
Parametric polymorphism through run-time sealing
or, Theorems for low, low prices!

Jacob Matthews1 and Amal Ahmed2

1 University of Chicago jacobm@cs.uchicago.edu
2 Toyota Technological Institute at Chicago amal@tti-c.org

Abstract. We show how to extend System F’s parametricity guarantee to a Matthews-
Findler-style multi-language system that combines System F with an untyped
language by use of dynamic sealing. While the use of sealing for this purpose
has been suggested before, it has never been proven to preserve parametricity. In
this paper we prove that it does using step-indexed logical relations. Using this
result we show a scheme for implementing parametric higher-order contracts in
an untyped setting which corresponds to a translation given by Sumii and Pierce.
These contracts satisfy rich enough guarantees that we can extract analogues to
Wadler’s free theorems that rely on run-time enforcement of dynamic seals.

1 Introduction
There have been two major strategies for hiding the implementation details of one part
of a program from its other parts: the static approach and the dynamic approach.

The static approach can be summarized by the slogan “information hiding = para-
metric polymorphism.” In it, the language’s type system is equipped with a facility
such as existential types so that it can reject programs in which one module makes un-
warranted assumptions about the internal details of another, even if those assumptions
happen to be true. This approach rests on Reynolds’ notion of abstraction [1], later
redubbed the “parametricity” theorem by Wadler [2].

The dynamic approach, which goes back to Morris [3], can be summarized by the
alternate slogan “information hiding = local scope + generativity.” Rather than statically
rejecting programs that make unwarranted assumptions, the dynamic approach simply
takes away programs’ ability to see if those assumptions are correct. It allows a pro-
grammer to dynamically seal values by creating unique keys (create-seal :→ key) and
using those keys with locking and unlocking operations (seal : v× key → opaque and
unseal : opaque×key→ v respectively). A value locked with a particular key is opaque
to third parties: nothing can be done but unlock it with the same key. Here is a simple
implementation written in Scheme, where gensym is a function that generates a new,
completely unique symbol every time it is called:
(define (create-seal) (gensym))
(define (seal v s1) (λ (s2) (if (eq? s1 s2) v (error))))
(define (unseal sealed-v s) (sealed-v s))

Using this facility a module can hand out a particular value while hiding its rep-
resentation by creating a fresh seal in its private lexical scope, sealing the value and
hand the result to clients, and then unsealing it again whenever it returns. This is the

primary information-hiding mechanism in many untyped languages. For instance PLT
Scheme [4] uses generative structs, essentially a (much) more sophisticated version of
seals, to build abstractions for a great variety of programming constructs such as an ob-
ject system. Furthermore, the idea has seen some use recently even in languages whose
primary information-hiding mechanism is static, as recounted by Sumii and Pierce [5].

Both of these strategies seem to match an intuitive understanding of what information-
hiding ought to entail. So it is surprising that a fundamental question — what is the
relationship between the guarantee provided by the static approach and the dynamic
approach? — has not been answered in the literature.

In this paper we take a new perspective on the problem, posing it as a question
of parametricity in a multi-language system [6]. After reviewing our previous work
on multi-language systems and giving a multi-language system that combines Sys-
tem F (henceforth “ML”) and an untyped call-by-value lambda calculus (henceforth
“Scheme”) (section 2), we use this vantage point to show two results. First, in section 3
we show that dynamic sealing preserves ML’s parametricity guarantee even when inter-
operating with Scheme. For the proof, we define two step-indexed logical relations [7],
one for ML (indexed by both types as well as, intuitively, the number of steps avail-
able for future evaluation) and one for Scheme (indexed only by steps since Scheme
is untyped). The stratification provided by step-indexing is essential for modeling un-
bounded computation, available in Scheme due to the presence of what amounts to a
recursive type, and available in ML via interaction with Scheme. Then we show the
fundamental theorems of each relation. The novelty of this proof is its use of what we
call the “bridge lemma,” which states that if two terms are related in one language,
then wrapping those terms in boundaries results in terms that are related in the other.
The proof is otherwise essentially standard. Second, in section 4 we restrict our atten-
tion to Scheme programs that use boundaries with ML only to implement a contract
system [8]. Appealing to the first parametricity result, we give a more useful, contract-
indexed relation for dealing with these terms and prove that it relates contracted terms to
themselves. In section 4.1 we show that our notion of contracts corresponds to Findler
and Felleisen’s, and to a translation given by Sumii and Pierce [5, section 8].

We have elided most proofs here. They can be found in this paper’s companion
technical report [9].

2 A brief introduction to multi-language systems

To make the present work self-contained, in this section we summarize some relevant
material from earlier work [6].

The natural embedding. The natural embedding multi-language system, presented in
figure 1 is a method of modeling the semantics of a minimal “ML” (simply-typed, call-
by-value lambda calculus) with a minimal “Scheme” (untyped, call-by-value lambda
calculus) such that both languages have natural access to foreign values. They receive
foreign numbers as native numbers, and they can call foreign functions as native func-
tions. Note that throughout this paper we have typeset the nonterminals of our ML

e = x | v | (e e) | (op e e) | (if0 e e e)
| (cons e e) | (τMS e)

v = λx : τ.e | n | nil | (cons v1 v2) | fst | rst
op = + |−
τ = Nat | τ → τ | τ∗
x = ML variables
E = []M | (E e) | (v E) | (op E e) | (op v E)

| (if0 E e e) | (cons E e) | (cons v E) | (τMS E)

Γ ,x : τ %M x : τ
Γ ,x : τ1 %M e : τ2

Γ %M λx : τ1. e : τ1 → τ2

Γ %M e1 : τ1 → τ2 Γ %M e2 : τ1
Γ %M (e1 e2) : τ2

Γ %M nil : τ∗
Γ %M e1 : τ Γ %M e2 : τ∗

Γ %M (cons e1 e2) : τ∗

Γ %M rst : τ∗ → τ∗ Γ %M fst : τ∗ → τ

Γ %M n : Nat
Γ %M e1 : Nat Γ %M e2 : Nat

Γ %M (op e1 e2) : Nat
Γ %M e1 : Nat Γ %M e2 : τ Γ %M e3 : τ

Γ %M (if0 e1 e2 e3) : τ
Γ %S e : TST

Γ %M (τMS e) : τ

E [((λx : τ. e) v)]M &→ E [e[v/x]]
E [(+ n1 n2)]M &→ E [n1 +n2]
E [(− n1 n2)]M &→ E [max(n1−n2,0)]
E [(if0 0 e1 e2)]M &→ E [e1]
E [(if0 n e1 e2)]M &→ E [e2] where n '= 0
E [(fst (cons v1 v2))]M &→ E [v1]
E [(fst nil)]M &→ Error: nil
E [(rst (cons v1 v2))]M &→ E [v2]
E [(rst nil)]M &→ Error: nil

E [(NatMSn)]M &→ E [n]
E [(NatMSv)]M &→ Error: Non-num

where v '= n for any n
E [(τ1 &→τ2MS(λx.e))]M &→

E [(λx : τ1.(τ2MS ((λx.e)(SMτ1 x))))]

E [(τ1 &→τ2MS v)]M &→ Error: non-proc
where v '= λx.e for any x, e

E [(τ∗MS nil)]M &→ E [nil]
E [(τ∗MS (cons v1 v2))]M &→

E [(cons (τMS v1) (τ∗MS v2))]

E [(τ∗MS v)]M &→ Error: Non-list
where v is not a pair or nil

e = v | (e e) | x | (op e e) | (if0 e e e)
| (pd e) | (cons e e) | (SMτ e)

v = (λx.e) | n | nil | (cons v1 v2) | fst | rst
op = + |−
pd = proc? | nat? | nil? | pair?
x = Scheme variables
E = []S | (E e) | (v E) | (op E e) | (op v E)

| (if0 E e e) | (pred E) | (cons E e)
| (cons v E) | (SMτ E)

Γ ,x : TST %S e : TST
Γ %S λx. e : TST
Γ %M e : τ

Γ %S (SMτ e) : TST · · ·

E [((λx. e) v)]S &→ E [e[v/x]]
E [(v1 v2)]S &→ Error: non-proc

v1 '= λx.e
E [(+ n1 n2)]S &→ E [n1 +n2]
E [(− n1 n2)]S &→ E [max(n1−n2,0)]
E [(op v1 v2)]S &→ Error: non-num

v1 '= n or v2 '= n
E [(if0 0 e1 e2)]S &→ E [e1]
E [(if0 v e1e2)]S &→ E [e2] v '= 0
E [(proc? (λx. e))]S &→ E [0]
E [(proc? v)]S &→ E [1]

v '= (λx.e) for any x, e
E [(nat? n)]S &→ E [0]
E [(nat? v)]S &→ E [1]

v '= n for any n
E [(nil? nil)]S &→ E [0]
E [(nil? v)]S &→ E [1] v '= nil
E [(pair? (cons v1 v2))]S &→ E [0]
E [(pair? v)]S &→ E [1]

v '= (cons v1 v2) for any v1, v2
E [(fst (cons v1 v2))]S &→ E [v1]
E [(fst v)]S &→ Error: non-pair

v '= (cons v1 v2) for any v1, v2
E [(rst (cons v1 v2))]S &→ E [v2]
E [(rst v)]S &→ Error: non-pair

v '= (cons v1 v2) for any v1, v2
E [(SMNat n)]S &→ E [n]
E [(SMτ1 &→τ2 v)]S &→

E [(λx.(SMτ2(v(τ1MSx))))]

E [(SMτ∗ nil)]S &→ E [nil]
E [(SMτ∗ (cons v1 v2))]S &→

E [(cons (SMτ v1) (SMτ∗ v2))]

Fig. 1. Natural embedding of ML (left) and Scheme (right)

language using a bold red font with serifs, and those of our Scheme language with a
light blue sans-serif font. These font differences are semantically meaningful.

To the core languages we add new syntax, evaluation contexts, and reduction rules
that define syntactic boundaries, written τMS and SMτ , to allow cross-language com-
munication. (For this paper we have chosen arbitrarily to make top-level programs be
ML programs that optionally call into Scheme, and so we choose E = E; to make it the
other way around we would let E = E instead.) We assume we can translate numbers
from one language to the other, and give reduction rules for boundary-crossing numbers
based on that assumption:

E [(SMNat n)]S &→ E [n] E [(NatMS n)]M &→ E [n]

To convert procedures across languages, we use native proxy procedures. We rep-
resent a Scheme procedure in ML at type τ1 → τ2 by a new procedure that takes an
argument of type τ1, converts it to a Scheme equivalent, runs the original Scheme pro-
cedure on that value, and then converts the result back to ML at type τ2. For example,
(τ1→τ2MSλx.e) becomes (λx : τ1.τ2MS ((λx.e)(SMτ1 x))) and vice versa for Scheme
to ML. Note that the boundary that converts the argument is an SMτ1 boundary, not
an τ1MS boundary—i.e., the direction of conversion reverses for function arguments.
Whenever a Scheme value is converted to ML, we also check that value’s first order
properties: we check to see if a Scheme value is a number before converting it to an ML
value of type Nat and that it is a procedure value before converting it to an ML value of
arrow type (and signal an error if either check fails).

Theorem 1 (Natural embedding type safety [6]). If %M e : τ , then either e &→∗ v,
e &→∗ Error: str, or e diverges.

We showed in prior work that the dynamic checks in this system naturally give rise
to higher-order contracts [8, 10]; in section 4 of this work we show another way of
arriving at the same conclusion, this time equating a contract enforcing that an untyped
term e behave as a (closed) type specification τ (which we write eτ) by converting it to
and from ML at that type: to a first approximation, eτ = (SMτ (τMS e)).

2.1 Polymorphism, attempt one

An omission from the “ML” side of the natural embedding to this point is that it contains
no polymorphism. We now extend it to support polymorphism by replacing the simply-
typed lambda calculus with System F. When we do so, we immediately hit the question
of how to properly handle boundaries. In this subsection, we make what we consider the
most straightforward decision of how to handle boundaries and show that it results in a
system that does not preserve System F’s parametricity property; in the next subsection
we refine our strategy using dynamic sealing techniques.

Figure 2 shows the extensions we need to make to figure 1 to support non-parametric
polymorphism. To ML’s syntax we add type abstractions (Λα. e) and type application
(e〈τ〉); to its types we add ∀α. τ and α . Our embedding converts Scheme functions that
work polymorphically into polymorphic ML values, and converts ML type abstractions
directly into plain Scheme functions that behave polymorphically. For example, ML
might receive the Scheme function (λx.x) from a boundary with type ∀α.α → α and

e = · · · | Λα.e | e〈τ〉
v = · · · | Λα.e | (LMS v)
τ = · · · | ∀α.τ | α | L
∆ = • | ∆ ,τ
E = · · · | E〈τ〉

∆ ,α;Γ %M e : τ
∆ ;Γ %M (Λα.e) : ∀α.τ

∆ ;Γ %M e : ∀α.τ ′ ∆ % τ
∆ ;Γ %M e〈τ〉 : τ ′[τ/α]

E [(Λα.e)〈τ〉]M &→ E [e[τ/α]]
E [(∀α.τMS v)]M &→ E [(Λα.(τMS v))]
E [(SM∀α.τ v)]S &→ E [(SMτ[L/α] v〈L〉)]

E [(SML (LMS v))]S &→ E [v]

Fig. 2. Extensions to figure 1 for non-parametric polymorphism

use it successfully as an identity function, and Scheme might receive the ML type ab-
straction (Λα.λx : α.x) as a regular function that behaves as the identity function for
any value Scheme gives it.

To support this behavior, the model must create a type abstraction from a regular
Scheme value when converting from Scheme to ML, and must drop a type abstraction
when converting from ML to Scheme. The former is straightforward: we reduce a redex
of the form (∀α.τMS v) by dropping the ∀ quantifier on the type in the boundary and
binding the now-free type variable in τ by wrapping the entire expression in a Λ form,
yielding (Λα. (τMS v)).

This works for ML, but making a dual of it in Scheme would be somewhat silly,
since every Scheme value inhabits the same type so type abstraction and application
forms would be useless. Instead, we would like to allow Scheme to use an ML value
of type, say, ∀α.α → α directly as a function. To make boundaries with universally-
quantified types behave that way, when we convert a polymorphic ML value to a Scheme
value we need to remove its initial type-abstraction by applying it to some type and then
convert the resulting value according to the resulting type. As for which type to apply it
to, we need a type to which we can reliably convert any Scheme value, though it must
not expose any of those values’ properties. In prior work, we used the “lump” type to
represent arbitrary, opaque Scheme values in ML; we reuse it here as the argument to
the ML type abstraction. More specifically, we add L as a new base type in ML and we
add the cancellation rule for lumps to the set of reductions: these changes, along with
all the other additions required to support polymorphism, are summarized in figure 2.

2.2 Polymorphism, attempt two
Although this embedding is type safe, the polymorphism is not parametric in the sense
of Reynolds [1]. We can see this with an example: it is well-known that in System F,
for which parametricity holds, the only value with type ∀α.α → α is the polymorphic
identity function. In the system we have built so far, though, the term

(∀α.α→αMS(λx.(if0 (nat? x) (+ x 1) x)))

has type ∀α.α → α but when applied to the type Nat evaluates to
(λy.(NatMS((λx.(if0 (nat? x) (+ x 1) x)(SMNaty)))))

Since the argument to this function is always a number, this is equivalent to
(λy.(NatMS((λx.(+ x 1))(SMNaty))))

which is well-typed but is not the identity function.

e = · · · | Λα.e | e〈τ〉 | (κMS e)
e = · · · | (SMκ e)
v = · · · | Λα.e | (LMS v)
v = · · · | (SM〈β ;τ〉 v)
τ = · · · | ∀α.τ | α | L
κ = Nat | κ1 → κ2 | κ∗ | ∀α.κ | α | L | 〈α;τ〉

∆ ,α;Γ %M e : τ
∆ ;Γ %M (Λα.e) : ∀α.τ

∆ ;Γ %M e : ∀α.τ ′ ∆ % τ
∆ ;Γ %M e〈τ〉 : τ ′[τ/α]

∆ ;Γ %S e : TST ∆ % ,κ-
∆ ;Γ %M (κMS e) : ,κ-

∆ ;Γ %M e : ,κ- ∆ % ,κ-
∆ ;Γ %S (SMκ e) : TST

E [(SM∀α.τ v)]S &→ E [(SMτ[L/α] v〈L〉)]
E [(SML (LMS v))]S &→ E [v]

E [(Λα.e)〈τ〉]M &→ E [e[τ/α]]
E [(∀α.κMS v)]M &→ E [(Λα.(κMS v))]

E [(〈α;τ〉MS (SM〈α;τ〉 v))]M &→ E [v]
E [(〈α;τ〉MS v)]M &→ Error: bad value

(v '= SM〈α;τ〉 v for any v)

, - : κ → τ
,Nat- = Nat

,κ1 → κ2- = ,κ1- → ,κ2-
,κ∗- = ,κ-∗

,∀α.κ- = ∀α.,κ-
,α- = α
,L- = L

,〈α;τ〉- = τ

Fig. 3. Extensions to figure 1 to support parametric polymorphism

The problem with the misbehaving ∀α.α → α function above is that while the
type system rules out ML fragments that try to treat values of type α non-generically,
it still allows Scheme programs to observe the concrete choice made for α and act
accordingly. To restore parametricity, we use dynamic seals to protect ML values whose
implementation should not be observed. When ML provides Scheme with a value whose
original type was α , Scheme gets a sealed value; when Scheme returns a value to ML at
a type that was originally α , ML unseals it or signals an error if it is not a sealed value
with the appropriate key.

This means that we can no longer directly substitute types for free type variables on
boundary annotations. Instead we introduce seals as type-like annotations of the form
〈α;τ〉 that indicate on a boundary’s type annotation that a particular type is the instan-
tiation of what was originally a type variable, and conversion schemes (indicated with
metavariable κ) as types that may also contain seals; conversion schemes only appear
as the annotations on boundaries. From a technical standpoint, seals are introduced into
a reduction sequence by the type substitution in the type application rule. For a pre-
cise definition, a type substitution η is a partial function from type variables to closed
types. We extend type substitutions to apply to types, conversion schemes, and terms as
follows (we show the interesting cases, the rest are merely structural recursion):

η(α) def=
{

τ if ∃η ′. η = η ′,α : τ
α otherwise

η(κMS e) def= sl(η ,κ)MS η(e)
η(SMκ e) def= SMsl(η ,κ) η(e)

The boundary cases (which use the seal metafunction sl(·, ·) defined below) are different
from the regular type cases. When we close a type with respect to a type substitution
η , we simply replace all occurrences of free variables with their mappings in η , but
when we close a conversion scheme with respect to a type substitution we replace free
variables with “sealed” instances of the types in η . The effect of this is that even when
we have performed a type substitution, we can distinguish between a type that was
concrete in the original program and a type that was abstract in the original program but

has been substituted with a concrete type. The sl(·, ·) metafunction maps a type τ (or
more generally a conversion scheme κ) to an isomorphic conversion scheme κ where
each instance of each type variable that occurs free in τ is replaced by an appropriate
sealing declaration, if the type variable is in the domain of η .

Definition 1 (sealing). The metafunction sl(η ,κ) is defined as follows:
sl(·, ·) : η×κ → κ

sl(η ,α) def=
{
〈α;η(α)〉 if η(α) is defined
α otherwise

sl(η ,〈α;τ〉) def= 〈α;τ〉
sl(η ,L) def= L

sl(η ,Nat) def= Nat
sl(η ,κ1 → κ2)

def= sl(η ,κ1)→ sl(η ,κ2)
sl(η ,∀α.κ1)

def= ∀α.sl(η ,κ1)
sl(η ,κ∗) def= sl(η ,κ)∗

We use the seal erasure metafunction , - to project conversion schemes to types.
Figure 3 defines these changes precisely. One final subtlety not written in figure 3 is
that we treat a seal 〈α;τ〉 as a free occurrence of α for the purposes of capture-avoiding
substitution, and we treat boundaries that include ∀α.τ types as though they were bind-
ing instances of α . In fact, the production of fresh names by capture-avoiding substitu-
tion corresponds exactly to the production of fresh seals for information hiding, and the
system would be neither parametric nor even type-sound were we to omit this detail.

3 Parametricity
In this section we establish that the language of figure 3 is parametric, in the sense that
all terms in the language map related environments to related results, using a syntactic
logical relation. Our parametricity property does not establish the exact same equiva-
lences that would hold for terms in plain System F, but only because the embedding we
are considering gives terms the power to diverge and to signal errors. So, for example,
we cannot show that any ML value of type ∀α.α → α must be the identity function,
but we can show that it must be either the identity function, the function that always
diverges, or the function that always signals an error.

Our proof amounts to defining two logical relations, one for ML and one for Scheme
(see figure 4) and proving that the ML (Scheme) relation relates each ML (Scheme) term
to itself regardless of the interpretation of free type variables. Though logical relations
in the literature are usually defined by induction on types, we cannot use a type-indexed
relation for Scheme since Scheme has only one type. This means in particular that
the arguments to function values have types that are as large as the type of the function
values themselves; thus any relation that defines two functions to be related if the results
are related for any pair of related arguments would not be well-founded. Instead we use
a minor adaptation of the step-indexed logical relation for recursive types given by
Ahmed [7]: our Scheme logical relation is indexed by the number of steps k available
for computation. Intuitively, any two values are related for k steps if they cannot be
distinguished by any computation running for no more than k steps.

Since we are interested in proving properties of ML terms that may contain Scheme
subterms, the ML relation must also be step-indexed — if the Scheme subterms are
only related for (say) 50 steps, then the ML terms cannot always be related for arbitrarily
many steps. Thus, the ML relation is indexed by both types and steps (as in Ahmed [7]).

Relτ1,τ2 = {R | ∀(k,v1,v2) ∈ R. ∀ j ≤ k. (j,v1,v2) ∈ R and ; % v1 : τ1 and ; % v2 : τ2 }

∆ % δ def= ∆ ⊆ dom(δ) and ∀α ∈ ∆ . δR(α) ∈ Relδ1(α),δ2(α)

δ % γM≤kγ ′M : ΓM
def= ∀(x : τ) ∈ ΓM . γM(x) = v1, γ ′M(x) = v2 and δ % v1 !k

M v2 : τ

δ % γS≤kγ ′S : ΓS
def= ∀(x : TST) ∈ ΓS. γS(x) = v1, γ ′S(x) = v2 and δ % v1 !k

S v2 : TST

δ % γ≤kγ ′ : Γ def= Γ = ΓM ∪ΓS, γ = γM ∪ γS, γ ′ = γ ′M ∪ γ ′S and
δ % γM≤kγ ′M : ΓM and δ % γS≤kγ ′S : ΓS

∆ ;Γ % e1 "M e2 : τ def= ∀k ≥ 0. ∀δ ,γ1,γ2. ∆ % δ and δ % γ1≤kγ2 : Γ ⇒
δ % δ1(γ1(e1))"k

M δ2(γ2(e2)) : τ
δ % e1 "k

M e2 : τ def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒ ∃v2. e2 ↪→∗ v2 and δ % v1 !k− j

M v2 : τ)

δ % v1 !k
M v2 : α def= (k,v1,v2) ∈ δR(α)

δ % LMS v1 !k
M

LMS v2 : L def= ∀ j < k. δ % v1 ! j
S v2 : TST

δ % n!k
M n : Nat (unconditionally)

δ % λx : δ1(τ1).e1 !k
M λx : δ2(τ1).e2 : τ1 → τ2

def= ∀ j < k. ∀v1,v2. δ % v1 ! j
M v2 : τ1 ⇒

δ % e1[v1/x]" j
M e2[v2/x] : τ2

δ %Λα.e1 !k
M Λα.e2 : ∀α.τ def= ∀ j < k. ∀ closed τ1,τ2. ∀R ∈ Relτ1,τ2 .

δ ,α : (τ1,τ2,R) % e1[τ1/α]" j
M e2[τ2/α] : τ

δ % [v1, · · · ,vn]!k
M [v′1, · · · ,v′n] : τ∗ def= ∀ j < k. ∀i ∈ 1 . . .n. δ % vi ! j

M v′i : τ

∆ ;Γ % e1 "S e2 : TST def= ∀k ≥ 0. ∀δ ,γ1,γ2. ∆ % δ and δ % γ1≤kγ2 : Γ ⇒
δ % δ1(γ1(e1))"k

S δ2(γ2(e2)) : TST
δ % e1 "k

S e2 : TST def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒ ∃v2. e2 ↪→∗ v2 and δ % v1 !k− j

S v2 : TST)

δ % n!k
S n : TST (unconditionally)

δ % (SM〈α;τ1〉 v1)!k
S (SM〈α;τ2〉 v2) : TST def= ((k,v1,v2) ∈ δR(α) and δ1(α) = τ1 and δ2(α) = τ2)

or (α /∈ dom(δ) and τ1 = δ1(τ ′) and τ2 = δ2(τ ′) and δ % v1 !k
M v2 : τ ′)

δ % λx.e1 !k
S λx.e2 : TST def= ∀ j < k.∀v1,v2. δ % v1 ! j

S v2 : TST ⇒
δ % e1[v1/x]" j

S e2[v2/x] : TST
δ % nil!k

S nil : TST (unconditionally)

δ % (cons v1 v2)!k
S (cons v′1 v′2) : TST def= ∀ j < k. δ % v1 ! j

S v′1 : TST and δ % v2 ! j
S v′2 : TST

Fig. 4. Logical approximation for ML terms (middle) and Scheme terms (bottom)

The definitions are largely independent (though we do make a few concessions on
this front, in particular at the definition of the ML relation at type L), but the proofs
cannot be, since an ML term can have an embedded Scheme subexpression and vice
versa. Instead, we prove the two claims by simultaneous induction and rely on a critical
“bridge lemma” (lemma 1, see below) that lets us carry relatedness between languages.

Preliminaries. A type relation δ is a partial function from type variables to triples
(τ1,τ2,R), where τ1 and τ2 are closed types and R is a set of triples of the form
(k,v1,v2) (which intuitively means that v1 and v2 are related for k steps). We use the
following notations: If δ (α) = (τ1,τ2,R) then δ1(α) = τ1, δ2(α) = τ2, and δR(α) = R.
We also treat δ1 and δ2 as type substitutions. In the definition of the logical relation we
only allow downward closed relations as choices for R; i.e. relations that relate two
values for k steps must also relate them for all j < k steps. We make this restriction
because downward closure is a critical property that would not otherwise hold.

A Scheme (ML) substitution γS (γM) is a partial map from Scheme (ML) variables
to closed Scheme (ML) values, and a substitution γ = γS ∪ γM for some γS, γM . We say
that e ↪→ v (or Error: s) if in all evaluation contexts E [e] &→ E [v] (or Error: s).

Lemma 1 (bridge lemma). For all k ≥ 0, type environments ∆ , type relations δ such
that ∆ % δ , types τ such that ∆ % τ , both of the following hold:
1. For all e1 and e2, if δ % e1 "k

S e2 : TST then δ % (sl(δ1,τ)MS e1)"k
M (sl(δ2,τ)MS e2) : τ .

2. For all e1 and e2, if δ % e1 "k
M e2 : τ , then δ % (SMsl(δ1,τ) e1)"k

S (SMsl(δ2,τ) e2) : TST.

Proof. By induction on τ . All cases are straightforward given the induction hypotheses.

With the bridge lemma established, the fundamental theorem (and hence the fact
that logical approximation implies contextual approximation) is essentially standard.
We restrict the parametricity theorem to seal-free terms; otherwise we would have to
show that any sealed value is related to itself at type α which is false. (A conversion
strategy is seal-free if it contains no instances of 〈α;τ〉 for any α . A term is seal-free if
it contains no conversion strategies with seals.) This restriction is purely technical, since
the claim applies to open terms where seals may be introduced by closing environments.
Theorem 2 (parametricity / fundamental theorem). For all seal-free terms e and e:
1. If ∆ ;Γ %M e : τ , then ∆ ;Γ % e "M e : τ .
2. If ∆ ;Γ %S e : TST, then ∆ ;Γ % e "S e : TST.

Proof. By simultaneous induction on the derivations ∆ ;Γ %M e : τ and ∆ ;Γ %S e : TST.
The boundary cases both follow from lemma 1.

4 From multi-language to single-language sealing
Suppose that instead of reasoning about multi-language programs, we want to reason
about Scheme terms but also to use a closed ML type τ as a behavioral specification for
a Scheme term — Nat means the term must evaluate to a number, Nat→Nat means the
term must evaluate to a function that returns a number under the promise that the context
will always provide it a number, and so on. We can implement this using boundaries
with the program fragment eτ = SMτ (τMS e).

Rel = {R | ∀(k,v1,v2) ∈ R. ∀ j ≤ k. (j,v1,v2) ∈ R}

σ % e1 ≤k e2 : τ def= ∀ j < k. (e1 ↪→ j Error: s ⇒ e2 ↪→∗ Error: s) and
(∀v1. e1 ↪→ j v1 ⇒

∃v2. e2 ↪→∗ v2 and σ % v1 #k− j v2 : τ)
σ % v1 #k v2 : α def= (k,v1,v2) ∈ σ(α)
σ % n #k n : Nat (unconditionally)
σ % λx.e1 #k λx.e2 : τ1 → τ2

def= ∀ j < k. ∀v1,v2. σ % v1 # j v2 : τ1 ⇒
σ % e1[v1/x]≤ j e2[v2/x] : τ2

σ % [v1, · · · ,vn] #k [v′1, · · · ,v′n] : τ∗ def= ∀ j < k. ∀i ∈ 1 . . .n. σ % vi # j v′i : τ
σ % v1 #k v2 : ∀α.τ def= ∀ j < k. ∀R ∈ Rel. σ ,α : R % v1 # j v2 : τ

Fig. 5. Behavioral specification for polymorphic contracts

It is easy to check that such terms are always well-typed as long as e itself is well-
typed. Therefore, since we have defined a contract as just a particular usage pattern for
boundaries, we have by virtue of theorem 2 that every contracted term corresponds to it-
self, so intuitively every contracted term of polymorphic type should behave parametri-
cally. However, the logical relation we defined in the previous section is not particularly
convenient for proving facts about contracted Scheme terms, so instead we give another
relation in figure 5 that we think of as the “contracted-Scheme-terms” relation, which
gives criteria for two Scheme terms being related at an ML type (which we now inter-
pret as a behavioral contract). Here σ is an untyped mapping from type variables α to
downward-closed relations R on Scheme values: that is, σ = (α1 &→ R1, · · · ,αn &→ Rn)
where each Ri ∈ Rel (see figure 5).

Our goal is to prove that closed, contracted terms are related to themselves under
this relation. Proving this directly is intractable, but we can prove it by showing that
boundaries “reflect their relations”; i.e. that if δ % e1 "k

M e2 : τ then for some appropriate
σ we have that σ % (SMτ e1)≤k (SMτ e2) : τ and vice versa; this is the claim we show
in lemma 2 (bridge lemma 2) below, and the result we want is an easy corollary when
combined with theorem 2. Before we can precisely state the claim, though, we need
some machinery for specifying what relationship between δ and σ we want to hold.
Definition 2 (hybrid environments). An hybrid environment φ is a partial map from
type variables to tuples of the form (S,R) or (M,τ1,τ2,R).

The intuition is that a hybrid environment is a tagged union of a Scheme envi-
ronment σ (each element of which is tagged with S) and an ML environment δ (each
element of which is tagged with M). Given such a hybrid environment, one can mechan-
ically derive both a Scheme and an ML representation of it by keeping native elements
as-is and wrapping foreign elements in the appropriate boundary:
Definition 3 (Scheme and ML projections of hybrid environments). For a hybrid
environment φ , if φ(α) = (S,R), then:

σφ (α) def= R

δφ (α) def= (L, L, {(k, (LMS v1), (LMS v2)) | (k,v1,v2) ∈ R})

If φ(α) = (M,τ1,τ2,R), then:

σφ (α) def= {(k, (SM〈α;τ1〉 v1), (SM〈α;τ2〉 v2)) | (k,v1,v2) ∈ R}
δφ (α) def= (τ1, τ2, R)

We say that ∆ % φ if for all α ∈ ∆ , φ(α) is defined, and if φ(α) = (S,R) then
R ∈ Rel, and if φ(α) = (M,τ1,τ2,R) then R ∈ Relτ1,τ2 . We also define operations
c1(·, ·) and c2(·, ·) (analogous to sl(·, ·) defined earlier) from hybrid environments φ and
types τ to conversion schemes κ:

Definition 4 (closing with respect to a hybrid environment). For i ∈ {1,2}:

ci(φ ,α) def=

L if φ(α) = (S,R)
〈α;τ i〉 if φ(α) = (M,τ1,τ2,R)
α otherwise

ci(φ ,L) def= L

ci(φ ,Nat) def= Nat
ci(φ ,τ1 → τ2)

def= ci(φ ,τ1)→ ci(φ ,τ2)
ci(φ ,∀α.τ ′) def= ∀α.ci(φ ,τ ′)
ci(φ ,τ∗) def= ci(φ ,τ)∗

The interesting part of the definition is its action on type variables. Variables that φ
maps to Scheme relations are converted to type L, since when Scheme uses a polymor-
phic value in ML its free type variables are instantiated as L. Similarly, variables that φ
maps to ML relations are instantiated as seals because when ML uses a Scheme value
as though it were polymorphic it uses dynamic seals to protect parametricity.

Now we can show that contracts respect the relation in figure 5 via a bridge lemma.

Lemma 2 (bridge lemma 2). For all k ≥ 0, type environments ∆ , hybrid environments
φ such that ∆ % φ , τ such that ∆ % τ , and for all terms e1, e2, e1, e2:
1. If δφ % e1 "k

M e2 : τ then σφ % (SMc1(φ ,τ) e1)≤k (SMc2(φ ,τ) e2) : τ .
2. If σφ % e1 ≤k e2 : τ then δφ % c1(φ ,τ)MS e1 "k

M (c2(φ ,τ)MS e2) : τ .

Proof. Induction on τ . All cases are easy applications of the induction hypotheses.

Theorem 3. For any seal-free term e such that %S e : TST and for any closed type τ ,
we have that for all k ≥ 0, % eτ ≤k eτ : τ .

Proof. By theorem 2, for all k ≥ 0, % (τMS e)"k
M (τMS e) : τ . Thus, by lemma 2, we

have that for all k ≥ 0, % (SMτ (τMS e))≤k (SMτ (τMS e)) : τ .

Definition 5 (relational equality). We write σ % e1 = e2 : τ if for all k ≥ 0, σ % e1 ≤k

e2 : τ and σ % e2 ≤k e1 : τ .

Corollary 1. For any seal-free term e such that %S e : TST and for any closed type τ ,
we have that % eτ = eτ : τ .

4.1 Dynamic sealing replaces boundaries

The contract system of the previous section is a multi-language system, but just barely,
since the only part of ML we make any use of is its boundary form to get back into
Scheme. In this section we restrict our attention to Scheme plus boundaries used only
for the purpose of implementing contracts, and we show an alternate implementation
of contracts that uses dynamic sealing. Rather than the concrete implementation of dy-
namic seals we gave in the introduction, we opt to use (a slight restriction of) the more

abstract constructs taken from Sumii and Pierce’s λseal language [5]. Specifically, we
use the following extension to our Scheme model:

e = · · · | νsx. e | {e}se | (let {x}se = e in e)
v = · · · | {v}sv

se = sx | sv
sx = [variables distinct from x]
sv = [unspecified, unique brands]
E = · · · | {E}sv | (let {x}sv = E in e)

E [νsx. e]S &→ E [e[sv/sx]]
where sv fresh

E [(let {x}sv1 = {v}sv1 in e)]S &→ E [e1[v/x]]
E [(let {x}sv1 = v in e)]S &→ Error: bad value

where v '= {v′}sv1 for any v′

We introduce a new set of seal variables sx that stand for seals (elements of sv) that will
be computed at runtime. They are bound by νsx. e, which evaluates its body (e) with
sx bound to a freshly-generated sv. Two operations make use of these seals. The first,
{e}se, evaluates e to a value and then itself becomes an opaque value sealed with the
key to which se evaluates. The second, (let {x}se = e1 in e2), evaluates e1 to a value;
if that value is an opaque value sealed with the seal to which se evaluates, then the
entire unsealing expression evaluates to e2 with x bound to the value that was sealed,
otherwise the expression signals an error.3

Using these additional constructs we can demonstrate that a translation essentially
the same as the one given by Sumii and Pierce [5, figure 4] does in fact generate
parametrically polymorphic type abstractions. Their translation essentially attaches a
higher-order contract [8] τ to an expression of type τ (though they do not point this out).
It extends Findler and Felleisen’s notion of contracts, which does not include polymor-
phic types, by adding an environment ρ that maps a type variable to a tuple consisting
of a seal and a symbol indicating the party (either + or − in Sumii and Pierce) that has
the power to instantiate that type variable, and translating uses of type variable α in a
contract to an appropriate seal or unseal based on the value of ρ(α). We define it as
follows: when p and q are each parties (+ or −) and p '= q,

E p,q
Nat(ρ,e) = (+ e 0)

E p,q
τ∗ (ρ,e) = (let ((v e)) (if0 (nil? v)

nil
(if0 (pair? v)
(cons E p,q

τ (ρ,(fst v)) E p,q
τ∗ (ρ,(rst v)))

(wrong "Non-list"))))
E p,q

τ1→τ2(ρ,e) = (let ((v e)) (if0 (proc? v)
(λ x. E p,q

τ2 (ρ,(v Eq,p
τ1 (ρ,x))))

(wrong "Non-proc")))
E p,q
∀α.τ ′(ρ,e) = νsx. E p,q

e (ρ,α &→ (sx,q),e)
E p,q

α (ρ,α &→ (sx, p),e) = {e}sx

E p,q
α (ρ,α &→ (sx,q),e) = (let {x}sx = e in x)

The differences between our translation and Sumii and Pierce’s are as follows. First, we
have mapped everything into our notation and adapted to our types (we omit booleans,

3 This presentation is a simplification of λseal in two ways. First, in λseal the key position
for a sealed value or for an unseal statement may be an arbitrary expression, whereas here
we syntactically restrict expressions that appear in those positions to be either seal variables or
seal values. Second, in λseal an unseal expression has an “else” clause that allows the program
to continue even if an unsealing operation fails; we do not allow those clauses.

tuples, and existential types and add numbers and lists). Second, our translations apply
to arbitrary expressions rather than just variables. Third, because we are concerned with
the expression violating parametricity as well as the context, we have to seal values pro-
vided by the context as well as by the expression, and our decision of whether to seal or
unseal at a type variable is based on whether the party that instantiated the type variable
is providing a value with that contract or expecting one. Fourth, we modify the result
of ∀α.τ so that it does not require application to a dummy value. (The reason we do
this bears explanation. There are two components to a type abstraction in System F —
abstracting over an interpretation of a variable and suspending a computation. Sumii
and Pierce’s system achieves the former by generating a fresh seal, and the latter by
wrapping the computation in a lambda abstraction. In our variant, ∀α.τ contracts still
abstract over a free contract variable’s interpretation, but they do not suspend computa-
tion; for that reason we retain fresh seal generation but eliminate the wrapper function.)
Definition 6 (boundary replacement). R[e] is defined as follows:

R[eτ] = E+,−
τ (•,R[e]) R[(e1 e2)] = (R[e1] R[e2]) . . .

Theorem 4 (boundary replacement preserves termination). If ; %S e : TST, then
e &→∗ v1 ⇔R[e] &→∗ v2, where v1 = n⇔ v2 = n.

This claim is a special case of a more general theorem that requires us to consider
open contracts. The term v∀α.α→α where v is a procedure value reduces as follows:

v∀α.α→α = (SM∀α.α→α (∀α.α→αMS v))
&→3 (SML→L(〈α;L〉→〈α;L〉MS v))
&→2 λx.(SML ((λy : L. (〈α;L〉MS (v (SM〈α;L〉 y)))) (LMS x)))
= λx.(SML (〈α;L〉MS (v (SM〈α;L〉 (LMS x)))))

Notice that the two closed occurrences of α in the original contracts become two differ-
ent configurations of boundaries when they appear open in the final procedure. These
correspond to the fact that negative and positive occurrences of a type variable with re-
spect to its binder behave differently. Negative occurrences, of the form (SM〈α;L〉 (LMS . . .)),
act as dynamic seals on their bodies. Positive occurrences, of the form (SML (〈α;L〉MS . . .)),
dynamically unseal the values their bodies produce. So, we write open contract vari-
ables as α− (for negative occurrences) and α+ (for positive occurrences).

Now we are prepared to define another logical relation, this time between contracted
Scheme terms and λseal terms. We define it as follows, where p owns the given expres-
sions, q is the other party, and ρ maps type variables to seals and owners:

p;q;ρ % e1 =k
seal e2

def= ∀ j < k. (e1 &→ j Error: s ⇒ e2 &→∗ Error: s) and
(∀v1. e1 &→ j v1 ⇒ ∃v2. e2 &→∗ v2 and p;q;ρ % v1 =k− j

seal v2)
∀ j < k. (e2 &→ j Error: s ⇒ e1 &→∗ Error: s) and

(∀v1. e2 &→ j v2 ⇒ ∃v2. e1 &→∗ v1 and p;q;ρ % v1 =k− j
seal v2)

p;q;ρ % v1
α− =k

seal {v2}sv
def= ρ(α) = (sx,q) and ∀ j < k. p;q;ρ % v1 = j

seal v2...
p;q;ρ % (λx.e1) =k

seal (λx.e2)
def= ∀ j < k,v1,v2. q; p;ρ % v1 = j

seal v2 ⇒
p;q;ρ % e1[v1/x] =

j
seal e2[v2/x]

The rest of the cases are defined as in the Scheme relation of figure 4. An important
subtlety above is that two sealed terms are related only if they are locked with a seal

owned by the other party, and that the arguments to functions are owned by the party
that does not own the function. The former point allows us to establish this lemma, after
which we can build a new bridge lemma and then prove the theorem of interest:
Lemma 3. If p;q;ρ,α : (sx, p) % e1 =k

seal e2 (and α not free in e1), then p;q;ρ %
e1 =k

seal e2. Similarly if p;q;ρ % e1 =k
seal e2, then p;q;ρ,α : (sx, p) % e1 =k

seal e2.
Proof. We prove both claims simultaneously by induction on k.

Lemma 4. For any two terms e1 and e2 such that e1’s open type variables (and their
ownership information) occur in ρ , and so do the open type variables in τ , then if
(∀k.p;q;ρ % e1 =k

seal e2) then (∀k.p;q;ρ % e1
τ =k

seal E p,q
τ (ρ,e2).

Proof. By induction on τ . The ∀α.τ case requires the preceding lemma.

Theorem 5. If ρ % γ1 =seal γ2 : Γ , e’s open type variables occur in ρ , ∆ ;Γ %S e : TST,
and e only uses boundaries as contracts, then ∀k.p;q;ρ % γ1(e) =k

seal γ2(R[e]).
Proof. Induction on the derivation ∆ ;Γ %S e : TST. Contract cases appeal to lemma 4.

This theorem has two consequences: first, contracts as we have defined them in this
paper can be implemented by a variant on Sumii and Pierce’s translation, and thus due
to our earlier development their translation preserves parametricity; and second, since
Sumii and Pierce’s translation is itself a variant on Findler-and-Felleisen-style contracts,
our boundary-based contracts are actually contracts in that sense.

Finally, notice that if we choose E = E then there is no trace of ML left in the lan-
guage we are considering; it is pure Scheme with contracts. But, strangely, the contract
system’s parametricity theorem relies on the fact that parametricity holds in ML.

5 Related work and conclusions
We have mentioned Sumii and Pierce’s investigation of dynamic sealing [5, 11] many
times in this paper. Sumii and Pierce also investigate logical relations for encryption [12],
which is probably the most technically similar paper in their line of research to the
present work. In that work, they develop a logical relation that tracks secret keys as
a proof technique for establishing the equivalence of programs that use encryption to
hide information. One can think of our development as a refinement of their relation
that allows Turing-complete “attackers” (which in particular may not terminate) and
that clarifies the fundamental connection between parametricity and dynamic sealing.

Zdancewic, Grossman, and Morrisett’s notion of principals [13, 14] and their as-
sociated proof technique are also related. Compared to their work, the present proof
technique establishes a much stronger property, but it is comparatively more difficult to
scale to more sophisticated programming language features such as state or advanced
control features. Rossberg [15,16] discusses the idea of preserving abstraction safety by
the use of dynamically-generated types that are very similar to our 〈α;τ〉 sealed conver-
sion schemes. The property we have proven here is much stronger than the abstraction
properties established by Rossberg; however, his analysis considers a more complicated
type system than we do. It is certainly worth investigating how well the multi-language
technique presented here maps into Rossberg’s setting, but we have not done so yet.

The thrust of this paper has been to demonstrate that the parametricity property of
System F is preserved under a multi-language embedding with Scheme, provided we
protect all values that arise from terms that had quantified types in the original program
using dynamic seals. We think this fact is in itself interesting, and has the interesting
consequence that polymorphic contracts are also parametric in a meaningful sense, in
fact strong enough that we can derive “free theorems” about contracted Scheme terms
(see the technical report [9] for examples). But it also suggests something broader.
Rather than just knowing that parametricity continues to hold in System F after the
extension, we would like the stronger property that the extension does not weaken Sys-
tem F’s contextual equivalence relation at all; in other words to design an embedding
such that e1 6ctxt e2 when considering only contexts without boundaries implies that
e1 6ctxt e2 in contexts with boundaries. This may be a useful way to approach the full-
abstraction question raised by Sumii and Pierce.

References

1. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: IFIP Congress. (1983)
513–523

2. Wadler, P.: Theorems for free! In: Functional Programming Languages and Computer Ar-
chitecture (FPCA). (1989) 347–359

3. Morris, Jr., J.H.: Types are not sets. In: POPL. (1973)
4. Flatt, M.: PLT MzScheme: Language manual. Technical Report TR97-280, Rice University

(1997) http://www.plt-scheme.org/software/mzscheme/.
5. Sumii, E., Pierce, B.: A bisimulation for dynamic sealing. In: POPL. (2004)
6. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs. In: POPL.

(2007) Extended version: University of Chicago Technical Report TR-2007-8, under review.
7. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified types. In:

ESOP. (2006) 69–83 Extended version: Harvard University Technical Report TR-01-06,
http://ttic.uchicago.edu/~amal/papers/lr-recquant-techrpt.pdf.

8. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP. (2002)
9. Matthews, J., Ahmed, A.: Parametric polymorphism through run-time sealing, or, theorems

for low, low prices! (extended version). Technical Report TR-2008-01, University of Chicago
(2008)

10. Findler, R.B., Blume, M.: Contracts as pairs of projections. In: FLOPS. (2006)
11. Pierce, B., Sumii, E.: Relating cryptography and polymorphism. Unpublished manuscript

(2000)
12. Sumii, E., Pierce, B.: Logical relations for encryption. Journal of Computer Security (JSC)

11(4) (2003) 521–554
13. Zdancewic, S., Grossman, D., Morrisett, G.: Principals in programming languages. In: ICFP.

(1999)
14. Grossman, D., Morrisett, G., Zdancewic, S.: Syntactic type abstraction. ACM Transactions

on Programming Languages and Systems 22 (2000) 1037–1080
15. Rossberg, A.: Generativity and dynamic opacity for abstract types. In Miller, D., ed.:

PADL, Uppsala, Sweden, ACM Press (2003) Extended version: http://www.ps.uni-sb.
de/Papers/generativity-extended.html.

16. Rossberg, A.: Typed Open Programming – A higher-order, typed approach to dynamic
modularity and distribution. Phd thesis, Universität des Saarlandes, Saarbrücken, Germany
(2007) Preliminary version.

