
ZU064-05-FPR main 27 February 2017 23:52

Under consideration for publication in J. Functional Programming

1

Parametric Polymorphism Through

Run-time Sealing

or, Theorems for Low, Low Prices!

AMAL AHMED
Indiana University

LINDSEY KUPER
Indiana University

JACOB MATTHEWS
Google

(e-mail: amal@cs.indiana.edu, lkuper@cs.indiana.edu, jacobm@cs.uchicago.edu)

Abstract

We show how to extend System F’s parametricity guarantee to a multi-language system in the style of
Matthews and Findler that combines System F with an untyped language by use of dynamic sealing.
While the use of sealing for this purpose has been suggested before, it has never been proven to
preserve parametricity. In this paper we prove that it does using step-indexed logical relations.

Note: This is a draft from Fall 2011. It was updated in February 2017 to elide unfinished sections
that did not pertain to the parametricity result.

1 Introduction

There have been two major strategies for hiding the implementation details of one part of
a program from its other parts: the static approach and the dynamic approach.

The static approach can be summarized by the slogan “information hiding = paramet-
ric polymorphism.” In it, the language’s type system is equipped with a facility such as
existential types so that it can reject programs in which one module makes unwarranted
assumptions about the internal details of another, even if those assumptions happen to
be true. This approach rests on Reynolds’ notion of abstraction (Reynolds, 1983), later
redubbed the “parametricity” theorem by Wadler (1989).

The dynamic approach, which goes back to Morris (1973), can be summarized by the
alternate slogan “information hiding = local scope + generativity.” Rather than statically
rejecting programs that make unwarranted assumptions, the dynamic approach simply
takes away programs’ ability to see if those assumptions are correct. It allows a pro-
grammer to dynamically seal values by creating unique keys (create-key : ! key) and
using those keys with locking and unlocking operations (seal : v⇥ key ! opaque and
unseal : opaque⇥key ! v respectively). A value locked with a particular key is opaque

ZU064-05-FPR main 27 February 2017 23:52

2 A. Ahmed, L. Kuper and J. Matthews

to third parties: nothing can be done but unlock it with the same key. Here is a simple
implementation written in Scheme, where gensym is a function that generates a new,
completely unique symbol every time it is called:

(define (create-key) (gensym))
(define (seal v k1) (l (k2) (if (eq? k1 k2) v (error))))
(define (unseal sealed-v k) (sealed-v k))

Using this facility a module can hand out a particular value while hiding its represen-
tation by creating a fresh key in its private lexical scope, sealing the value and handing
the result to clients, and then unsealing it again whenever it returns. This is the primary
information-hiding mechanism in many untyped languages. For instance PLT Scheme (Flatt,
1997) uses generative structs, essentially a (much) more sophisticated version of sealing,
to build abstractions for a great variety of programming constructs such as an object
system. Furthermore, the idea has seen some use recently even in languages whose primary
information-hiding mechanism is static, as recounted by Sumii and Pierce (2004).

Both of these strategies seem to match an intuitive understanding of what information-
hiding ought to entail. So it is surprising that a fundamental question — what is the rela-
tionship between the guarantee provided by the static approach and the dynamic approach?
— has not been answered in the literature. In this paper we take a new perspective on the
problem, posing it as a question of parametricity in a multi-language system (Matthews &
Findler, 2007). After reviewing our previous work on multi-language systems and giving
a multi-language system that combines System F (henceforth “ML”) and an untyped call-
by-value lambda calculus (henceforth “Scheme”) (Section 2), we use this vantage point to
show two results.

First, in Section 4 we show that dynamic sealing preserves ML’s parametricity guarantee
even when interoperating with Scheme. For the proof, we define two mutually dependent
logical relations, one for ML and one for Scheme. Instead of presenting the logical relations
outright, we first explain (in Section 3) some of the technical subtleties involved by con-
sidering a series of naive attempts at a definition. In particular, the relation for Scheme is
indexed not by types, but by a natural number that, intuitively, records the number of steps
available for future evaluation; this stratification is essential for modeling the recursive
functions (available via encoding of fixed-point combinators) present in the language.
Furthermore, one might expect the ML relation to be indexed only by types, especially
since our ML language — when considered alone — does not contain any features that
permit unbounded computation. However, indexing by types alone does not suffice in the
multi-language setting since recursive functions are now available in ML via interaction
with Scheme. Thus, the ML relation is indexed by steps as well as types, much like the
relation for recursive types given by Ahmed (2006).

The more significant complication in the definition of the logical relation, however,
arises due to dynamically sealed values which, from a semantic modeling perspective,
bear a resemblance to dynamically allocated memory locations in a language with mutable
references. Roughly, in order to decide whether two sealed values are related, we need
to consult a world w that keeps track of information about all the keys that have been
generated up to that point. Thus, we use a Kripke logical relation — i.e., a logical relation
that is indexed by the aforementioned possible worlds w. Kripke logical relations are

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 3

e ::= x | v | (e e) | (op e e) | (if0 e e e)
| (pd e) | (cons e e)
| (fst e) | (rst e) | (SM

t
e)

v ::= (lx. e) | n | nil | (cons v1 v2)
op ::= + |�
pd ::= proc? | nat? | nil? | pair?
x ::= Scheme variables
E ::= []

S

| (E e) | (v E) | (op E e)
| (op v E) | (if0 E e e) | (pd E)
| (cons E e) | (cons v E)
| (fst E) | (rst E) | (SM

t
E)

e ::= x | v | (e e) | (op e e) | (if0 e e e)
| (cons e e)
| (fst e) | (rst e) | (t

MS e)
v ::= (lx : t. e) | n | nil | (cons v1 v2)
op ::= + |�
x ::= ML variables
E ::= []

M

| (E e) | (v E) | (op E e)
| (op v E) | (if0 E e e)
| (cons E e) | (cons v E)
| (fst E) | (rst E) | (t

MS E)
t ::= Nat | t⇤ | t1 ! t2

E ::= E | E

Fig. 1. Natural embedding of Scheme (left) and ML (right): grammar

essentially needed when reasoning about properties that only hold under certain conditions;
the possible worlds keep track of those conditions, which in our setting have to do with
relatedness of values protected by dynamic sealing.

Once the logical relations are in place, we prove the Fundamental Property for both
relations (Section 4). The Fundamental Property of a logical relation — also known as the
Basic Lemma — says that if a term is well-typed then it is logically related to itself. One
novelty of our proof is its use of what we call the “bridge lemma,” which states that if two
terms are related in one language, then wrapping those terms in boundaries results in terms
that are related in the other. The overall proof structure is otherwise essentially standard.

2 A brief introduction to multi-language systems

To make the present work self-contained, in this section we summarize some relevant
material from earlier work (Matthews & Findler, 2007).

2.1 The natural embedding

The natural embedding multi-language system, presented in Figures 1–3, is a method of
modeling the semantics of a minimal “ML” (simply-typed, call-by-value lambda calcu-
lus) with a minimal “Scheme” (untyped, call-by-value lambda calculus) such that both
languages have natural access to foreign values. They receive foreign numbers as native
numbers, and they can call foreign functions as native functions. Note that throughout this
article we have typeset the terms, types, and contexts of our ML language using a bold red

font with serifs, and those of our Scheme language with a blue sans-serif font. These font
differences are semantically meaningful.

To the core languages we add new syntax, evaluation contexts, and reduction rules that
define syntactic boundaries, written t

MS (which may be read as “ML outside, Scheme
inside”) and SM

t (“Scheme outside, ML inside”), to allow cross-language communication.
The metavariable E denotes the top-level evaluation context: top-level programs may be
ML programs that optionally call into Scheme (which means we would choose E = E), or

ZU064-05-FPR main 27 February 2017 23:52

4 A. Ahmed, L. Kuper and J. Matthews

G
S̀

e : TST

G,x : TST

S̀

e : TST

G
S̀

(lx. e) : TST

G `
M

e : t
G

S̀

(SM

t
e) : TST

· · ·

G `
M

e : t

G,x : t `
M

x : t
G,x : t1 `

M

e : t2
G `

M

(lx : t1. e) : t1 ! t2

G `
M

e1 : t1 ! t2 G `
M

e2 : t1
G `

M

(e1 e2) : t2

G `
M

nil : t⇤
G `

M

e1 : t G `
M

e2 : t⇤
G `

M

(cons e1 e2) : t⇤

G `
M

e : t⇤
G `

M

(fst e) : t
G `

M

e : t⇤
G `

M

(rst e) : t⇤

G `
M

n : Nat

G `
M

e1 : Nat G `
M

e2 : Nat

G `
M

(op e1 e2) : Nat

G `
M

e1 : Nat G `
M

e2 : t G `
M

e3 : t
G `

M

(if0 e1 e2 e3) : t
G

S̀

e : TST

G `
M

(t
MS e) : t

Fig. 2. Natural embedding of Scheme (left) and ML (right): typing rules

they may be Scheme programs that optionally call into ML (in which case we would let
E = E).

We assume we can translate numbers from one language to the other, and give reduction
rules for boundary-crossing numbers based on that assumption:

E [(SM

Nat

n)]
S

7�! E [n] E [(Nat

MS n)]
M

7�! E [n]

To convert procedures across languages, we use native proxy procedures. We represent
a Scheme procedure in ML at type t1 ! t2 by a new procedure that takes an argument
of type t1, converts it to a Scheme equivalent, runs the original Scheme procedure on that
value, and then converts the result back to ML at type t2. For example, (t1 ! t2

MS (lx. e))
becomes (lx : t1. (t2

MS (lx. e) (SM

t1
x))) and vice versa for Scheme to ML. Note that

the boundary that converts the argument is an SM

t1 boundary, not an t1
MS boundary—i.e.,

the direction of conversion reverses for function arguments.
Whenever a Scheme value is converted to ML, we also check that value’s first-order

properties: we check to see if a Scheme value is a number before converting it to an ML
value of type Nat and that it is a procedure value before converting it to an ML value of
arrow type (and signal an error if either check fails).

Theorem 2.1 (Natural embedding type safety (Matthews & Findler, 2007))
If `

M

e : t , then either e 7�!⇤
v, e 7�!⇤

Error: str, or e diverges.

Prior work has shown that the dynamic checks in this system naturally give rise to
higher-order contracts (Findler & Felleisen, 2002; Findler & Blume, 2006); in Section ??

we show another way of arriving at the same conclusion, this time equating a contract
enforcing that an untyped term e behave as a (closed) type specification t (which we write
e

t) by converting it to and from ML at that type: to a first approximation,

e

t = (SM

t (t
MS e)).

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 5

E [(lx. e) v]
S

7�! E [e[x := v]]
E [(v1 v2)]S 7�! Error: non-proc (v1 6= (lx. e) for any x,e)
E [(+ n1 n2)]S 7�! E [n1 +n2]
E [(� n1 n2)]S 7�! E [max(n1 �n2,0)]
E [(op v1 v2)]S 7�! Error: non-num (v1 6= n or v2 6= n)
E [(if0 0 e1 e2)]S 7�! E [e1]
E [(if0 v e1 e2)]S 7�! E [e2] (v 6= 0)
E [(proc? (lx. e))]

S

7�! E [0]
E [(proc? v)]

S

7�! E [1] (v 6= (lx. e) for any x, e)
E [(nat? n)]

S

7�! E [0]
E [(nat? v)]

S

7�! E [1] (v 6= n for any n)
E [(nil? nil)]

S

7�! E [0]
E [(nil? v)]

S

7�! E [1] (v 6= nil)
E [(pair? (cons v1 v2))]S 7�! E [0]
E [(pair? v)]

S

7�! E [1] (v 6= (cons v1 v2) for any v1, v2)
E [(fst (cons v1 v2))]S 7�! E [v1]
E [(fst v)]

S

7�! Error: non-pair (v 6= (cons v1 v2) for any v1, v2)
E [(rst (cons v1 v2))]S 7�! E [v2]
E [(rst v)]

S

7�! Error: non-pair (v 6= (cons v1 v2) for any v1, v2)
E [(SM

Nat

n)]
S

7�! E [n]
E [(SM

t1 ! t2
v)]

S

7�! E [(lx. (SM

t2
v (t1

MS x)))]
E [(SM

t⇤
nil)]

S

7�! E [nil]
E [(SM

t⇤
(cons v1 v2))]S 7�! E [(cons (SM

t
v1) (SM

t⇤
v2))]

E [(lx : t. e) v]
M

7�! E [e[x := v]]
E [(+ n1 n2)]M 7�! E [n1 +n2]
E [(� n1 n2)]M 7�! E [max(n1 �n2,0)]
E [(if0 0 e1 e2)]M 7�! E [e1]
E [(if0 n e1 e2)]M 7�! E [e2] (n 6= 0)
E [(fst (cons v1 v2))]M 7�! E [v1]
E [(fst nil)]

M

7�! Error: nil
E [(rst (cons v1 v2))]M 7�! E [v2]
E [(rst nil)]

M

7�! Error: nil
E [(Nat

MS n)]
M

7�! E [n]
E [(Nat

MS v)]
M

7�! Error: non-num (v 6= n for any n)
E [(t1 ! t2

MS (lx. e))]
M

7�! E [(lx : t1. (
t2

MS lx. e (SM

t1
x)))]

E [(t1 ! t2
MS v)]

M

7�! Error: non-proc (v 6= (lx. e) for any x, e)
E [(t⇤

MS nil)]
M

7�! E [nil]
E [(t⇤

MS (cons v1 v2))]M 7�! E [(cons (t
MS v1) (

t⇤
MS v2))]

E [(t⇤
MS v)]

M

7�! Error: non-list (v is not a pair or nil)

Fig. 3. Natural embedding of Scheme (top) and ML (bottom): operational semantics

2.2 Polymorphism, attempt one

An omission from the “ML” side of the natural embedding to this point is that it contains
no polymorphism. We now extend it to support polymorphism by replacing the simply-
typed lambda calculus with System F. When we do so, we immediately hit the question of
how to properly handle boundaries. In this subsection, we make what we consider the most
straightforward decision of how to handle boundaries and show that it results in a system

ZU064-05-FPR main 27 February 2017 23:52

6 A. Ahmed, L. Kuper and J. Matthews

Syntax
e ::= · · · | La. e | e t
v ::= · · · | La. e | (L

MS v)
t ::= · · · | 8a. t | a | L

D ::= • | D,t
E ::= · · · | E t

Typing rules D;G `
M

e : t

ftv(t) 2 D
D ` t

D,a;G `
M

e : t
D;G `

M

La. e : 8a. t
D;G `

M

e : 8a. t 0 D ` t
D;G `

M

e t : t 0[a := t]

Operational semantics e 7�! e

0

E [(La. e) t]
M

7�! E [e[a := t]]
E [(8a. t

MS v)]
M

7�! E [(La. (t
MS v))]

E [(SM

8a. t
v)]

S

7�! E [(SM

t[a:=L]
v L)]

E [(SM

L (L

MS v))]
S

7�! E [v]

Fig. 4. Extensions to Figures 1–3 for non-parametric polymorphism

that does not preserve System F’s parametricity property; in the next subsection we refine
our strategy using dynamic sealing techniques.

Figure 4 shows the extensions we need to make to Figures 1–3 to support non-parametric
polymorphism. To ML’s syntax we add type abstractions (La. e) and type application (e t);
to its types we add 8a. t and a . A new evaluation context E t governs the evaluation of
type applications, and a type environment D keeps track of the scope of type variables. We
write ftv(t) to denote the free type variables of t .

Our embedding converts Scheme functions that work polymorphically into polymorphic
ML values, and converts ML type abstractions directly into plain Scheme functions that
behave polymorphically. For example, ML might receive the Scheme function (lx. x)
from a boundary with type 8a. a ! a and use it successfully as an identity function,
and Scheme might receive the ML type abstraction (La. lx : a. x) as a regular function
that behaves as the identity function for any value Scheme gives it.

To support this behavior, the model must create a type abstraction from a regular Scheme
value when converting from Scheme to ML, and must drop a type abstraction when con-
verting from ML to Scheme. The former is straightforward: we reduce a redex of the form
(8a. t

MS v) by dropping the universal quantifier on the type in the boundary and binding
the now-free type variable in t by wrapping the entire expression in a L form, yielding
(La. (t

MS v)).
This works for ML, but making a dual of it in Scheme would be somewhat silly, since

every Scheme value inhabits the same type so type abstraction and application forms
would be useless. Instead, we would like to allow Scheme to use an ML value of type,
say, 8a. a ! a directly as a function. To make boundaries with universally-quantified
types behave that way, when we convert a polymorphic ML value to a Scheme value we
need to remove its initial type-abstraction by applying it to some type and then convert the
resulting value according to the resulting type. As for which type to apply it to, we need

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 7

a type to which we can reliably convert any Scheme value, though it must not expose any
of those values’ properties. In prior work, we used the “lump” type to represent arbitrary,
opaque Scheme values in ML; we reuse it here as the argument to the ML type abstraction.
More specifically, we add L as a new base type in ML and we add the cancellation rule for
lumps to the set of reductions. These changes, along with all the other additions required
to support polymorphism, are summarized in Figure 4.

Theorem 2.2

The polymorphic natural embedding is type-sound.

2.3 Polymorphism, attempt two

Although the embedding shown in Figure 4 is type safe, the polymorphism is not para-
metric in the sense of Reynolds (1983). We can see this with an example: it is well-known
that in System F, for which parametricity holds, the only value with type 8a. a ! a is the
polymorphic identity function. In the system we have built so far, though, the term

(8a. a ! a
MS (lx. (if0 (nat? x) (+ x 1) x)))

has type 8a. a ! a , but it evaluates to a type abstraction which when applied to the type
Nat evaluates as follows:

(La. (a ! a
MS (lx. (if0 (nat? x) (+ x 1) x)))) Nat

7�! (Nat ! Nat

MS (lx. (if0 (nat? x) (+ x 1) x)))
7�! (ly : Nat. (Nat

MS (lx. (if0 (nat? x) (+ x 1) x)) (SM

Nat

y)))

Since ML requires that the argument to this function be a number, this is equivalent to

(ly : Nat. (Nat

MS (lx. (+ x 1)) (SM

Nat

y)))

which is well-typed but is not the identity function.
The problem with the misbehaving 8a. a ! a function above is that while the type

system rules out ML fragments that try to treat values of type a non-generically, embed-
ded Scheme programs are still able to observe the concrete choice made for a and act
accordingly. To restore parametricity, we use dynamic sealing to protect ML values whose
implementation should be hidden from Scheme. When we apply a Scheme function to
an SM-wrapped ML value whose type is the instantiation of what was originally a type
variable, such as in the application of (lx. (if0 (nat? x) (+ x 1) x)) to (SM

Nat

y) in our
example, we generate a new key and provide Scheme with an opaque sealed value about
which Scheme cannot make any observations. When Scheme returns a value to ML at a
type that was originally a , ML unseals it or signals an error if it is not a sealed value with
the appropriate key.

We formalize this notion in Figure 5. To do so, we need to make several changes to
our framework. Rather than directly substituting types for free type variables on boundary
annotations, we introduce type-like annotations of the form hk; ti that indicate on a bound-
ary’s type annotation that a particular type t is the instantiation of what was originally a
type variable. These key annotations allow us to remember when a type was originally
abstract. The key k appearing inside a key annotation is a unique value generated during
the evaluation of type applications.

ZU064-05-FPR main 27 February 2017 23:52

8 A. Ahmed, L. Kuper and J. Matthews

Syntax
e ::= · · · | La. e | e t | (k

MS e)
e ::= · · · | (SM

k
e)

v ::= · · · | La. e | (L

MS v)
v ::= · · · | (SM

hk;ti
v)

t ::= · · · | 8a. t | a | L

k ::= Nat | k1 ! k2 | k⇤ | 8a. k | a | L | hk; ti
D ::= • | D,t
E ::= · · · | E t | (k

MS E)
E ::= · · · | (SM

k
E)

Key erasure |k|= t

|Nat| = Nat

|k1 ! k2| = |k1|! |k2|
|k⇤| = |k|⇤

|8a. k| = 8a. |k|
|a| = a
|L| = L

|hk; ti| = t

Typing rules D;G `
M

e : t D;G `
S

e : TST

D,a;G `
M

e : t
D;G `

M

(La. e) : 8a. t
D;G `

M

e : 8a. t 0 D ` t
D;G `

M

e t : t 0[a := t]
D;G `

S

e : TST D ` |k|
D;G `

M

(k
MS e) : |k|

D;G `
M

e : |k| D ` |k|
D;G `

S

(SM

k
e) : TST

Well-typedness of configurations D;G `
M

K . e : t D;G `
S

K . e : TST

keys(e) 2 K D\K = /0 D;G `
M

e : t
D;G `

M

K . e : t
keys(e) 2 K D\K = /0 D;G `

S

e : TST

D;G `
S

K . e : TST

Operational semantics K . e 7�! K

0
. e

0
K . e 7�! Error: str

K . (La. e) t 7�! K,k . e[a := hk; ti] where k /2 K

K . (8a. k
MS v) 7�! K .La. (k

MS v)
K . (hk;ti

MS (SM

hk;ti
v)) 7�! K .v

K . (hk;ti
MS v) 7�! Error: bad value where v 6= (SM

hk;ti
v) for any v

K . (SM

8a. k
v) 7�! K . (SM

k[a:=L]
v L)

K . (SM

L (L

MS v)) 7�! K .v

Fig. 5. Extensions to Figures 1–3 to support parametric polymorphism

To accommodate key annotations, we generalize our system to use conversion schemes

k rather than type annotations on boundary expressions. Conversion schemes are similar to
type annotations, but may also contain key annotations. In the typing rules for both MS and
SM boundary expressions, we must stipulate that conversion schemes on boundaries are

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 9

well-formed. However, since the type environment D knows nothing of key annotations,
the premise D ` |k| uses the key erasure metafunction |.| that takes conversion schemes to
types. Key annotations hk; ti are “erased” to t , and |.| recurs structurally on other types.

We want the operational semantics to keep track of dynamically generated keys k.
Hence, rather than having our reduction rules operate on expressions as in Figures 1–3 and
4, we adopt reduction rules that relate configurations K .e. A configuration K .e comprises
an expression e and a key store K which is the set of keys k that have been generated thus
far during evaluation. When we evaluate a type application (La. e) t , we generate a unique
key k, add k to K, and perform a sealing substitution e[a := hk; ti]. Sealing substitution
is defined on conversion schemes k and on expressions e (of either language). Figure A 1
in the Appendix spells out the definition of sealing substitution in full detail; the following
two paragraphs cover the interesting cases.

A sealing substitution k[a := hk; ti] replaces occurrences of a in k with the key anno-
tation hk; ti. The most interesting cases are when k is a type abstraction, a type variable,
or itself a key annotation; we summarize these cases below:

(8a 0
. k)[a := hk; ti] = 8a 0

. k[a := hk; ti] (if a 0 6= a)
= 8a. k (if a 0 = a)

a 0[a := hk; ti] = a 0 (if a 0 6= a)
= hk; ti (if a 0 = a)

hk0; t 0i[a := hk; ti] = hk0; t 0i

A sealing substitution e[a := hk; ti] replaces occurrences of a in e (where e can be an
expression of either language, since a may occur behind an SM boundary in Scheme) with
the key annotation hk; ti. The interesting cases are as follows:

(lx : t1. e)[a := hk; ti] = lx : t1[a := t]. e[a := hk; ti]
(La 0

. e)[a := hk; ti] = La 0
. e[a := hk; ti] (if a 0 6= a)

= La 0
. e (if a 0 = a)

(e t1)[a := hk; ti] = e[a := hk; ti] t1[a := t]
(k

MS e)[a := hk; ti] = (k[a:=hk;ti]
MS e[a := hk; ti])

(SM

k
e)[a := hk; ti] = (SM

k[a:=hk;ti]
e[a := hk; ti])

Note that when we perform sealing substitution on an ML term lx : t1. e, we only substi-
tute the type t (rather than the whole key annotation hk; ti) for occurrences of a appearing
in x’s type annotation t1. Similarly, when substituting into a type application e t1, we only
substitute t for a in t1.

Theorem 2.3

The embedding presented in Figure 5 is type-sound.

Returning to our earlier 8a. a ! a example under our newly defined model of poly-
morphism, we see that the term

(8a. a ! a
MS (lx. (if0 (nat? x) (+ x 1) x)))

ZU064-05-FPR main 27 February 2017 23:52

10 A. Ahmed, L. Kuper and J. Matthews

is not rejected statically; rather, it becomes parametric at run-time. When applied to Nat as
before, evaluation proceeds as follows:1

(La. (a ! a
MS (lx. (if0 (nat? x) (+ x 1) x)))) Nat

7�! (hk;Nati ! hk;Nati
MS (lx. (if0 (nat? x) (+ x 1) x)))

7�! (ly : Nat. (hk;Nati
MS (lx. (if0 (nat? x) (+ x 1) x)) (SM

hk;Nati
y)))

When (lx. (if0 (nat? x) (+ x 1) x)) is applied to (SM

hk;Nati
y), Scheme’s nat? predicate

will not recognize the opaque, sealed value as a Nat and so must take the second branch of
the if0 expression. Therefore the entire expression evaluates to

(ly : Nat. (hk;Nati
MS (SM

hk;Nati
y)))

which under our operational semantics evaluates to (ly : Nat. y), the identity function for
Nat.

In the above example, we were lucky to have encountered an x in the second branch of
the if0 expression, allowing us to return the sealed value that the ML context was expecting.
If we had some other expression in place of x, say, the constant 5, evaluation would reach

(ly : Nat. (hk;Nati
MS 5))

which steps to a “bad value” error under our operational semantics, since 5 is not even an
SM boundary expression, let alone one annotated with the necessary hk; Nati. Therefore
our system enforces parametricity dynamically, in this case by raising a run-time error
rather than permitting a term of type 8a. a ! a to behave differently from the identity
function.

3 Proving parametricity: a naive approach

The examples of the preceding section suggest that the language of Figure 5 is parametric
— in the sense that all terms in the language map related environments to related results
— but they do not prove that that is the case. Our next step will be to attempt to rigorously
establish parametricity. Our approach will be to define two logical relations, one for ML
and one for Scheme, and prove the fundamental property for each relation.

Our goal will not be to establish the exact same equivalences that would hold for terms
in plain System F, but only because the embedding we are considering gives terms the
power to diverge and to signal errors, as we’ve seen from the examples considered so far.
For instance, we cannot show that any ML value of type 8a. a ! a must be the identity
function, but we can show that it must be either the identity function, the function that
always diverges, or the function that always signals an error.

The reader who is acquainted with logical relations for System F will find our first
attempt at a logical relation for ML to be almost entirely familiar. The only differences
will be for the lump type L and the universal type 8a. t , as we explain in section 3.2.

1 Although we’ve redefined the reduction relation 7�! to operate on configurations rather than
just expressions, we will disregard the key store for the moment and still speak of expressions
evaluating to expressions. The key store will come into play when we prove parametricity in the
following section.

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 11

3.1 Interpreting types as relations

We start by establishing a notion of relatedness for terms in our ML language. For each
type t in the language, we define its interpretation V

M

JtK as a relation on values inhabiting
that type. In particular, V

M

JtK is defined by induction on the structure of ML types t .
Our definition of V

M

J.K is also parameterized by a type interpretation d , which we defer
discussion of until the next subsection.

The simplest of our interpretations will be for our base type, Nat. As we might expect,
two values of type Nat are related if they are the same natural number:

V
M

JNatKd def
= {(n,n) | n 2 N}

For values of list type, nil is related to itself, and two lists of values are related if their
elements are related pairwise:

V
M

Jt⇤Kd def
= {(nil,nil)}
[{((cons v1 v

0
1),(cons v2 v

0
2)) |

(v1,v2) 2 V
M

JtKd ^ (v01,v02) 2 V
M

Jt⇤Kd}

Next we define relatedness for values of function type. Intuitively, we consider two
function values to be related if, when applied to related arguments, they produce related
results. The following definition captures this intuition:

V
M

Jt1 ! t2Kd def
= {(lx : t1. e1,lx : t1. e2) |

8(v1,v2) 2 V
M

Jt1Kd .
(e1[x := v1],e2[x := v2]) 2 E

M

Jt2Kd}

Here, since e1[x := v1] and e2[x := v2] are not generally values, we must say that they
are expressions related at the type t2 — that is, that they belong to E

M

Jt2Kd which is a
relation on expressions. The relation E

M

J.K is readily defined in terms of V
M

J.K: we say
that two expressions of type t are related if they evaluate to related values of type t under
the configuration-based operational semantics we defined in Section 2.3.

E
M

JtKd def
= {(e1,e2) | 8y1,y 0

1,v1. y1 . e1 7�!⇤ y 0
1 .v1 =)

9y2,y 0
2,v2. y2 . e2 7�!⇤ y 0

2 .v2 ^ (v1,v2) 2 V
M

JtKd}

Note that the definition of V
M

Jt1 ! t2K is well founded: the definition refers to V
M

J.K
at the types t1 and t2, both of which are smaller than the type t1 ! t2.

3.2 Handling polymorphic types

So far, we have defined relatedness for ML values of base type, list type, and function type.
We have not yet handled the types that make polymorphism possible in our multi-language
system: type variables a , the type 8a. t of type abstractions, and the lump type L.

Let us consider the a case first: when are two values related at the type a? If we
encountered two values v1 and v2 “of type a”, it would happen while evaluating the
respective bodies of two type abstractions that had already been applied to concrete types,
say, t1 and t2. Then a would have already been instantiated with t1 and t2, respectively.
So the interpretation of the type a must be some binary relation R containing pairs of

ZU064-05-FPR main 27 February 2017 23:52

12 A. Ahmed, L. Kuper and J. Matthews

closed values (v1,v2) where v1 is of type t1 and v2 is of type t2. We will use the notation
R : t1 $ t2 to indicate that a relation R has this property:

R : t1 $ t2
def, 8(v1,v2) 2 R. /0 `

M

v1 : t1 ^ /0 `
M

v2 : t2

The particular R we want for V
M

JaK will partly depend on the concrete types t1 and t2
that will have been chosen. Here is where the type interpretation d comes into play: it maps
type variables a to triples (t1,t2,R), where t1 and t2 are the types used to instantiate a ,
and R relates values of types t1 and t2 as described above. (More generally, whenever we
write V

M

JtKd , d must provide a mapping for all type variables that might appear free in
t .)

We can then concisely define the interpretation V
M

JaK as the result of looking up a in d
and then projecting out the third component of the resulting (t1,t2,R) triple. We use the
notation d (a).R as shorthand for “look up a in d , then extract R”:

V
M

JaKd def
= d (a).R

Now that we have described d , it is straightforward to define an interpretation for 8a. t
types. When two expressions La. e1 and La. e2 are related at the type 8a. t , intuitively
it means that if we provide an interpretation for a—which, as we have already said, is
simply a relation R : t1 $ t2 for some t1 and t2—then applying La. e1 and La. e2 to t1
and t2 respectively will result in two expressions that are related with respect to the R we
provided. We formalize this notion with the following definition:

V
M

J8a. tKd def
= {(La. e1,La. e2) |

8t1,t2,R. R : t1 $ t2 =)
(e1[a := hk1; t1i],e2[a := hk2; t2i]) 2 E

M

JtKd [a 7! (t1,t2,R)]}

Note that here we perform sealing substitution, as described in section 2.3, since that is
what happens upon type application according to our operational semantics. The resulting
expressions are related at the type t , but under an extended d that now contains a binding
for the a that may appear free in t .

Our use of sealing substitution rather than ordinary type substitution in the above def-
inition is the first point at which our logical relation has differed from a standard logical
relation for System F. We now address the other non-standard aspect of our system: re-
latedness at the lump type L. In our system, the only values of type L are MS boundary
expressions that have been annotated with L and that wrap a Scheme value. When should
we say that two such values, say, (L

MS v1) and (L

MS v2), are related? We have little choice
but to define their relatedness in terms of the relatedness of v1 and v2, as follows:

V
M

JLKd def
= {((L

MS v1),(L

MS v2)) | (v1,v2) 2 V
S

}

but this merely puts off the problem, as it requires us to define a relation V
S

on Scheme
values. We handle the definition of V

S

in the next subsection.
So far, in the interest of simplicity, our definitions have ignored the possibility of terms

that raise errors. For instance, a precise definition would say that two expressions are
related at the type t1 ! t2 if, when passed arguments related at t1, they both diverge
or both raise the same error or both evaluate to values related at t2. Figure 6 summarizes

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 13

R : t1 $ t2
def, 8(v1,v2) 2 R. /0 `

M

v1 : t1 ^ /0 `
M

v2 : t2

V
M

JNatKd def
= {(n,n)}

V
M

Jt⇤Kd def
= {(nil,nil)}
[{((cons v1 v

0
1),(cons v2 v

0
2)) |

(v1,v2) 2 V
M

JtKd ^ (v01,v
0
2) 2 V

M

Jt⇤Kd}
V

M

Jt1 ! t2Kd def
= {(lx : t1. e1,lx : t1. e2) |

8(v1,v2) 2 V
M

Jt1Kd .
(e1[x := v1],e2[x := v2]) 2 E

M

Jt2Kd}
V

M

JaKd def
= d (a).R

V
M

J8a. tKd def
= {(La. e1,La. e2) |

8t1,t2,R. R : t1 $ t2 =)
(e1[a := hk1; t1i],e2[a := hk2; t2i]) 2 E

M

JtKd [a 7! (t1,t2,R)]}
V

M

JLKd def
= {((L

MS v1),(
L

MS v2)) | (v1,v2) 2 V
S

}
E

M

JtKd def
= {(e1,e2) |

8K1,K2. 8str. K1 . e1 7�!⇤
Error: str =)

K2 . e2 7�!⇤
Error: str ^

8K1,K
0
1,v1. K1 . e1 7�!⇤

K

0
1 .v1 =)

9K2,K
0
2,v2. K2 . e2 7�!⇤

K

0
2 .v2 ^ (v1,v2) 2 V

M

JtKd}

Fig. 6. Semantic interpretations of ML types: a naive attempt

the definitions presented in the last two sections and adds a clause to the definition of E
M

J.K
to account for the possibility of an error.

3.3 Relatedness of Scheme values

As we saw above, the relatedness of two lump values at type L in ML depends on the
relatedness of the Scheme values inside them, according to some relation V

S

. Let us now
attempt to define V

S

.
Since Scheme values are untyped — or uni-typed to be precise, since Scheme terms are

a special case of typed code where every term has type TST (Harper, 2010) — V
S

cannot
be defined by induction on Scheme types in the way that V

M

J.K was defined by induction
on ML types.2 Instead, we define V

S

as a union of several value relations, one for each
of the syntactic value forms in Scheme. For instance, one such relation will relate lambda
abstractions:

V
S

def
= · · · [{(lx. e1,lx. e2) | 8(v1,v2) 2 V

S

=) (e1[x := v1],e2[x := v2]) 2 E
S

}
[· · ·

We see here that just as V
M

J.K relies on E
M

J.K, our definition of V
S

requires us to define
a relation E

S

on Scheme expressions. The definition of E
S

is straightforward: we say that
two Scheme expressions e1 and e2 are related if whenever e1 evaluates to a value v1, e2
evaluates to some value v2 such that v1 and v2 are related under V

S

. For the time being, we

2 Naively, we may think of V
S

as an interpretation of the Scheme type TST as a relation on Scheme
values, but since Scheme has just one type we will not bother to write V

S

JTSTK.

ZU064-05-FPR main 27 February 2017 23:52

14 A. Ahmed, L. Kuper and J. Matthews

again ignore the possibility that an expression will evaluate to an error, and define E
S

as
follows:

E
S

def
= {(e1,e2) | 8y1,y 0

1,v1. y1 . e1 7�!⇤ y 0
1 . v1 =)

9y2,y 0
2,v2. y2 . e2 7�!⇤ y 0

2 . v2 ^ (v1,v2) 2 V
S

}

With E
S

handled, we can turn our attention back to V
S

. Unfortunately, our definition of
V

S

is not well-founded: it refers to V
S

itself, both to ensure relatedness of arguments and
relatedness of the results of function application. Essentially, since all Scheme terms have
the same type, TST, the type of the function arguments and results are no smaller than the
type of the functions themselves, resulting in an ill-founded definition.

To resolve this problem, we redefine V
S

as a three-place relation relating two Scheme
values and a natural number j, called the step index, that represents the remaining number
of steps available for future execution. Membership of a triple (j,v1,v2) in the relation
indicates that values v1 and v2 are related for j steps; that is, they cannot be distinguished
by any computation running for no more than j steps. Now the Scheme logical relation
can be defined by induction on steps, yielding a well-founded relation. We say that two
Scheme lambda terms are related for j steps if they take arguments that are related for any
strictly smaller number of steps j

0 to results that are also related for j

0 steps. Put another
way, the Scheme expressions (lx. e1) and (lx. e2) are indistinguishable for j steps if,
given two arguments v1 and v2 that are indistinguishable for any smaller number of steps
j

0, applying (lx. e1) to v1 and (lx. e2) to v2 will result in two expressions that are also
indistinguishable for j

0 steps. We define V
S

for lambda expressions as follows (assuming a
step-indexed version of E

S

):

V
S

def
= · · · [{(j,lx. e1,lx. e2) |

8(j

0
,v1,v2) 2 V

S

.

j

0
< j =) (j

0
,e1[x := v1],e2[x := v2]) 2 E

S

} [· · ·

To complete the definition of V
S

, we need to consider relatedness for the rest of Scheme’s
syntactic value forms. Defining relatedness for numbers and lists of values is straightfor-
ward, but we also need to consider sealed values of the form (SM

hk;ti
v) for some ML

value v.
When are two such sealed values (SM

hk1;t1i
v1) and (SM

hk2;t2i
v2) related? One possi-

bility is to define their relatedness in terms of the relatedness of the underlying ML values
v1 and v2 at the type a . We will return to this question at the end of the following section,
after we reconsider our definition of relatedness of ML values.

3.4 Relatedness of ML values, revisited

Our new step-indexed definition of V
S

requires us to revisit the definition of the ML relation
V

M

J.K at the type L. (Recall that V
M

J.K relies on V
S

since Scheme values can be embedded
in ML as MS boundary expressions of type L.) For how many steps must the Scheme values
embedded in two ML lumps be related? One option is to say that two ML lumps (L

MS v1)
and (L

MS v2) are related if the underlying Scheme values v1 and v2 are related for some

number of steps n according to V
S

:

V
M

JLKd def?
= {((L

MS v1),(L

MS v2)) | 9n. (n,v1,v2) 2 V
S

}

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 15

However, recall that we allow MS and SM boundaries to be nested inside each other and
consider the scenario where v1 and v2 are of the form . . .(L

MS v

0
1) . . . and . . .(L

MS v

0
2) . . .,

respectively. Clearly we want our logical relations to be defined so that we require v

0
1 and

v

0
2 to be related for for fewer than n steps. That, however, is not possible if we adopt the

above definition for V
M

JLK.
The solution to this ill-foundedness dilemma is to allow step indices to “leak” from the

Scheme relation back into the ML relation. Just as we did with V
S

and E
S

, we define step-
indexed versions of V

M

J.K and E
M

J.K. Adding a step index to the ML relation allows us to
define the interpretation of L as follows:

V
M

JLKd def
= {(j,(L

MS v1),(L

MS v2)) | (j�1,v1,v2) 2 V
S

}

Our reasoning for using the step index j�1 is that if we claim that the outer lump expres-
sions are related for j steps, then the values they wrap must be related for at least j � 1
steps, since looking inside the wrapper “uses up” one step of computation.

We will need to add step indices to V
M

J.K and E
M

J.K for the rest of the type interpretations
as well, and well-formed relations R will need a step-index component. The definition of
R : t1 $ t2 also has to be updated to R : t1

n$ t2, which says that R is a downward-closed

relation containing triples (j,v1,v2) where j < n, v1 is of type t1, and v2 is of type t2.
Relations are downward closed (or monotonic) if whenever (j,v1,v2) 2 R, then for all
j

0  j, (j

0
,v1,v2) 2 R.

Having fixed our definition of relatedness of ML values, we return to the question of
relatedness for sealed values in Scheme. We would like to define relatedness for two sealed
values (SM

hk1;t1i
v1) and (SM

hk2;t2i
v2). As a first attempt, we could say that (SM

hk1;t1i
v1)

and (SM

hk2;t2i
v2) are related for j steps if v1 and v2 are related by our ML relation at the

type a for one fewer step:

V
S

def?
= · · · [{(j,(SM

hk1;t1i
v1),(SM

hk2;t2i
v2)) |

(j�1,v1,v2) 2 V
M

JaKd} [· · ·
but to define V

S

in this way, the type interpretation d with which we are parameterizing
V

M

J.K needs to come from somewhere. We can solve this problem by adding d as a
parameter to V

S

and E
S

, resulting in the definition:

V
S

d def?
= · · · [{(j,(SM

hk1;t1i
v1),(SM

hk2;t2i
v2)) |

(j�1,v1,v2) 2 V
M

JaKd} [· · ·

Recall that the definition of V
M

JaKd is just d (a).R, so we can write that into our definition:

V
S

d def?
= · · · [{(j,(SM

hk1;t1i
v1),(SM

hk2;t2i
v2)) |

(j�1,v1,v2) 2 d (a).R} [· · ·

Finally, since we know from the boundary annotations on our two SM expressions that they
contain values of types t1 and t2 specifically, we would like to stipulate that R (which, as
previously mentioned, is now step-indexed) relates values of those types.

V
S

d def
= · · · [{(j,(SM

hk1;t1i
v1),(SM

hk2;t2i
v2)) |

d (a) = (t1,t2,R) ^ (j�1,v1,v2) 2 R} [· · ·

ZU064-05-FPR main 27 February 2017 23:52

16 A. Ahmed, L. Kuper and J. Matthews

Unfortunately, as we will see in the next section, the above definition still turns out to be
wrong.

3.5 The case of the missing a

Let VJ.K be an interpretation of types as relations on values that is parameterized by a
type interpretation d , like the V

S

and V
M

J.K that we have seen in this section. Consider the
following equivalence between type interpretations:

VJtKd [a 7! (d1(t 0),d2(t 0),VJt 0Kd)] ⌘ VJt[a := t 0]Kd

On the left side, we are interpreting the type t , which may contain free occurrences of
the type variable a , as a relation parametrized by a type interpretation d that has been
extended with a binding for a . On the right, we are syntactically substituting the type
t 0 for free occurrences of a in t before interpreting the resulting type (this time without
extending d with a binding for a).

Both sides represent a “substitution” of t 0 for free occurrences of a in the type t . On
the right, we substitute the syntactic type t 0 for a , whereas on the left we substitute the
semantic interpretation of t 0 for a .

For any logical relation for a language with polymorphism, it is critical that the above
equivalence hold. Without it, we cannot prove (the type application case of) the fundamen-
tal property of the logical relation. Unfortunately, this equivalence does not hold for our
relation V

M

J.K given our current definitions. Consider the case where t is the ML lump
type L, a is our ML type variable a , and t 0 is an ML type t 0. Since L is opaque, trying to
substitute t 0 for free occurrences of a in L just gives us L again, meaning that we would
want the following strange equivalence to hold:

V
M

JLKd [a 7! (d1(t 0),d2(t 0),VM

Jt 0Kd)] ?⌘ V
M

JL[a := t 0]Kd ⌘ V
M

JLKd

Here, the interpretation of L under the d extended with a on the left is supposed to be
equivalent to the interpretation of L under plain d with no binding for a — that is, we
seem to have lost track of a entirely on the right. Expanding out the definition of V

M

JLK
on both the left and right, we see that for the above equivalence to hold, it must be the case
that:

V
S

d [a 7! (d1(t 0),d2(t 0),VS

d)] ?⌘ V
S

d
We can prove the above in the backward direction, but not in the forward direction. Specif-
ically, in the forward direction, consider the case where we know that (SM

hk1;t1i
v1) and

(SM

hk2;t2i
v2) are related in V

S

d [a 7! (d1(t 0),d2(t 0),VS

d)]; we must show that they are
related in V

S

d , which we can no longer do since we have lost the mapping for a!
The problem here arises from the fact that we attempted to define relatedness of SM

boundary terms by parameterizing our Scheme logical relation with d . But the purpose of
d is to provide a mapping for type variables that appear free in the type being interpreted.
Hence, the Scheme relation should need no such mapping, since type variables never
appear in TST. But if we do not parametrize V

S

with d , then where can we find the in-
formation stored in d that we need to define relatedness of SM boundary terms? Recall that
we discussed in Section 2.3, Scheme’s dynamically generated keys are the corresponding

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 17

notion to ML’s a types. Therefore, just as d provides interpretations for ML’s type variables
a , we need a different mechanism to keep track of (and provide interpretations for) all the
related seals s generated thus far during evaluation. In the next section, we introduce worlds

to serve exactly that purpose.

4 Parametricity via worlds

Consider two arbitrary expressions e1 and e2 of our multi-language system. We wish to
know whether e1 and e2 behave parametrically, that is, that given related inputs, they
produce related results. Since parametricity in our system is enforced dynamically, we
need to consider the run-time semantics of our language. In particular, if e1 and e2 contain
type applications of the form (La. e

0
1) t1 and (La. e

0
2) t2, the operational semantics will

generate fresh keys k1 and k2 and add them to the respective key stores K1 and K2.
Additionally, at this point, we also get to choose an arbitrary relation R that relates values

of type t1 and t2; from now on, sealed values of the form (SM

hk1;t1i
v1) and (SM

hk2;t2i
v2)

will only be considered related if v1 and v2 are related by R.
In this section, we introduce the concept of worlds to keep track of all the keys generated

thus far during evaluation (in the form of key stores K1 and K2) and to track the relational
interpretation R for related sealed values. With the addition of worlds, we will finally be
able to establish parametricity for our multi-language system by setting up a Kripke (or
possible worlds) logical relation where terms are logically related not only at a particular

type and for a particular number of steps, but also in a given world.

4.1 Worlds track information about keys

A world w = (K1,K2,C,Y) comprises two key stores, K1 and K2, a concretization map C,
and a type variable interpretation Y. The concretization map C is a finite mapping from
type variables a to pairs of keys (k1,k2), where k1 is contained in the key store K1 and k2 is
contained in K2. The type variable interpretation Y is a finite mapping from type variables
a to triples (t1,t2,R), where t1 and t2 are closed types and R relates values of types t1
and t2. We use the notation w.K1, w.K2, w.C, and w.Y for the projections of w’s respective
components.

Note that C and Y have the same domain and that the the pairs of keys (k1,k2) in the
range of w.C correspond one-to-one with pairs of types t1 and t2 in the range of w.Y.

When two expressions e1 and e2 are related in a world w, the key stores w.K1 and w.K2
respectively contain the keys that have been generated during the evaluation of e1 and e2
so far. Suppose that during the evaluation of e1 a type abstraction is applied to t1, causing
the key k1 to be generated; simultaneously, during the evaluation of e2, a type abstraction
is applied to t2, causing k2 to be generated. Then e1 and e2 would be related in a world w

such that k1 2 w.K1, k2 2 w.K2, w.C(a) = (k1,k2), and w.Y(a) = (t1,t2,R) for some R.

4.2 Adding worlds to the logical relations

Figure 8 gives the complete (and finally correct) definitions of our Scheme logical relation,
which is now indexed both by steps and by worlds, and our ML logical relation, which

ZU064-05-FPR main 27 February 2017 23:52

18 A. Ahmed, L. Kuper and J. Matthews

bRc
n

def
= {(j,w,e1,e2) 2 R | j < n} n-approximation of relations R

bYc
n

def
= {a 7! (t1,t2,bRc

n

) | n-approximation of type var interps
Y(a) = (t1,t2,R)}

b(K1,K2,C,Y)c
n

def
= (K1,K2,C,bYc

n

) n-approximation of worlds
I R

def
= {(j,w,e1,e2) | w 2 World

j

^ “Later” operator
(j�1,bwc

j�1,e1,e2) 2 R}
Y0 w Y def

= 8a 2 dom(Y). Y0(a) = Y(a) Type var interp extension
(j

0
,w

0)w (j,w)
def, j

0  j ^ w

0 2 World
j

0 ^ World extension
w

0
.Y w bw.Yc

j

0 ^
w

0
.K1 ◆ w.K1 ^

w

0
.K2 ◆ w.K2

(j

0
,w

0)A (j,w)
def, j

0
< j ^ (j

0
,w

0)w (j,w) Strict world extension
w� (a 7! k1,k2,t1,t2,R)

def
= ((w.K1,k1), Update components of w

(w.K2,k2),
(w.C[a 7! (k1,k2)])
(w.Y[a 7! (t1,t2,R)])

MAtom
n

[t1,t2]
def
= {(j,w,e1,e2) | j < n ^ w 2 World

j

^
`

M

w.K1 . e1 : t1 ^ `
M

w.K2 . e2 : t2}
MAtom[t]d def

=
S

n�0 {(j,w,e1,e2) 2 MAtom
n

[d1(t),d2(t)]}
SAtom

n

def
= {(j,w,e1,e2) | j < n ^ w 2 World

j

^
S̀

w.K1 . e1 : TST ^
S̀

w.K2 . e2 : TST}
SAtom def

=
S

n�0 {(j,w,e1,e2) 2 SAtom
n

}
Rel

n

[t1,t2]
def
= {R ✓ MAtomval

n

[t1,t2] |
8(j,w,v1,v2) 2 R. 8(j

0
,w

0)w (j,w). (j

0
,w

0
,v1,v2) 2 R}

SomeRel
n

def
= {(t1,t2,R) | FV(t1) = FV(t2) = /0 ^ R 2 Rel

n

[t1,t2]}
Conc def

= {C 2 TVar

fin! (k1,k2)}
World

n

def
= {w = (K1,K2,C,Y) | C 2 Conc ^ rng(Y) ✓ SomeRel

n

}

Fig. 7. Worlds and supporting definitions

is now indexed by types, steps, and worlds. In this section, we will compare the world-
indexed relations shown in Figure 8 to the step-indexed, but not world-indexed, versions
we saw in the last section and summarize the differences. The addition of worlds requires
that we define new concepts and notational devices, which we cover informally below and
spell out in detail in Figure 7.

The most obvious difference compared to the last section is that V
S

and V
M

J.K now
contain 4-tuples (j,w,v1,v2), where j is a step index as before, w is a world, and v1
and v2 are Scheme or ML values, respectively. Likewise, E

S

and E
M

J.K contain 4-tuples
(j,w,e1,e2) where e1 and e2 are Scheme or ML expressions, and relations R contain 4-
tuples (j,w,v1,v2) where v1 and v2 are ML values.

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 19

V
S

def
= {(j,w,n,n) 2 SAtom}
[{(j,w,nil,nil) 2 SAtom}
[{(j,w,(cons v1 v

0
1),(cons v2 v

0
2)) 2 SAtom |

(j,w,v1,v2) 2 V
S

^ (j,w,v

0
1,v

0
2) 2I V

S

}
[{(j,w,lx. e1,lx. e2) 2 SAtom |

8(j

0
,w

0
,v1,v2) 2 V

S

. (j

0
,w

0)A (j,w) =)
(j

0
,w

0
,e1[x := v1],e2[x := v2]) 2 E

S

}
[{(j,w,(SM

hk1;t1i
v1),(SM

hk2;t2i
v2)) 2 SAtom |

9a. w.C(a) = (k1,k2) ^ w.Y(a) = (t1,t2,R) ^ (j,w,v1,v2) 2I R}
E

S

def
= {(j,w,e1,e2) 2 SAtom |

8i < j. 8str. w.K1 . e1 7�!i

Error: str =) w.K2 . e2 7�!⇤
Error: str ^

8i < j. 8K

0
1,v1. w.K1 . e1 7�!i

K

0
1 .v1 =)

9K

0
2,v2,w

0
. w.K2 . e2 7�!⇤

K

0
2 .v2 ^

(j� i,w

0)w (j,w) ^ w

0
.K1 = K

0
1 ^ w

0
.K2 = K

0
2 ^

(j� i,w

0
,v1,v2) 2 V

S

}
V

M

JNatKd def
= {(j,w,n,n) 2 MAtom[Nat]d}

V
M

Jt⇤Kd def
= {(j,w,nil,nil) 2 MAtom[t⇤]d}
[{(j,w,(cons v1 v

0
1),(cons v2 v

0
2)) 2 MAtom[t⇤]d |

(j,w,v1,v2) 2 V
M

JtKd ^ (j,w,v

0
1,v

0
2) 2I V

M

Jt⇤Kd}
V

M

Jt ! t 0Kd def
= {(j,w,lx : d1(t). e1,lx : d2(t). e2) 2 MAtom[t ! t 0]d |

8(j

0
,w

0
,v1,v2) 2 V

M

JtKd . (j

0
,w

0)w (j,w) =)
(j

0
,w

0
,e1[x := v1],e2[x := v2]) 2 E

M

Jt 0Kd}
V

M

JLKd def
= {(j,w,(L

MS v1),(
L

MS v2)) 2 MAtom[L]d | (j,w,v1,v2) 2I V
S

}
V

M

JaKd def
= d (a).R

V
M

J8a. tKd def
= {(j,w,La. e1,La. e2) 2 MAtom[8a. t]d |

8(j

0
,w

0)w (j,w). 8(t1,t2,R) 2 SomeRel
j

0
. 8k1 /2 w

0
.K1. 8k2 /2 w

0
.K2.

(j

0
,w

0� (a 7! k1,k2,t1,t2,R),e1[a := hk1; t1i],e2[a := hk2; t2i])
2I E

M

JtKd [a 7! (t1,t2,R)]}
E

M

JtKd def
= {(j,w,e1,e2) 2 MAtom[t]d |

8i < j. 8str. w.K1 . e1 7�!i

Error: str =) w.K2 . e2 7�!⇤
Error: str ^

8i < j. 8K

0
1,v1. w.K1 . e1 7�!i

K

0
1 .v1 =)

9K

0
2,v2,w

0
. w.K2 . e2 7�!⇤

K

0
2 .v2 ^

(j� i,w

0)w (j,w) ^ w

0
.K1 = K

0
1 ^ w

0
.K2 = K

0
2 ^

(j� i,w

0
,v1,v2) 2 V

M

JtKd}
V⇤JT Kd def

= V
M

JT Kd if T = t
V

S

if T = TST

DJDK def
= {(n,d) | dom(d) = D ^ 8a 2 D. d (a) 2 SomeRel

n

}
GJGKd def

= {(j,w,g1,g2) | w 2 World
j

^ dom(G) = dom(g1) = dom(g2) ^
8x 2 dom(G). (j,w,g1(x),g2(x)) 2 V⇤JG(x)Kd}

D;G `
M

e1 .M

e2 : t def
= 8n � 0. 8 j < n. 8d ,g1,g2,w. (n,d) 2DJDK ^

(j,w,g1,g2) 2 GJGKd =) (j,w,d1(g1(e1)),d2(g2(e2))) 2 E
M

JtKd
D;G `

S

e1 .S

e2 : TST

def
= 8n � 0. 8 j < n. 8d ,g1,g2,w. (n,d) 2DJDK ^

(j,w,g1,g2) 2 GJGKd =) (j,w,d1(g1(e1)),d2(g2(e2))) 2 E
S

D;G `
M

e1 hM

e2 : t def
= D;G `

M

e1 .M

e2 : t ^ D;G `
M

e2 .M

e1 : t
D;G `

S

e1 hS

e2 : TST

def
= D;G `

S

e1 .S

e2 : TST ^ D;G `
S

e2 .S

e1 : TST

Fig. 8. World-indexed semantic interpretations of Scheme and ML expressions and values

ZU064-05-FPR main 27 February 2017 23:52

20 A. Ahmed, L. Kuper and J. Matthews

In Figure 7, we use the metavariable R to range over sets of 4-tuples of this form.3 The
n-approximation of a relation R, written bRc

n

, simply throws out every 4-tuple in R that has
a step index of n or greater. We can then define the n-approximation bYc

n

of a type variable
interpretation Y as the the type variable interpretation that is identical to Y except that the
relation component of each triple in its domain has been n-approximated. Likewise, the
n-approximation bwc

n

of a world w is the world identical to w except that its Y component
has been n-approximated.

The “later” operator I, defined on relations R has the effect of subtracting 1 from the
step index j and approximating the world w at level j�1. For any relation R,

(j,w,e1,e2) 2I R () (j�1,bwc
j�1,e1,e2) 2 R

We use I at three places in the world-indexed relation: the SM boundary case for Scheme,
and the L and 8a. t cases for ML.

An extension w

0 of a world w is one in which the key stores w

0
.K1 and w

0
.K2 are supersets

of w.K1 and w.K2 respectively, and in which for every type variable a in the domain of w.Y,
we have that w

0
.Y(a) = w.Y(a) and that w

0
.C(a) = w.C(a).

We define an ordering w (pronounced “extends”) on pairs of step indices and worlds.
(j

0
,w

0) w (j,w) holds when w

0 is an extension of w and j

0  j. The strict version, A ,
requires that j

0 be strictly less than j. (Overloading terminology, we will refer to these
kinds of extensions as “world extension” as well, even though they are defined on pairs
of step indices and worlds rather than just on worlds.) Intuitively, (j

0
,w

0) represents some
later stage of evaluation — or a future point in time — when more keys have potentially
been generated and in which there are potentially fewer steps left for evaluation.

Wherever the inequalities j

0
< j or j

0  j’ might appear in the naive step-indexed relation
we similarly allow for the possibility of moving to a future world, requiring (j

0
,w

0)A (j,w)
or (j

0
,w

0)w (j,w), respectively, in the world-indexed relation of Figure 8. This happens in
three places: for lambda abstractions in the definition of V

S

, and for the types t1 ! t2 and
8a. t in V

M

J.K. In the expression relations E
S

and E
M

J.K, we use (j� i,w

0)A (j,w), which
can be thought of as replacing an implicit (j� i)< j in the naive step-indexed version.

Keys are generated when ML type abstractions are applied to concrete types. Recall that
V

M

J.K says that two ML type abstractions (that is, values of type 8a. t) are related if, when
we apply them to types that are related according to some R, they produce expressions that
are also related with respect to R. Our world-indexed version of V

M

J.K must account for the
keys generated during that type application. We can add newly generated keys k1 and k2 to a
world w by adding k1 and k2 to the key stores w.K1 and w.K2, extending w.C with a binding
from a to (k1,k2), and extending w.Y with a binding from a to an appropriate triple
(t1,t2,R). We use the notation w

0� (a 7! k1,k2,t1,t2,R) in the definition of V
M

J8a. tK
to indicate an update to all the components of w

0.
We can define the following particularly interesting sets of atoms or 4-tuples:

• SAtom
n

contains all tuples (j,w,e1,e2), where j < n for the given subscript n, and
w.K1 . e1 and w.K2 . e2 are well-typed configurations of type TST.

3 Note that relations R are instances of R. In fact, we could replace every occurrence of R in Figure 7
with R and still have it be correct with respect to the logical relations defined in Figure 8.

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 21

• SAtom is the union of the sets SAtom
n

for all n � 0.
• MAtom

n

[t1,t2] contains all atoms (j,w,e1,e2), where j < n for the given subscript
n, and w.K1 . e1 and w.K2 . e2 are well-typed configurations of the types t1 and t2,
respectively.

• MAtom[t]d is the union of the sets MAtom
n

[d1(t),d2(t)] for all n � 0.

These definitions allow us to specify basic well-formedness and well-foundedness condi-
tions on the tuples that appear in our logical relations. We require that elements of V

S

and of
E

S

belong to SAtom, and that elements of each V
M

JtKd and E
M

JtKd belong to MAtom[t]d
for all types t and type relations d . We use the notation MAtomval

n

[t1,t2] to indicate the
restriction of MAtom

n

[t1,t2] to values. Relations R must be subsets of MAtomval
n

[t1,t2]
for some t1 and t2.

Now that we have correct definitions of our logical relations at last, we can define
relatedness of open expressions (bottom of Figure 8). The relation D;G `

M

e1 .
M

e2 : t ,
which is defined on pairs of open ML terms e1 and e2 such that D;G `

M

e1 : t and
D;G `

M

e2 : t , says that: given a world w, a type interpretation d that respects D, and
two value substitutions g1 and g2 that are related in w and respect G, applying d1 and g1 to
e1 and d2 and g2 to e2 will yield expressions that are related in world w at the type t under
d . The analogous relation D;G `

S

e1 .
S

e2 : TST on open Scheme terms says that given
a world w, a type interpretation d that respects D, and two value substitutions g1 and g2
that are related in world w and respect G, applying d1 and g1 to e1 and d2 and g2 to e2 will
expressions that are related in the Scheme relation at world w.

The relations on open terms in Figure 8 capture the essence of what we mean by “para-
metricity”: two terms are related if we can drop them into related environments (repre-
sented by the two value substitutions g1 and g2 and the type interpretations d and get results
that are still related. Put another way, related terms take related arguments to related results.
In the next section, we present the bridge lemma that will allow us to prove parametricity
for ML terms that contain embedded Scheme terms and vice versa.

4.3 The bridge lemma and fundamental property

The critical piece we will need is a bridge lemma that allows us to carry relatedness in one
language to relatedness in the other:

Lemma 4.1 (bridge lemma)
For all j � 0, worlds w such that w 2 World

j

, type environments D, type relations d such
that D ` d , and types t such that D ` t , both of the following hold:

1. For all e1 and e2,
if (j,w,e1,e2) 2 E

S

then (j,w,(d1(t)
MS e1),(d2(t)

MS e2)) 2 E
M

JtKd .
2. For all e1 and e2,

if (j,w,e1,e2) 2 E
M

JtKd then (j,w,(SM

d1(t)
e1),(SM

d2(t)
e2)) 2 E

S

.

Proof

By induction on t . All cases are straightforward given the induction hypotheses.

ZU064-05-FPR main 27 February 2017 23:52

22 A. Ahmed, L. Kuper and J. Matthews

With the bridge lemma established, the fundamental property (and hence the fact that
logical approximation implies contextual approximation) is essentially standard. We re-
strict the parametricity theorem to key-free terms; otherwise we would have to show that
any sealed value is related to itself at type a which is false. (A conversion strategy is
key-free if it contains no instances of hk; ti for any k. A term is key-free if it contains no
conversion strategies with keys.) This restriction is purely technical, since the claim applies
to open terms where keys may be introduced by closing environments.

Theorem 4.2 (parametricity / fundamental property)
For all key-free terms e and e:

1. If D;G `
M

e : t , then D;G `
M

e .
M

e : t .
2. If D;G `

S

e : TST, then D;G `
S

e.
S

e : TST.

Proof

By simultaneous induction on the derivations D;G `
M

e : t and D;G `
S

e : TST. The
boundary cases both follow from lemma 4.1.

Theorem 4.2 establishes a very strong reasoning principle for our multi-language sys-
tem. Here we give an example of how it can be used by proving that the only values of type
8a. a ! a are now either the function that always diverges, or the function that always
signals an error, or the identity function.

Theorem 4.3

If ; `
M

v : 8a. a ! a , then one of the following holds:

1. 8t , v

0 such that ; `
M

v

0 : t , ((v t) v

0) diverges;
2. 8t , v

0 such that ; `
M

v

0 : t , ((v t) v

0) 7�!⇤
Error: str for some str; or

3. 8t , v

0 such that ; `
M

v

0 : t , ((v t) v

0) 7�!⇤
v

0.

The proof follows from the Fundamental Property and the definition of the logical
relation. As usual, we need to pick a relation R that relates v

0 to itself, but this time under
appropriate step indices and worlds.

References

Ahmed, Amal. (2006). Step-indexed syntactic logical relations for recursive and quantified types.
Pages 69–83 of: Esop. Extended version: Harvard University Technical Report TR-01-06, http:
//ttic.uchicago.edu/

~

amal/papers/lr-recquant-techrpt.pdf.
Findler, Robert Bruce, & Blume, Matthias. (2006). Contracts as pairs of projections.
Findler, Robert Bruce, & Felleisen, Matthias. (2002). Contracts for higher-order functions. Icfp.
Flatt, Matthew. (1997). PLT MzScheme: Language manual. Technical Report TR97-280. Rice

University. http://www.plt-scheme.org/software/mzscheme/.
Harper, Robert. (2010). Practical foundations for programming languages. Working Draft.
Matthews, Jacob, & Findler, Robert Bruce. (2007). Operational semantics for multi-language

programs. Popl. Extended version: University of Chicago Technical Report TR-2007-8, under
review.

Morris, Jr., James H. (1973). Types are not sets. Popl.
Reynolds, John C. (1983). Types, abstraction and parametric polymorphism. Pages 513–523 of: Ifip

congress.

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 23

Sumii, Ejiro, & Pierce, Benjamin. (2004). A bisimulation for dynamic sealing. Popl.
Wadler, Philip. (1989). Theorems for free! Pages 347–359 of: Functional programming languages

and computer architecture (fpca).

ZU064-05-FPR main 27 February 2017 23:52

24 A. Ahmed, L. Kuper and J. Matthews

A Appendix

k[a := hk; ti]

Nat[a := hk; ti] = Nat

k1 ! k2[a := hk; ti] = k1[a := hk; ti]! k2[a := hk; ti]
k⇤[a := hk; ti] = k[a := hk; ti]⇤

(8a 0
. k)[a := hk; ti] = 8a 0

. k[a := hk; ti] (if a 0 6= a)
= 8a. k (if a 0 = a)

a 0[a := hk; ti] = a 0 (if a 0 6= a)
= hk; ti (if a 0 = a)

L[a := hk; ti] = L

hk0; t 0i[a := hk; ti] = hk0; t 0i

e[a := hk; ti]

x[a := hk; ti] = x

(lx : t1. e)[a := hk; ti] = lx : t1[k := t]. e[a := hk; ti]
n[a := hk; ti] = n

nil[a := hk; ti] = nil

fst[a := hk; ti] = fst

rst[a := hk; ti] = rst

(e1 e2)[a := hk; ti] = (e1[a := hk; ti] e2[a := hk; ti])
(op e1 e2)[a := hk; ti] = (op e1[a := hk; ti] e2[a := hk; ti])

(if0 e1 e2 e3)[a := hk; ti] = (if0 e1[a := hk; ti] e2[a := hk; ti] e3[a := hk; ti])
(cons e1 e2)[a := hk; ti] = (cons e1[a := hk; ti] e2[a := hk; ti])

(La 0
. e)[a := hk; ti] = La 0

. e[a := hk; ti] (if a 0 6= a)
= La 0

. e (if a 0 = a)
e t1[a := hk; ti] = e[a := hk; ti] t1[k := t]

(k
MS e)[a := hk; ti] = (k[a:=hk;ti]

MS e[a := hk; ti])

x[a := hk; ti] = x

(lx. e)[a := hk; ti] = lx. e[a := hk; ti]
n[a := hk; ti] = n

nil[a := hk; ti] = nil

fst[a := hk; ti] = fst

rst[a := hk; ti] = rst

(e1 e2)[a := hk; ti] = (e1[a := hk; ti] e2[a := hk; ti])
(op e1 e2)[a := hk; ti] = (op e1[a := hk; ti] e2[a := hk; ti])

(if0 e1 e2 e3)[a := hk; ti] = (if0 e1[a := hk; ti] e2[a := hk; ti] e3[a := hk; ti])
(pd e)[a := hk; ti] = (pd e[a := ha; ti])

(cons e1 e2)[a := hk; ti] = (cons e1[a := hk; ti] e2[a := hk; ti])
(SM

k
e)[a := hk; ti] = (SM

k[a:=hk;ti]
e[a := hk; ti])

Fig. A 1. Sealing substitution on conversion schemes (top) and expressions (bottom)

ZU064-05-FPR main 27 February 2017 23:52

Parametric Polymorphism Through Run-time Sealing 25

D ` t

D ` Nat

D ` t1 D ` t2
D ` t1 ! t2

D ` t
D ` t⇤

D,a ` t
D ` 8a. t

a 2 D
D ` a D ` L

Fig. A 2. Well-formedness of type environments

Appendix: Proofs

1 Preliminaries

1.1 Transitivity of world extension

Lemma 1.1 (transitivity of world extension). For all worlds w,w

0
, w

00
and step indices j, j

0
, j

00
: if (j0, w0) w

(j, w) and (j00, w00) w (j0, w0), then (j00, w00) w (j, w).

Proof. Straightforward, by unfolding definition of w .

1.2 Downward closure of VS

Lemma 1.2 (downward closure of VS). For all j, w, v1, v2:

If (j, w, v1, v2) 2 VS , then for all (j0, w0) w (j, w),
(j0, w0

, v1, v2) 2 VS .

Proof. Straightforward, by unfolding of definition of VS .

1.3 Downward closure of VMJ.K
Lemma 1.3 (downward closure of VM J.K). Let � ` ⌧ and � ` �. For all j, w,v1,v2:

If (j, w,v1,v2) 2 VM J⌧K�, then for all (j0, w0) w (j, w),
(j0, w0

,v1,v2) 2 VM J⌧K�.

Proof. By induction on the derivation� ` ⌧ . The L case relies on downward closure of VS .

1.4 Weakening

Lemma 1.4 (weakening). Let � ` ⌧ and � ` �. For all j, w,v1,v2:

If (j, w,v1,v2) 2 VM J⌧K�,

then for all ↵, ⌧1, ⌧2,R such that ↵ /2 dom(�) and (⌧1, ⌧2,R) 2 SomeRelj ,

(j, w,v1,v2) 2 VM J⌧K�[↵ 7! (⌧1, ⌧2,R)].

Proof. Straightforward from the definition of VM J.K

1.5 Downward closure of DJ.K
Lemma 1.5 (downward closure of DJ.K). If (j, �) 2 DJ�K and j

0  j, then (j0, �) 2 DJ�K.

Proof. Straightforward.

1

1.6 Downward closure of GJ.K
Lemma 1.6 (downward closure of GJ.K). If (j, w, �1, �2) 2 GJ�K� and (j0, w0) w (j, w), then (j0, �) 2
GJ�K�.

Proof. Straightforward from the definition of GJK and downward closure of VS and VM JK.

1.7 World approximation preserves key stores

Lemma 1.7 (world approximation preserves key stores). For all worlds w and approximation indices n, for

i = 1, 2:

If w.Ki = K

0
i, then bwcn.Ki = K

0
i.

Proof. Immediate from the definition of b.cn.

1.8 Step decrease is valid world extension

Lemma 1.8 (step decrease is valid world extension). For all j, w such that w 2 Worldj , (j � 1, bwcj�1) w
(j, w).

Proof. Straightforward from definitions.

1.9 World component update is valid world extension

Lemma 1.9 (world component update is valid world extension). For all j, w,↵, k1, k2, ⌧1, ⌧2,R such that

w 2 Worldj and (⌧1, ⌧2,R) 2 SomeRelj:

(j, w � (↵ 7! k1, k2, ⌧1, ⌧2,R)) w (j, w).

Proof. We’re required to show that the following five conjuncts of the definition of w hold:

• j  j (immediate);

• w � (↵ 7! k1, k2, ⌧1, ⌧2,R) 2 Worldj , which we show as follows:

From the premise w 2 Worldj , we have that w is some tuple (K1,K2, C,) such that C 2 Conc
and rng() ✓ SomeRelj . We need to show that these conditions remain true for the updated world
w � (↵ 7! k1, k2, ⌧1, ⌧2,R):

– (w.C[↵ 7! (k1, k2)]) 2 Conc, which follows from the definition of Conc, since C 2 Conc;

– rng(w. [↵ 7! (⌧1, ⌧2,R)]) = SomeRelj , which follows from rng() ✓ SomeRelj and the
premise that (⌧1, ⌧2,R) 2 SomeRelj .

• w � (↵ 7! k1, k2, ⌧1, ⌧2,R). w bw. cj , which we show as follows:

By the definition of w on type variable interpretations, we must show that for all ↵0 2 dom(bw. cj),
w � (↵ 7! k1, k2, ⌧1, ⌧2,R). (↵0) = bw. cj(↵0).

First note that since w 2 Worldj , bw. cj is equivalent to w. , so we have only to show that for all
↵

0 2 dom(w.), w � (↵ 7! k1, k2, ⌧1, ⌧2,R). (↵0) = w. (↵0).

This follows from the fact that w � (↵ 7! k1, k2, ⌧1, ⌧2,R). = w. [↵ 7! (⌧1, ⌧2,R)].

• w � (↵ 7! k1, k2, ⌧1, ⌧2,R).K1 ◆ w.K1, which follows from the fact that

w � (↵ 7! k1, k2, ⌧1, ⌧2,R).K1 = (w.K1, k1);

2

• w � (↵ 7! k1, k2, ⌧1, ⌧2,R).K2 ◆ w.K2, which follows from the fact that

w � (↵ 7! k1, k2, ⌧1, ⌧2,R).K2 = (w.K2, k2).

2 Compositionality

The compositionality lemma tells us that we have two equivalent ways of interpreting a type ⌧ that contains
occurrences of a type variable ↵. We can replace occurrences of ↵ in ⌧ with ⌧

0 before interpreting ⌧ under
�, or we can choose to interpret ⌧ as it is, occurrences of ↵ and all, but under an extended � that binds ↵ to
(�1(⌧ 0), �2(⌧ 0),VM J⌧ 0K�)—that is, one that binds ↵ to an interpreted ⌧

0.

Lemma 2.1 (compositionality). Let � ` ⌧

0
and � ` � and let R = VM J⌧ 0K�.

Then, for all j, w,v1,v2, ⌧ ,↵ such that �,↵ ` ⌧ :

(j, w,v1,v2) 2 VM J⌧K�[↵ 7! (�1(⌧
0), �2(⌧

0),R)] () (j, w,v1,v2) 2 VM J⌧ [↵ := ⌧

0]K�.

Proof. By induction on derivations �,↵ ` ⌧ . Throughout the proof, we use �

+ as an abbreviation for
�[↵ 7! (�1(⌧ 0), �2(⌧ 0),R)].

• Case: �,↵ ` Nat

Immediate in both directions since Nat contains no type variables.

• Case: �,↵ ` ⌧1 �,↵ ` ⌧2
�,↵ ` ⌧1 ! ⌧2

– =):
Given: (j, w,v1,v2) 2 VM J⌧1 ! ⌧2K�+.
To show: (j, w,v1,v2) 2 VM J(⌧1 ! ⌧2)[↵ := ⌧

0]K�,
or, equivalently, that (j, w,v1,v2) 2 VM J⌧1[↵ := ⌧

0] ! ⌧2[↵ := ⌧

0]K�.
Note that it must be the case that
v1 ⌘ �x : �1(⌧1). e1
and
v2 ⌘ �x : �2(⌧1). e2
for some e1, e2.
Consider arbitrary j

0
, w

0
,v11,v21 such that (j0, w0) w (j, w) and

(j0, w0
,v11,v21) 2 VM J⌧1[↵ := ⌧

0]K�.
Instantiate (j, w,v1,v2) 2 VM J⌧1 ! ⌧2K�+ with j

0
, w

0
,v11,v21. Note that:

⇤ (j0, w0
,v11,v21) 2 VM J⌧1K�+ by the induction hypothesis (in the (= direction), and

⇤ (j0, w0) w (j, w).

Therefore we have that: (j0, w0
, e1[x := v11], e2[x := v21]) 2 EM J⌧2K�+.

To show: (j0, w0
, e1[x := v11], e2[x := v21]) 2 EM J⌧2[↵ := ⌧

0]K�.
The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:
⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

Error: str.

3

To show: w0
.K2 . e2[x := v21] 7�!⇤

Error: str.
Instantiate the first conjunct of (j0, w0

, e1[x := v11], e2[x := v21]) 2 EM J⌧2K�+ with i,
str. Note that:
⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

Error: str.
Therefore we have that w0

.K2.e2[x := v21] 7�!⇤
Error: str, as we were required to show.

2. (Value conjunct): Consider arbitrary i,K

0
1,v

0
1 such that:

⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

K

0
1 . v

0
1.

To show: There exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2 . e2[x := v21] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0),
⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J⌧2[↵ := ⌧

0]K�.
Instantiate the second conjunct of (j0, w0

, e1[x := v11], e2[x := v21]) 2 EM J⌧2K�+ with
i,K

0
1,v

0
1. Note that:

⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

K

0
1 . v

0
1.

Therefore there exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2 . e2[x := v21] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0),
⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J⌧2K�+,

which fulfills our proof obligation since, by the induction hypothesis, we have that (j0 �
i, w

00
,v

0
1,v

0
2) 2 VM J⌧2[↵ := ⌧

0]K�.

– (=:
Given: (j, w,v1,v2) 2 VM J(⌧1 ! ⌧2)[↵ := ⌧

0]K�,
or, equivalently, (j, w,v1,v2) 2 VM J⌧1[↵ := ⌧

0] ! ⌧2[↵ := ⌧

0]K�.
To show: (j, w,v1,v2) 2 VM J⌧1 ! ⌧2K�+.
Note that it must be the case that
v1 ⌘ �x : �1(⌧1[↵ := ⌧

0]). e1
and
v2 ⌘ �x : �2(⌧1[↵ := ⌧

0]). e2
for some e1, e2.
Consider arbitrary j

0
, w

0
,v11,v21 such that (j0, w0) w (j, w) and

(j0, w0
,v11,v21) 2 VM J⌧1K�+.

Instantiate (j, w,v1,v2) 2 VM J⌧1[↵ := ⌧

0] ! ⌧2[↵ := ⌧

0]K� with j

0
, w

0
,v11,v21. Note that:

⇤ (j0, w0
,v11,v21) 2 VM J⌧1[↵ := ⌧

0]K� by the induction hypothesis (in the =) direction),
and

⇤ (j0, w0) w (j, w).

4

Therefore we have that: (j0, w0
, e1[x := v11], e2[x := v21]) 2 EM J⌧2[↵ := ⌧

0]K�.
To show: (j0, w0

, e1[x := v11], e2[x := v21]) 2 EM J⌧2K�+.
The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:
⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

Error: str.
To show: w0

.K2 . e2[x := v21] 7�!⇤
Error: str.

Instantiate the first conjunct of (j0, w0
, e1[x := v11], e2[x := v21]) 2 EM J⌧2[↵ := ⌧

0]K�
with i, str. Note that:
⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

Error: str.
Therefore we have that w0

.K2.e2[x := v21] 7�!⇤
Error: str, as we were required to show.

2. (Value conjunct): Consider arbitrary i,K

0
1,v

0
1 such that:

⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

K

0
1 . v

0
1.

To show: There exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2 . e2[x := v21] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0),
⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J⌧2K�+.

Instantiate the second conjunct of (j0, w0
, e1[x := v11], e2[x := v21]) 2 EM J⌧2[↵ := ⌧

0]K�
with i,K

0
1,v

0
1. Note that:

⇤ i < j

0, and
⇤ w

0
.K1 . e1[x := v11] 7�!i

K

0
1 . v

0
1.

Therefore there exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2 . e2[x := v21] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0),
⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J⌧2[↵ := ⌧

0]K�,
which fulfills our proof obligation since, by the induction hypothesis, we have that (j0 �
i, w

00
,v

0
1,v

0
2) 2 VM J⌧2K�+.

• Case: �,↵ ` ⌧

�,↵ ` ⌧

⇤

– =):
Given: (j, w,v1,v2) 2 VM J⌧⇤K�+.
To show: (j, w,v1,v2) 2 VM J⌧⇤[↵ := ⌧

0]K�.
There are two possibilities to consider:
⇤ v1 ⌘ v2 ⌘ nil.

In this case, we have only to note that ⌧⇤[↵ := ⌧

0] ⌘ (⌧ [↵ := ⌧

0])⇤. Since nil is related to
nil at any list type, under any �, it’s clearly the case that (j, w,v1,v2) 2 VM J⌧ [↵ := ⌧

0]⇤K�,
fulfilling our proof obligation.

5

⇤ v1 ⌘ (cons v11 v12), and
v2 ⌘ (cons v21 v22),
for some v11 and v21 and some v12 and v22.
Expanding the definition of VM J⌧⇤K�+, we have that
(j, w,v11,v21) 2 VM J⌧K�+
and that (j, w,v12,v22) 2 VM J⌧⇤K�+.
So, by the induction hypothesis (in the =) direction), we have that
(j, w,v11,v21) 2 VM J⌧ [↵ := ⌧

0]K�
and that (j, w,v12,v22) 2 VM J⌧⇤[↵ := ⌧

0]K�.
Since ⌧

⇤[↵ := ⌧

0] ⌘ (⌧ [↵ := ⌧

0])⇤, we have that
(j, w,v12,v22) 2 VM J(⌧ [↵ := ⌧

0])⇤K�.
Therefore,
(j, w, (cons v11 v12), (cons v21 v22)) 2 VM J(⌧ [↵ := ⌧

0])⇤K�,
which is equivalent to
(j, w, (cons v11 v12), (cons v21 v22)) 2 VM J⌧⇤[↵ := ⌧

0]K�,
as we were required to show.

– (=:
Given: (j, w,v1,v2) 2 VM J⌧⇤[↵ := ⌧

0]K�.
To show: (j, w,v1,v2) 2 VM J⌧⇤K�+.
We consider both possibilities:

⇤ v1 ⌘ v2 ⌘ nil.
Immediate, since nil is related to nil at any list type and under any �.

⇤ v1 ⌘ (cons v11 v12), and
v2 ⌘ (cons v21 v22),
for some v11 and v21 and some v12 and v22.
Note that ⌧

⇤[↵ := ⌧

0] is equivalent to (⌧ [↵ := ⌧

0])⇤. So, expanding the definition of
VM J(⌧ [↵ := ⌧

0])⇤K�, we have that
(j, w,v11,v21) 2 VM J⌧ [↵ := ⌧

0]K�
and that (j, w,v12,v22) 2 VM J(⌧ [↵ := ⌧

0])⇤K�.
Therefore, by the induction hypothesis (in the (= direction), we have that:
(j, w,v11,v21) 2 VM J⌧K�+
and that (j, w,v12,v22) 2 VM J⌧⇤K�+.
We therefore have that
(j, w,v1,v2) 2 VM J⌧⇤K�+,
as we were required to show.

• Case: �,↵ ` �

�,↵ ` 8↵. �

Immediate in both directions since 8↵. � contains no free occurrences of ↵.

• Case: �,↵,� ` �

�,↵ ` 8�. �

– =):
Given: (j, w,v1,v2) 2 VM J8�. �K�+.
To show: (j, w,v1,v2) 2 VM J(8�. �)[↵ := ⌧

0]K�.
Since � 6= ↵, we know that (8�. �)[↵ := ⌧

0] ⌘ 8�. (�[↵ := ⌧

0]), so it’s equivalent to show that
(j, w,v1,v2) 2 VM J8�. (�[↵ := ⌧

0])K�.

6

Note that it must be the case that
v1 ⌘ ⇤�. e1
and
v2 ⌘ ⇤�. e2.
Consider arbitrary j

0
, w

0
, ⌧1, ⌧2,R

0
, k1, k2 such that:

⇤ (j0, w0) w (j, w),
⇤ (⌧1, ⌧2,R0) 2 SomeRelj0 ,
⇤ k1 /2 w

0
.K1, and

⇤ k2 /2 w

0
.K2.

Instantiate (j, w,v1,v2) 2 VM J8�. �K�+ with j

0
, w

0
, ⌧1, ⌧2,R

0
, k1, k2. Note that:

⇤ (j0, w0) w (j, w),
⇤ (⌧1, ⌧2,R0) 2 SomeRelj0 ,
⇤ k1 /2 w

0
.K1, and

⇤ k2 /2 w

0
.K2.

We therefore have that:
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�K�+[� 7! (⌧1, ⌧2,R0)].

To show:
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)].
The proof is in two parts.
(Note that the K1 and K2 components of w0�(� 7! k1, k2, ⌧1, ⌧2,R

0) are equivalent to w

0
.K1]

{k1} and w

0
.K2]{k2}, respectively. Therefore, in the below we write w0

.K1]{k1} and w

0
.K2]

{k2} in place of (w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)).K1 and (w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0)).K2.)

1. (Error conjunct): Consider arbitrary i, str such that:
⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

Error: str.
To show: w0

.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤
Error: str.

Instantiate the first conjunct of
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�K�+[� 7! (⌧1, ⌧2,R0)]

with i, str. Note that:
⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

Error: str.
Therefore we have that w0

.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤
Error: str, as we were

required to show.
2. (Value conjunct): Consider arbitrary i,K

0
1,v

0
1 such that:

⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

K

0
1 . v

0
1.

To show: There exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)),

7

⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)].
Instantiate the second conjunct of
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�K�+[� 7! (⌧1, ⌧2,R0)]

with i,K

0
1,v

0
1. Note that:

⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

K

0
1 . v

0
1.

Therefore there exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)),

⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J�K�+[� 7! (⌧1, ⌧2,R0)],

which fulfills our proof obligation, since, by the induction hypothesis, we have that (j0 �
i, w

00
,v

0
1,v

0
2) 2 VM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)].

– (=:
Given: (j, w,v1,v2) 2 VM J(8�. �)[↵ := ⌧

0]K�.
To show: (j, w,v1,v2) 2 VM J8�. �K�+.
Since � 6= ↵, we know that (8�. �)[↵ := ⌧

0] ⌘ 8�. �[↵ := ⌧

0], so we have that
(j, w,v1,v2) 2 VM J8�. �[↵ := ⌧

0]K�.
Note that it must be the case that
v1 ⌘ ⇤�. e1
and
v2 ⌘ ⇤�. e2
for some e1, e2.
Consider arbitrary j

0
, w

0
, ⌧1, ⌧2,R

0
, k1, k2 such that:

⇤ (j0, w0) w (j, w),
⇤ (⌧1, ⌧2,R0) 2 SomeRelj0 , and
⇤ k1 /2 w

0
.K1, and

⇤ k2 /2 w

0
.K2.

Instantiate (j, w,v1,v2) 2 VM J8�. �[↵ := ⌧

0]K� with j

0
, w

0
, ⌧1, ⌧2,R

0
, k1, k2. Note that:

⇤ (j0, w0) w (j, w),
⇤ (⌧1, ⌧2,R0) 2 SomeRelj0 , and
⇤ k1 /2 w

0
.K1, and

⇤ k2 /2 w

0
.K2.

We therefore have that:
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)].
To show:

8

(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2

I EM J�K�+[� 7! (⌧1, ⌧2,R0)].
The proof is in two parts.
(As in the =) direction, the K1 and K2 components of w0� (� 7! k1, k2, ⌧1, ⌧2,R

0) are equiv-
alent to w

0
.K1]{k1} and w

0
.K2]{k2}, respectively. Therefore, in the below we write w0

.K1]
{k1} and w

0
.K2]{k2} in place of (w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0)).K1 and (w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)).K2.)

1. (Error conjunct): Consider arbitrary i, str such that:
⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

Error: str.
To show: w0

.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤
Error: str.

Instantiate the first conjunct of
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)]
with i, str. Note that:
⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

Error: str.
Therefore we have that w0

.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤
Error: str, as we were

required to show.
2. (Value conjunct): Consider arbitrary i,K

0
1,v

0
1 such that:

⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

K

0
1 . v

0
1.

To show: There exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)),

⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J�K�+[� 7! (⌧1, ⌧2,R0)].

Instantiate the second conjunct of
(j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R

0), e1[� := hk1; ⌧1i], e2[� := hk2; ⌧2i]) 2
I EM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)]
with i,K

0
1,v

0
1. Note that:

⇤ i < j

0, and
⇤ w

0
.K1] {k1} . e1[� := hk1; ⌧1i] 7�!i

K

0
1 . v

0
1.

Therefore there exist K 0
2,v

0
2, w

00 such that:
⇤ w

0
.K2] {k2} . e2[� := hk2; ⌧2i] 7�!⇤

K

0
2 . v

0
2,

⇤ (j0 � i, w

00) w (j0, w0 � (� 7! k1, k2, ⌧1, ⌧2,R
0)),

⇤ w

00
.K1 = K

0
1,

⇤ w

00
.K2 = K

0
2, and

⇤ (j0 � i, w

00
,v

0
1,v

0
2) 2 VM J�[↵ := ⌧

0]K�[� 7! (⌧1, ⌧2,R0)],
which fulfills our proof obligation, since, by the induction hypothesis, we have that (j0 �
i, w

00
,v

0
1,v

0
2) 2 VM J�K�+[� 7! (⌧1, ⌧2,R0)].

• Case: ↵ 2 �,↵

�,↵ ` ↵

9

– =):
Given: (j, w,v1,v2) 2 VM J↵K�+.
To show: (j, w,v1,v2) 2 VM J↵[↵ := ⌧

0]K�,
or, equivalently, that (j, w,v1,v2) 2 VM J⌧ 0K�.
From the definition of VM J↵K�+, we have that
(j, w,v1,v2) 2 �

+(↵).R.
Since �

+(↵) = (�1(⌧ 0), �2(⌧ 0),R), we have that �+(↵).R = R.
Therefore (j, w,v1,v2) 2 R, so (j, w,v1,v2) 2 VM J⌧ 0K�, as we were required to show.

– (=:
Given: (j, w,v1,v2) 2 VM J↵[↵ := ⌧

0]K�.
To show: (j, w,v1,v2) 2 VM J↵K�+.
Since VM J↵[↵ := ⌧

0]K� ⌘ VM J⌧ 0K�,
we have that (j, w,v1,v2) 2 R.
Since �

+(↵).R ⌘ R, then, we have that (j, w,v1,v2) 2 �

+(↵).R.
Therefore (j, w,v1,v2) 2 VM J↵K�+, as required.

• Case: � 2 �,↵

�,↵ ` �

– =):
Given: (j, w,v1,v2) 2 VM J�K�+.
To show: (j, w,v1,v2) 2 VM J�[↵ := ⌧

0]K�,
or, equivalently, that (j, w,v1,v2) 2 VM J�K�.
From the definition of VM J�K�+, we have that
(j, w,v1,v2) 2 �

+(�).R.
Since �

+ is defined as �[↵ 7! (�1(⌧ 0), �2(⌧ 0),R)]—that is, �+ is simply � extended with a
binding for ↵—we know that �+(�).R is equivalent to �(�).R.
So (j, w,v1,v2) 2 �(�).R.
Therefore (j, w,v1,v2) 2 VM J�K�, as we were required to show.

– (=:
Given: (j, w,v1,v2) 2 VM J�[↵ := ⌧

0]K�.
To show: (j, w,v1,v2) 2 VM J�K�+.
Since � is a type variable, �[↵ := ⌧

0] ⌘ �, so we have that
(j, w,v1,v2) 2 VM J�K�.
Therefore, (j, w,v1,v2) 2 �(�).R.
Since �(�).R ⌘ �

+(�).R, we have that, (j, w,v1,v2) 2 �

+(�).R.
Therefore (j, w,v1,v2) 2 VM J�K�+.

• Case: �,↵ ` L

Immediate in both directions since L contains no type variables.

10

3 Bridge lemma

Lemma 3.1 (bridge lemma). For all j � 0, worlds w such that w 2 Worldj , type environments �, type

relations � such that � ` �, and types ⌧ such that � ` ⌧ , both of the following hold:

1. For all e1 and e2,

if (j, w, e1, e2) 2 ES then (j, w, (�1(⌧)MS e1), (�2(⌧)MS e2)) 2 EM J⌧K�.

2. For all e1 and e2,

if (j, w, e1, e2) 2 EM J⌧K� then (j, w, (SM �1(⌧)
e1), (SM

�2(⌧)
e2)) 2 ES .

Proof. We prove (1) and (2) simultaneously, by induction on derivations� ` ⌧ .

• Case (1): � ` Nat

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(Nat)
MS e1), (�2(Nat)

MS e2)) 2 EM JNatK�.

Since �1(Nat) ⌘ �2(Nat) ⌘ Nat, it’s equivalent to show that

(j, w, (Nat
MS e1), (Nat

MS e2)) 2 EM JNatK�.

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (Nat

MS e1) 7�!i
Error: str.

To show: w.K2 . (Nat
MS e2) 7�!⇤

Error: str.
From the operational semantics, there are two ways that w.K1 . (Nat

MS e1) might have eval-
uated to Error: str: (a) during the evaluation of e1, or (b) after e1 has evaluated to some non-
number value v1, raising Error: non-num. We consider both these possibilities:

(a) w.K1 . e1 7�!i
Error: str.

Instantiate the first conjunct of the premise (j, w, e1, e2) 2 ES with i, str. Since i < j, we
have that w.K2 . e2 7�!⇤

Error: str.
It follows that w.K2 . (Nat

MS e2) 7�!⇤
Error: str, as we were required to show.

(b) w.K1 . e1 7�!i1
K

0
1 . v1 and K

0
1 . (

Nat
MS v1) 7�!i2

Error: non-num and i = i1 + i2.
Instantiate the second conjunct of the premise (j, w, e1, e2) 2 ES with i1,K

0
1, v1. Note that:

– i1 < j, and
– w.K1 . e1 7�!i1

K

0
1 . v1.

Therefore, there exist K 0
2, v2, w

0 such that:
– w.K2 . e2 7�!⇤

K

0
2 . v2,

– (j � i1, w
0) w (j, w),

– w.K1 = K

0
1,

– w.K2 = K

0
2, and

– (j � i1, w
0
, v1, v2) 2 VS .

11

Since v1 and v2 are related and we know that v1 is a non-num, we also know that v2 is a
non-num. Therefore, from above and from the operational semantics, we have that:

w.K2 . (Nat
MS e2) 7�!⇤

K

0
2 . (

Nat
MS v2)

7�!⇤
Error: non-num,

as we were required to show.

2. (Value conjunct):
Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . (Nat

MS e1) 7�!i
K

0
1 . v1.

To show: There exist K 0
2,v2, w

0 such that:

– w.K2 . (Nat
MS e2) 7�!⇤

K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
,v1,v2) 2 VM JNatK�.

Since w.K1 . (Nat
MS e1) 7�!i

K

0
1 . v1, from the operational semantics it follows that there

exist i1, n, and n such that

w.K1 . (Nat
MS e1) 7�!i1

K

0
1 . (

Nat
MS n)

7�!1
K

0
1 . n.

(Note that the key store is already K

0
1 after i1 steps, since no keys can be generated during the

one-step transition from (Nat
MS n) to n.)

Therefore, it follows that

– w.K1 . e1 7�!i1
K

0
1 . n,

– v1 = n, and
– i = i1 + 1.

Instantiate the second conjunct of (j, w, e1, e2) 2 ES with i1,K
0
1, n. Note that:

– i1 < j (since i1 = i� 1 and i < j), and
– w.K1 . e1 7�!i1

K

0
1 . n (from above).

Therefore, there exist K 00
2 , v2, w

00 such that:

– w.K2 . e2 7�!⇤
K

00
2 . v2,

– (j � i1, w
00) w (j, w),

– w

00
.K1 = K

0
1,

– w

00
.K2 = K

00
2 , and

– (j � i1, w
00
, n, v2) 2 VS .

Note that by the definition of VS , v2 must be n.
Choose:

– K

0
2 = K

00
2 ,

– v2 = n,
– w

0 = bw00cj�i.

12

To show:

– w.K2 . (Nat
MS e2) 7�!⇤

K

00
2 . n, which follows from above, since we have that

w.K2 . (Nat
MS e2) 7�!⇤

K

00
2 . (Nat

MS n)
7�!1

K

00
2 . n;

– (j � i, bw00cj�i) w (j, w), which follows from Lemma 1.1, since:
⇤ (j � i1, w

00) w (j, w) (from above), and
⇤ (j � i, bw00cj�i) w (j � i1, w

00) (because (j � i)  (j � i1), since i1 < i);
– bw00cj�i.K1 = K

0
1, which follows from Lemma 1.7 and from above;

– bw00cj�i.K2 = K

00
2 , which follows from Lemma 1.7 and from above;

– (j � i, bw00cj�i,v1,v2) 2 VM JNatK� (immediate from the definition of VM JNatK, since
v1 = v2 = n).

• Case (2): � ` Nat

Given: (j, w, e1, e2) 2 EM JNatK�.

To show: (j, w, (SM �1(Nat)
e1), (SM

�2(Nat)
e2)) 2 ES .

Since �1(Nat) ⌘ �2(Nat) ⌘ Nat, it’s equivalent to show that

(j, w, (SMNat
e1), (SM

Nat
e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct:)
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (SM

Nat
e1) 7�!i

Error: str.

To show: w.K2 . (SM
Nat

e2) 7�!⇤
Error: str.

From the operational semantics, for w.K1 . (SM
Nat

e1) to have evaluated to Error: str, there
must have been an error during the evaluation of e1. (The alternative would be for e1 to have
evaluated to some non-number value v1, raising Error: non-num, but that situation cannot occur
since since e1 has type Nat.) Therefore it must be the case that
w.K1 . e1 7�!i

Error: str.
Instantiate the first conjunct of the premise (j, w, e1, e2) 2 EM J⌧K� with i, str. Since i < j, we
have that w.K2 . e2 7�!⇤

Error: str.
It follows that w.K2 . (SM

Nat
e2) 7�!⇤

Error: str, as we were required to show.

2. (Value conjunct:)
Consider arbitrary i,K

0
1, v1 such that:

– i < j, and
– w.K1 . (SM

Nat
e1) 7�!i

K

0
1 . v1.

To show: There exist K 0
2, v2, w

0 such that:

– w.K2 . (SM
Nat

e2) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

13

– w

0
.K2 = K

0
2, and

– (j � i, w

0
, v1, v2) 2 VS .

Since w.K1 . (SMNat
e1) 7�!i

K

0
1 . v1, from the operational semantics it follows that there

exist i1, n, and n such that

w.K1 . (SM
Nat

e1) 7�!i1
K

0
1 . (SM

Nat
n)

7�!1
K

0
1 . n.

(Note that the key store is already K

0
1 after i1 steps, since no keys can be generated during the

one-step transition from (SMNat
n) to n.)

Therefore, it follows that

– w.K1 . e1 7�!i1
K

0
1 . n,

– v1 = n, and
– i = i1 + 1.

Instantiate the second conjunct of (j, w, e1, e2) 2 EM JNatK� with i1,K
0
1, n. Note that:

– i1 < j (since i1 = i� 1 and i < j), and
– w.K1 . e1 7�!i1

K

0
1 . n (from above).

Therefore, there exist K 00
2 ,v2, w

00 such that:

– w.K2 . e2 7�!⇤
K

00
2 . v2,

– (j � i1, w
00) w (j, w),

– w

00
.K1 = K

0
1,

– w

00
.K2 = K

00
2 , and

– (j � i1, w
00
, n,v2) 2 VM JNatK�.

Note that by the definition of VM JNatK, v2 must be n.
Choose:

– K

0
2 = K

00
2 ,

– v2 = n,
– w

0 = bw00cj�i.

To show:

– w.K2 . (SM
Nat

e2) 7�!⇤
K

00
2 . n, which follows from above, since we have that

w.K2 . (SM
Nat

e2) 7�!⇤
K

00
2 . (SMNat

n)
7�!1

K

00
2 . n;

– (j � i, bw00cj�i) w (j, w), which follows from Lemma 1.1, since:
⇤ (j � i1, w

00) w (j, w) (from above), and
⇤ (j � i, bw00cj�i) w (j � i1, w

00) (because (j � i)  (j � i1), since i1 < i);
– bw00cj�i.K1 = K

0
1, which follows from Lemma 1.7 and from above;

– bw00cj�i.K2 = K

00
2 , which follows from Lemma 1.7 and from above;

– (j � i, bw00cj�i, v1, v2) 2 VS (immediate from the definition of VS , since v1 = v2 = n).

14

• Case (1): � ` ⌧1 � ` ⌧2
� ` ⌧1 ! ⌧2

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(⌧1 ! ⌧2)
MS e1), (�2(⌧1 ! ⌧2)

MS e2)) 2 EM J⌧1 ! ⌧2K�.

Equivalently, show:

(j, w, (�1(⌧1) ! �1(⌧2)
MS e1), (�2(⌧1) ! �2(⌧2)

MS e2)) 2 EM J⌧1 ! ⌧2K�.

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (�1(⌧1) ! �1(⌧2)

MS e1) 7�!i
Error: str.

To show: w.K2 . (�2(⌧1) ! �2(⌧2)
MS e2) 7�!⇤

Error: str.
Straightforward from the operational semantics and above assumptions.

2. (Value conjunct): Straightforward.

• Case (2): � ` ⌧1 � ` ⌧2
� ` ⌧1 ! ⌧2

Given: (j, w, e1, e2) 2 EM J⌧1 ! ⌧2K�.

To show: (j, w, (SM �1(⌧1 ! ⌧2)
e1), (SM

�2(⌧1 ! ⌧2)
e2)) 2 ES .

Equivalently, show: (j, w, (SM �1(⌧1) ! �1(⌧2)
e1), (SM

�2(⌧1) ! �2(⌧2)
e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (SM

�1(⌧1) ! �1(⌧2)
e1) 7�!i

Error: str.

To show: w.K2 . (SM
�2(⌧1) ! �2(⌧2)

e2) 7�!⇤
Error: str.

Straightforward from the operational semantics and above assumptions.

2. (Value conjunct): Straightforward.

• Case (1): � ` ⌧

� ` ⌧

⇤

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(⌧⇤)MS e1), (�2(⌧
⇤)
MS e2)) 2 EM J⌧⇤K�.

Equivalently, show: (j, w, ((�1(⌧))
⇤
MS e1), ((�2(⌧))

⇤
MS e2)) 2 EM J⌧⇤K�.

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . ((�1(⌧))

⇤
MS e1) 7�!i

Error: str.

15

To show: w.K2 . ((�2(⌧))
⇤
MS e2) 7�!⇤

Error: str.
Straightforward from the operational semantics and above assumptions.

2. (Value conjunct):
Straightforward.

• Case (2): � ` ⌧

� ` ⌧

⇤

Given: (j, w, e1, e2) 2 EM J⌧⇤K�.

To show: (j, w, (SM �1(⌧⇤)
e1), (SM

�2(⌧⇤)
e2)) 2 ES .

Equivalently, show: (j, w, (SM (�1(⌧))
⇤
e1), (SM

(�2(⌧))
⇤
e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (SM

(�1(⌧))
⇤
e1) 7�!i

Error: str.

To show: w.K2 . (SM
(�2(⌧))

⇤
e2) 7�!⇤

Error: str.
Straightforward from the operational semantics and above assumptions.

2. (Value conjunct):
Straightforward.

• Case (1): �,↵ ` ⌧

� ` 8↵. ⌧

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(8↵. ⌧)MS e1), (�2(8↵. ⌧)MS e2)) 2 EM J8↵. ⌧K�.

The proof is in two parts:

1. (Error conjunct):
Straightforward.

2. (Value conjunct):
Straightforward.

• Case (2): �,↵ ` ⌧

� ` 8↵. ⌧

Given: (j, w, e1, e2) 2 EM J8↵. ⌧K�.

To show: (j, w, (SM �1(8↵. ⌧)
e1), (SM

�2(8↵. ⌧)
e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct):
Straightforward.

2. (Value conjunct):
Straightforward.

16

• Case (1): ↵ 2 �
� ` ↵

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(↵)MS e1), (�2(↵)MS e2)) 2 EM J↵K�.

The proof is in two parts:

1. (Error conjunct):
Straightforward.

2. (Value conjunct):
Straightforward.

• Case (2): ↵ 2 �
� ` ↵

Given: (j, w, e1, e2) 2 EM J↵K�.

To show: (j, w, (SM �1(↵)
e1), (SM

�2(↵)
e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct):
Straightforward.

2. (Value conjunct):
Straightforward.

• Case (1): � ` L

Given: (j, w, e1, e2) 2 ES .

To show: (j, w, (�1(L)MS e1), (�2(L)MS e2)) 2 EM JLK�.

Since �1(L) ⌘ �2(L) ⌘ L, it’s equivalent to show that

(j, w, (L

MS e1), (L

MS e2)) 2 EM JLK�.

The proof is in two parts:

1. (Error conjunct):
Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (L

MS e1) 7�!i
Error: str.

To show: w.K2 . (L

MS e2) 7�!⇤
Error: str.

From the operational semantics, for w.K1 .(L

MS e1) to have evaluated to Error: str, there must
have been an error during the evaluation of e1. (If e1 evaluated to a value v1 without error, then
the resulting (L

MS v1) would also be a value and hence unable to step to Error: str.) Therefore
it must be the case that
w.K1 . e1 7�!i

Error: str.
Instantiate the first conjunct of the premise (j, w, e1, e2) 2 ES with i, str. Since i < j, we have
that w.K2 . e2 7�!⇤

Error: str.
It follows that w.K2 . (L

MS e2) 7�!⇤
Error: str, as we were required to show.

17

2. (Value conjunct):
Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . (L

MS e1) 7�!i
K

0
1 . v1.

To show: There exist K 0
2,v2, w

0 such that:
– w.K2 . (L

MS e2) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
,v1,v2) 2 VM JLK�.

Since w.K1 . (L

MS e1) 7�!i
K

0
1 .v1, from the operational semantics it follows that there exists

v1 such that
w.K1 . (L

MS e1) 7�!i
K

0
1 . (

L

MS v1).

Therefore, it follows that
w.K1 . e1 7�!i

K

0
1 . v1.

Also note that by the operational semantics, v1 must be (L

MS v1), since (L

MS v1) is a value.
Instantiate the second conjunct of (j, w, e1, e2) 2 ES with i,K

0
1, v1. Note that:

– i < j, and
– w.K1 . e1 7�!i

K

0
1 . v1 (from above).

Therefore, there exist K 00
2 , v2, w

00 such that:

– w.K2 . e2 7�!⇤
K

00
2 . v2,

– (j � i, w

00) w (j, w),
– w

00
.K1 = K

0
1,

– w

00
.K2 = K

00
2 , and

– (j � i, w

00
, v1, v2) 2 VS .

Choose:
– K

0
2 = K

00
2 ,

– v2 = (L

MS v2),
– w

0 = w

00.
To show:

– w.K2 . (L

MS e2) 7�!⇤
K

00
2 . (L

MS v2) (which follows from above, since we have that
w.K2 . e2 7�!⇤

K

00
2 . v2);

– (j � i, w

00) w (j, w) (immediate from above);
– w

00
.K1 = K

0
1 (immediate from above);

– w

00
.K2 = K

00
2 (immediate from above);

– (j � i, w

00
, (L

MS v1), (L

MS v2)) 2 VM JLK�, which we show as follows:
Since (j � i, w

00
, v1, v2) 2 VS (from above), we have from Lemma 1.2 that (j � i �

1, bw00cj�i�1, v1, v2) 2 VS .
Therefore, by definition of I,
(j � i, w

00
, v1, v2) 2 I VS .

So, by definition of VM JLK,
(j � i, w

00
, (L

MS v1), (L

MS v2)) 2 VM JLK�.

18

• Case (2): � ` L

Given: (j, w, e1, e2) 2 EM JLK�.

To show: (j, w, (SM �1(L)
e1), (SM

�2(L)
e2)) 2 ES .

Since �1(L) ⌘ �2(L) ⌘ L, it’s equivalent to show that

(j, w, (SM L

e1), (SM
L

e2)) 2 ES .

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (SM

L

e1) 7�!i
Error: str.

To show: w.K2 . (SM
L

e2) 7�!⇤
Error: str.

From the operational semantics, there are two ways that w.K1 . (SM
L

e1) might have evaluated
to Error: str: (a) during the evaluation of e1, or (b) after e1 has evaluated to some value v1. We
consider both these possibilities:

(a) w.K1 . e1 7�!i
Error: str.

Instantiate the first conjunct of the premise (j, w, e1, e2) 2 EM JLK� with i, str. Since i < j,
we have that w.K2 . e2 7�!⇤

Error: str.
It follows that w.K2 . (SM

L

e2) 7�!⇤
Error: str, as we were required to show.

(b) w.K1 . e1 7�!i1
K

0
1 . v1 and K

0
1 . (SM

L

v1) 7�!i2
Error: str and i = i1 + i2.

Instantiate the second conjunct of the premise (j, w, e1, e2) 2 EM JLK� with i1,K
0
1,v1.

Note that:
– i1 < j, and
– w.K1 . e1 7�!i1

K

0
1 . v1.

Therefore, there exist K 0
2,v2, w

0 such that:
– w.K2 . e2 7�!⇤

K

0
2 . v2,

– (j � i1, w
0) w (j, w),

– w.K1 = K

0
1,

– w.K2 = K

0
2, and

– (j � i1, w
0
,v1,v2) 2 VM JLK�.

Therefore, by definition of VM JLK, v1 and v2 must be (L

MS v1) and (L

MS v2) for some
Scheme values v1 and v2 respectively. But then, by the operational semantics, we have that

K

0
1 . (SM

L

v1) ⌘ K

0
1 . (SM

L (L

MS v1)) 7�!1
K

0
1 . v1,

contradicting our earlier assumption that K 0
1 . (SM

L

v1) 7�!i2
Error: str. Therefore this

case cannot occur.

2. (Value conjunct):
Consider arbitrary i,K

0
1, v1 such that:

– i < j, and
– w.K1 . (SM

L

e1) 7�!i
K

0
1 . v1.

To show: There exist K 0
2, v2, w

0 such that:

– w.K2 . (SM
L

e2) 7�!⇤
K

0
2 . v2,

19

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
, v1, v2) 2 VS .

Since w.K1 . (SM
L

e1) 7�!i
K

0
1 . v1, from the operational semantics it follows that there exist

i1 and v1 such that

w.K1 . (SM
L

e1) 7�!i1
K

0
1 . (SM

L

v1)
⌘ K

0
1 . (SM

L (L

MS v1))
7�!1

K

0
1 . v1.

(Note that the key store is already K

0
1 after i1 steps, since no keys can be generated during the

one-step transition from (SM L (L

MS v1)) to v1.)
Therefore, it follows that

– w.K1 . e1 7�!i1
K

0
1 . v1,

– v1 = (L

MS v1), and
– i = i1 + 1.

Instantiate the second conjunct of (j, w, e1, e2) 2 EM JLK� with i1,K
0
1,v1. Note that:

– i1 < j (since i1 = i� 1 and i < j), and
– w.K1 . e1 7�!i1

K

0
1 . v1 (from above).

Therefore, there exist K 00
2 ,v2, w

00 such that:

– w.K2 . e2 7�!⇤
K

00
2 . v2,

– (j � i1, w
00) w (j, w),

– w

00
.K1 = K

0
1,

– w

00
.K2 = K

00
2 , and

– (j � i1, w
00
,v1,v2) 2 VM JLK�.

Since (j � i1, w
00
,v1,v2) 2 VM JLK� and v1 = (L

MS v1), it follows from the definition of
VM JLK that there exists v02 such that:

– v2 = (L

MS v

0
2), and

– (j � i1, w
00
, v1, v

0
2) 2 I VS .

Choose:

– K

0
2 = K

00
2 ,

– v2 = v

0
2,

– w

0 = bw00cj�i.

To show:

– w.K2 . (SM
L

e2) 7�!⇤
K

00
2 . v

0
2, which follows from above, since we have that

w.K2 . (SM
L

e2) 7�!⇤
K

00
2 . (SM L

v2)
⌘ K

00
2 . (SM L (L

MS v

0
2))

7�!1
K

00
2 . v

0
2;

– (j � i, bw00cj�i) w (j, w), which follows from Lemma 1.1, since:
⇤ (j � i1, w

00) w (j, w) (from above), and

20

⇤ (j � i, bw00cj�i) w (j � i1, w
00) (because (j � i)  (j � i1), since i1 < i);

– bw00cj�i.K1 = K

0
1, which follows from Lemma 1.7 and from above;

– bw00cj�i.K2 = K

00
2 , which follows from Lemma 1.7 and from above;

– (j � i, bw00cj�i, v1, v
0
2) 2 VS , which we show as follows:

Since (j � i1, w
00
, v1, v

0
2) 2 I VS , we have by definition of I that

(j � i1 � 1, bw00cj�i1�1, v1, v
0
2) 2 VS .

Therefore, since j � i1 � 1 = j � (i1 + 1) = j � i,
(j � i, bw00cj�i, v1, v

0
2) 2 VS , as we were required to show.

4 Parametricity / fundamental property

Theorem 4.1 (parametricity / fundamental property). For all key-free terms e and e:

1. If �;� `M e : ⌧ , then �;� `M e .M e : ⌧ .

2. If �;� `S e : TST, then �;� `S e .S e : TST.

Proof. By simultaneous induction on the derivations�;� `M e : ⌧ and �;� `S e : TST.

• Case (MVar): �;�,x : ⌧ `M x : ⌧

To show: �;�,x : ⌧ `M x .M x : ⌧ .

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(x)), �2(�2(x))) 2 EM J⌧K�, or, equivalently (since there are no type variables
in x), that (j, w, �1(x), �2(x)) 2 EM J⌧K�
The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . �1(x) 7�!i

Error: str.

But �1(x) is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . �1(x) 7�!i

K

0
1 . v1.

Since �1(x) is a value, it must be the case that i = 0 and v1 = �1(x). Therefore K

0
1 = w.K1,

since no new keys can be generated in 0 steps.
Choose:

21

– v2 = �2(x),
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . �2(x) 7�!⇤
w.K2 . �2(x),

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w, �1(x), �2(x)) 2 VM J⌧K�.

The first four of these conjuncts are immediate, and the last follows from the premise that
(j, w, �1, �2) 2 GJ�K�.

• Case (MAbs): �;�,x : ⌧1 `M e : ⌧2
�;� `M �x : ⌧1. e : ⌧1 ! ⌧2

To show: �;� `M �x : ⌧1. e .M �x : ⌧1. e : ⌧1 ! ⌧2.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(�x : ⌧1. e)), �2(�2(�x : ⌧1. e))) 2 EM J⌧1 ! ⌧2K�, or, equivalently, that

(j, w,�x : �1(⌧1). �1(�1(e)),�x : �2(⌧1). �2(�2(e))) 2 EM J⌧1 ! ⌧2K�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . �x : �1(⌧1). �1(�1(e)) 7�!i

Error: str.

But �x : �1(⌧1). �1(�1(e)) is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . �x : �1(⌧1). �1(�1(e)) 7�!i

K

0
1 . v1.

Since �x : �1(⌧1). �1(�1(e)) is a value, it must be the case that i = 0 and v1 = �x :
�1(⌧1). �1(�1(e)). Therefore K

0
1 = w.K1, since no new keys can be generated in 0 steps.

Choose:

– v2 = �x : �2(⌧1). �2(�2(e)),
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . �x : �2(⌧1). �2(�2(e)) 7�!⇤
w.K2 . �x : �2(⌧1). �2(�2(e)),

– (j, w) w (j, w),

22

– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w,�x : �1(⌧1). �1(�1(e)),�x : �2(⌧1). �2(�2(e))) 2 VM J⌧1 ! ⌧2K�.

The first four conjuncts are immediate, and the last we show as follows:
Consider arbitrary (j0, w0

,v1,v2) 2 VM J⌧1K� such that (j0, w0) w (j, w).
To show: (j0, w0

, �1(�1(e))[x := v1], �2(�2(e))[x := v2]) 2 EM J⌧2K�.
Applying the induction hypothesis to �;�,x : ⌧1 `M e : ⌧2, we have that �;�,x : ⌧1 `M

e .M e : ⌧2,
which we instantiate with n, j

0
, �, �1[x := v1], �2[x := v2], w0. Note that:

– n � 0,
– j

0
< n (since j

0  j and j < n),
– (n, �) 2 DJ�K, and
– (j0, w0

, �1[x := v1], �2[x := v2]) 2 GJ�,x : ⌧1K�, which follows from:
⇤ (j0, w0

, �1, �2) 2 GJ�K�, by downward closure of GJ.K, and
⇤ (j0, w0

,v1,v2) 2 VM J⌧1K�, by downward closure of VM J.K.
We therefore have that (j0, w0

, �1(�1[x := v1](e)), �2(�2[x := v2](e))) 2 EM J⌧2K�, which is
equivalent to
(j0, w0

, �1(�1(e))[x := v1], �2(�2(e))[x := v2]) 2 EM J⌧2K�, as we were required to show.

• Case (MApp): �;� `M e1 : ⌧1 ! ⌧2 �;� `M e2 : ⌧1
�;� `M (e1 e2) : ⌧2

To show: �;� `M (e1 e2) .M (e1 e2) : ⌧2.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(e1 e2)), �2(�2(e1 e2))) 2 EM J⌧2K�, or, equivalently,

(j, w, (�1(�1(e1)) �1(�1(e2))), (�2(�2(e1)) �2(�2(e2)))) 2 EM J⌧2K�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:
– i < j, and
– w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i

Error: str.
To show: w.K2 . (�2(�2(e1)) �2(�2(e2))) 7�!⇤

Error: str.
By the operational semantics, there are three cases to consider, corresponding to the three times
during the evaluation of w.K1 . (�1(�1(e1)) �1(�1(e2))) during which an error could be raised:
during the evaluation of the function, during the evaluation of the argument, or during the eval-
uation of the body of the function.

(a) w.K1 . (�1(�1(e1))) 7�!i
Error: str.

Applying the induction hypothesis to �;� `M e1 : ⌧1 ! ⌧2, we have that �;� `M

e1 .M e1 : ⌧1 ! ⌧2, which we instantiate with n, j, �, �1, �2, w. Note that:

23

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧1 ! ⌧2K�. Instantiate the first conjunct of
this with i, str. Note that:

– i < j, and
– w.K1 . (�1(�1(e1))) 7�!i

Error: str.
Therefore w.K2 . (�2(�2(e1))) 7�!⇤

Error: str.
It follows that w.K2 . (�2(�2(e1)) �2(�2(e2))) 7�!⇤

Error: str, as we were required to
show.

(b) w.K1 . (�1(�1(e1))) 7�!i1
K11 . v11 and K11 . (�1(�1(e2))) 7�!i2

Error: str and i =
i1 + i2.
Applying the induction hypothesis to �;� `M e1 : ⌧1 ! ⌧2 as in the previous case, we
have that �;� `M e1 .M e1 : ⌧1 ! ⌧2, which we instantiate with n, j, �, �1, �2, w. Note
that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧1 ! ⌧2K�.
Instantiate the second conjunct of this with i1,K11,v11. Note that:

– i1 < j (which follows from i = i1 + i2 and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11.
Therefore there exist K21,v21, w

0 such that:
– w.K2 . �2(�2(e1)) 7�!⇤

K21 . v21,
– (j � i1, w

0) w (j, w),
– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J⌧1 ! ⌧2K�.

Applying the induction hypothesis to�;� `M e2 : ⌧1, we have that
�;� `M e2 .M e2 : ⌧1,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:
– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j � i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 EM J⌧1K�. Instantiate the first conjunct of

this with i2, str. Note that:
– i2 < j (which follows from i = i1 + i2 and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

Error: str (from premises, since w

0
.K1 = K11).

Therefore w

0
.K2 . �2(�2(e2)) 7�!⇤

Error: str.
Since w

0
.K2 = K21, by the operational semantics we have that

24

w.K2 . �2(�2(e1)) �2(�2(e2)) 7�!⇤
K21 . v21 �2(�2(e2))

7�!⇤
Error: str,

as we were required to show.
(c) w.K1 . (�1(�1(e1))) 7�!i1

K11 . v11, and
K11 . (�1(�1(e2))) 7�!i2

K12 . v12, and
K12 . (v11 v12) 7�!i3

Error: str, and
i = i1 + i2 + i3.
Applying the induction hypothesis to �;� `M e1 : ⌧1 ! ⌧2 as in the previous case, we
have that �;� `M e1 .M e1 : ⌧1 ! ⌧2, which we instantiate with n, j, �, �1, �2, w. Note
that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧1 ! ⌧2K�.
Instantiate the second conjunct of this with i1,K11,v11. Note that:

– i1 < j (which follows from i = i1 + i2 + i3 and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11.
Therefore there exist K21,v21, w

0 such that:
– w.K2 . �2(�2(e1)) 7�!⇤

K21 . v21,
– (j � i1, w

0) w (j, w),
– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J⌧1 ! ⌧2K�.

Applying the induction hypothesis to�;� `M e2 : ⌧1, we have that
�;� `M e2 .M e2 : ⌧1,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:
– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j � i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 EM J⌧1K�.

Instantiate the second conjunct of this with i2,K12,v12. Note that:
– i2 < j (which follows from i = i1 + i2 + i3 and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

K12 . v12 (from above, since w

0
.K1 = K11).

Therefore there exist K22,v22, w
00 such that:

– w

0
.K2 . �2(�2(e2)) 7�!⇤

K22 . v22,
– (j � i1 � i2, w

00) w (j � i1, w
0),

– w

00
.K1 = K12,

– w

00
.K2 = K22, and

– (j � i1 � i2, w
00
,v12,v22) 2 VM J⌧1K�.

25

By the operational semantics, we have that

w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (v11 �1(�1(e2)))

7�!i2
K12 . (v11 v12)

7�!i3
Error: str

where i = i1 + i2 + i3.
Recall that (j�i1, w

0
,v11,v21) 2 VM J⌧1 ! ⌧2K� and instantiate with j�i1�i2, w

00
,v12,v22.

Note that:
– (j � i1 � i2, w

00) w (j � i1, w
0) (from above, by downward closure of world extension

under decreasing step index), and
– (j � i1 � i2, w

00
,v12,v22) 2 VM J⌧1K� (from above, by downward closure of VM J.K).

Further note that it must be the case that v11 and v21 are functions:
v11 ⌘ �x : �1(⌧1). e11, and
v21 ⌘ �x : �2(⌧1). e21
for some e11 and e21.
Therefore (j � i1 � i2, w

00
, e11[x := v12], e21[x := v22]) 2 EM J⌧2K�. Instantiate the first

conjunct with i3 � 1 and str. Note that:
– i3 � 1 < j � i1 � i2 (since i = i1 + i2 + i3, so i3 = i� i1 � i2, and i < j, so we have
i3 < j � i1 � i2 and therefore clearly i3 � 1 < j � i1 � i2), and

– w

00
.K1 . e11[x := v12] 7�!i3�1

Error: str, which follows from above, since:
⇤ w

00
.K1 = K12, and

⇤ K12 . (v11 v12) 7�!1
K12 . e11[x := v12], by operational semantics, and

⇤ K12 . (v11 v12) 7�!i3
Error: str, from above.

We therefore have that w00
.K2 . e21[x := v22] 7�!⇤

Error: str.
Since w

00
.K2 = K22, by the operational semantics we have that

w.K2 . �2(�2(e1)) �2(�2(e2)) 7�!⇤
K21 . v21 �2(�2(e2))

7�!⇤
K22 . v21 v22

7�!1
K22 . e21[x := v22]

7�!⇤
Error: str,

as we were required to show.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i

K

0
1 . v1.

Note that by the operational semantics there exist i1  i,K11,v11 such that w.K1.�1(�1(e1)) 7�!i1

K11 . v11.
To show: There exist K 0

2,v2, w
0 such that:

– w.K2 . (�2(�2(e1)) �2(�2(e2))) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
,v1,v2) 2 VM J⌧2K�.

Applying the induction hypothesis to �;� `M e1 : ⌧1 ! ⌧2, we have that �;� `M e1 .M

e1 : ⌧1 ! ⌧2, which we instantiate with n, j, �, �1, �2, w. Note that:

26

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧1 ! ⌧2K�. Instantiate the second conjunct
with i1,K11,v11. Note that:

– i1 < j (which follows from i1  i and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11.

Therefore there exist K21,v21, w
0 such that:

– w.K2 . �2(�2(e1)) 7�!⇤
K21 . v21,

– (j � i1, w
0) w (j, w),

– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J⌧1 ! ⌧2K�.

Therefore it must be the case that
v11 ⌘ �x : �1(⌧1). e11, and
v21 ⌘ �x : �2(⌧1). e21.
Note that

w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (v11 �1(�1(e2)))

⌘ K11 . ((�x : �1(⌧1). e11) �1(�1(e2)))
7�!i�i1

K

0
1 . v1.

Therefore, by the operational semantics there exist i2,K12, and v12 such that:

– K11 . �1(�1(e2)) 7�!i2
K12 . v12, and

– i2  i� i1.

Applying the induction hypothesis to �;� `M e2 : ⌧1, we have that �;� `M e2 .M e2 : ⌧1,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:

– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j � i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 EM J⌧1K�. Instantiate the second conjunct with

i2,K12,v12. Note that:

– i2 < j � i1 (since i2  i� i2 and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

K12 . v12, which follows from above since w

0
.K1 = K11.

Therefore there exist K22,v22, w
00 such that:

– w

0
.K2 . �2(�2(e2)) 7�!⇤

K22 . v22,
– (j � i1 � i2, w

00) w (j � i1, w
0),

– w

00
.K1 = K12,

– w

00
.K2 = K22, and

– (j � i1 � i2, w
00
,v12,v22) 2 VM J⌧1K�.

27

By the operational semantics, we have that

w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (v11 �1(�1(e2)))

⌘ K11 . ((�x : �1(⌧1). e11) �1(�1(e2)))
7�!i2

K12 . ((�x : �1(⌧1). e11) v12)
7�!1

K12 . e11[x := v12]
7�!i3

K

0
1 . v1

where i = i1 + i2 + 1 + i3. (Note that the key store cannot change from the third to the fourth
configuration, since no new keys are generated during �-substitution.)
Recall that (j � i1, w

0
,�x : �1(⌧1). e11,�x : �2(⌧1). e21) 2 VM J⌧1 ! ⌧2K� and instantiate

with j � i1 � i2 � 1, w00
,v12,v22. Note that:

– (j � i1 � i2 � 1, w00) w (j � i1, w
0) (from above, since (j � i1 � i2, w

00) w (j � i1, w
0),

by downward closure of world extension under decreasing step index), and
– (j� i1� i2� 1, w00

,v12,v22) 2 VM J⌧1K� (from above, since (j� i1� i2, w
00
,v12,v22) 2

VM J⌧1K�, by downward closure of VM J.K).

Therefore (j� i1� i2�1, w00
, e11[x := v12], e21[x := v22]) 2 EM J⌧2K�. Instantiate the second

conjunct with i3,K
0
1, and v1.

Note that:

– i3 < j � i1 � i2 � 1 (since i = i1 + i2 + i3, so i3 = i� i1 � i2 � 1, and i < j), and
– w

00
.K1 . e11[x := v12] 7�!i3

K

0
1 . v1, which follows from above, since w

00
.K1 = K12.

Therefore, there exist K 0
2,v2, w

000 such that:

– w

00
.K2 . e21[x := v22] 7�!⇤

K

0
2 . v2,

– (j � i1 � i2 � 1� i3, w
000) w (j � i1 � i2 � 1, w00),

– w

000
.K1 = K

0
1,

– w

000
.K2 = K

0
2, and

– (j � i1 � i2 � 1� i3, w
000
,v1,v2) 2 VM J⌧2K�,

fulfilling our proof obligation.

• Case (MNil): �;� `M nil : ⌧⇤

To show: �;� `M nil .M nil : ⌧⇤.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(nil)), �2(�2(nil))) 2 EM J⌧⇤K�, or, equivalently (since there are no variables in
nil), that (j, w,nil,nil) 2 EM J⌧K�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and

28

– w.K1 . nil 7�!i
Error: str.

But nil is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . nil 7�!i

K

0
1 . v1.

Since nil is a value, it must be the case that i = 0 and v1 = nil. Therefore K

0
1 = w.K1, since

no new keys can be generated in 0 steps.
Choose:

– v2 = nil,
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . nil 7�!⇤
w.K2 . nil,

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w,nil,nil) 2 VM J⌧⇤K�.

The first four of these conjuncts are immediate, and the last follows immediately from the defi-
nition of VM J⌧⇤K.

• Case (MPair):
�;� `M e1 : ⌧ �;� `M e2 : ⌧⇤

�;� `M (cons e1 e2) : ⌧⇤

To show: �;� `M (cons e1 e2) .M (cons e1 e2) : ⌧⇤.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1((cons e1 e2)), �2(�2((cons e1 e2))))) 2 EM J⌧⇤K�, or, equivalently, that

(j, w, (cons �1(�1(e1)) �1(�1(e2))), (cons �2(�2(e1)) �2(�2(e2))),) 2 EM J⌧⇤K�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . (cons �1(�1(e1)) �1(�1(e2))) 7�!i

Error: str.

To show: w.K2 . (cons �2(�2(e1)) �2(�2(e2))) 7�!⇤
Error: str.

By the operational semantics, there are two cases to consider, corresponding to the two times
during the evaluation of w.K1 . (cons �1(�1(e1)) �1(�1(e2))) during which an error could be
raised: during the evaluation of �1(�1(e1)), or during the evaluation of �1(�1(e2)).

29

(a) w.K1 . �1(�1(e1)) 7�!i
Error: str.

Applying the induction hypothesis to�;� `M e1 : ⌧ , we have that�;� `M e1 .M e1 : ⌧ ,
which we instantiate with n, j, �, �1, �2, w. Note that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧K�. Instantiate the first conjunct of this
with i, str. Note that:

– i < j, and
– w.K1 . �1(�1(e1)) 7�!i

Error: str.
Therefore w.K2 . �2(�2(e1)) 7�!⇤

Error: str.
It follows that w.K2 . (cons �2(�2(e1)) �2(�2(e2))) 7�!⇤

Error: str, as we were required
to show.

(b) w.K1 . �1(�1(e1)) 7�!i1
K11 .v11 and K11 . �1(�1(e2)) 7�!i2

Error: str and i = i1+ i2.
Applying the induction hypothesis to �;� `M e1 : ⌧ as in the previous case, we have that
�;� `M e1 .M e1 : ⌧ , which we instantiate with n, j, �, �1, �2, w. Note that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧K�.
Instantiate the second conjunct of this with i1,K11,v11. Note that:

– i1 < j (which follows from i = i1 + i2 and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11.
Therefore there exist K21,v21, w

0 such that:
– w.K2 . �2(�2(e1)) 7�!⇤

K21 . v21,
– (j � i1, w

0) w (j, w),
– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J⌧1 ! ⌧2K�.

Applying the induction hypothesis to�;� `M e2 : ⌧⇤, we have that
�;� `M e2 .M e2 : ⌧⇤,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:
– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j � i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 EM J⌧⇤K�. Instantiate the first conjunct of

this with i2, str. Note that:
– i2 < j (which follows from i = i1 + i2 and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

Error: str (from premises, since w

0
.K1 = K11).

30

Therefore w

0
.K2 . �2(�2(e2)) 7�!⇤

Error: str.
Since w

0
.K2 = K21, by the operational semantics we have that

w.K2 . (cons �2(�2(e1)) �2(�2(e2))) 7�!⇤
K21 . (cons v21 �2(�2(e2)))

7�!⇤
Error: str,

as we were required to show.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . (cons �1(�1(e1)) �1(�1(e2))) 7�!i

K

0
1 . v1.

Note that by the operational semantics there exist i1  i,K11,v11 such that w.K1.�1(�1(e1)) 7�!i1

K11 . v11.
To show: There exist K 0

2,v2, w
0 such that:

– w.K2 . (�2(�2(e1)) �2(�2(e2))) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
,v1,v2) 2 VM J⌧2K�.

Applying the induction hypothesis to �;� `M e1 : ⌧ , we have that �;� `M e1 .M e1 : ⌧ ,
which we instantiate with n, j, �, �1, �2, w. Note that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 EM J⌧K�. Instantiate the second conjunct with i1,K11,v11.
Note that:

– i1 < j (which follows from i1  i and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11 (from above).
Therefore there exist K21,v21, w

0 such that:
– w.K2 . �2(�2(e1)) 7�!⇤

K21 . v21,
– (j � i1, w

0) w (j, w),
– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J⌧K�.

Note that

w.K1 . (cons �1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (cons v11 �1(�1(e2)))

7�!i�i1
K

0
1 . v1.

Therefore, by the operational semantics there exist i2,K12, and v12 such that:
– K11 . �1(�1(e2)) 7�!i2

K12 . v12, and
– i2  i� i1.

Applying the induction hypothesis to �;� `M e2 : ⌧⇤, we have that �;� `M e2 .M e2 : ⌧⇤,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:

31

– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j � i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 EM J⌧⇤K�. Instantiate the second conjunct with

i2,K12,v12. Note that:
– i2 < j � i1 (since i2  i� i1, and i1  i, and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

K12 . v12, which follows from above since w

0
.K1 = K11.

Therefore there exist K22,v22, w
00 such that:

– w

0
.K2 . �2(�2(e2)) 7�!⇤

K22 . v22,
– (j � i1 � i2, w

00) w (j � i1, w
0),

– w

00
.K1 = K12,

– w

00
.K2 = K22, and

– (j � i1 � i2, w
00
,v12,v22) 2 VM J⌧⇤K�.

By the operational semantics, we have that

w.K1 . (cons �1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (cons v11 �1(�1(e2)))

7�!i2
K12 . (cons v11 v12)

⌘ K

0
1 . v1,

since (cons v11 v12) is a value. Therefore i = i1 + i2.
From above, and from the operational semantics, we have that

w.K2 . (cons �2(�2(e1)) �2(�2(e2))) 7�!⇤
K21 . (cons v21 �2(�2(e2)))

7�!⇤
K22 . (cons v21 v22).

since w

0
.K2 = K21.

Choose:
– v2 = (cons v21 v22),
– K

0
2 = w

00
.K2, and

– w

0 = w

00.
To show:

– w.K2 . (cons �2(�2(e1)) �2(�2(e2))) 7�!⇤
w

00
.K2 . (cons v21 v22), which follows from

above since w

00
.K2 = K22,

– (j � i, w

00) w (j, w), which follows from above and from Lemma 1.1 since (j � i1 � i2, w
00) w

(j � i1, w
0) and (j � i1, w

0) w (j, w),
– w

00
.K1 = K

0
1, which follows from above, since w

00
.K1 = K12 = K

0
1,

– w

00
.K2 = w

00
.K2 (immediate), and

– (j � i, w

00
, (cons v11 v12), (cons v21 v22)) 2 VM J⌧⇤K�, which follows from:

⇤ (j � i, w

00
,v11,v21) 2 VM J⌧K� (since (j � i1, w

0
,v11,v21) 2 VM J⌧K�, and VM J.K is

closed under world extension and decreasing step-index), and
⇤ (j � i, w

00
,v21,v22) 2 VM J⌧⇤K� (immediate from above, since i = i1 + i2).

• Case (MFst): �;� `M e : ⌧⇤

�;� `M (fst e) : ⌧

Straightforward.

32

• Case (MSnd): �;� `M e : ⌧⇤

�;� `M (rst e) : ⌧⇤

Straightforward.

• Case (MNat): �;� `M n : Nat

To show: �;� `M n .M n : Nat.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(n)), �2(�2(n))) 2 EM JNatK�, or, equivalently (since there are no variables in
n), that (j, w, n, n) 2 EM JNatK�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . n 7�!i

Error: str.

But n is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . n 7�!i

K

0
1 . v1.

Since n is a value, it must be the case that i = 0 and v1 = n. Therefore K

0
1 = w.K1, since no

new keys can be generated in 0 steps.
Choose:

– v2 = n,
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . n 7�!⇤
w.K2 . n,

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w, n, n) 2 VM JNatK�.

The first four of these conjuncts are immediate, and the last follows immediately from the defi-
nition of VM JNatK.

• Case (MOp): �;� `M e1 : Nat �;� `M e2 : Nat

�;� `M (op e1 e2) : Nat

Straightforward.

33

• Case (MIfZero): �;� `M e1 : Nat �;� `M e2 : ⌧ �;� `M e3 : ⌧
�;� `M (if0 e1 e2 e3) : ⌧

Straightforward.

• Case (MTAbs): �,↵;� `M e : ⌧
�;� `M (⇤↵. e) : 8↵. ⌧

To show: �;� `M (⇤↵. e) .M (⇤↵. e) : 8↵. ⌧ .

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(⇤↵. e)), �2(�2(⇤↵. e))) 2 EM J8↵. ⌧K�, or, equivalently, that

(j, w,⇤↵. �1(�1(e)),⇤↵. �2(�2(e))) 2 EM J8↵. ⌧K�.

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . ⇤↵. �1(�1(e)) 7�!i

Error: str.

But ⇤↵. �1(�1(e)) is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . ⇤↵. �1(�1(e)) 7�!i

K

0
1 . v1.

Since ⇤↵. �1(�1(e)) is a value, it must be the case that i = 0 and v1 = ⇤↵. �1(�1(e)).
Therefore K

0
1 = w.K1, since no new keys can be generated in 0 steps.

Choose:

– v2 = ⇤↵. �2(�2(e)),
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . ⇤↵. �2(�2(e)) 7�!⇤
w.K2 . ⇤↵. �2(�2(e)),

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w,⇤↵. �1(�1(e)),⇤↵. �2(�2(e))) 2 VM J8↵. ⌧K�.

The first four conjuncts are immediate, and the last we show as follows:
Consider arbitrary j

0
, w

0
, ⌧1, ⌧2,R, k1, k2 such that:

– (j0, w0) w (j, w),
– (⌧1, ⌧2,R) 2 SomeRelj0 , and
– k1 /2 w

0
.K1, and

34

– k2 /2 w

0
.K2.

To show:
(j0, w0 � (↵ 7! k1, k2, ⌧1, ⌧2,R), �1(�1(e))[↵ := hk1; ⌧1i], �2(�2(e))[↵ := hk2; ⌧2i]) 2 I
EM J⌧K�[↵ 7! (⌧1, ⌧2,R)], or, equivalently, that
(j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �1(�1(e))[↵ := hk1; ⌧1i], �2(�2(e))[↵ :=
hk2; ⌧2i]) 2 EM J⌧K�[↵ 7! (⌧1, ⌧2,R)].
Applying the induction hypothesis to �,↵;� `M e : ⌧ , we have that �,↵;� `M e .M

e : ⌧ , which we instantiate with j

0
, j

0 � 1, �[↵ 7! (⌧1, ⌧2,R)], �1, �2, bw0cj0�1 � (↵ 7!
k1, k2, ⌧1, ⌧2, bRcj0�1). Note that:

– j

0 � 0,
– j

0 � 1 < j

0,
– (j0, �[↵ 7! (⌧1, ⌧2,R)]) 2 DJ�,↵K, which we show as follows:

From the definition of DJ.K, we’re required to show that:
⇤ dom(�[↵ 7! (⌧1, ⌧2,R)]) = �,↵, which follows from (n, �) 2 DJ�K, since dom(�) =
� and extending � with a binding for ↵ adds ↵ to its domain; and

⇤ 8↵0 2 �,↵. �[↵ 7! (⌧1, ⌧2,R)](↵0) 2 SomeRelj0 , which we show as follows: Since
(n, �) 2 DJ�K, we have that 8↵0 2 �. �(↵0) 2 SomeReln. Therefore, since j

0
<

n and SomeRel is downward closed, �(↵0) 2 SomeRelj0 as well. Finally, �[↵ 7!
(⌧1, ⌧2,R)](↵) = (⌧1, ⌧2,R), and our premises state that (⌧1, ⌧2,R) is also a member
of SomeRelj0 .

– (j0�1, bw0cj0�1�(↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �1, �2) 2 GJ�K�[↵ 7! (⌧1, ⌧2,R)], which
we show as follows:
From the definition of GJ.K, we’re required to show that:
⇤ dom(�) = dom(�1) = dom(�2), which follows from the premise that (j, w, �1, �2) 2
GJ�K�; and

⇤ 8x 2 dom(�). (j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �1(x), �2(x)) 2
V⇤J�(x)K�[↵ 7! (⌧1, ⌧2,R)], which we show as follows:
From the premise (j, w, �1, �2) 2 GJ�K�, we have that
8x 2 dom(�). (j, w, �1(x), �2(x)) 2 V⇤J�(x)K�.
Hence, by Lemma 1.4, we have that 8x 2 dom(�). (j, w, �1(x), �2(x)) 2 V⇤J�(x)K�[↵ 7! (⌧1, ⌧2,R)].
Next, note that (j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1)) w (j, w), which
follows from Lemma 1.1, applied to:
· (j0, w0) w (j, w) (from premises);
· (j0 � 1, bw0cj0�1) w (j0, w0) (from the definition of w , since bw0cj0�1. =
bw0

. cj0�1);
· (j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1)) w (j0 � 1, bw0cj0�1) (from Lemma

1.9).
So, since (j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1)) w (j, w), we have from
Lemma 1.3 that
8x 2 dom(�). (j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �1(x), �2(x)) 2
V⇤J�(x)K�[↵ 7! (⌧1, ⌧2,R)],
as we were required to show.

Therefore we have that
(j0�1, bw0cj0�1�(↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �[↵ 7! (⌧1, ⌧2,R)]1(�1(e)), �[↵ 7! (⌧1, ⌧2,R)]2(�2(e))) 2
EM J⌧K�[↵ 7! (⌧1, ⌧2,R)].

35

which is equivalent to:
(j0 � 1, bw0cj0�1 � (↵ 7! k1, k2, ⌧1, ⌧2, bRcj0�1), �1(�1(e))[↵ := hk1; ⌧1i], �2(�2(e))[↵ :=
hk2; ⌧2i]) 2 EM J⌧K�[↵ 7! (⌧1, ⌧2,R)],
as we were required to show.

• Case (MTApp): �;� `M e : 8↵. ⌧ 0 � ` ⌧

�;� `M e ⌧ : ⌧ 0[↵ := ⌧]

To show: �;� `M e ⌧ .M e ⌧ : ⌧ 0[↵ := ⌧].

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(e ⌧)), �2(�2(e ⌧))) 2 EM J⌧ 0[↵ := ⌧]K�, or, equivalently,

(j, w, �1(�1(e)) �1(⌧), �2(�2(e)) �2(⌧)) 2 EM J⌧ 0[↵ := ⌧]K�.

The proof is in two parts:

1. (Error conjunct): Straightforward from the operational semantics and above assumptions.

2. (Value conjunct): Consider arbitrary i,K

0
1,v1 such that:

– i < j, and
– w.K1 . �1(�1(e)) �1(⌧) 7�!i

K

0
1 . v1.

Note that by the operational semantics there exist i1  i,K11,v11 such that w.K1.�1(�1(e)) 7�!i1

K11 . v11.
To show: There exist K 0

2,v2, w
0 such that:

– w.K2 . �2(�2(e)) �2(⌧) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
,v1,v2) 2 VM J⌧ 0[↵ := ⌧]K�.

Applying the induction hypothesis to
�;� `M e : 8↵. ⌧ 0, we have that �;� `M e .M e : 8↵. ⌧ 0, which we instantiate with
n, j, �, �1, �2, w. Note that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e)), �2(�2(e))) 2 EM J8↵. ⌧ 0K�. Instantiate the second conjunct with
i1,K11,v11. Note that:

– i1 < j (which follows from i1  i and i < j), and
– w.K1 . �1(�1(e)) 7�!i1

K11 . v11.

Therefore there exist K21,v21, w
0 such that:

36

– w.K2 . �2(�2(e)) 7�!⇤
K21 . v21,

– (j � i1, w
0) w (j, w),

– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
,v11,v21) 2 VM J8↵. ⌧ 0K�.

By the definition of VM J8↵. ⌧K, it must be the case that
v11 ⌘ ⇤↵. e11, and
v21 ⌘ ⇤↵. e21
for some e11 and e21.
Note that by the operational semantics,

w.K1 . �1(�1(e)) �1(⌧) 7�!i1
K11 . v11 �1(⌧)

⌘ K11 . (⇤↵. e11) �1(⌧)
7�!1

K11, k1 . e11[↵ := hk1; �1(⌧)i]
7�!i2

K

0
1 . v1

where i2 = i� i1 � 1 and k1 is a freshly generated key, i.e., k1 /2 K11.
We also have from the operational semantics that

w.K2 . �2(�2(e)) �2(⌧) 7�!⇤
K21 . v21 �2(⌧)

⌘ K21 . (⇤↵. e21) �2(⌧)
7�!1

K21, k2 . e21[↵ := hk2; �2(⌧)i]

where k2 is a freshly generated key, i.e., k2 /2 K21.
Let R = VM J⌧K�, and instantiate (j�i1, w

0
,v11,v21) 2 VM J8↵. ⌧ 0K� with j�i1, w

0
, �1(⌧), �2(⌧),R, k1, k2.

Note that:

– (j � i1, w
0) w (j � i1, w

0),
– (�1(⌧), �2(⌧),R) 2 SomeRelj�i1 , which follows from:

⇤ FV(�1(⌧)) = FV(�2(⌧)) = ;, since �1 and �2 bind all free variables in ⌧ , and
⇤ VM J⌧K� 2 Relj�i1 [�1⌧ , �2⌧], which follows from Lemma 1.3;

– k1 /2 w

0
.K1, which follows from k1 /2 K11 and w

0
.K1 = K11;

– k2 /2 w

0
.K2, which follows from k2 /2 K21 and w

0
.K2 = K21.

Therefore, we have that:
(j � i1, w

0 � (↵ 7! k1, k2, �1(⌧), �2(⌧),R), e11[↵ := hk1; �1(⌧)i], e21[↵ := hk2; �2(⌧)i]) 2 I
EM J⌧ 0K�[↵ 7! (�1(⌧), �2(⌧),R)], or, equivalently,
(j�i1�1, bw0cj�i1�1�(↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1), e11[↵ := hk1; �1(⌧)i], e21[↵ :=
hk2; �2(⌧)i]) 2 EM J⌧ 0K�[↵ 7! (�1(⌧), �2(⌧),R)].
Instantiate the second conjunct of this with i2,K

0
1,v1.

(Note that the K1 and K2 components of bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1)
are w

0
.K1 extended with k1 and w

0
.K2 extended with k2, respectively. Therefore, in the below

we write w0
.K1, k1 and w

0
.K2, k2 in place of bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1).K1

and bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1).K2, respectively.)
Note that:

– i2 < j � i1 � 1 (since i2 = i� i1 � 1, and i < j), and

37

– w

0
.K1, k1.e11[↵ := hk1; �1(⌧)i] 7�!i2

K

0
1.v1, which follows from above, since w0

.K1 =
K11.

Therefore, there exist K 0
2,v2, w

00 such that:
– w

0
.K2, k2 . e21[↵ := hk2; �2(⌧)i] 7�!⇤

K

0
2 . v2,

– (j � i1 � 1� i2, w
00) w (j � i1 � 1, bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1)),

– w

00
.K1 = K

0
1,

– w

00
.K2 = K

0
2, and

– (j � i1 � 1� i2, w
00
,v1,v2) 2 VM J⌧ 0K�[↵ 7! (�1(⌧), �2(⌧),R)].

Choose:
– v2 = v2,
– K

0
2 = K

0
2, and

– w

0 = w

00.
To show:

– w.K2 . �2(�2(e)) �2(⌧) 7�!⇤
K

0
2 . v2, which follows from:

w.K2 . �2(�2(e)) �1(⌧) 7�!⇤
K21 . v21 �2(⌧)

⌘ K21 . (⇤↵. e21) �2(⌧)
7�!1

K21, k2 . e21[↵ := hk2; �2(⌧)i]
7�!⇤

K

0
2 . v2

(which follows from above, since w

0
.K2 = K21, so K21, k2 = w

0
.K2, k2),

– (j � i, w

00) w (j, w), which follows from Lemma 1.1, since:
⇤ (j � i1, w

0) w (j, w) (from above);
⇤ (j � i1 � 1, bw0cj�i1�1) w (j � i1, w

0) (from Lemma 1.8);
⇤ (j � i1 � 1, bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1)) w (j � i1 � 1, bw0cj�i1�1)

(from Lemma 1.9); and
⇤ (j � i, w

00) w (j � i1 � 1, bw0cj�i1�1 � (↵ 7! k1, k2, �1(⌧), �2(⌧), bRcj�i1�1)) (from
above, since i = i1 + i2 + 1);

– w

00
.K1 = K

0
1, which follows from above,

– w

00
.K2 = K

0
2, which follows from above, and

– (j� i, w

00
,v1,v2) 2 VM J⌧ 0[↵ := ⌧]K�, which follows from (j� i1� 1� i2, w

00
,v1,v2) 2

VM J⌧ 0K�[↵ 7! (�1(⌧), �2(⌧),R)], by compositionality (Lemma 2.1).

• Case (SVar): �;�, x : TST `S x : TST

To show: �;�, x : TST `S x .S x : TST.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(x)), �2(�2(x))) 2 ES , or, equivalently, that

(j, w, �1(x), �2(x)) 2 ES .

The proof is in two parts:

38

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . �1(x) 7�!i

Error: str.

But �1(x) is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1, v1 such that:

– i < j, and
– w.K1 . �1(x) 7�!i

K

0
1 . v1.

Since �1(x) is a value, it must be the case that i = 0 and v1 = �1(x). Therefore K

0
1 = w.K1,

since no new keys can be generated in 0 steps.
Choose:

– v2 = �2(x),
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . �2(x) 7�!⇤
w.K2 . �2(x),

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w, �1(x), �2(x)) 2 VS .

The first four of these conjuncts are immediate, and the last follows from the premise that
(j, w, �1, �2) 2 GJ�K�.

• Case (SAbs): �;�, x : TST `S e : TST

�;� `S �x. e : TST

To show: �;� `S �x. e .S �x. e : TST.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(�x. e)), �2(�2(�x. e))) 2 ES , or, equivalently, that

(j, w,�x. �1(�1(e)),�x. �2(�2(e))) 2 ES .

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . �x. �1(�1(e)) 7�!i

Error: str.

But �x. �1(�1(e)) is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1, v1 such that:

– i < j, and

39

– w.K1 . �x. �1(�1(e)) 7�!i
K

0
1 . v1.

Since �x. �1(�1(e)) is a value, it must be the case that i = 0 and v1 = �x. �1(�1(e)). Therefore
K

0
1 = w.K1, since no new keys can be generated in 0 steps.

Choose:

– v2 = �x. �2(�2(e)),
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . �x. �2(�2(e)) 7�!⇤
w.K2 . �x. �2(�2(e)),

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w,�x. �1(�1(e)),�x. �2(�2(e))) 2 VS .

The first four conjuncts are immediate, and the last we show as follows:
Consider arbitrary (j0, w0

, v1, v2) 2 VS such that (j0, w0) A (j, w).
To show: (j0, w0

, �1(�1(e))[x := v1], �2(�2(e))[x := v2]) 2 ES .
Applying the induction hypothesis to�;�, x : TST `S e : TST, we have that�;�, x : TST `S

e .S e : TST,
which we instantiate with n, j

0
, �, �1[x := v1], �2[x := v2], w0. Note that:

– n � 0,
– j

0
< n (since j

0
< j and j < n),

– (n, �) 2 DJ�K, and
– (j0, w0

, �1[x := v1], �2[x := v2]) 2 GJ�, x : TSTK�, which follows from:
⇤ (j0, w0

, �1, �2) 2 GJ�K�, by downward closure of GJ.K, and
⇤ (j0, w0

, v1, v2) 2 VS , by downward closure of VS .

We therefore have that (j0, w0
, �1(�1[x := v1](e)), �2(�2[x := v2](e))) 2 ES , which is equivalent

to
(j0, w0

, �1(�1(e))[x := v1], �2(�2(e))[x := v2]) 2 ES , as we were required to show.

• Case (SApp): �;� `S e1 : TST �;� `S e2 : TST

�;� `S (e1 e2) : TST

To show: �;� `S (e1 e2) .S (e1 e2) : TST.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(e1 e2)), �2(�2(e1 e2))) 2 ES , or, equivalently,

(j, w, (�1(�1(e1)) �1(�1(e2))), (�2(�2(e1)) �2(�2(e2)))) 2 ES .

The proof is in two parts:

40

1. (Error conjunct): Straightforward from the operational semantics and above assumptions.

2. (Value conjunct): Consider arbitrary i,K

0
1, v1 such that:

– i < j, and
– w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i

K

0
1 . v1.

Note that by the operational semantics there exist i1  i,K11, v11 such that w.K1.�1(�1(e1)) 7�!i1

K11 . v11.
To show: There exist K 0

2, v2, w
0 such that:

– w.K2 . (�2(�2(e1)) �2(�2(e2))) 7�!⇤
K

0
2 . v2,

– (j � i, w

0) w (j, w),
– w

0
.K1 = K

0
1,

– w

0
.K2 = K

0
2, and

– (j � i, w

0
, v1, v2) 2 VS .

Applying the induction hypothesis to�;� `S e1 : TST, we have that�;� `S e1 .S e1 : TST,
which we instantiate with n, j, �, �1, �2, w. Note that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

Therefore (j, w, �1(�1(e1)), �2(�2(e1))) 2 ES . Instantiate the second conjunct with i1,K11, v11.
Note that:

– i1 < j (which follows from i1  i and i < j), and
– w.K1 . �1(�1(e1)) 7�!i1

K11 . v11.

Therefore there exist K21, v21, w
0 such that:

– w.K2 . �2(�2(e1)) 7�!⇤
K21 . v21,

– (j � i1, w
0) w (j, w),

– w

0
.K1 = K11,

– w

0
.K2 = K21, and

– (j � i1, w
0
, v11, v21) 2 VS .

Therefore it must be the case that
v11 ⌘ �x. e11, and
v21 ⌘ �x. e21.
Note that

w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (v11 �1(�1(e2)))

⌘ K11 . ((�x. e11) �1(�1(e2)))
7�!i�i1

K

0
1 . v1.

Therefore, by the operational semantics there exist i2,K12, and v12 such that:

– K11 . �1(�1(e2)) 7�!i2
K12 . v12, and

– i2  i� i1.

Applying the induction hypothesis to�;� `S e2 : TST, we have that�;� `S e2 .S e2 : TST,
which we instantiate with n, j � i1, �, �1, �2, w

0. Note that:

41

– n � 0,
– j � i1 < n (since j < n and i1 < j),
– (n, �) 2 DJ�K, and
– (j � i1, w

0
, �1, �2) 2 GJ�K�, by downward closure of GJ.K.

Therefore (j�i1, w
0
, �1(�1(e2)), �2(�2(e2))) 2 ES . Instantiate the second conjunct with i2,K12, v12.

Note that:

– i2 < j � i1 (since i2  i� i2 and i < j), and
– w

0
.K1 . �1(�1(e2)) 7�!i2

K12 . v12, which follows from above since w

0
.K1 = K11.

Therefore there exist K22, v22, w
00 such that:

– w

0
.K2 . �2(�2(e2)) 7�!⇤

K22 . v22,
– (j � i1 � i2, w

00) w (j � i1, w
0),

– w

00
.K1 = K12,

– w

00
.K2 = K22, and

– (j � i1 � i2, w
00
, v12, v22) 2 VS .

By the operational semantics, we have that

w.K1 . (�1(�1(e1)) �1(�1(e2))) 7�!i1
K11 . (v11 �1(�1(e2)))

⌘ K11 . ((�x. e11) �1(�1(e2)))
7�!i2

K12 . ((�x. e11) v12)
7�!1

K12 . e11[x := v12]
7�!i3

K

0
1 . v1

where i = i1 + i2 + 1 + i3. (Note that the key store cannot change from the third to the fourth
configuration, since no new keys are generated during �-substitution.)
Recall that (j � i1, w

0
,�x. e11,�x. e21) 2 VS and instantiate with j � i1 � i2 � 1, w00

, v12, v22.
Note that:

– (j � i1 � i2 � 1, w00) w (j � i1, w
0) (from above, since (j � i1 � i2, w

00) w (j � i1, w
0),

by downward closure of world extension under decreasing step index), and
– (j � i1 � i2 � 1, w00

, v12, v22) 2 VS (from above, since (j � i1 � i2, w
00
, v12, v22) 2 VS , by

downward closure of VS).

Therefore (j�i1�i2�1, w00
, e11[x := v12], e21[x := v22]) 2 ES . Instantiate the second conjunct

with i3,K
0
1, and v1.

Note that:

– i3 < j � i1 � i2 � 1 (since i = i1 + i2 + i3, so i3 = i� i1 � i2 � 1, and i < j), and
– w

00
.K1 . e11[x := v12] 7�!i3

K

0
1 . v1, which follows from above, since w

00
.K1 = K12.

Therefore, there exist K 0
2, v2, w

000 such that:

– w

00
.K2 . e21[x := v22] 7�!⇤

K

0
2 . v2,

– (j � i1 � i2 � 1� i3, w
000) w (j � i1 � i2 � 1, w00),

– w

000
.K1 = K

0
1,

– w

000
.K2 = K

0
2, and

– (j � i1 � i2 � 1� i3, w
000
, v1, v2) 2 VS ,

fulfilling our proof obligation.

42

• Case (SNil): �;� `S nil : TST

To show: �;� `S nil .S nil : TST.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(nil)), �2(�2(nil))) 2 ES , or, equivalently (since there are no variables in nil),
that (j, w, nil, nil) 2 ES .

The proof is in two parts:

1. (Error conjunct): Consider arbitrary i, str such that:

– i < j, and
– w.K1 . nil 7�!i

Error: str.

But nil is a value (not Error: str), so this case cannot occur.

2. (Value conjunct): Consider arbitrary i,K

0
1, v1 such that:

– i < j, and
– w.K1 . nil 7�!i

K

0
1 . v1.

Since nil is a value, it must be the case that i = 0 and v1 = nil. Therefore K

0
1 = w.K1, since no

new keys can be generated in 0 steps.
Choose:

– v2 = nil,
– K

0
2 = w.K2, and

– w

0 = w.

To show:

– w.K2 . nil 7�!⇤
w.K2 . nil,

– (j, w) w (j, w),
– w.K1 = w.K1,
– w.K2 = w.K2, and
– (j, w, nil, nil) 2 VS .

The first four of these conjuncts are immediate, and the last follows immediately from the defi-
nition of VS .

• Case (SPair): �;� `S e1 : TST �;� `S e2 : TST

�;� `S (cons e1 e2) : TST

Straightforward.

• Case (SFst): �;� `S e : TST

�;� `S (fst e) : TST

Straightforward.

43

• Case (SSnd): �;� `S e : TST

�;� `S (rst e) : TST

Straightforward.

• Case (SNat): �;� `S n : TST

Straightforward.

• Case (SOp): �;� `S e1 : TST �;� `S e2 : TST

�;� `S (op e1 e2) : TST

Straightforward.

• Case (SIfZero): �;� `S e1 : TST �;� `S e2 : TST �;� `S e3 : TST

�;� `S (if0 e1 e2 e3) : TST

Straightforward.

• Case (SProc?):
Straightforward.

• Case (SNat?):
Straightforward.

• Case (SNil?):
Straightforward.

• Case (SPair?):
Straightforward.

• Case (MS): �;� `S e : TST � ` ||
�;� `M (MS e) : ||

To show: �;� `M (MS e) .M (MS e) : ||.
Recall that from the statement of the parametricity theorem, (MS e) is a key-free term. Since (MS e)
is key-free,  cannot contain keys, so it must be some type ⌧ , and its key erasure || is also simply ⌧ .
It therefore suffices to show that
�;� `M (⌧MS e) .M (⌧MS e) : ⌧ .
Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,
– j < n,
– (n, �) 2 DJ�K, and
– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(⌧MS e)), �2(�2(⌧MS e))) 2 EM J⌧K�,
or, equivalently, that (j, w, (�1(⌧)MS �1(�1(e))), (�2(⌧)MS �2(�2(e)))) 2 EM J⌧K�.
Applying the induction hypothesis to �;� `S e : TST, we have that �;� `S e .S e : TST, which
we instantiate with n, j, �, �1, �2, w.
Therefore (j, w, �1(�1(e)), �2(�2(e))) 2 ES .
Hence, by the bridge lemma, (j, w, (�1(⌧)MS �1(�1(e))), (�2(⌧)MS �2(�2(e)))) 2 EM J⌧K�, as we were
required to show.

44

• Case (SM): �;� `M e : || � ` ||
�;� `S (SM 

e) : TST

To show: �;� `S (SM 
e) .S (SM 

e) : TST.

Analogously to the previous case, (SM 
e) is a key-free term, so  and || must be some type ⌧ , and

it suffices to show that

�;� `S (SM ⌧
e) .S (SM ⌧

e) : TST.

Consider arbitrary n, j, �, �1, �2, w such that:

– n � 0,

– j < n,

– (n, �) 2 DJ�K, and

– (j, w, �1, �2) 2 GJ�K�.

To show: (j, w, �1(�1(SM ⌧
e)), �2(�2(SM

⌧
e))) 2 ES ,

or, equivalently, that (j, w, (SM �1(⌧)
�1(�1(e))), (SM

�2(⌧)
�2(�2(e)))) 2 ES .

Applying the induction hypothesis to �;� `M e : ⌧ , we have that �;� `M e .M e : ⌧ , which we
instantiate with n, j, �, �1, �2, w.

Therefore (j, w, �1(�1(e)), �2(�2(e))) 2 EM J⌧K�.

Hence, by the bridge lemma, (j, w, (SM �1(⌧)
�1(�1(e))), (SM

�2(⌧)
�2(�2(e)))) 2 ES ,

as we were required to show.

45

	Preliminaries
	Transitivity of world extension
	Downward closure of VS
	Downward closure of VM"464A671 ."564B679
	Weakening
	Downward closure of D"464A671 ."564B679
	Downward closure of G"464A671 ."564B679
	World approximation preserves key stores
	Step decrease is valid world extension
	World component update is valid world extension

	Compositionality
	Bridge lemma
	Parametricity / fundamental property

