,:

e First, we need to show that for all k and all (kq, ko, v) with k; > ko, we have w,&kl’kw) € StoreRely,.

This requires showing that ¢,(€k17k2’v) is downward closed. Assume that (j, W, s, s’) € w,(ckl’kz’v) and
(j',W’) 3 (4, W). There are three possible cases:
(a) j > j' > kot from j > ko it follows that s(l;) = s'(l;) = false A s(l,,) = §'(1],) = v, and since
also j' > ko, we know that (j/, W' s,s') € w,(ckl’b’v), too.
(b) ko > j > j': from kg > j it follows that s(ly) = s'(I}) A s(l,,) = s'(I},), and since also kg > 7/,
we know that (j/, W', s,s') € %gkl,kz,v)’ too.
(c) j > ko> j': from j > ko it follows that s(lp) = s'(I}) (= false) A s(l,) = s'(I7,) (= v), and
since also ko > j', we know that (j/, W’ s,s') € w(k kz’v), too (note that it is crucial here
that we do not require s(l,) = s'(l}) = true in the case ka > j).
e Hence, for all k and all V' (that obey the side condition in L), ny € Knowledgey, _y, -
e Note that, for all V, k, k' < k, we have [¢"V |, = ¢minV and thus also [n) |z = n).

e Hence, £ is downward closed and thus in Lawy.
e Because the dummy (ko, ko, 0) obeys the side condition, (kg — k1, nl(clzo;l]zi,o)) € Lio—ky-
o S0, wpy1 € Islandy, g, .
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e And since I, 1, and [},1! are fresh wrt. so and s respectively, and sg, s :x, Wo, we know that

Iy, 1y ¢ dom(21(Wy)) and I}, 12, ¢ dom(Xo(Wp)).
2. (ko — k1, W1) 3 (ko, Wo):
e Obvious, since ky — k1 < ko and wy, ..., w, are unchanged.
3. 81,8] tko—ky Wit
e Obviously, - s1 : {l : bool,l, : int} and F s} : {I} : bool, I, :int}.
o Clearly, for all j < ko — ku, (j, [W ]}, 51,8,) € 60 08” = w10,
e From the definition of StoreRel and Island we know that w;.1, ..., w,.1) are downward closed. It

follows that for all 1 <4 < p and j < ko — k1, (J, [W1l,,81,81) € ¢¥(w;) (because for all j < k,

By definition of V [7 x 7'], it remains to be shown that:
1. (ko — k1, Wi, Af s unit — unit. P [ly, Lo, (f O3 Lo 2= 'y + 1)),
Af runit — unit. P7[l 1%, (et n= 11, in f (); I, :=n +1)]) € V [unit — unit — unit] ®
2. (ko — k1, Wi, Az unit. ', Az :unit. '1%) € V [unit — int] 0
where P"[l1,1ls, E] = (if not ('l;) then () else (I; :=false; F;l; :=true)).
First consider (1). By definition of V [r — 7’], we have to show that:

V(k27W2) 1 (ko—]ﬁ,Wl), (k‘g, W27’U27’Ul2) ey [[unit — unit]](Z) -
(ko Wa, P"[ly Loy (f Ol 2= 1 + 1)), P/, I, (Let n =11, in f (5 i=n+ 1)]) € & [unit] 0

Assume (ko, Wa) 3 (ko — k1, W1) and (ka, Wa, v, v5) € V [unit — unit] §. By definition of €[], we have to
show:

Vk3 < kg, 52,85, 53,V3, 82,85 1k, Wa A s, Pl Ly, (02 ()3 lp := 1y + 1) %3 5,03 =
s5, 05, W3, S3,8% thy—ks W3 A sh, P (Letn="10inv} ();1, :=n+ 1)] —* s, v} A

(kg —]Cg,Wg) | (kQ,WQ) N (kQ—kg,Wg,”Ug,’Ué) S V[[Unitﬂ@
Assume s, s i, Wa and so, P"[ly, Iy, (va (); 1y := 1y + 1)] ——F3 s3,03. From (ko, Wa) 2 (ko — ki, W) it
follows that Wa[p + 1].L = |Wip+ 1].L]k, = | L]k, = Lk, and Wa[p + 1].n T |Wi[p + 1].n]k,. From that,
by definition of Island, we know (ko, Wa[p 4+ 1].9) € Lk,, and there exists V', such that

Walp+1lm = n,‘;
that is, Walp+ 1]y = wz;in(v)

as defined above. Apparently, ko > ks implies k3 > 0. From so,s, :x, Wa we can therefor conclude
(kg — 1, | Wa]g,—1,52,55) € w:;m(v) and thus, for some b and m:

soly) = shlly) = b
) = $1) = m

There are two cases: either b = false. Then obviously, s3 = s and v3 = (). Hence, P"[I}, 1., (let n= "1/ inv} ();I, :=n+
1)] terminates, too, with s = s, and v = (). Obviously, these results are related and the stores remain
related in the unchanged world W35 = W.
Now consider the other case, b = true. By definition of the reduction rules, termination in ks steps
implies that there are ji, js, j3 with j; + jo + j3 = k3 such that
S9, P [lpy Ly va ()3l := 1V + 1] 91 591, (v2 ()51p 1=, + 151, :=true)
—J2 822,(U22;l$ :=!lw+1;lb :=true)

—Js 53, ()
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for so1 = s2[lp — false| and some sa9, such that s3 = saa[ly — true,l, — $22(l:) + 1]. Note that j; > 1 for
all three ¢ € {1,2,3}. Likewise, there is at least a reduction sequence

sy, P[00, (Letn= "1, invh ();1) :=n+ 1)] —" 5y, (v5 (); 1, :=m + 1;1; :=true)

with s5; = sh[l; — false]. Assume Wy = (w1,..., Wp, Wpt1,...,Wq). Now define:
!/ !/
Wi = (Wi, Wy, Wy, -5 Wy)
’ _ ’ )
prrl - (77;;+17 Ekz —J1 )
, _ VU{(k2—j1,k2—j1—j2—1,m)}
Mp+1 = Moy,

We have to show:

o Wj € Worldy,:

From the definition of wp41 we know that V' obeys the side conditions of Ly.

Since sa2(lp) = true, we know that k' > ko > ko — j1, where (k, k', m) = min(V).

Thus, V U {(ks — j1,k2 — j1 — jo — 1,m)} obeys the side conditions of L.

— Also, it follows that (ko — j1,ka — j1 — jo — 1,m) = min(V U {(ka — j1, ke — j1 — jo — 1,m)}) and
hence, w), ;.1 = z/;,i]:z_;fl’kz_jl_jrl’m).

— So (ko —j1,771’,+1) € Liy—j, -

o (ko,W3) 3 (ko, Wa):

— Because VU{(k2—j1, k2 —j1—j2—1,m)} DV, we have ,,; I Wa[p+1].n and thus w},,; T wpy1.

— Furthermore, the other islands are unchanged, and ko < ko.
® 591,85 hy—jy W3
— Because s21(lp) = s5,(l;) = false and s21(ly) = s4,(I},) = m and ko > ji, clearly (k2 — j1 —

/ / (k2—j1,k2—j1—j2—1,m)
1, I_WQJk2_j1_178217521) € ¢]€27j1 .

(k2—j1,k2—j1—j2—1,m)

— Furthermore, we know already that ;= s

is downward closed.

Now, obviously,
(k2 — j1, W3, (), () € V [unit] 0

Because (ka, Wa,v2,v5) € V [unit — unit] @ and (ke — j1, W3) 3 (ka, Wa), by definition of V [r — 7'] we can
conclude that va = Az:7.e3 and vy = Az: 7. e, and:

(k2 = j1, W3, [()/z]es, [()/2les) € € [unit] 0
Because [()/z]es terminates, from the definition of £ [7] we know that

EISl22a UéQa WS; Slle [()/Z]@é —" 51227 véZ ) A S22, 5/22 :k2*.j1*j2 W3 ]
(k2 —j1 — J2, W3) 3 (ko — 31, W3) A (k2 — j1 — j2, W3, 022, v95) € V [unit] 0

By definition of the reduction rules, this implies that there is a reduction sequence

sy, P11, (letn=t1"invy ();IL :=n+1)] =% shy, (vhy; 1 :=m + 1;1; :=true)

*

% sholly > true, ) — m+ 1], ()

Now for the crucial step: we show that saa(ly) = shy(ll) = m:
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e Because (k2 — j1 — j2, W3) 3 (k2 — j1,W3), it must hold that W3 I |W3|p,—j,—j, and W3 €
WOT’ld/CQ_jl_jz.

e From the former we know W3[p + 1] 3 |wy, 1 |k, —jy—jo-

e That means that Wg[p+ 1]V D VU{(kg—jl, k’g—jl —Jja—1, m)} and W3[p+1].£ = I_[’szﬁjszjdsz =
[':k2_j1_j2'

e Hence, because W3 € Worldy,—j,—j,, we have (k2 — j1 — jo, Walp + 1].7) € Liy—j,—j,-

e That is, Wi[p+ 1].n = 77,?:3_[??_1;2‘/

e Thus, Ws[p+ 1].4) = wmin(Wx [p+1].V)

ko—j1—J2
e From 599, 8/22 k1 —j1—ja W3 and k2_j1_j2 > ]fz—kg > O, it follows that (k)Q—jl—jQ—l, LW3Jk2*j1*j2*1’ S92, 8/22) S
wmin(Wg [p+1].V)
k2—j1—j2 :
e From that we see that, by the definition of 1), min(W5[p+1].V) = (k, k', v’), such that k > ko — j; —
J2— 1.
e The side condition of £} guarantees that no overlapping triple has been added to V U {(ks — j1, k2 —
J1—J2—1,m)}, i.e, either k = ky — j1 or k < ko — j1 — jo — 1.

e Together with the previous point, it follows that k = ko — j1, and consequently, (k,k",v") = (k2 —
J1,ka — j1 — jo — 1,m), the window we entered earlier.

e Because (ko —j1 —j2 — 1, [W3 | ky—jy—ja—1, S22, S5o) € w,(cl::fﬁfjfjﬁjrl’m), by the definition of 1), we
can conclude
soa(ly) = sho(ly) = false A sa2(ly) = s5o(I) =m

Now let
s = sho[ly — true,l, — m + 1]

(k2—j1,k2—j1—j2—1,m)

Because k3 < ko, by downward closure (ke — k3 — 1, |W3]py—ks—1, 3, 85) € {lpk’2—j1—j2 , SO we have

/o
83,83 ‘ko—ks W3

It remains to be shown that
(k2 — k3, W3,(),()) € V[unit] 0

which is trivially true.
Now consider (2). By definition of V [t — 7'], we have to show that:

V(kQ,Wg) | (k‘() — Ifl,Wl),’UQ,’Ué, (kQ,WQ,'UQ,'Ué) cy [unit]] 0 =
(ko, Wa, Az tunit. ', Az s unit. 1)) € € [int] 0

Assume (kq, Wo) O (ko — k1, Wh). By definition of £ [7], we are required to show:
Vk‘g < ]€2,82,8/2,82,7)3, SQ,SIQ ko W2 A Sa2, 'lz ks S3, U3 =4
dsh, 05, W, 83,85 tko—ks W3 A sh M —* shouh A .
(kjg — ks, Wg) g (kig, WQ) N (k‘g — ks, W3,’U3,Ué) ey [[Int]] 0

Assume ss, ), 1k, Wo and s, ', —F3 s3,v5. As for (1), we can derive, for some b and m:
399 ko ) ) ) ’

s2(ly) = s5(ly) = b
sa(le) = s3(ly) = m
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Hence, by definition of the reduction relation:

53 = 82, vz = m
!/ _ ! / i
S3 = 8y, Vg = m

Let W3 = Wa, which trivially is valid and extends Ws. Likewise, s3, 85 ik,—k, W3 is immediate. It remains
to be shown that
(k‘g — k3, W3, m, m) ey [[int]] 0

which obviously is the case. g
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