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Abstract. Provenance is information recording the source, derivation, or his-
tory of some information. Provenance tracking has been studied in a variety of
settings; however, although many design points have been explored, the mathe-
matical or semantic foundations of data provenance have received comparatively
little attention. In this paper, we argue that dependency analysis techniques famil-
iar from program analysis and program slicing provide a formal foundation for
forms of provenance that are intended to show how (part of) the output of a query
depends on (parts of) its input. We introduce a semantic characterization of such
dependency provenance, show that this form of provenance is not computable,
and provide dynamic and static approximation techniques.

1 Introduction

Provenance is information about the origin, ownership, influences upon, or other histor-
ical or contextual information about an object. Such information has many applications,
including evaluating integrity or authenticity claims, establishing the chain of custody
of or responsibility for an object, detecting and repairing errors, and memoization and
caching of the results of computations. Provenance is particularly important in scien-
tific computation and recordkeeping, since it is considered essential for ensuring the
repeatability of experiments and judging the scientific value of their results.

Provenance tracking has been studied in a variety of settings, including databases,
file systems, and scientific workflows; indeed, many familiar systems provide simple
forms of provenance, such as the timestamp and ownership metadata in file systems,
system logs, and version control systems. Although a wide variety of design points
have been explored [8, 17, 21], there is relatively little understanding of the relation-
ships among techniques or of the design considerations that should be taken into ac-
count when developing or evaluating an approach to provenance. The mathematical or
semantic foundations of data provenance have received comparatively little attention,
with a few relatively recent exceptions [10, 11, 15, 19].

Most prior approaches have invoked intuitive concepts such as contribution, in-
fluence, and relevance as motivation for their definitions of provenance. These intu-
itions seem adequate when considering monotone relational queries, but tend to break
down when negation, grouping, or aggregation are considered. These intuitions have
also motivated rigorous approaches to seemingly quite different problems, such as aid-
ing debugging via program slicing [7, 16, 24], supporting efficient memoization and
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(a)

Protein

ID Name MW · · ·
p1 thioredoxin 11.8 · · ·
p2 flavodoxin 19.7 · · ·
p3 ferredoxin 12.3 · · ·
p4 ArgR −700 · · ·
p5 CheW 18.1 · · ·
...

...
...

...

EnzReact

PID RID

p1 r1
p2 r1
p1 r2
p4 r2
p5 r3
...

...

Reaction

ID Name · · ·
r1 thia-phos + ATP = thi diphos + ADP · · ·
r2 H2O + an acyl phos → phos + a carboxylate · · ·
r3 D-ribose-5-phosp = D-ribulose-5-phos · · ·
r4 β-D-gluc-6-phos = fruct-6-phos · · ·
r5 panteth 4′-phos + ATP = dephos-CoA + diphos · · ·
...

...
...

(b)

SELECT R.Name as Name, AVERAGE(P.MW) as AvgMW
FROM Protein P, EnzymaticReaction ER, Reaction R
WHERE P.ID = ER.ProteinID, ER.ReactionID = R.ID

GROUP BY R.Name

(c)
Name AvgMW

thia-phos + ATP = thi diphos + ADP 15.75
H2O + an acyl phos → phos + a carboxylate -338.2

D-ribose-5-phosp = D-ribulose-5-phos 18.1
...

...

Fig. 1. Example (a) input, (b) query, and (b) output data; input field values relevant to italicized
erroneous output value are highlighted in bold

caching [2, 4], and improving program security using information flow analysis [20].
As Abadi et al. have argued [1], slicing, information flow, and several other program
analysis techniques can all be understood in terms of dependence.

In this paper, we argue that these dependency analysis and slicing techniques fa-
miliar from programming languages provide a suitable foundation for an interesting
class of provenance techniques. To illustrate our approach, consider the (realistic, but
biologically inaccurate) input data shown in Figure 1(a) and the query in Figure 1(b)
which calculates the average molecular weights of proteins involved in each reaction.
The result of this query is shown in Figure 1(c).

Since the MW field contains the molecular weight of a protein, it is clearly an error
for the italicized value in the result to be negative. To track down the source of the error,
it would be helpful to know which parts of the input contributed to, or were relevant to,
the erroneous part of the output. We can formalize this intuition by saying that a part
of the output depends on a part of the input if a change to the input part may result in
a change to the output part. This is analogous to program slicing [24], a debugging aid
that identifies the parts of a program on which a program output depends.

In this example, the input field values that the erroneous output AvgMW-value de-
pends on are highlighted in bold. The dependences include the two summed MW values
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and the ID fields which are compared by the selection and grouping query. These ID
fields must be included because a change to any one of them could result in a change to
the italicized output value—for example, changing the occurrence of p4 in table Enzy-
maticReaction. On the other hand, the names of the proteins and reactions are irrelevant
to the output AvgMW.

This example is simplistic, but the ability to concisely explain which parts of the
input influence each part of the output is much more important if we consider a realistic
database with perhaps tens or hundreds of columns per table and thousands or millions
of rows. Moreover, dependence information can also be useful for a variety of other
applications, including estimating the quality or freshness of data in a query result by
aggregating timestamps or quality annotations on the relevant inputs.

In this paper, we argue that data dependence provides a solid semantic foundation
for generalizing why-provenance, lineage, and similar techniques. We consider the full
nested relational calculus with set difference, equality, grouping and aggregation oper-
ations, and functions on basic types. We consider annotation-propagating semantics for
such queries and define a property called dependency-correctness, which, intuitively,
means that the annotations produced by a query correctly show all parts of the output
that may change if a part of the input is changed.

The structure of the rest of this paper is as follows. We briefly review the nested rela-
tional calculus in Section 2. We then introduce (in Section 3) the annotation-propagation
model and define dependency-correctness. In Section 3.1 we describe a dynamic prov-
enance-tracking semantics that is dependency-correct. We also (Section 3.2) introduce
a type-based provenance analysis which is less accurate than provenance tracking, but
can be performed statically; we also prove its correctness relative to dynamic prove-
nance tracking. We discuss our results and a preliminary implementation in Section 3.3
and discuss related and future work and conclude in Sections 4–5. Full proofs of our
main results are provided in a companion technical report [14].

2 Background

We assume some familiarity with the nested relational calculus (NRC) [13], which is
closely related to monad algebra [22]. We consider multiset (or bag) collections rather
than sets. The types and expressions of our variant of NRC are as follows:

τ ::= bool | int | τ1 × τ2 | {τ}
e ::= x | let x = e1 in e2 | (e1, e2) | πi(e) | b | i | ¬e | e1 ∧ e2 | e1 + e2 | sum(e)

| e1 ≈ e2 | if e0 then e1 else e2 | ∅ | {e} | e1 ∪ e2 | e1 − e2 | {e2 | x ∈ e1} |
⋃

e

Here, i ∈ Z = {. . . ,−1, 0, 1, . . .} represents integer constants and b ∈ B = {true, false}
denotes Boolean constants. The type {τ} describes collections of elements of type τ ;
in this paper, we consider collections to be bags (multisets). The bag operations in-
clude ∅, the constant empty bag; singletons {e}; bag union and difference; compre-
hension {e2 | x ∈ e1}; and flattening

⋃
e. By convention, we write {e1, . . . , en} as

syntactic sugar for {e1} ∪ · · · ∪ {en}. Finally, we include sum, a typical aggregation
operation, which adds together all of the elements of a bag and produces a value; e.g.
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sum{1, 2, 3} = 6 (by convention, sum(∅) = 0). We syntactically distinguish between
NRC’s equality operation ≈ and mathematical equality =.
Types Query language expressions can be typechecked using standard techniques.
Contexts Γ are lists of pairs of variables and types x1 : τ1, . . . , xn : τn, where x1, . . . , xn

are distinct. The rules for typechecking expressions are shown in Figure 2.
Semantics We write Mfin(X) for the set of all finite bags with elements drawn from
X . The (standard) interpretation of base types as sets of values is as follows:

T [[bool]] = B = {true, false} T [[τ1 × τ2]] = T [[τ1]]× T [[τ2]]
T [[int]] = Z = {. . . ,−1, 0, 1, . . .} T [[{τ}]] = Mfin(T [[τ ]])

An environment γ is a function from variables to values. We define the set of environ-
ments matching context Γ as T [[Γ ]] = {γ | ∀x ∈ dom(Γ ).γ(x) ∈ T [[Γ (x)]]}.

Figure 3 gives the semantics of queries. Note that we overload notation for pair
projection πi and bag operations such as ∪ and

⋃
; also, if S is a bag of integers, then∑

S is the sum of their values (taking
∑
∅ = 0). It is straightforward to show that

Lemma 1. If Γ ` e : τ then E [[e]] : T [[Γ ]] → T [[τ ]].

As discussed in previous work [13], the NRC can express a wide variety of queries
including ordinary relational queries as well as grouping and aggregation. We do not
consider incomplete information (NULL values). Additional primitive functions and re-
lations such as average can also be added without difficulty (in fact, average is definable
in our language). For example, using more readable named record, comprehensions, and
patterns, the SQL query from the Figure 1(b) can be defined as

let X = {(r.Name, p.MW ) | r ∈ R, er ∈ ER, p ∈ P, er.RID = r.ID, p.ID = er.PID} in
{(n, average{mw | (n′, mw) ∈ X, n = n′}) | (n, ) ∈ X}

Additional examples are shown in Figure 4.

3 Annotations, Provenance and Dependence

We wish to define dependency provenance as information relating each part of the out-
put of a query to a set of parts of the input on which the output part depends. Collection
types such as sets and bags are unordered and lack a natural way to “address” parts of
values, so we must introduce one. One technique (familiar from many program anal-
yses as well as other work on provenance [10, 23]) is to enrich the data model with
annotations that can be used to refer to parts of the value. We can then infer prove-
nance information from functions on annotated values by observing how such func-
tions propagate annotations; conversely, we can define provenance-tracking semantics
by enriching ordinary functions with annotation-propagation behavior. In this section,
we show how to define dependency provenance in this way. In the next sections, we
will show how to compute dynamic and static dependency provenance for NRC queries
using annotations.

We define annotated values (a-values) v, raw values (r-values) w, and multisets of
annotated values V as follows:

v ::= wΦ w ::= i | b | (v1, v2) | V V ::= {v1, . . . , vn}
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Γ ` e : τ

x:τ ∈ Γ
Γ ` x : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2

Γ ` let x = e1 in e2 : τ2

i ∈ Z
Γ ` i : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Γ ` e : {int}
Γ ` sum(e) : int

b ∈ B
Γ ` b : bool

Γ ` e0 : bool Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e0 then e1 else e2 : τ
Γ ` e : bool

Γ ` ¬e : bool

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 ∧ e2 : bool

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

Γ ` e : τ1 × τ2

Γ ` πi(e) : τi

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ≈ e2 : bool Γ ` ∅ : {τ}
Γ ` e : τ

Γ ` {e} : {τ}
Γ ` e1 : {τ} Γ ` e2 : {τ}

Γ ` e1 ∪ e2 : {τ}
Γ ` e1 : {τ} Γ ` e2 : {τ}

Γ ` e1 − e2 : {τ}
Γ ` e1 : {τ1} Γ, x:τ1 ` e2 : τ2

Γ ` {e2 | x ∈ e1} : {τ2}
Γ ` e : {{τ}}
Γ `

S
e : {τ}

Fig. 2. Well-formed query expressions

E [[x]]γ = γ(x) E [[let x = e1 in e2]]γ = E [[e2]]γ[x 7→ E [[e1]]γ]
E [[i]]γ = i E [[e1 + e2]]γ = E [[e1]]γ + E [[e2]]γ

E [[sum(e)]]γ =
P
E [[e]]γ E [[b]]γ = b

E [[¬e]]γ = ¬E [[e]]γ E [[e1 ∧ e2]]γ = E [[e1]]γ ∧ E [[e2]]γ
E [[(e1, e2)]]γ = (E [[e1]]γ, E [[e2]]γ) E [[πi(e)]]γ = πi(E [[e]]γ)

E [[∅]]γ = ∅ E [[{e}]]γ = {E [[e]]γ}
E [[e1 ∪ e2]]γ = E [[e1]]γ ∪ E [[e2]]γ E [[e1 − e2]]γ = E [[e1]]γ − E [[e2]]γ

E [[
S

e]]γ =
S
E [[e]]γ E [[{e | x ∈ e0}]]γ = {E [[e]]γ[x 7→ v] | v ∈ E [[e0]]γ}

E [[if e0 then e1 else e2]]γ =


E [[e1]]γ if E [[e0]]γ = true
E [[e2]]γ if E [[e0]]γ = false

E [[e1 ≈ e2]]γ =


true if E [[e1]]γ = E [[e2]]γ
false if E [[e1]]γ 6= E [[e2]]γ

Fig. 3. Semantics of query expressions

ΠA(R) = {x.A | x ∈ R}

σA=B(R) =
[
{if x.A = x.B then {x} else ∅ | x ∈ R}

R× S = {(A : x.A, B : x.B, C : y.C, D : y.D, E : y.E) | x ∈ R, y ∈ S}
ΠBE(σA=D(R× S)) = {if x.A = y.D then {(B : x.B, E : y.E)} else ∅ | x ∈ R, y ∈ S}

R ∪ ρA/C,B/D(ΠCD(S)) = R ∪ {(A : y, C, B : y.D) | y ∈ S}
R− ρA/D,B/E(ΠDE(S)) = R− {(A : y, D, B : y.E) | y ∈ S}

sum(ΠA(R)) = sum{x.A | x ∈ R}
count(R) = sum{1 | x ∈ R}

Fig. 4. Example queries
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For us, annotations are sets Φ ⊆ Color of values from some atomic data type Color of
colors. We often omit set brackets in the annotations, for example writing wa,b,c instead
of w{a,b,c} and w instead of w∅. An a-value v is said to be distinctly colored if every
part of it is colored with a singleton set {a} and no color c is repeated anywhere in v.

For each type τ , we define the set A0[[τ ]] of annotated values of type τ as follows:

A0[[bool]] = {bΦ | b ∈ B} A0[[τ1 × τ2]] = {(v1, v2)Φ | v1 ∈ A0[[τ1]], v2 ∈ A0[[τ2]]}
A0[[int]] = {iΦ | i ∈ Z} A0[[{τ}]] = {V Φ | ∀v ∈ V.v ∈ A0[[τ ]]}

Annotated environments γ̂ map variables to annotated values. We define the set of an-
notated environments matching context Γ as A0[[Γ ]] = {γ̂ | ∀x ∈ dom(Γ ).γ̂(x) ∈
A0[[Γ (x)]]}.

We define an erasure function |− |, mapping a-values to ordinary values (and, abus-
ing notation, also mapping r-values to ordinary values), as follows:

|i| = i |b| = b |(v1, v2)| = (|v1|, |v2|) |{V }| = {|v| | v ∈ V } |wΦ| = |w|

and an annotation extraction function ‖−‖which extracts the set of all colors mentioned
anywhere in an a-value or r-value, defined by taking ‖wΦ‖ = Φ ∪ ‖w‖ and

‖i‖ = ∅ ‖b‖ = ∅ ‖(v1, v2)‖ = ‖v1‖ ∪ ‖v2‖ ‖{V }‖ =
⋃
{‖v‖ | v ∈ V }

Two a-values are said to be compatible (written v ∼= v′) if |v| = |v′|.
We now consider annotated functions (a-functions) F : A0[[Γ ]] → A0[[τ ]] on a-

values. Recall that we plan to define provenance for functions f : T [[Γ ]] → T [[τ ]] by
observing how a-functions transform annotations. For this to make sense, we first need
to restrict attention to a-functions F whose behavior is consistent with that of some
function f ; that is, such that ∀v ∈ A0[[Γ ]].f(|v|) = |F (v)|. If this is the case, then we
say that the a-function F is an enrichment of f ; there can be at most one such f , so
we sometimes write |F | for f . Of course, many a-functions are not enrichments of any
ordinary function: for example, suppose F0(1a) = 1a while F0(1b) = 2b. It may be
of interest to semantically characterize the a-functions that are enrichments of ordinary
functions, by analogy with generic queries in relational databases and color-invariance
in [10]; while this would be important for studying expressiveness, in this paper we
simply restrict attention to a-functions F that are enrichments of ordinary functions,
that is, for which |F | exists.
Dependency-correctness Intuitively, an a-function F is dependency-correct if its out-
put annotations tell us how changes to parts of the input may affect parts of the output.
First, we need to capture the intuitive notion of changing a value at a particular location:

Definition 1 (Equal except at c). Two a-values v1, v2 are equal except at c (v1 ≡c v2)
provided that they have the same structure except possibly at subterms labeled with c;
this relation is defined as follows:

d ∈ B ∪ Z
d ≡c d

v1 ≡c v′1 v2 ≡c v′2

(v1, v2) ≡c (v′1, v
′
2)

v1 ≡c v′1 · · · vn ≡c v′n

{v1, . . . , vn} ≡c {v′1, . . . , v′n}
w1 ≡c w2

wΦ
1 ≡c wΦ

2

c ∈ Φ1 ∩ Φ2

wΦ1
1 ≡c wΦ2

2
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Example 1. Consider the two a-environments:

γ̂ = (R : {(1c1 , 3c2 , 5c3)b1 , . . .}a,S : · · · )
γ̂′ = (R : {(2c1 , 3c2 , 5c3)b1 , . . .}a,S : · · · )

We have γ̂ ≡a γ̂′, γ̂ ≡b1 γ̂′, and γ̂ ≡c1 γ̂′, assuming that the elided portions are
identical. For distinctly-colored values, a color serves as an address uniquely identifying
a subterm. Thus, ≡c relates a distinctly-colored value to a value which can be obtained
by modifying the subterm “at c”; that is, if we write v1 as C[v′1] where C is a context
and v′1 is the subterm labeled with c in v1, and v1 ≡c v2, then v2 = C[v′2] for some
subterm v′2 labeled with c. Note that v′2 and v2 need not be distinctly colored, and that
≡c makes sense for arbitrary a-values, not just distinctly colored ones.

Definition 2 (Dependency-correctness). An a-function F : A0[[Γ ]] → A0[[τ ]] is de-
pendency-correct if for any c ∈ Color and γ̂, γ̂′ ∈ A0[[Γ ]] satisfying γ̂ ≡c γ̂′, we have
F (γ̂) ≡c F (γ̂′).

Example 2. Recall γ̂, γ̂′ as in the previous example. Suppose

F (γ̂) = {(1c1 , 3c2 , 5c3)b1}a .

Since γ̂ ≡c1 γ̂′, we know that F (γ̂) ≡c1 F (γ̂′) so we can see that F (γ̂′) must be of the
form

{(sc1 , 3c2 , 5c3)b1}a

for some n ∈ Z. We do not necessarily know that n must be 2; this is not captured by
dependency-correctness.

More generally, dependency-correctness tells us that for any c, we must have F (γ̂) =
C[v1, . . . , vn] and F (γ̂′) = C[v′1, . . . , v

′
n], where C[−, . . . ,−] is a context not mention-

ing c and v1, . . . , vn, v′1, . . . , v
′
n are labeled with c. Thus, F ’s annotations tell us which

parts of the output (i.e., v1, . . . , vn) may change if the input is changed at c. Dually, they
also tell us what part of the output (i.e., C[−, . . . ,−]) cannot be changed by changing
the input at c.

Of course, dependency-correctness does not uniquely characterize the annotation
behavior of a given F . It is possible for the annotations to be dependency-correct but
inaccurate. For example we can always trivially annotate each part of the output with
every color appearing in the input. This, of course, tells us nothing about the function’s
behavior. In general, the fewer the annotations present in the output of a dependency-
correct F , the more they tell us about F ’s behavior. We therefore consider a function F
to be minimally annotated if no annotations can be removed from F ’s output for any v
without damaging correctness.

We say that a query e is constant if [[e]]γ = v for some v and every suitable γ.

Proposition 1. It is undecidable whether a Boolean NRC query is constant.

Proof. Recall that query equivalence is undecidable for the (nested) relational calcu-
lus [3]; this holds even for queries e(x), e′(x) over a single variable x. Given two such
queries, consider the expression ê = e(x) ≈ e′(x) ∨ y (definable as ¬(¬(e(x) ≈
e′(x)) ∧ ¬y)). The result of this expression cannot be false everywhere since the dis-
junction is true for y = true, so is ê is constant iff [[ê]]v = true for every v iff e ≡ e′.
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(wΦ)+Φ0 = wΦ∪Φ0 (iΦ1
1 ) b+ (iΦ2

2 ) = (i1 + i2)
Φ1∪Φ2b¬(bΦ) = (¬b)Φ (bΦ1

1 ) b∧ (bΦ2
2 ) = (b1 ∧ b2)

Φ1∪Φ2bπi((v1, v2)
Φ) = v+Φ

i (wΦ1
1 ) b∪ (wΦ2

2 ) = (w1 ∪ w2)
Φ1∪Φ2

ĉond(trueΦ, v1, v2) = v+Φ
1 ĉond(falseΦ, v1, v2) = v+Φ

2

dX
({v1, . . . , vn}Φ) = (v1 b+ · · · b+ vn)+Φ

c[{v1, . . . , vn}Φ = (v1 b∪ · · · b∪ vn)+Φ

{v(x) | x b∈ wΦ} = {v(x) | x ∈ w}Φ

(wΦ1
1 ) b− (wΦ2

2 ) = {v ∈ w1 | |v| 6∈ |w2|}Φ1∪‖w1‖∪Φ2∪‖w2‖

v1 b≈ v2 =


true‖v1‖∪‖v2‖ |v1| = |v2|
false‖v1‖∪‖v2‖ |v1| 6= |v2|

Fig. 5. Auxiliary annotation-propagating operations

P[[x]]bγ = bγ(x) P[[let x = e1 in e2]]bγ = P[[e2]]bγ[x 7→ P[[e1]]bγ]

P[[i]]bγ = i∅ P[[e1 + e2]]bγ = P[[e1]]bγ b+ P[[e2]]bγ
P[[sum(e)]]bγ = cPP[[e]]bγ P[[b]]bγ = b∅

P[[¬e]]bγ = b¬P[[e]]bγ P[[e1 ∧ e2]]bγ = P[[e1]]bγ b∧ P[[e2]]bγ
P[[(e1, e2)]]bγ = (P[[e1]]bγ,P[[e2]]bγ)∅ P[[πi(e)]]bγ = bπi(P[[e]]bγ)

P[[∅]]bγ = ∅∅ P[[{e}]]bγ = {P[[e]]bγ}∅
P[[e1 ∪ e2]]bγ = P[[e1]]bγ b∪ P[[e2]]bγ P[[e1 − e2]]bγ = P[[e1]]bγ b− P[[e2]]bγ

P[[
S

e]]bγ = bS P[[e]]bγ P[[{e | x ∈ e0}]]bγ = {P[[e]]bγ[x 7→ v] | v b∈ P[[e0]]bγ)}
P[[e1 ≈ e2]]bγ = P[[e1]]bγ b≈ P[[e2]]bγ P[[if e0 then e1 else e2]]bγ = ĉond(P[[e0]]bγ,P[[e1]]bγ,P[[e2]]bγ)

Fig. 6. Provenance-tracking semantics

Clearly, an annotation is needed on the result of a Boolean query if and only if the query
is not a constant, so finding minimal annotations is undecidable. As a result, we cannot
expect to be able to compute dependency-correct annotations with perfect accuracy. It is
important to note, though, that dependency-tracking is hard even if we leave out the e1−
e2 or e1 ≈ e2 operators. For example, we can reduce (coNP-hard) propositional validity
problems to dependency-tracking for ordinary Boolean expressions or conditionals.

3.1 Dynamic Provenance Tracking

We now consider a provenance tracking approach in which we interpret each expres-
sions e as dependency-correct a-functions P[[e]]. The definition of the provenance-
tracking semantics is shown in Figure 6. Auxiliary operations are used to define P[[−]];
these are shown in Figure 5. In particular, note that we define (wΦ)+Ψ = wΦ∪Ψ .

Many cases involving ordinary programming constructs are self-explanatory. Con-
stants always have empty annotations: nothing in the input can affect them. Built-in
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functions such as +,∧,¬ propagate all annotations on their arguments to the result. For
a conditional if e0 then e1 else e2, the result is the result of evaluating e1 or e2, com-
bined with the annotations of e0. A constructed pair has an empty top-level annotation;
in a projection, the top-level annotation of the pair is merged with that of the returned
value.

The cases involving collection types deserve some explanation. The empty set is a
constant, so has an empty top-level annotation. Similarly, a singleton set constructor has
an empty annotation. For union, we take the union of the underlying bags (of annotated
values) and fuse the top-level annotations. For comprehension, we leave the top-level
annotation alone. For flattening

⋃
e, we take the lifted union (∪̂) of the elements of e and

add the top-level annotation of e. Similarly, ŝum(e) uses +̂ to add together the elements
of e, fusing their annotations with that of e. For set difference, to ensure dependency
correctness, we must conservatively include all of the colors present on either side in
the annotation of the top-level expression. Similarly, for equality tests, we must include
all of the colors present in either value in the result annotation.

Remark 1. Our approach to handling negation and equality is somewhat awkward since
it may result in very large annotations. For example, consider {1a, 2b}c − {1d, 3e}f :
clearly, changing any of the input locations a, b, c, d, e, f can cause the output to change.
In contrast, other approaches such as lineage associate tuple t ∈ R−S only with t ∈ R
and all tuples of S. This may seem more “accurate”, but it is not dependency-correct. On
the other hand, our approach can also be more “accurate” than lineage in the presence
of negation; for example, in {1} − {π1(x) | x ∈ S}, our approach will indicate that
the output does not depend on the second components of elements of S, whereas the
lineage of this query include all the records in S.

However, although our approach to negation and equality has pathological behavior
in some cases, it does seem to provide useful provenance for typical queries. Develop-
ing more sophisticated forms of dependence that are better-behaved in the presence of
negation or equality is an interesting area for future work.

Example 3. Consider an annotated input environment γ̂, shown in Figure 7(a), of schema
R : (A : int, B : int), S(C : int, D : int, E : int) (we use more compact relational
schema notation with field names for readability). Figure 7(b) shows the provenance
tracking semantics of the example queries from Figure 4. We write a123 as an abbrevi-
ation for a1, a2, a3, etc. Note that in the count example query, the output depends on
no individual of the input; we cannot change the number of elements of a multiset by
changing field values. However, in a query such as count(σA=B(R)), the result depends
on all of the A and B fields.

These annotated results can easily be used to “highlight” the parts of the input that
may be relevant to a part of the output, by examining the annotations appearing above
the output part of interest. This is how the example in Figure 1 was constructed.

Note that equivalent expressions e ≡ e′ need not satisfyP[[e]] ≡ P[[e′]]; for example,
x− x ≡ ∅ but P[[x− x]] 6≡ ∅∅.

We summarize the main results concerning P[[−]] as follows:

Theorem 1. If Γ ` e : τ then (1) P[[e]] : A0[[Γ ]] → A0[[τ ]], (2) |P[[e]]| = E [[e]], and (3)
P[[e]] is dependency-correct.
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(a)

bγ = [R := {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3)},
S := {(C : 1c1 , D : 2d1 , E : 3e1), (C : 1c2 , D : 1d2 , E : 4e2)}]

(b)

P[[ΠA(R)]]bγ = {(A : 1a1), (A : 1a2), (A : 2a3)}
P[[σA=B(R)]]bγ = {(A : 1a1 , B : 1b1)}a1,b1

P[[R× S]]bγ = {(A : 1a1 , B : 1b1 , C : 1c1 , D : 2d1 , E : 3e1),

(A : 1a1 , B : 1b1 , C : 1c2 , D : 1d2 , E : 4e2), . . .}
P[[ΠBE(σA=D(R× S))]]bγ = {(B : 1b1 , E : 4e2), (B : 2b2 , E : 4e2),

(B : 3b3 , E : 3e1)}a123,d12

P[[R ∪ ρA/C,B/D(ΠCD(S))]]bγ = {(A : 1a1 , B : 1b1), (A : 1a2 , B : 2b2), (A : 2a3 , B : 3b3),

(A : 1c1 , B : 2d1), (A : 1c2 , B : 1d2)}
P[[R− ρA/D,B/E(ΠDE(S))]]bγ = {(A : 1a1 , B : 1b2), (A : 1a2 , B : 2b2)}a123,b123,d12,e12

P[[sum(ΠA(R))]]bγ = 4a1,a2,a3 P[[count(R)]]bγ = 3

Fig. 7. (a) Annotated input environment (b) Examples of provenance tracking

3.2 Static Provenance Analysis

Although it can often be quite accurate, dynamic provenance seems expensive to com-
pute and nontrivial to implement in a standard relational database system. Moreover,
dynamic analysis cannot tell us anything about a query without looking at (annotated)
input data. In this section we consider a static provenance analysis which statically
approximates the dynamic provenance, but can be calculated more easily and without
accessing the input.

We formulate the analysis as a type-based analysis; annotated types (a-types) τ̂ and
raw types (r-types) ω are defined as follows:

τ̂ ::= ωΦ ω ::= int | bool | τ̂ × τ̂ ′ | {τ̂}

We write Γ̂ for a typing context mapping variables to a-types. We lift the auxiliary a-
value operations of erasure (|τ̂ |), annotation extraction (‖τ̂‖), and compatibility (τ̂1

∼=
τ̂2) to a-types in the obvious way.

We also define a “union” operation t on compatible types as follows:

ωΦ1
1 t ωΦ2

2 = (ω1 t ω2)Φ1∪Φ2 int t int = int bool t bool = bool

(τ̂1 × τ̂2) t (τ̂ ′1 × τ̂ ′2) = (τ̂1 t τ̂ ′1)× (τ̂2 t τ̂ ′2) {τ̂} t {τ̂ ′} = {τ̂ t τ̂ ′}

Finally, we write τ̂ v τ̂ ′ if τ̂ ′ = τ̂ t τ̂ ′; this is essentially a subtyping relation.

10



bΓ ` i : int & ∅

bΓ ` e1 : int & Φ1
bΓ ` e2 : int & Φ2bΓ ` e1 + e2 : int & Φ1 ∪ Φ2

bΓ ` e : {intΦ0} & ΦbΓ ` sum(e) : int & Φ0 ∪ Φ

bΓ ` b : bool & ∅

bΓ ` e : bool & ΦbΓ ` ¬e : bool & Φ

bΓ ` e1 : bool & Φ2
bΓ ` e2 : bool & Φ2bΓ ` e1 ∧ e2 : bool & Φ1 ∪ Φ2bΓ ` e1 : bτ1

bΓ ` e2 : bτ2bΓ ` (e1, e2) : (bτ1 × bτ2) & ∅

bΓ ` e : ωΦ1
1 × ωΦ2

2 & ΦbΓ ` πi(e) : ωi & Φi ∪ ΦbΓ ` e1 : bτ1
bΓ ` e2 : bτ2 bτ1

∼= bτ2bΓ ` e1 ≈ e2 : bool & ‖bτ1‖ ∪ ‖bτ2‖

bΓ ` e0 : bool & Φ0
bΓ ` e1 : bτ1

bΓ ` e2 : bτ2 ω1
∼= ω2bΓ ` if e0 then e1 else e2 : (bτ1 t bτ2)

+Φ0

bΓ ` ∅ : {bτ} & ∅

bΓ ` e : bτbΓ ` {e} : {bτ} & ∅

bΓ ` e1 : {bτ1} & Φ1
bΓ ` e2 : {bτ2} & Φ2 bτ1

∼= bτ2bΓ ` e1 ∪ e2 : {bτ1 t bτ2} & Φ1 ∪ Φ2bΓ ` e1 : {bτ1} & Φ1
bΓ ` e2 : {bτ2} & Φ2 bτ1

∼= bτ2bΓ ` e1 − e2 : {bτ1} & ‖{bτ1}Φ1‖ ∪ ‖{bτ2}Φ2‖

bΓ ` e : {{bτ}Φ2} & Φ1bΓ `
S

e : {bτ} & Φ1 ∪ Φ2bΓ ` e1 : {bτ1} & Φ1
bΓ , x:bτ1 ` e2 : ω & Φ2bΓ ` {e2 | x ∈ e1} : {ωΦ

2 } & Φ1

x:bτ ∈ bΓbΓ ` x : bτ
bΓ ` e1 : bτ1

bΓ , x : bτ1 ` e2 : bτ2bΓ ` let x = e1 in e2 : bτ2

Fig. 8. Type-based provenance analysis

We interpret a-types τ̂ as sets A[[τ̂ ]] of a-values. We interpret the annotations in
a-types as upper bounds on the annotations in the corresponding a-values:

A[[int]] = {i | i ∈ Z} A[[τ̂1 × τ̂2]] = {(v1, v2) | v1 ∈ A[[τ̂1]], v2 ∈ A[[τ̂2]]}
A[[bool]] = {b | b ∈ B} A[[{τ̂}]] = {V | ∀v ∈ V.v ∈ A[[τ̂ ]]}
A[[ωΦ]] = {wΨ | Ψ ⊆ Φ,w ∈ A[[ω]]}

The syntactic operations |−|, ‖−‖, v and t correspond to appropriate semantic opera-
tions on sets of a-values. We note some useful properties of these operations:

Lemma 2. 1. If v ∈ A[[τ̂ ]] then |v| ∈ T [[|τ̂ |]] and ‖v‖ ⊆ ‖τ̂‖.
2. If τ̂1 v τ̂2 then A[[τ̂1]] ⊆ A[[τ̂2]] and ‖τ̂1‖ ⊆ ‖τ̂2‖.
3. If τ̂1t τ̂2 is defined thenA[[τ̂1t τ̂2]] = A[[τ̂1]]∪A[[τ̂2]] and ‖τ̂1t τ̂2‖ = ‖τ̂1‖∪‖τ̂2‖.

The annotated typing judgment Γ̂ ` e : τ̂ (sometimes written Γ̂ ` e : ω & Φ for
readability, provided τ̂ = ωΦ) extends the plain typing judgment shown in Figure 2.

Proposition 2. The judgment Γ ` e : τ is derivable if and only if for any Γ̂ enriching
Γ , there exists a τ̂ enriching τ such that Γ̂ ` e : τ̂ . Moreover, given Γ ` e : τ ,
and Γ̂ enriching Γ , we can compute τ̂ in polynomial time (by a simple syntax-directed
algorithm).

The correctness of the analysis is proved with respect to the provenance-tracking
semantics. This property takes the form of a type-soundness theorem: we simply need
to show that if the input environment γ̂ is well-formed at annotated context Γ̂ then the
result P[[e]]γ̂ is well-formed at type τ̂ :

11



(a) bΓ = [R : {(A : inta, B : intb)}, S : {(C : intc, D : intd, E : inte)}]

(b)

bΓ ` ΠA(R) : {(A : inta)}bΓ ` σA=B(R) : {(A : inta, B : intb)}a,bbΓ ` R× S : {(A : inta, B : intb, C : intc, D : intd, E : inte)}bΓ ` ΠBE(σA=D(R× S)) : {(B : intb, E : inte)}a,dbΓ ` R ∪ ρA/C,B/D(ΠCD(S)) : {(A : inta,c, B : intb,d)}bΓ ` R− ρA/D,B/E(ΠDE(S)) : {(A : inta, B : intb)}a,b,d,ebΓ ` sum(ΠA(R)) : intabΓ ` count(R) : int

Fig. 9. (a) Annotated input context (b) Examples of provenance analysis

Theorem 2. If Γ̂ ` e : τ̂ then P[[e]] : A[[Γ̂ ]] → A[[τ̂ ]].

This theorem tells us that the annotations we obtain (statically) by provenance anal-
ysis over-approximate those obtained (dynamically) by provenance tracking provided
the initial value γ̂ matches A[[Γ̂ ]].

Example 4. Consider an annotated type context Γ̂ , shown in Figure 9(a), where we have
annotated field values A,B, C, D, E with colors a, b, c, d, e respectively. Figure 9(b)
shows the results of static analysis for the queries in Figure 7. In some cases, the type
information simply reflects the field names which are present in the output. However,
the colors are not affected by renamings, as in ρA/C,B/D. Furthermore, note that (if we
replace the colors a, b, c, d, e with color sets {a1, a2, a3}, etc.) in each case the type-
level colors over-approximate the value-level colors calculated in Figure 7.

Example 5. To illustrate how the analysis works in practice, we consider an extended
example for a query that performs grouping and aggregation:

Q(R) = {(π1(x), sum(G(x))) | x ∈ R}

where we make the following abbreviations:

G(x) :=
⋃
{if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R}

τ̂R := inta × intb Γ̂ := R:{τ̂R}
Γ̂1 := Γ̂ , x:τ̂R Γ̂2 := Γ̂1, y:τ̂R

We will derive Γ̂ ` Q(R) : {inta × inta,b}. The derivation illustrates how color a is
propagated from the to both parts of the result type, while color b is only propagated to
the second column.

12



First, we can reduce the analysis of Q to analyzing G as follows:

bΓ ` R : {bτR}

bΓ1 ` x : bτRbΓ1 ` π1(x) : inta

bΓ1 ` G(x) : {intb}a

bΓ1 ` sum(G(x)) : inta,b

bΓ1 ` (π1(x), sum(G(x))) : inta × inta,b

bΓ ` {(π1(x), sum(G(x))) | x ∈ R} : {inta × inta,b}

We next reduce the analysis of G to an analysis of the conditional inside G:

bΓ1 ` R : {bτR} bΓ2 ` if π1(y) ≈ π1(x) then {π2(y)} else {} : {intb}a

bΓ1 ` {if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R} : {{intb}a}bΓ1 `
S
{if π1(y) ≈ π1(x) then {π2(y)} else {} | y ∈ R} : {intb}a

Finally, we can analyze the conditional as follows:

bΓ2 ` y : bτRbΓ2 ` π1(y) : inta

bΓ2 ` y : bτRbΓ2 ` π1(x) : inta

bΓ2 ` π1(y) ≈ π1(x) : boola

bΓ2 ` y : bτRbΓ2 ` π2(y) : intb

bΓ2 ` {π2(y)} : {intb} bΓ2 ` {} : {int}bΓ2 ` if π1(y) ≈ π1(x) then {π2(y)} else {} : {intb}a

3.3 Discussion

We have implemented a prototype interpreter for the NRC that performs ordinary type-
checking and evaluation as well as provenance tracking and analysis. We used this
implementation to construct the examples.

We chose to study provenance via the NRC because it is a clean and system-
independent model; we believe our results can be specialized to common database
implementations and physical operators without much difficulty. We have not yet in-
vestigated scaling this approach to large datasets. There are several apparent obstacles
to implementing annotation-based provenance tracking in standard database systems
that do not natively support annotation. Recent research has begun to address this prob-
lem [6, 18] and we plan to investigate whether these techniques can be used to imple-
ment our approach.

Static provenance analysis is also more expensive than ordinary typechecking, but
since the overhead is proportional only to the size of the query, not the (usually much
larger) data, this seems acceptable. Moreover, static analysis may be useful in optimiz-
ing provenance tracking, for example by using the results of static analysis to avoid
tracking annotations that are statically irrelevant to the output.

4 Related and Future Work

Slicing and other dependence analyses Dependence tracking and analysis have been
shown to be useful in many contexts [1] such as program slicing [7, 16, 24], memo-
ization and caching [2, 4], and information-flow security [20]. In program slicing [24],
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the goal is to identify a (small) set of program points whose execution contributes to
the value of an output variable (or other observable behavior). This is analogous to
our approach to provenance, except that provenance identifies relevant parts of the in-
put database, not the program (i.e. query). Our approach is inspired by, and in some
cases could be viewed as an adaptation of, these techniques to a database setting with
collection types.
Provenance in databases Most work on provenance in databases [23, 15, 11, 12, 10]
has focused on identifying information that explains why some data is present in the out-
put of a query (or view) or where some data in the output was copied from in the input.
However, semantic characterizations of these intuitions have been elusive and difficult
to generalize beyond monotone relational queries. Our work generalizes some of these
techniques and provides clear semantic guarantees and qualitatively useful provenance
information in the presence of grouping and aggregation.
Updates Some recent work has generalized where-provenance to database updates [9,
10], motivated by “curated” scientific databases that are updated frequently, often by
(manual) copying from other sources. Our approach addresses an orthogonal issue; we
plan to investigate dependency provenance for updates.
Workflow provenance Provenance has also been studied in geospatial and scientific
“grid” computation [8, 17, 21], particularly for workflows (visual programs written by
scientists). At present, formal correctness criteria have not been identified for most of
these approaches, but we believe it to be worthwhile to seek a foundation for workflow
provenance using dependence analysis.
Annotations Recent research on annotations, uncertainty, and incomplete informa-
tion [6, 5, 18, 19] is closely related to provenance. Green et al. [19] showed that relations
with semiring-valued annotations generalize several variations of the relational model,
including set, bag, probabilistic, and incomplete information models, and identified a
relationship between free semiring-valued relations and why-provenance.

5 Conclusions

Provenance information that relates parts of the result of a query to “relevant” parts of
the input is useful for many purposes, including judging the reliability of information
based on the relevant sources and identifying parts of the database that may be responsi-
ble for an error in the output of a query. We have argued that the notion of dependence,
familiar from program slicing, information flow security, and other analyses, provides a
solid semantic foundation for understanding provenance for complex database queries.
In this paper we introduced a semantic characterization of dependency provenance,
showed that minimal dependency provenance is not computable, and presented approx-
imate tracking and analysis techniques. We believe there are many promising directions
for future work, including implementing efficient practical techniques, identifying more
sophisticated and useful dependency properties, and studying dependency provenance
in other settings such as update languages and workflows.
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