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1 Polymorphic Blame Calculus

Convertibility Labels � ::= +↵ | �↵

Compatibility Labels p , q ::= +` | �`

Base Types ◆ ::= int | bool
Types A ,B ::= ◆ | A!B | 8X .A | A⇥B | X | ↵ | ?
Ground Types G ,H ::= ◆ | ?! ? | ↵
Operations ~ ::= + | � | ⇤ | . . .

Expressions e ::= n | true | false | if e then e else e | e ~ e | x | �(x :A). e | e e | ⇤X .v |
e [B] | he ,e i | ⇡

1

e | ⇡
2

e | (e :A
�

=) B ) | (e :A
p

=) B ) | blame p

Values v ::= n | true | false | �(x :A). e | ⇤X .v | hv ,v i | (v :A!B
�

=) A0!B 0
) |

(v : 8X .A
�

=) 8X .B ) | (v :A
�↵
=) ↵) | (v :A!B

p

=) A0!B 0
) |

(v :A
p

=) 8X .B ) | (v :G
p

=) ?)

Type-Name Stores ⌃ ::= · | ⌃ ,↵ :=A
Type Environments � ::= · | � ,X
Environments � ::= · | � , x :A
Evaluation Contexts E ::= [·] | E ~ e | v ~E | if E then e else e | E e | v E | E [A] |

hE,ei | hv,Ei | (E :A
�

=) B ) | (E :A
p

=) B )

Term Variable Closures � ::= {x 7! (v1, v2), . . .}
Type Variable Closures ⇢ ::= {X 7! ↵, . . .}
Type Name Relations  ::= {↵ 7! R, . . .}
Worlds W ::= (j,⌃1,⌃2,)

Relations R ::= {(W, e1, e2), . . .}

Figure 1: Syntax

Shorthand:
↵ /2 �

def
= � 6= �↵ ^ � 6= +↵

↵ /2 ⌃

def
= ↵ /2 dom(⌃)
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Store Well-Formedness `⌃

` ·
↵ /2 ⌃ ⌃ ; · `A

`⌃ ,↵ :=A

Type Well-Formedness ⌃ ;� `A where `⌃

`⌃ X 2 �

⌃ ;� `X

`⌃ ↵ :=A 2 ⌃

⌃ ;� `↵

`⌃

⌃ ;� ` int

`⌃

⌃ ;� ` bool

`⌃

⌃ ;� ` ?

⌃ ;� `A ⌃ ;� `B

⌃ ;� `A!B

⌃ ;� ,X `A

⌃ ;� `8X .A

⌃;�`A ⌃;�`B

⌃;�`A⇥B

Convertibility ⌃ ;� `A �� B where ⌃ ;� `A , ⌃ ;� `B , and FTN (�) 2 ⌃

`⌃

⌃ ;� ` int ��
int

`⌃

⌃ ;� ` bool ��
bool

⌃ ;� `A0 ��� A ⌃ ;� `B �� B 0

⌃ ;� `A!B �� A0!B 0
⌃ ;� ,X `A �� B

⌃ ;� `8X .A �� 8X .B

⌃;�`A��
A

0
⌃;�`B��

B

0

⌃;�`A⇥B��
A

0 ⇥B

0
`⌃ ↵ :=A 2 ⌃

⌃ ;� `↵ �+↵ A

`⌃ ↵ :=A 2 ⌃

⌃ ;� `A ��↵
↵

`⌃ ↵ :=A 2 ⌃ ↵ /2 �

⌃ ;� `↵ ��
↵

`⌃ X 2 �

⌃ ;� `X �� X

`⌃

⌃ ;� ` ?��
?

Label Negation
�(+↵)

def
= �↵

�(�↵)

def
= +↵

Compatibility ⌃ ;� `A �B where ⌃ ;� `A and ⌃ ;� `B

`⌃

⌃ ;� ` int � int

`⌃

⌃ ;� ` bool � bool

⌃ ;� `A0 �A ⌃ ;� `B �B 0

⌃ ;� `A!B �A0!B 0
⌃ ;� ,X `A �B X /2 A

⌃ ;� `A �8X .B

⌃ ;� `A [?/X ]�B

⌃ ;� `8X .A �B

⌃;�`A�A

0
⌃;�`B�B

0

⌃;�`A⇥B�A

0 ⇥B

0
`⌃ ↵ 2 ⌃

⌃ ;� `↵ �↵

`⌃ X 2 �

⌃ ;� `X �X

⌃ ;� `A

⌃ ;� `A � ?

⌃ ;� `A

⌃ ;� ` ?�A

Figure 2: Type-Level Static Semantics

3



Environment Well-Formedness ⌃ ;� `� where `⌃

`⌃

⌃ ;� ` ·
⌃ ;� `� ⌃ ;� `A

⌃ ;� `� , x :A

Expression Well-Formedness ⌃ ;� ;� ` e :A where ⌃ ;� `� and ⌃ ;� `A

⌃ ;� `�

⌃ ;� ;� ` true : bool

⌃ ;� `�

⌃ ;� ;� ` false : bool

⌃ ;� ;� ` e : bool ⌃ ;� ;� ` e 1 :A ⌃ ;� ;� ` e 2 :A

⌃ ;� ;� ` if e then e 1 else e 2 :A

⌃ ;� `�

⌃ ;� ;� `n : int

⌃ ;� ;� ` e : int ⌃ ;� ;� ` e 0
: int

⌃ ;� ;� ` e ~ e 0
: int

⌃ ;� `� �(x ) = A

⌃ ;� ;� ` x :A

⌃ ;� ;� , x :A ` e :B

⌃ ;� ;� ` �(x :A). e :A!B

⌃ ;� ;� ` e :B!A ⌃ ;� ;� ` e 0
:B

⌃ ;� ;� ` e e 0
:A

⌃ ;� ,X ;� ` v :A ⌃ ;� `�

⌃ ;� ;� `⇤X .v : 8X .A

⌃ ;� ;� ` e : 8X .A ⌃ ;� `B

⌃ ;� ;� ` e [B ] :A [B /X ]

⌃;�;�` e1 :A ⌃;�;�` e2 :B

⌃;�;�` he1,e2i :A⇥B

⌃;�;�` e :A⇥B

⌃;�;�`⇡

1

e :A

⌃;�;�` e :A⇥B

⌃;�;�`⇡

2

e :B

⌃ ;� ;� ` e :A ⌃ ;� `A �� B

⌃ ;� ;� ` (e :A
�

=) B ) :B

⌃ ;� ;� ` e :A ⌃ ;� `A �B

⌃ ;� ;� ` (e :A
p

=) B ) :B

⌃ ;� `� ⌃ ;� `A

⌃ ;� ;� ` blame p :A

Figure 3: Expression-Level Static Semantics
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e 7�! e 0

n~n

0 7�! J~K (n,n0
)

if true then e 1 else e 2 7�! e 1

if false then e 1 else e 2 7�! e 2

(�(x :A). e ) v 7�! e [v /x ]
⇡

1

hv1,v2i 7�! v1

⇡

2

hv1,v2i 7�! v2

(v : int

�
=) int) 7�! v

(v : bool

�
=) bool) 7�! v

(hv1,v2i :A⇥B

�
=) A

0 ⇥B

0
) 7�! h(v1 :A

�
=) B),(v2 :A

0 �
=) B

0
)i

(v :A!B
�

=) A0!B 0
) v 0 7�! (v (v 0

:A0 ��
=) A) :B

�
=) B 0

)

(v :↵

�
=) ↵) 7�! v if ↵ /2 �

((v :A
�↵
=) ↵) :↵

+↵
=) A) 7�! v

(v : ?

�
=) ?) 7�! v

(v : int

p

=) int) 7�! v

(v : bool

p

=) bool) 7�! v

(hv1,v2i :A⇥B

p

=) A

0 ⇥B

0
) 7�! h(v1 :A

p

=) B),(v2 :A
0 p

=) B

0
)i

(v :A!B
p

=) A0!B 0
) v 0 7�! (v (v 0

:A0 �p

=) A) :B
p

=) B 0
)

(v : 8X .A
p

=) B ) 7�! (v [?] :A [?/X ]

p

=) B ) if B 6= 8Y.B0
for any Y,B

0

(v :↵

p

=) ↵) 7�! v

(v : ?

p

=) ?) 7�! v

((v :G
p

=) ?) : ?

q

=) G ) 7�! v

((v :G
p

=) ?) : ?

q

=) H ) 7�! blame q if G 6= H

(v :A!B
p

=) ?) 7�! ((v :A!B
p

=) ?! ?) : ?! ?

p

=) ?) if A!B 6= ?! ?

(v : ?

p

=) A!B ) 7�! ((v : ?

p

=) ?! ?) : ?! ?

p

=) A!B ) if A!B 6= ?! ?

⌃ . e 7�! ⌃

0
. e 0

e 7�! e 0

⌃ .E [e ] 7�! ⌃ .E [e 0
]

⌃ . e 7�! ⌃

0
. e 0

⌃ .E [e ] 7�! ⌃

0
.E [e 0

] ⌃ .E [blame p ] 7�! ⌃ . blame p

⌃; (·, X); · ` v :A ↵ /2 dom(⌃)

⌃ . (⇤X .v ) [B ] 7�! ⌃ ,↵:=B . (v [↵/X] :A[↵/X]

+↵
=) A[B /X])

↵ /2 dom(⌃)

⌃ . (v :A

p
=) 8X.A

0
) [B] 7�! ⌃,↵:=B . ((v :A

p
=) A

0
[↵/X]) :A

0
[↵/X]

+↵
=) A

0
[B/X])

↵ /2 dom(⌃)

⌃ . (v : 8X.A

�
=) 8X.A

0
) [B] 7�! ⌃,↵:=B . ((v [↵] :A[↵/X]

�
=) A

0
[↵/X]) :A

0
[↵/X]

+↵
=) A

0
[B/X])

Figure 4: Dynamic Semantics
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2 Context and Contextual Equivalence

Expression Contexts C ::= [·] | C ~ e | e ~C | if C then e else e | if e then C else e | if e then e else C |
�(x :A).C | C e | e C | ⇤X .Cv | C [X ] | hC,ei | he,Ci | ⇡

1

C | ⇡
2

C |
(C :A

�
=) B ) | (C :A

p

=) B )

Value Contexts Cv ::= [·]v | �(x :A).C | ⇤X .Cv | hCv,vi | hv,Cvi | (Cv :A!B
�

=) A0!B 0
) |

(Cv : 8X .A
�

=) 8X .B ) | (Cv :A
�↵
=) ↵) | (Cv :A!B

p

=) A0!B 0
) |

(Cv :A
p

=) 8X .B ) | (Cv :G
p

=) ?)

Figure 5: Context Syntax
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Context Well-Formedness `C : (⌃ ;� ;� `B )  (⌃

0
;�

0
;�

0 `A)

⌃ ✓ ⌃

0
� ✓ �

0
� ✓ �

0

` [·] : (⌃ ;� ;� `A)  
�
⌃

0
;�

0
;�

0 `A
�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 ` bool

�
⌃

0
;�

0
;�

0 ` e 1 :A ⌃

0
;�

0
;�

0 ` e 2 :A

` if C then e 1 else e 2 : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A
�

⌃

0
;�

0
;�

0 ` e : bool `C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A
�

⌃

0
;�

0
;�

0 ` e 2 :A

` if e then C else e 2 : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A
�

⌃

0
;�

0
;�

0 ` e : bool ⌃

0
;�

0
;�

0 ` e 1 :A `C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A
�

` if e then e 1 else C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A
�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 ` int

�
⌃

0
;�

0
;�

0 ` e : int

`C ~ e : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 ` int

�

⌃

0
;�

0
;�

0 ` e : int `C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 ` int

�

` e ~C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 ` int

�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0
, x :A1 `A2

�

` �(x :A1).C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A1!A2

�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A1!A2

�
⌃

0
;�

0
;�

0 ` e 0
:A1

`C e 0
: (⌃ ;� ;� `B )  

�
⌃

0
;�

0
;�

0 `A2

�

⌃

0
;�

0
;�

0 ` e :A1!A2 `C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A1

�

` e C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A2

�

`Cv : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
,X ;�

0 `A
�

`⇤X .Cv : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `8X .A
�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `8X .A
�

⌃

0
;�

0 `A

0

`C [A0
] : (⌃ ;� ;� `B )  

�
⌃

0
;�

0
;�

0 `A [A0
/X ]

�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A

�
⌃

0
;�

0
;�

0 ` e :A

0

` hC,ei : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A ⇥A0�
`C : (⌃ ;� ;� `B )  

�
⌃

0
;�

0
;�

0 `A⇥A

0�

`⇡

1

C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A

�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A

0�
⌃

0
;�

0
;�

0 ` e :A

` he,Ci : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A ⇥A0�
`C : (⌃ ;� ;� `B )  

�
⌃

0
;�

0
;�

0 `A⇥A

0�

`⇡

2

C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A

0�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A1

�
⌃

0
;�

0 `A1 �� A2

` (C :A1
�

=) A2) : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A2

�

`C : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A1

�
⌃

0
;�

0 `A1 �A2

` (C :A1
p

=) A2) : (⌃ ;� ;� `B )  
�
⌃

0
;�

0
;�

0 `A2

�

Figure 6: Context Static Semantics
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Contextual Equivalence:

⌃ ;� ;� ` e 1 �ctx

e 2 :A
def
= ⌃ ;� ;� ` e 1 :A ^ ⌃ ;� ;� ` e 2 :A ^

8C ,⌃0,B . `C : (⌃ ;� ;� `A)  (⌃

0
; · ; · `B ) =)

(⌃

0 .C [e 1]+ =) ⌃

0 .C [e 2]+) ^
(9⌃1. ⌃

0 .C[e1] 7�!⇤
⌃1 . blame p =) 9⌃2. ⌃

0 .C[e2] 7�!⇤
⌃2 . blame p )

⌃ ;� ;� ` e 1 ⇡ctx

e 2 :A
def
= ⌃ ;� ;� ` e 1 �ctx

e 2 :A ^ ⌃ ;� ;� ` e 2 �ctx

e 1 :A

Figure 7: Contextual Equivalence
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3 Logical Relation

Shorthand:
(j ,⌃1,⌃2,).j = j

(j ,⌃1,⌃2,).⌃1 = ⌃1

(j ,⌃1,⌃2,).⌃2 = ⌃2

(j ,⌃1,⌃2,). = 
�1(x ) = v 1 where �(x ) = (v 1, v 2)

�2(x ) = v 2 where �(x ) = (v 1, v 2)

Atom

n

[A1,A2] = {(W, e 1, e 2) | W.j < n ^ W 2 World

n

^ W.⌃1; · ; · ` e 1 :A1 ^ W.⌃2; · ; · ` e 2 :A2}
Atom

val
n

[A1,A2] = {(W, v 1, v 2) 2 Atomn [A1,A2] }
Rel

n

[A1,A2] = {R ✓ Atom

val
n

[A1,A2] | 8(W, v 1, v 2) 2 R. 8W 0 w W. (W

0
, v 1, v 2) 2 R}

Worldn = {(j,⌃1,⌃2,) 2 Nat⇥ TNStore⇥ TNStore⇥ (TName

fin! Relj) |
j < n ^ `⌃1 ^ `⌃2 ^
8↵ 2 dom(). (↵) 2 Relj [⌃1(↵),⌃2(↵)] }

Atom [A ] ⇢ =

S
n �0

{(W, e 1, e 2) 2 Atom

n

[⇢(A), ⇢(A)] }

World =

S
n �0

World

n

⌃ . e+ def
= 9⌃0

, v . ⌃ . e 7�!⇤
⌃

0
. v

W

0 w W

def
= W

0
.j  W.j ^ W

0
.⌃1 ◆ W.⌃1 ^ W

0
.⌃2 ◆ W.⌃2 ^ W

0
. w bW.cW 0.j ^

W,W

0 2 World

W

0 wn W

def
= W

0
.j + n = W.j ^ W

0 w W



0 w 

def
= 8↵ 2 dom(). 

0
(↵) = (↵)

bRcn = {(W, e 1, e 2) 2 R | W.j < n}
bcn = {↵ 7! bRcn | (↵) = R}

IR = {(W, e 1, e 2) | W.j > 0 =) (IW, e 1, e 2) 2 R}
I(j + 1,⌃1,⌃2,)

def
= (j ,⌃1,⌃2, bc

j

)

W � (↵,B 1,B 2, R)

def
= (W.j,W.⌃1,↵:=B 1,W.⌃2,↵:=B 2,W. [↵ 7! R])

Figure 8: Auxiliary Definitions

 is a relational interpretation for type names. However, rather than relate terms at the type names
themselves, we define the interpretation of a type name ↵ as a relation on terms at their bound types W.⌃1(↵)

and W.⌃2(↵).
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V JintK ⇢ = {(W,n ,n ) 2 Atom [int ] ⇢}
V JboolK ⇢ = {(W, b , b ) 2 Atom [bool ] ⇢}
V JA!B K ⇢ = {(W, v f1, v f2) 2 Atom [A!B ] ⇢ |

8W 0 w W. 8v 1, v 2. (W
0
, v 1, v 2) 2 V JAK ⇢ =) (W

0
, v f1 v 1, v f2 v 2) 2 E JB K ⇢}

V JX K ⇢ = {(W, (v 1 :A1
�↵
=) ↵), (v 2 :A2

�↵
=) ↵)) 2 Atom [X ] ⇢ |

(W, v 1, v 2) 2 IW.(↵)}
V J↵K ⇢ = {(W, (v 1 :A1

�↵
=) ↵), (v 2 :A2

�↵
=) ↵)) 2 Atom [↵ ] ; |

(W, v 1, v 2) 2 IW.(↵)}
V J?K ⇢ = {(W, (v : ◆

p

=) ?), (v : ◆

p

=) ?)) 2 Atom [?] ;}
[ {(W, (v 1 : ?! ?

p

=) ?), (v 2 : ?! ?

p

=) ?)) 2 Atom [?] ; | (W, v 1, v 2) 2 IV J?! ?K ⇢}
[ {(W, (v 1 :↵

p

=) ?), (v 2 :↵
p

=) ?)) 2 Atom [?] ; |
v 1 = (v 0

1 :A1
�↵
=) ↵) ^ v 2 = (v 0

2 :A2
�↵
=) ↵) ^ (W, v 0

1, v
0
2) 2 IW.(↵)}

V J8X .AK ⇢ = {(W, v f1, v f2) 2 Atom [8X .A ] ⇢ |
8W 0 w W. 8B 1,B 2, R. 8e 1, e 2. 8↵.

W

0
.⌃1; · `B 1 ^ W

0
.⌃2; · `B 2 ^ R 2 RelW 0.j [B 1,B 2] ^

W

0
.⌃1 . v f1 [B 1] 7�! W

0
.⌃1,↵:=B 1 . (e 1 : ⇢(A)[↵/X ]

+↵
=) ⇢(A)[B 1/X ]) ^

W

0
.⌃2 . v f2 [B 2] 7�! W

0
.⌃2,↵:=B 2 . (e 2 : ⇢(A)[↵/X ]

+↵
=) ⇢(A)[B 2/X ]) =)

(W

0 � (↵,B 1,B 2, R), e 1, e 2) 2 IE JAK ⇢[X 7! ↵]}
V JA⇥BK ⇢ = {(W, hv1,v2i, hv01,v02i) 2 Atom [A⇥B] ⇢ | (W, v1, v2) 2 V JAK ⇢ ^ (W, v

0
1, v

0
2) 2 V JBK ⇢}

E JAK ⇢ = {(W, e 1, e 2) 2 Atom [A ] ⇢ | 8j < W.j.

(8⌃1, v1. W.⌃1 . e1 �!j
⌃1 . v1 =) 9W 0

,⌃2, v2. W.⌃2 . e2 �!⇤
⌃2 . v2 ^

W

0 wj W ^ W

0
.⌃1 = ⌃1 ^ W

0
.⌃2 = ⌃2 ^ (W

0
, v1, v2) 2 V JAK ⇢) ^

(8⌃1, p. W.⌃1 . e1 �!j
⌃1 . blame p =) 9⌃2. W.⌃2 . e2 �!⇤

⌃2 . blame p )}

S J·K = World

S J⌃ ,↵ :=AK = S J⌃K \ {W 2 World | W.⌃1(↵) = A ^ W.⌃2(↵) = A ^ `W.⌃1 ^ `W.⌃2 ^
W.(↵) = bV JAK ;cW.j }

D J·K = {(W, ;) | W 2 World}
D J� ,X K = {(W, ⇢[X 7! ↵]) | (W, ⇢) 2 D J�K ^ ↵ 2 dom(W.)}
G J·K ⇢ = {(W, ;) | W 2 World}
G J� , x :AK ⇢ = {(W, � [x 7! (v 1, v 2)]) | (W, � ) 2 G J�K ⇢ ^ (W, v 1, v 2) 2 V JAK ⇢}

⌃ ;� ;� ` e 1 � e 2 :A
def
= ⌃ ;� ;� ` e 1 :A ^ ⌃ ;� ;� ` e 2 :A ^

8W, ⇢, � . (W 2 S J⌃K ^ (W, ⇢) 2 D J�K ^ (W, � ) 2 G J�K ⇢) =)
(W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E JAK ⇢

⌃ ;� ;� ` e 1 ⇡ e 2 :A
def
= ⌃ ;� ;� ` e 1 � e 2 :A ^ ⌃ ;� ;� ` e2 � e1 :A

Figure 9: Logical Relation

Note that, in the definition of V JX K ⇢, we have that ⇢(X ) = ↵. This may be observed by expanding the
definition of Atom [X ] ⇢. The definitions of V JX K ⇢ and V J↵K ⇢ are in fact identical.

Note that the V JAK ⇢ relation in Figure 9 could more accurately be written as an interpretation of type
well-formedness judgments V J⌃ ;� `AK ⇢. In this expanded form, we may observe that � = dom(⇢). This
longhand also serves to clarify the definition of V J↵K ⇢.
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4 Type Safety

Lemma 4.1 (Canonical forms)
If ⌃;�;�` v :A then either

• v = n0
and A = int

• (v = true or v = false) and A = bool

• v = �(x :A0
). N 0

and A = A0 ! B0

• v = ⇤X. v0 and A = 8X.B0

• v = v0 : A0!B0 �0

=) C 0!D0
and A = C 0!D0

• v = v0 : 8X.A0 �0

=) 8X.B0
and A = 8X.B0

• v = v0 : A0 �↵0
=) ↵0

and A = ↵0

• v = v0 : A0!B0 p0

=) C 0!D0
and A = C 0!D0

• v = v0 : A0 p0

=) 8X.B0
and A = 8X.B0

• v = v0 : G0 p0

=) ? and A = ?

where all primed variables are existentially quantified.

Proof

The proof is by cases on v and the last step in the derivation of ⌃;�;�` v :A.

Lemma 4.2
If ⌃;�`8X.A�B, then ⌃;�`A[X:=?]�B.

Proof

We proceed by induction on ⌃;�`8X.A�B.

• Case ⌃;�`A0 �8Y.B0 (where A0
= 8X.A):

We have ⌃;�, Y `8X.A�B0. By the induction hypothesis, ⌃;�, Y `A[X:=?]�B0. Therefore,
⌃;�`A[X:=?]�8Y.B0

[Y ].

• Case ⌃;�`8X.A�B :
We have ⌃;�`A[X:=?]�B, which completes this case.

• Case ⌃;�`A0 � ? (where A0
= 8X.A):

We have ⌃;�`8X.A and so ⌃;�, X `A. Then by a substitution lemma, we obtain ⌃;�`A[X:=?].
Therefore ⌃;�`A[X:=?]� ?.

Lemma 4.3 (Subject Reduction)
If ⌃; · ; · `M :A and M 7�! N , then ⌃; · ; · `N :A.

Proof

The proof is by cases on M 7�! N . Many of the cases are trivial or standard. We give the cases that
are novel or non-trivial.

11



• Case (V : A0 ! B
�

=) C ! D) W

7�! V (W : C
��
=) A0

) : B
�

=) D
:

We have ⌃; · `A0!B�� C!D. So ⌃; · `C ��� A0 and ⌃; · `B�� D. Thus, the RHS also has
type D = A.

• Case
(V : A0 ! B

p
=) C ! D) W

7�! V (W : C
�p
=) A0

) : B
p

=) D
:

We have ⌃; · `A0!B�C!D. So ⌃; · `C �A0 and ⌃; · `B�D. Thus, the RHS also has type
D = A.

• Case (v : 8X .A0 p

=) B )

7�! (v [?] :A0
[?/X ]

p

=) B )

: where B 6= 8Y.B0 for any Y,B0.

We have ⌃; · ; · ` v : 8X.A0. So ⌃; · ; · ` v [?] :A0
[?/X]. We also have ⌃; · `8X.A0 �B, so

⌃; · `A0
[?/X]�B. Therefore ⌃; · ; · ` (v [?] :A0

[?/X]

p
=) B) :B.

Definition 4.4
Well-typed contexts, written ⌃ ` E : B ) A, are defined in the usual way.

Lemma 4.5 (Decomposition)
If ⌃; · ; · `M :A, then either

1. M = V 0
,

2. M = E0
[blame p0],

3. M = E0
[M 0

], ⌃ .M 0 7�! ⌃

0 .N 0
, and ⌃ ✓ ⌃

0
.

4. M = E0
[M 0

] and M 0 7�! N 0
.

where all primed variables are existentially quantified.

Proof

The proof is by induction on ⌃; · ; · `M :A.

• ⌃; · ; · `n : int Pick V 0 to be n.

•
⌃; · ; · `Mi : int 8i 2 {1, 2}

⌃; · ; · `M1~M2 :B

If M1 and M2 are all values n1, n2, then we have M1~M2 7�! [[~ ]](n1, n2) (We require the
primitive operators to be type safe.) Pick E0

= 2, M 0
= n1~n2, and N 0

= [[op]](n1, n2) to
conclude.
If one of Mi is not a value, let Mi be the first such. Pick E0

= V1~E0
1 if M1 is a value V1 and

pick E0
= E0

1~V2 if M2 is a value V2. By the induction hypothesis, either
1. Mi = E0

1[blame p0], or
2. Mi = E0

1[M
0
i ] and ⌃ .M 0

i 7�! ⌃

0 .N 0
i , or

3. Mi = E0
1[M

0
i ] and M 0

i 7�! N 0
i .

In the first case we have ⌃ ⇤ E0
[blame p0] 7�! ⌃ ` blame p0. In the second case we have

⌃ .E0
[M 0

i ] 7�! ⌃

0 .E0
[N 0

i ]. In the third case we have E0
[M 0

i ] 7�! E0
[N 0

i ].

12



•
⌃; · ; ·, x : A`N :B ⌃; · ` ·
⌃; · ; · ` �(x :A). N :A ! B

Pick V 0 to be (�(x :A). N).

•
⌃; ·, X; · `V :B ⌃; · ` ·

⌃; · ; · `⇤X.V : 8X.B
Pick V 0 to be (⇤X.V ).

•
⌃; · ; · `L :A ! B ⌃; · ; · `M1 :A

⌃; · ; · ` (L M1) :B

– If L and M1 are values, then pick E0
= 2 and M 0

= (L M1). By canonical forms (Lemma 4.1),
L is in one of the following forms:
1. L = �(x :A). N1, or

2. L = V : A0 ! B0 �
=) A ! B, or

3. L = V : A0 ! B0 p
=) A ! B.

In each of these cases, a reduction rule applies, so we have M 0 �! N 0 for some N 0.
– If L is a value but not M1, then we apply the induction hypothesis for M1 to obtain a

decomposition E00 of M1 and then pick E0
= (L E00

).
– If L is not a value, then we apply the induction hypothesis for L to obtain a decomposition

E00 of L and then pick E0
= (E00 M1).

•
⌃; · ; · `L : 8X.B ⌃ ; · `A0

⌃; · ; · `L [A0
] :B[A0/X]

– If L is a value, then pick E0
= 2 and M 0

= L [A0
]. By canonical forms (Lemma 4.1), L is in

one of the following forms:
1. L = (⇤X.V 0

), or

2. L = V 0
: 8X.B0 �

=) 8X.B, or
3. L = V 0

: B0 p
=) 8X.B.

In each of these cases, a reduction rule applies, so we have ⌃ .M 0 7�! ⌃

0 .N 0 for some ⌃

0, N 0.
Also, in each case ⌃ ✓ ⌃

0.
– If L is not a value, we apply the induction hypothesis to obtain a decomposition E00 of L and

then pick E0
= E00

[A0
].

•
⌃; · ; · `M1 :A ⌃; · `A�� B

⌃; · ; · ` (M1 : A
�

=) B) :B

– If M1 is a value V , we proceed by cases on ⌃; · `A�� B.
1. Case ⌃; · ` int ��

int :
Pick E0

= 2 and M 0
= (V : int

�
=) int).

V : int

�
=) int 7�! V

2. Case ⌃; · ` bool ��
bool :

Pick E0
= 2 and M 0

= (V : bool

�
=) bool).

V : bool

�
=) bool 7�! V

3. Case ⌃; · `A1!A2 �� B1!B2:
(V : A1!A2

�
=) B1!B2) is a value.
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4. Case ⌃; · `8X.A�� 8X.B:
(V : 8X.A

�
=) 8X.B) is a value.

5. Case ⌃; · `↵�+↵ B:
So ⌃; · ; · `V :↵ and by canonical forms (Lemma 4.1), V = V 0

: B
�↵
=) ↵. Pick E0

= 2

and M 0
= (V 0

: B
�↵
=) ↵

+↵
=) B).

(V 0
: B

�↵
=) ↵

+↵
=) B) 7�! V 0

6. Case ⌃; · `A��↵ ↵:
(V : A

�↵
=) ↵) is a value.

7. Case ⌃; · `↵�� ↵:
Pick E0

= 2 and M 0
= (V : ↵

�
=) ↵).

(V : ↵
�

=) ↵) 7�! V

8. Case ⌃; · ` ? �� ?:
Pick E0

= 2 and M 0
= (V : ?

�
=) ?).

(V : ?
�

=) ?) 7�! V

– If M1 is not a value, apply the induction hypothesis for M1 to obtain a decomposition E00 of
M1. Then we pick E0

= (E00
: A

�
=) B).

•
⌃; · ; · `M1 :A ⌃; · `A�B

⌃; · ; · ` (M1 : A
p

=) B) :B

– If M1 is a value V , we proceed by cases on ⌃; · `A�B.
1. ⌃; · ` int � int :

Pick E0
= 2 and M 0

= (V : int

p
=) int).

V : int

p
=) int 7�! V

2. ⌃; · ` bool � bool :
Pick E0

= 2 and M 0
= (V : bool

p
=) bool).

V : bool

p
=) bool 7�! V

3. ⌃; · `A1!A2 �B1!B2:
(V : A1!A2

p
=) B1!B2) is a value.

4. ⌃; · `A�8X.B0:
(V : A

p
=) 8X.B0

) is a value.
5. ⌃; · `8X.A0 �B:

⇤ If B = 8X.B0, then (V : 8X.A0 p
=) 8X.B0

) is a value.
⇤ Otherwise

V : 8X.A0 p
=) B 7�! (V ?) : A0

[X:=?]
p

=) B

Pick E0
= 2, M 0

= V : 8X.A0 p
=) B.

6. ⌃; · `↵�↵:
Pick E0

= 2 and M 0
= (V : ↵

p
=) ↵).

(V : ↵
p

=) ↵) 7�! V
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7. A � ?:
⇤ If A = G, then (V : G

p
=) ?) is a value.

⇤ If A = ?, then
V : ?

p
=) ? 7�! V

Pick E0
= 2 and M 0

= V : ?
p

=) ?.
⇤ If A is not ground and not ?, then

V : A
p

=) ? 7�! V : A
p

=) G
p

=) ?

Pick E0
= 2 and M 0

= V : A
p

=) ?.
8. ? � B:

By canonical forms, we have V = (V 0
: G

q
=) ?).

⇤ If B = H and G = H, then

V 0
: G

q
=) ?

p
=) G 7�! V 0

Pick E0
= 2 and M 0

= V : ?
p

=) G.
⇤ If B = H and G 6= H, then

V 0
: G

q
=) ?

p
=) H 7�! blame p

Pick E0
= 2 and M 0

= V : ?
p

=) H.
⇤ If B = ?, then

V : ?
p

=) ? 7�! V

Pick E0
= 2 and M 0

= V : ?
p

=) ?.
⇤ If B is not ground and not ?, then

V : ?
p

=) B 7�! V : ?
p

=) G
p

=) B

where G � B. Pick E0
= 2 and M 0

= V : ?
p

=) B.
– If M1 is not a value, the induction hypothesis for M1 gives us a decomposition E00, so we pick

E0
= (E00

: A
p

=) B).

•
⌃; · ` · ⌃; · `A

⌃; · ; · ` blame p :A
We satisfy the fourth option, picking E0

= 2.

Lemma 4.6 (Context Inversion)
If ⌃; · ; · `E[M ] :A, then ⌃; · ; · `M :B and ⌃ ` E : B ) A for some B.

Lemma 4.7 (Context Weakening)
If ⌃ ` E : B ) A and ⌃ ✓ ⌃

0
, then ⌃

0 ` E : B ) A.

Lemma 4.8 (Plug)
If ⌃; · ; · `M :B and ⌃ ` E : B ) A, then ⌃; · ; · `E[M ] :A.

Theorem 4.9 (Type safety)

1. (Preservation) If ⌃; · ; · ` e :A and ⌃ . e 7�! ⌃

0 . e0 then ⌃

0
; · ; · ` e0 :A and ⌃ ✓ ⌃

0
.
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2. (Progress) If ⌃; · ; · ` e :A then either

• e = V 0
, or

• e = blame p0, or

• ⌃ . e 7�! ⌃

0 . e0 and ⌃ ✓ ⌃

0
.

where all primed variables are existentially quantified.

Proof

1. The proof of preservation is by induction on ⌃⇤ e �! ⌃

0 ⇤ e0.

• ⌃⇤ E[e1] �! ⌃⇤ E[e01]

We have ⌃; · ; · ` e1 :B and ⌃ ` E : B ) A for some B by Lemma 4.6. Then ⌃; · ; · ` e01 :B
by Lemma 4.3 (subject reduction). We conclude that ⌃ ` E[e01] : A by Lemma 4.8.

• ⌃ .E [e1] 7�! ⌃

0 .E [e01]

We have ⌃ . e1 7�! ⌃

0 . e01. Also, we have ⌃; · ; · ` e1 :B and ⌃ ` E : B ) A for some B by
Lemma 4.6. So by the induction hypothesis, we have ⌃

0
; · ; · ` e01 :B and ⌃ ✓ ⌃

0 for some
⌃

0. Then we have ⌃

0 ` E : B ) A by Lemma 4.7 and conclude that ⌃

0
; · ; · `E[e01] : : A by

Lemma 4.8.

• ⌃ . (⇤X .v ) [B ] 7�! ⌃ ,↵:=B . (v [↵/X] :A0
[↵/X]

+↵
=) A0

[B /X])

We have ⌃; ·, X; · ` v :A0 so by a substitution lemma, ⌃; · ; · ` v[↵/X] :A0
[↵/X]. Also, we have

⌃,↵:=B; · `A0
[↵/X]�+↵ A0

[B/X]. We conclude that ⌃,↵:=B; · ; · ` (v[↵/X] :A0
[↵/X]

+↵
=)

A0
[B/X]) :A0

[B/X].

• ⌃ . (v :A1
p

=) 8X.A0
1) [B] 7�! ⌃,↵:=B . ((v :A1

p
=) A0

1[↵/X]) :A0
1[↵/X]

+↵
=) A0

1[B/X])

We have ⌃; ·; · ` v :A1, ⌃; · `A1 �8X.A0
1, and A = A0

1[B/X]. So we also have ⌃; ·, X `A1 �A0
1.

Then by a substitution lemma, ⌃,↵:=B; · `A1 �A0
1[↵/X]. Also, we have ⌃,↵:=B; ·

`A0
1[↵/X]�+↵ A0

1[B/X]. We conclude that ⌃,↵:=B; ·; ·` ((v :A1
p

=) A0
1[↵/X]) :A0

1[↵/X]

+↵
=)

A0
1[B/X]) :A0

1[B/X].

• ⌃ . (v : 8X.A1
�

=) 8X.A0
1) [B] 7�! ⌃,↵:=B . ((v [↵] :A1[↵/X]

�
=) A0

1[↵/X]) :A0
1[↵/X]

+↵
=) A0

1[B/X])

We have ⌃; · ; · ` v : 8X.A1, ⌃; · `8X.A1 �� 8X.A0
1, and A = A0

1[B/X]. So ⌃,↵:=B; · ; ·
` v [↵] :A1[↵/X]. Also, we have ⌃; ·, X `A1 �� A0

1. By a substitution lemma, we have
⌃,↵:=B; · `A1[↵/X]�� A0

1[↵/X]. Finally, we have ⌃,↵:=B; · `A0
1[↵/X]�+↵ A0

1[B/X]. We
conclude that ⌃,↵:=B; ·; ·` ((v[↵] :A1[↵/X]

�
=) A0

1[↵/X]) :A0
1[↵/X]

+↵
=) A0

1[B/X]) :A0
1[B/X].

• ⌃⇤ E[blame p] �! ⌃⇤ blame p
We immediately have ⌃ ` blame p : A.

2. The proof of progress is a corollary of Decomposition (Lemma 4.5).

Lemma 4.10 (Termination Implies Redex Termination)
If ⌃ .E[e] 7�!⇤

⌃2 . v then ⌃ . e 7�!⇤
⌃

0
2 . v

0
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5 Basic Properties of the Logical Relation

Lemma 5.1 (World Extension is Reflexive and Transitive)
For any W,W 0,W 00 2 World, we have

1. W w W

2. if W 00 w W 0
and W 0 w W , then W 00 w W

Lemma 5.2 (Properties of I)
For any W 2 World or R 2 Reln, we have

1. IW w W

2. If R 2 Reln [A1,A2] then IR 2 Reln [A1,A2]

3. If W 0 w W then IW 0 w IW

Lemma 5.3 (Successive Approximation)
If j0  j, then

j
bRcj

k

j0
= bRcj0 and

j
bRcj0

k

j
= bRcj0 .

Lemma 5.4 (Adding to the World Extends It)
If W.⌃1; · `B 1, W.⌃2; · `B 2,

↵ /2 W.⌃1, ↵ /2 W.⌃2, and

R 2 RelW.j [B 1,B 2]

then W � (↵,B 1,B 2, R) w W

Lemma 5.5 (Monotonicity of Later Relations in the World)
Let (W, v 1, v 2) 2 I(W.(↵)). If W 0 w W then (W 0, v 1, v 2) 2 I(W 0.(↵)).

Proof

Suppose that W 0.j > 0. We need to show that (IW 0, v 1, v 2) 2 W 0.(↵).
Since W 0 w W , we have that W.j � W 0.j > 0. Hence from the first premise, we have that (IW, v 1, v 2) 2
W.(↵).
Note thatIW 0 w IW by Lemma 5.2. Since W 2 World, we have that W.(↵) 2 RelW.j [W.⌃1(↵),W.⌃2(↵)].
Hence, by monotonicity of relations in Rel, we have (IW 0, v 1, v 2) 2 W.(↵). Moreover, by definition
of approximation and I, note that (IW 0, v 1, v 2) 2 bW.(↵)cW 0.j .
Since W 0 w W and ↵ 2 dom(W.), we have that W 0.(↵) = bW.(↵)cW 0.j . Hence, we have that
(IW 0, v 1, v 2) 2 W 0.(↵) as we were required to show.

Lemma 5.6 (Monotonicity)
Let ⌃;�`A. Let W 2 S J⌃K and (W, ⇢) 2 D J�K.
If W 0 w W and (W, v 1, v 2) 2 V JAK ⇢, then (W 0, v 1, v 2) 2 V JAK ⇢.

Proof

We proceed by induction on A .

Case A = int : Immediate from the definition of V JintK ⇢ and (W, v 1, v 2) 2 V JintK ⇢.
Case A = bool : Immediate from the definition of V JboolK ⇢ and (W, v 1, v 2) 2 V JboolK ⇢.
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Case A = A

0!B : Consider arbitrary W 00, v 0
1, v 0

2 such that

• W 00 w W 0

• (W 00, v 0
1, v

0
2) 2 V JA0K ⇢

It suffices to show that (W 00, v 1 v

0
1, v 2 v

0
2) 2 E JB K ⇢.

Instantiate (W, v 1, v 2) 2 V JA0!B K ⇢ with W 00, v

0
1, v

0
2, noting that W 00 w W by transitiv-

ity of world extension (Lemma 5.1) and that (W 00, v 0
1, v

0
2) 2 V JA0K ⇢. Hence, we have that

(W 00, v 1 v

0
1, v 2 v

0
2) 2 E JB K ⇢ as we were required to show.

Case A = X : Let v 1 = (v

0
1 :B 1

�↵
=) ↵) and v 2 = (v

0
2 :B 2

�↵
=) ↵). We need to show that

(W 0, (v 0
1 :B 1

�↵
=) ↵), (v 0

2 :B 2
�↵
=) ↵)) 2 V JX K ⇢

⌘ (W 0, v 0
1, v

0
2) 2 IW 0.(↵)

We know that (W, (v 0
1 :B 1

�↵
=) ↵), (v 0

2 :B 2
�↵
=) ↵)) 2 V JX K ⇢. Therefore, (W, v 0

1, v
0
2) 2 IW.(↵).

By Lemma 5.5 (monotonicity of later world relations) noting that W 0 w W , we have that
(W 0, v 0

1, v
0
2) 2 IW 0.(↵) as we were required to show.

Case A = ↵ : The proof is identical to the previous case.

Case A = ?: Let v 1 = (v

0
1 :G

p

=) ?) and v 2 = (v

0
2 :G

p

=) ?). We have three cases to consider.
Case G = ◆ : Since (W, v 1, v 2) 2 V J?K ⇢, we know that v

0
1 = v

0
2, so the proof is immediate.

Case G = ?! ?: We are required to show that

(W 0, v 0
1, v

0
2) 2 IV J?! ?K ⇢

⌘ W 0.j > 0 =) (IW 0, v 0
1, v

0
2) 2 V J?! ?K ⇢

Assume that W 0.j > 0. We need to show that (IW 0, v 0
1, v

0
2) 2 V J?! ?K ⇢.

Consider arbitrary W 00, v 00
1 , v 00

2 such that
• W 00 w IW 0

• (W 00, v 00
1 , v

00
2 ) 2 V J?K ⇢

We are required to show that (W 00, v 0
1 v

00
1 , v

0
2 v

00
2 ) 2 E J?K ⇢.

We know that (W, (v 0
1 : ?! ?

p

=) ?), (v 0
2 : ?! ?

p

=) ?)) 2 V J?K ⇢. Therefore, we have that

(W, v 0
1, v

0
2) 2 IV J?! ?K ⇢

⌘ W.j > 0 =) (IW, v 0
1, v

0
2) 2 V J?! ?K ⇢

We know that W.j > 0 since W 0 w W , and W 0.j > 0, so we have that (IW, v 01, v
0
2) 2 V J?! ?K ⇢.

Instantiate this with W 00, v 001 , v 002 . Note that W 00 w IW by transitivity of w (Lemma 5.1) since
IW 0 w IW by Lemma 5.2 and W 00 w IW 0. Also note that (W 00, v 00

1 , v
00
2 ) 2 V J?K ⇢. Hence,

we have that (W 00, v 0
1 v

00
1 , v

0
2 v

00
2 ) 2 E J?K ⇢ as we needed to show.

Case G = ↵: We know that (W, (v 0
1 :↵

p

=) ?), (v 0
2 :↵

p

=) ?)) 2 V J?K ⇢. Therefore, v

0
1 =

(v

00
1 :A1

�↵
=) ↵), v 0

2 = (v

00
2 :A2

�↵
=) ↵), and (W, v 00

1 , v
00
2 ) 2 IW.(↵).

It suffices to show that (W 0, v 00
1 , v

00
2 ) 2 IW 0.(↵).

By Lemma 5.5 (monotonicity of later world relations) noting that W 0 w W , we have that
(W 0, v 00

1 , v
00
2 ) 2 IW 0.(↵) as we were required to show.

Case A = 8X .B : Consider arbitrary W 00,B 1,B 2, R, e 1, e 2, ↵ such that

• W 00 w W 0

• W 00.⌃1; · `B 1

• W 00.⌃2; · `B 2
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• R 2 RelW 00.j [B 1,B 2]

• W 0.⌃1 . v f1 [B 1] 7�! W 0.⌃1,↵:=B 1 . (e 1 : ⇢(A)[↵/X ]

+↵
=) ⇢(A)[B 1/X ])

• W 0.⌃2 . v f2 [B 2] 7�! W 0.⌃2,↵:=B 2 . (e 2 : ⇢(A)[↵/X ]

+↵
=) ⇢(A)[B 2/X ])

Let W2 = W 00 � (↵, B1, B2, R).
It suffices to show that (W2, e 1, e 1) 2 IE JAK ⇢[X 7! ↵].
Instantiate (W, v 1, v 2) 2 V J8X .AK ⇢ with W 00,B 1,B 2, R, e 1, e 2, ↵, noting that W2 w W by
transitivity (Lemma 5.1) and that all other conditions are immediate. Hence, we have that
(W2, e 1, e 1) 2 IE JAK ⇢[X 7! ↵] as we were required to show.

Case A = A1 ⇥A2: The proof of this case is straightforward.

Lemma 5.7 (Type Interpretations Valid)
Let ⌃;�`A . If W 2 S J⌃K and (W, ⇢) 2 D J�K, then bV JAK ⇢cn 2 Reln [⇢(A), ⇢(A)].

Proof

The proof follows from two facts: that type interpretations satisfy monotonicity (Lemma 5.6); and that
every (W 0, v 1, v 2) 2 bV JAK ⇢cn belongs to Atomn [⇢(A), ⇢(A)], which is immediate from the definition
of V JAK ⇢.

Lemma 5.8 (Substitution Monotonicity)
Let ⌃;�`�. Let W 2 S J⌃K and (W, ⇢) 2 D J�K.
If W 0 w W and (W, �) 2 G J�K ⇢, then (W 0, �) 2 G J�K ⇢.

Proof

We proceed by induction on � .

Case � = ·: From (W, �) 2 G J·K ⇢ we have that � = ;. Since W 0 w W , we have that W 0 2 World we
completes the proof.

Case � = �

0, x :A : From (W, �) 2 G J�0, x :AK ⇢, we have that � = �0
[x 7! (v 1, v 2)] and (W, �0

) 2
G J�0K and (W, v 1, v 2) 2 V JAK ⇢. By the definition of G J�0, x :AK, it suffices to show that
1. (W 0, �0

) 2 G J�0K ⇢, which is immediate from the induction hypothesis; and
2. (W 0, v 1, v 2) 2 V JAK ⇢, which follows from Lemma 5.6 (monotonicity), noting that W 0 w W

and (W, v 1, v 2) 2 V JAK ⇢.

Lemma 5.9 (Store Monotonicity)
Let `⌃ . If W 0 w W and W 2 S J⌃K, then W 0 2 S J⌃K.

Proof

We proceed by induction on ⌃.

Case ⌃ = ·: We know that S J·K = World. From W 0 w W , we also know that W 0 2 World. Therefore,
W 0 2 S J·K.

Case ⌃ = ⌃

0,↵ :=A : We need to show that
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1. W 0 2 S J⌃0K, which is immediate from the induction hypothesis, since W 2 S J⌃0K.
2. W 0.⌃1(↵) = A and W 0.⌃2(↵) = A . Since W 2 S J⌃K, we have that W.⌃1(↵) = A and

W.⌃2(↵) = A and, since W 0.⌃1 ◆ W.⌃1 and W 0.⌃2 ◆ W.⌃2 by the definition of W 0 w W ,
we have that W 0.⌃1(↵) = A and W 0.⌃2(↵) = A as we needed to show.

3. `W 0.⌃1 and `W 0.⌃2, which is immediate from W 0 2 World, which in turn follows from
W 0 w W .

4. W 0.(↵) = bV JAK ;cW.j . From W 2 S J⌃0,↵ :=AK we have that W.(↵ ,↵) = bV JAK ⇢cW.j .
From W 0 w W , we have that W 0. w bW.cW 0.j . Hence, we have that

W 0.(↵ ,↵)
= bW.cW 0.j (↵ ,↵)

= bW.(↵ ,↵)cW 0.j

=

j
bV JAK ⇢cW.j

k

W 0.j

= bV JAK ⇢cW 0.j

where the last step follows by Lemma 5.3 (nested approximation), noting that W 0.j  W.j
because W 0 w W .

Lemma 5.10 (Monotonicity for Type-Variable Environments)
If W 0 w W and (W, ⇢) 2 D J�K, then (W 0, ⇢) 2 D J�K.

Proof

We proceed by induction on � .

Case � = ·: By the definition of D J·K, we have that ⇢ = ;. Hence, to show (W 0, ;) 2 D J�K, we need
to show that W 0 2 World, which is immediate from W 0 w W .

Case � = �

0, X: From (W, ⇢) 2 D J�0, XK, we have that ⇢ = ⇢0[X 7! ↵], (W, ⇢0) 2 D J�0K, and
↵ 2 dom(W.).
We are required to show that
1. (W 0, ⇢0) 2 D J�0K, which follows direcly from the induction hypothesis since (W, ⇢0) 2 D J�0K.
2. ↵ 2 dom(W 0.). From W 0 w W , we have that W 0. w bW.cW 0.k. Therefore, since

↵ 2 dom(W.), it follows that ↵ 2 dom(W 0.).

Lemma 5.11 (Logical Relation Weakening)
Let ⌃;�`A and ⌃;�`�. Let W 2 S J⌃K and (W, ⇢[X 7! ↵]) 2 D J�, XK where X /2 �. Then

1. (W, v 1, v 2) 2 V JAK ⇢ iff (W, v 1, v 2) 2 V JAK ⇢[X 7! ↵].

2. (W, e 1, e 2) 2 E JAK ⇢ iff (W, e 1, e 2) 2 E JAK ⇢[X 7! ↵].

3. (W, � ) 2 G J�K ⇢ iff (W, � ) 2 G J�K ⇢[X 7! ↵].

Lemma 5.12 (Atom Weakening)
If ⇢ ✓ ⇢0, then Atom [A ] ⇢ ✓ Atom [A ] ⇢0.
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Lemma 5.13 (Related Values are Related Terms)
If (W, v1, v2) 2 V JAK ⇢ then (W, v 1, v 2) 2 E JAK ⇢.
Proof

Consider arbitrary i < w.j,⌃1, v
0
1 such that W.⌃1 . v1 7�!i

⌃1 . v
0
1. It suffices to show that there exist

some W 0,⌃2, v
0
2 such that

• W 0 wi W

• W.⌃2 . v2 7�!⇤
⌃

0
2 . v

0
2

• W 0.⌃1 = ⌃

0
1

• W 0.⌃2 = ⌃

0
2

• (W 0, v01, v
0
2) 2 V JAK ⇢

Since v1 is a value, we have that i = 0, ⌃1 = W.⌃1, and v01 = v1.
Choose W 0

= W , ⌃2 = W.⌃2, and v02 = v2. We immediately have what we are required to show.

Lemma 5.14 (E Closed Under Anti-Reduction)
Let (W, e 1, e 2) 2 Atom [A ] ⇢. Given W 0 w W , if W.j  W 0.j + j1 and

W.⌃1 . e 1 7�!j1 W 0.⌃1 . e
0
1 and W.⌃2 . e 2 7�!⇤ W 0.⌃2 . e

0
2 then

(W 0, e 01, e
0
2) 2 E JAK ⇢ =) (W, e 1, e 2) 2 E JAK ⇢

Proof

We proceed by cases on termination of e01.

Case W 0.⌃1 . e
0
1 7�!k

⌃1 . v1 where k < W 0.j: Instantiate the definition of (W 0, e 01, e
0
2) 2 E JAK ⇢

with k,⌃1, v1. We have that there exist some W 00,⌃2, v2 such that
• W 00 wk W 0

• W 0.⌃2 . e
0
2 7�!⇤

⌃2 . v2
• W 00.⌃1 = ⌃1

• W 00.⌃2 = ⌃2

• (W 00, v1, v2) 2 V JAK ⇢
We are required to show that (W, e1, e2) 2 E JAK ⇢. Consider arbitrary i < W.j,⌃0

1, v
0
1 such that

W.⌃1 . e1 7�!i
⌃

0
1 . v

0
1. It suffices to show that there exist W2,⌃

0
2, v

0
2 such that

• W2 wi W

• W.⌃2 . e2 7�!⇤
⌃

0
2 . v

0
2

• W2.⌃1 = ⌃

0
1

• W2.⌃2 = ⌃

0
2

• (W2, v
0
1, v

0
2) 2 V JAK ⇢

We have that
W.⌃1 . e1 7�!j1 W 0.⌃1 . e

0
1 7�!k

⌃1 . v1

and therefore we have v01 = v1, ⌃0
1 = ⌃1, and i = j1 + k.

Similarly, we have that
W.⌃2 . e2 7�!⇤ W 0.⌃2 . e

0
2 7�!⇤

⌃2 . v2

Choose W2 = (W.j � i,⌃1,⌃2, bW.cW.j�i), ⌃
0
2 = ⌃2, and v02 = v2.

Note that W2 w W 00 by the definition of w since W2.j = W.j � (j1 + k), W 00.j = W 0.j � k and
W.j  W 0.j + j1.
We have that
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• W2 wi W by the definition of wi

• W.⌃2 . e2 7�!⇤
⌃

0
2 . v

0
2

• W2.⌃1 = ⌃

0
1

• W2.⌃2 = ⌃

0
2

• (W2, v
0
1, v

0
2) 2 V JAK ⇢ by Lemma 5.6 (monotonicity) since W2 w W 00

as we were required to show.
Case W 0.⌃1 . e

0
1 7�!k

⌃1 . blame p where k < W 0.j: Instantiate the assumption with k,⌃1, p. We
have that there exists some ⌃2 such that
• W 0.⌃2 . e

0
2 7�!⇤

⌃2 . blame p

We are required to show that (W, e1, e2) 2 E JAK ⇢. Consider arbitrary i < W.j,⌃0
1, p

0 such that
W.⌃1 . e1 7�!i

⌃

0
1 . blame p0 . It suffices to show that there exists ⌃

0
2 such that

• W.⌃2 . e2 7�!⇤
⌃

0
2 . blame p0

By the operational semantics, we have that

W.⌃1 . e1 7�!j1 W 0.⌃1 . e
0
1 7�!k

⌃1 . blame p

and therefore p0 = p, ⌃0
1 = ⌃1, and i = j1 + k.

Similarly, we have that

W.⌃2 . e2 7�!⇤ W 0.⌃2 . e
0
2 7�!⇤

⌃2 . blame p

Choose ⌃

0
2 = ⌃2. We have that

• W.⌃2 . e2 7�!⇤
⌃

0
2 . blame p

as we were required to show.
Case W 0.⌃1 . e

0
1 7�!W 0.j

⌃1 . e
00
1 : By the operational semantics, we have that

W.⌃1 . e1 7�!j1 W 0.⌃1 . e
0
1 7�!W 0.j

⌃1 . e
00
1

Since j1 +W 0.j � W.j, we vacuously have that (W, e 1, e 2) 2 E JAK ⇢ as we were required to show.

Lemma 5.15 (Monadic Bind)
If (W, e 1, e 2) 2 E JAK ⇢ and

8W 0 w W. 8v 1, v 2. (W
0, v 1, v 2) 2 V JAK ⇢ =) (W 0,E 1[v 1],E 2[v 2]) 2 E JB K ⇢

then (W,E 1[e 1],E 2[e 2]) 2 E JB K ⇢.

Proof

We proceed by cases on termination of e1.

Case W.⌃1 . e1 7�!k
⌃1 . v1 where k < W.j: Instantiate the first assumption with k,⌃1, v1. We have

that there exist some W 0,⌃2, v2 such that
• W 0 wk W

• W.⌃2 . e2 7�!⇤
⌃2 . v

0
2

• W 0.⌃1 = ⌃1
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• W 0.⌃2 = ⌃2

• (W 0, v1, v2) 2 V JAK ⇢
By the operational semantics, we have that

W.⌃1 .E1[e1] 7�!k W 0.⌃1 .E1[v1]
W.⌃2 .E2[e2] 7�!⇤ W 0.⌃2 .E2[v2]

Instantiate the second assumption with W 0, v1, v2, noting that (W 0, v1, v2) 2 V JAK ⇢. We then
have that (W 0,E 1[v 1],E 2[v 2]) 2 E JB K ⇢.
By Lemma 5.14 (anti-reduction), noting that
• W 0 w W

• W.j = W 0.j + k

• W.⌃1 .E1[e1] 7�!k W 0.⌃1 .E1[v1]

• W.⌃2 .E2[e2] 7�!⇤ W 0.⌃2 .E2[v2]

We have that (W,E 1[e1],E 2[e2]) 2 E JB K ⇢ as we were required to show.
Case W 0.⌃1 . e1 7�!k

⌃1 . blame p where k + 1 < W 0.j: Instantiate the assumption with k,⌃1, p.
We have that there exists some ⌃2 such that
• W 0.⌃2 . e2 7�!⇤

⌃2 . blame p

We are required to show that (W,E1[e1], E2[e2]) 2 E JBK ⇢. Consider arbitrary i < W.j,⌃0
1, p

0 such
that W.⌃1 .E1[e1] 7�!i

⌃

0
1 . blame p0 . It suffices to show that there exist ⌃

0
2 such that

• W.⌃2 .E2[e2] 7�!⇤
⌃

0
2 . blame p0

By the operational semantics, we have that

W.⌃1 .E1[e1] 7�!k+1
⌃1 . blame p

W.⌃1 .E2[e2] 7�!⇤
⌃2 . blame p

and therefore p0 = p, ⌃0
1 = ⌃1, and i = k + 1.

Choose ⌃

0
2 = ⌃2. We have that W.⌃2 . e2 7�!⇤

⌃

0
2 . blame p as we were required to show.

Case W 0.⌃1 . e1 7�!W 0.j
⌃1 . e

0
1: By the operational semantics, we have that

W.⌃1 .E1[e1] 7�!W 0.j
⌃1 .E1[e

0
1]

Since W 0.j � W 0.j, we vacuously have that (W,E1[e1], E2[e2]) 2 E JBK ⇢ as we were required to
show.

Lemma 5.16 (Atom Compositionality)
Atom [A ] ⇢[X 7! ↵] = Atom [A [↵/X ]] ⇢

Proof

After unfolding the definition, it suffices to show that

⇢i[X 7! ↵](A) = ⇢i(A [↵/X ]) for i = 1, 2

which is straightforward to prove by induction on A.

Lemma 5.17 (Compositionality)
If ⌃;�, X `A, and dom(⇢) = � then

23



1. V JAK ⇢[X 7! ↵] = V JA [↵/X ]K ⇢

2. E JAK ⇢[X 7! ↵] = E JA [↵/X ]K ⇢

Proof

We prove both claims simultaneously, by induction on the step index and A. We take ⇢ as universally
quantified in the inductive hypothesis. Both cases use Lemma 5.16 (Atom Compositionality), so we
omit that reasoning to avoid repetition.

1. We consider the cases for A. In each case, we may equivalently show that

(W, v1, v2) 2 V JAK ⇢[X 7! ↵] () (W, v1, v2) 2 V JA [↵/X ]K ⇢

Case A = ◆ : This case is immediate from Lemma 5.11 (logical relation weakening) since
◆ = ◆ [↵/X].

Case A = A1!A2: We first prove the ) direction. Assume that (W, v1, v2) 2 V JA1!A2K ⇢[X 7!
↵]. We are required to show that (W, v1, v2) 2 V J(A1!A2)[↵/X ]K ⇢.
Consider arbitrary W 0, v01, v

0
2 such that

• W 0 w W

• (W 0, v01, v
0
2) 2 V J(A1[↵/X ]K ⇢

It suffices to show that
(W 0, v1 v01, v2 v02) 2 E JA2[↵/X ]K ⇢

Instantiate the assumption with W 0, v01, v
0
2, noting that (W 0, v01, v

0
2) 2 V JA1K ⇢[X 7! ↵] by the

inductive hypothesis of part 1 for A1. We then have that

(W 0, v1 v01, v2 v02) 2 E JA2K ⇢[X 7! ↵]

By the inductive hypothesis of part 2 for A2, we have that

(W 0, v1 v01, v2 v02) 2 E JA2[↵/X ]K ⇢

as we were required to show.
We next prove the ( direction. Assume that (W, v1, v2) 2 V JA1!A2[↵/X]K ⇢. We are
required to show that (W, v1, v2) 2 V JA1!A2K ⇢[X 7! ↵].
Consider arbitrary W 0, v01, v

0
2 such that

• W 0 w W

• (W 0, v01, v
0
2) 2 E JA1K ⇢[X 7! ↵]

It suffices to show that
(W 0, v1 v01, v2 v02) 2 E JA2K ⇢[X 7! ↵]

Instantiate the assumption with W 0, v01, v
0
2, noting that (W 0, v01, v

0
2) 2 V JA1[↵/X ]K ⇢ by the

inductive hypothesis of part 1 for A1. We then have that

(W 0, v1 v01, v2 v02) 2 E JA2K ⇢[X 7! ↵]

By the inductive hypothesis of part 2 for A2, we have that

(W 0, v1 v01, v2 v02) 2 E JA2[↵/X ]K ⇢

as we were required to show.
Case A = 8Y.A0:

We first prove the ) direction. Assume that (W, v1, v2) 2 V J8Y.A0K ⇢[X 7! ↵]. We are
required to show that (W, v1, v2) 2 V J8Y.A0

[↵/X]K ⇢.
Consider arbitrary W 0, B1, B2, R, e1, e2,↵

0 such that
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• W 0 w W

• W 0.⌃1; · `B1 and W 0.⌃2; · `B2

• R 2 RelW 0.j [B1, B2]

• W 0.⌃1 . v1 [B1] 7�! W 0.⌃1,↵
0
:=B1 . (e1 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B1/X])

• W 0.⌃2 . v2 [B2] 7�! W 0.⌃2,↵
0
:=B2 . (e2 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B2/X])

We need to show that

(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0
[↵/X]K ⇢[Y 7! ↵0

]

Instantiate the assumption with W 0, B1, B2, R, e1, e2,↵
0, noting that

• W 0 w W

• W 0.⌃1; · `B1 and W 0.⌃2; · `B2

• R 2 RelW 0.j [B1, B2]

• W 0.⌃1 . v1 [B1] 7�! W 0.⌃1,↵
0
:=B1 . (e1 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B1/X])

• W 0.⌃2 . v2 [B2] 7�! W 0.⌃2,↵
0
:=B2 . (e2 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B2/X])

We have that
(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0K ⇢[X 7! ↵][Y 7! ↵0

]

By the inductive hypothesis of part 2 for A0, we then have that

(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0
[↵/X]K ⇢[Y 7! ↵0

]

as we were required to show.
We next prove the ( direction. Assume that (W, v1, v2) 2 V J8Y.A0

[↵/X]K ⇢. We are required
to show that (W, v1, v2) 2 V J8Y.A0K ⇢[X 7! ↵].
Consider arbitrary W 0, B1, B2, R, e1, e2,↵

0 such that
• W 0 w W

• W 0.⌃1; · `B1 and W 0.⌃2; · `B2

• R 2 RelW 0.j [B1, B2]

• W 0.⌃1 . v1 [B1] 7�! W 0.⌃1,↵
0
:=B1 . (e1 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B1/X])

• W 0.⌃2 . v2 [B2] 7�! W 0.⌃2,↵
0
:=B2 . (e2 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B2/X])

We need to show that

(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0K ⇢[X 7! ↵][Y 7! ↵0
]

Instantiate the assumption with W 0, B1, B2, R, e1, e2,↵
0, noting that

• W 0 w W

• W 0.⌃1; · `B1 and W 0.⌃2; · `B2

• R 2 RelW 0.j [B1, B2]

• W 0.⌃1 . v1 [B1] 7�! W 0.⌃1,↵
0
:=B1 . (e1 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B1/X])

• W 0.⌃2 . v2 [B2] 7�! W 0.⌃2,↵
0
:=B2 . (e2 : ⇢(A)[↵0/X]

+↵0
=) ⇢(A)[B2/X])

We have that
(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0

[↵/X]K ⇢[Y 7! ↵0
]

By the inductive hypothesis of part 2 for A0, we then have that

(W 0 � (↵0, B1, B2, R), e1, e2) 2 E JA0K ⇢[X 7! ↵][Y 7! ↵0
]

as we were required to show.
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Case A = A1 ⇥A2: The proof of this case is straightforward.
Case A = Y :

Suppose X = Y .
V JY K ⇢[X 7! ↵] = V J↵K ; = V JY [↵/X]K ⇢

Suppose X 6= Y .
V JY K ⇢[X 7! ↵] = V J⇢(Y )K ; = V JY [↵/X]K ⇢

Case A = ↵0: This case is immediate since ↵0
= ↵0

[↵/X].
Case A = ?: This case is immediate since ? = ?[↵/X].

2. We may equivalently show that

(W, e1, e2) 2 E JAK ⇢[X 7! ↵] () (W, e1, e2) 2 E JA [↵/X ]K ⇢

We first prove the ) direction. Assume that (W, e1, e2) 2 E JAK ⇢[X 7! ↵]. We are required to
show that (W, e1, e2) 2 E JA [↵/X ]K ⇢.
We proceed by cases on termination of e1.
Case W.⌃1 . e1 7�!k

⌃1 . v1 where k < W.j: Instantiate the assumption with k,⌃1, v1. We have
that there exist some W 0,⌃2, v2 such that
• W 0 wk W

• W.⌃2 . e2 7�!⇤
⌃2 . v2

• W 0.⌃1 = ⌃1

• W 0.⌃2 = ⌃2

• (W 0, v1, v2) 2 V JAK ⇢[X 7! ↵]

Choose W 0,⌃2, v2. We have that
• W 0 wk W

• W.⌃2 . e2 7�!⇤
⌃2 . v2

• W 0.⌃1 = ⌃1

• W 0.⌃2 = ⌃2

• (W 0, v1, v2) 2 V JA[↵/X]K ⇢ by part 1
Therefore, we have that (W, e1, e2) 2 E JA [↵/X ]K ⇢ as we were required to show.

Case W 0.⌃1 . e
0
1 7�!k

⌃1 . blame p where k < W 0.j: Instantiate the assumption with k,⌃1, p.
We have that there exists some ⌃2 such that
• W 0.⌃2 . e

0
2 7�!⇤

⌃2 . blame p

We are required to show that (W, e1, e2) 2 E JAK ⇢. Consider arbitrary i < W.j,⌃0
1, p

0 such
that W.⌃1 . e1 7�!i

⌃

0
1 . blame p0 . It suffices to show that there exist ⌃

0
2 such that

• W.⌃2 . e2 7�!⇤
⌃

0
2 . blame p0

Note that p = p0.
Choose ⌃

0
2 = ⌃2. We then have that W.⌃2 . e2 7�!⇤

⌃

0
2 . blame p0 as we were required to

show.
Case W 0.⌃1 . e

0
1 7�!W 0.j

⌃1 . e
00
1 : By the operational semantics, we have that

W.⌃1 . e1 7�!j1 W 0.⌃1 . e
0
1 7�!W 0.j

⌃1 . e
00
1

Since j1+W 0.j � W 0.j, we vacuously have that (W, e 1, e 2) 2 E JA[↵/X]K ⇢ as we were required
to show.

The proof for the the ( direction is identical.
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Lemma 5.18 (Type Application Steps to a Conversion)
If ⌃; · ; · ` v : 8X.A, ⌃ ; · `B, and ↵ /2 dom(⌃)

then ⌃ . v [B] 7�! ⌃,↵:=B . (e :A[↵/X]

+↵
=) A[B/X]) for some e.

Proof

We proceed by cases on the canonical forms.

Case v = ⇤X.v0

⌃ . v [B] 7�! ⌃,↵:=B . (v0[↵/X] :A[↵/X]

+↵
=) A[B/X])

Pick e = v0[↵/X].

Case v = (v0 :A0 p
=) 8X.A)

⌃ . v [B] 7�! ⌃,↵:=B . ((v0 :A0 p
=) A[↵/X]) :A[↵/X]

+↵
=) A[B/X])

Pick e = (v0 :A0 p
=) A[↵/X]).

Case v = (v0 : 8X.A0 �
=) 8X.A)

⌃ . v [B] 7�! ⌃,↵:=B . ((v0 [↵] :A0
[↵/X]

�
=) A[↵/X]) :A[↵/X]

+↵
=) A[B/X])

Pick e = (v0 [↵] :A0
[↵/X]

�
=) A[↵/X]).

27



6 Conversion and Cast Lemmas

This section deals with the relatedness of conversions and casts. We treat these terms first for two reasons.
First, the proofs about relatedness of conversions must be done via simultaneous induction to have inductive
hypotheses for both positive and negative conversions. Second, since in the semantics of casts to polymorphic
type we generate a conversion, the cast lemma depends on the conversion lemma.

Lemma 6.1 (Canonical Forms for Conversion)
If ⌃;� `A�+↵ B or ⌃;� `B��↵ A, then

• if A = int then B = int

• if A = bool then B = bool

• if A = X then B = X

• if A = ? then B = ?

• if A = A1!A2 then B = B1!B2

• if A = 8X.A0
then B = 8X.B0

• if A = A1 ⇥A2 then B = B1 ⇥B2

• if A = ↵ then B = ⌃(↵)

• if A = ↵0
and ↵0 6= ↵ then B = ↵0

Lemma 6.2 (Convertibility Substitution)
If ⌃;�`A, ↵:=B 2 ⌃, and ↵ /2 FTN(A) then

1. ⌃;� `A[↵/X ]�+↵ A[B/X ]

2. ⌃;� `A[B/X ]��↵ A[↵/X ]

Proof

We prove 1. and 2. simultaneously by induction on the derivation of A. Note that `⌃ from the
assumptions.

Case A = int

1. and 2. are both immediate.
Case A = bool

1. and 2. are both immediate.
Case A = A1!A2

1. By 2. of the inductive hypothesis for A1, we have that ⌃ ;� `A1[B/X]��↵ A1[↵/X].
By 1. of the inductive hypothesis for A2, we have that ⌃ ;� `A2[↵/X]�+↵ A2[B/X].
Therefore, we have

⌃ ;� ` (A1!A2)[↵/X]�+↵
(A1!A2)[B/X]

as we were required to show.
2. By 1. of the inductive hypothesis for A1, we have that ⌃ ;� `A1[↵/X]�+↵ A1[B/X].

By 2. of the inductive hypothesis for A2, we have that ⌃ ;� `A2[B/X]��↵ A2[↵/X].
Therefore, we have

⌃ ;� ` (A1!A2)[B/X]��↵
(A1!A2)[↵/X]

as we were required to show.
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Case A = 8Y.A0

1. By 1. of the inductive hypothesis for A0, we have that ⌃ ;� `A0
[↵/X]�+↵ A0

[B/X].
Therefore, we have

⌃ ;� ` (8Y.A0
)[↵/X]�+↵

(8Y.A0
)[B/X]

as we were required to show.
2. By 2. of the inductive hypothesis for A2, we have that ⌃ ;� `A0

[B/X]��↵ A0
[↵/X].

Therefore, we have
⌃ ;� ` (8Y.A0

)[B/X]��↵
(8Y.A0

)[↵/X]

as we were required to show.
Case A = A1 ⇥A2: The proof of this case is straightforward.
Case A = Y

Note that Y 2 � because ⌃;�`Y .
If Y 6= X then we have
1. ⌃ ;� `Y [↵/X]�+↵ Y [B/X]

2. ⌃ ;� `Y [↵/X]��↵ Y [B/X]

as we were required to show.
Otherwise, we need to show
1. ⌃ ;� `X[↵/X]�+↵ X[B/X]

= ⌃ ;� `↵�+↵ B

2. ⌃ ;� `X[B/X]��↵ X[↵/X]

= ⌃ ;� `B��↵ ↵

In both cases, we obtain the result directly from ↵:=B 2 ⌃.
Case A = ↵0

1. Note that ↵0 /2 +↵ because ↵ /2 A and that there exists B0 such that ↵0
:=B0 2 ⌃ because

⌃;�`↵0. Therefore, we have

⌃ ;� `↵0
[↵/X]�+↵ ↵0

[B/X]

as we were required to show.
2. Note that ↵0 /2 �↵ because ↵ /2 A and that there exists B0 such that ↵0

:=B0 2 ⌃ because
⌃;�`↵0. Therefore, we have

⌃ ;� `↵0
[↵/X]��↵ ↵0

[B/X]

as we were required to show.
Case A = ?

1. and 2. are both immediate.

Lemma 6.3 (Conversion)
Let ↵:=Bb 2 ⌃, dom(⌃) ✓ dom(W.⌃1), ↵:=Bb 2 W.⌃1, dom(⌃) ✓ dom(W.⌃2), ↵:=Bb 2 W.⌃2, W.(↵) =
bV JBbK ⇢cW.j, and (W, ⇢) 2 D J�K.

1. If ⌃ ;� `A �+↵
B and (W, e 1, e 2) 2 E JAK ⇢ then

(W, (e 1 : ⇢(A)

+↵
=) ⇢(B )), (e 2 : ⇢(A)

+↵
=) ⇢(B ))) 2 E JB K ⇢
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2. If ⌃ ;� `B ��↵
A and (W, e 1, e 2) 2 E JB K ⇢ then

(W, (e 1 : ⇢(B )

�↵
=) ⇢(A)), (e 2 : ⇢(B )

�↵
=) ⇢(A))) 2 E JAK ⇢

Proof

By induction on the size of A.

Case A = int

1. We have that (W, e1, e2) 2 E JintK ⇢ and ⌃ ;� ` int �+↵
int and need to show that

(W, (e1 : int
+↵
=) int), (e2 : int

+↵
=) int)) 2 E JintK ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V JintK ⇢. Note that

W 0.⌃1 . (v1 : int
+↵
=) int) 7�! W 0.⌃1 . v1 and W 0.⌃2 . (v2 : int

+↵
=) int) 7�! W 0.⌃1 . v2

We apply anti-reduction (Lemma 5.14), so it remains to show that (IW 0, v1, v2) 2 E JintK ⇢.
We have (IW 0, v1, v2) 2 V JintK ⇢ by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A = bool

This proof has the same structure as the proof for the int case above.
Case A = A1!A2

In both parts, by Lemma 6.1 (canonical forms for conversion), we have that B = B1!B2.
1. We assume that (W, e1, e2) 2 E JA1!A2K ⇢ and ⌃;�`A1!A2 �+↵ B1!B2 and need to

show that
 
W,

(e1 : ⇢(A1)! ⇢(A2)
+↵
=) ⇢(B1)! ⇢(B2)),

(e2 : ⇢(A1)! ⇢(A2)
+↵
=) ⇢(B1)! ⇢(B2))

!
2 E JB1!B2K ⇢

Let

E1 = ([·] : ⇢(A1)! ⇢(A2)
+↵
=) ⇢(B1)! ⇢(B2))

E2 = ([·] : ⇢(A1)! ⇢(A2)
+↵
=) ⇢(B1)! ⇢(B2))

We need to show that (W,E1[e1], E2[e2]) 2 E JB1!B2K ⇢.
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that W1 w W
and (W1, v1, v2) 2 V JA1!A2K ⇢. Related values are related terms (Lemma 5.13), so it suffices
to show that (W1, E1[v1], E2[v2]) 2 V JB1!B2K ⇢.
We unfold the definition of V JB1!B2K ⇢. Consider arbitrary W2, v3, v4 such that W2 w W1

and (W2, v3, v4) 2 V JB1K ⇢. We need to show that (W2, E1[v1] v3, E2[v2] v4) 2 E JB2K ⇢. We
have

W2.⌃1 .E1[v1] v3 7�! (v1 (v3 : ⇢(B1)
�↵
=) ⇢(A1)) : ⇢(A2)

+↵
=) ⇢(B2))

W2.⌃2 .E2[v2] v4 7�! (v2 (v4 : ⇢(B1)
�↵
=) ⇢(A1)) : ⇢(A2)

+↵
=) ⇢(B2))

So by anti-reduction (Lemma 5.14), it suffices to show
 
IW2,

(v1 (v3 : ⇢(B1)
�↵
=) ⇢(A1)) : ⇢(A2)

+↵
=) ⇢(B2)),

(v2 (v4 : ⇢(B1)
�↵
=) ⇢(A1)) : ⇢(A2)

+↵
=) ⇢(B2))

!
2 E JB2K ⇢

Note that IW2 w W .
By 2 of the induction hypothesis for A1, noting that
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• ↵:=Bb 2 ⌃

• dom(⌃) ✓ dom(IW2.⌃1) by the definition of world extension
• ↵:=Bb 2 IW2.⌃1 by the definition of world extension
• dom(⌃) ✓ dom(IW2.⌃2) by the definition of world extension
• ↵:=Bb 2 IW2.⌃2 by the definition of world extension
• IW2.(↵) =

j
bV JBbK ⇢cW.j

k

IW2.j
= bV JBbK ⇢cIW2.j

by the definition of world extension

and Lemma 5.3 (successive approximation)
• (IW2, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• ⌃;� `B1 ��↵ A1

• (W2, v3, v4) 2 E JB1K ⇢ by Lemma 5.13 (related values are related terms)
we have

(IW2, (v3 : ⇢(B1)
�↵
=) ⇢(A1)), (v4 : ⇢(B1)

�↵
=) ⇢(A1))) 2 E JA1K ⇢

We proceed via monadic bind (Lemma 5.15), with the contexts

E3 = (v1 [·] : ⇢(A2)
+↵
=) ⇢(B2)) and E4 = (v2 [·] : ⇢(A2)

+↵
=) ⇢(B2))

Consider arbitrary W3, v
0
3, v

0
4 such that W3 w IW2 and (W3, v

0
3, v

0
4) 2 V JA2K ⇢. We need to

show
(W3, E3[v

0
3], E4[v

0
4]) 2 E JB2K ⇢

Because (W, v1, v2) 2 V JA1!A2K ⇢, we have (W3, v1 v03, v2 v04) 2 E JA2K by Lemma 5.13
(related values are related terms). We proceed again via monadic bind. Consider arbitrary
W4, v5, v6 such that W4 w W3 and (W4, v5, v6) 2 V JA2K. We need to show that

(W4, (v5 : ⇢(A2)
+↵
=) ⇢(B2)), (v6 : ⇢(A2)

+↵
=) ⇢(B2))) 2 E JB2K ⇢

Note that W4 w W .
By 1 of the induction hypothesis for A2, noting that
• ↵:=Bb 2 ⌃

• dom(⌃) ✓ dom(W4.⌃1) by the definition of world extension
• ↵:=Bb 2 W4.⌃1 by the definition of world extension
• dom(⌃) ✓ dom(W4.⌃2) by the definition of world extension
• ↵:=Bb 2 W4.⌃2 by the definition of world extension
• W4.(↵) =

j
bV JBbK ⇢cW.j

k

W4.j
= bV JBbK ⇢cW4.j

by the definition of world extension and

Lemma 5.3 (successive approximation)
• (W4, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• ⌃ ;� `A2 �+↵ B2

• (W4, v5, v6) 2 E JA2K by Lemma 5.13 (related values are related terms)
we have what we are required to show.

2. We assume that (W, e1, e2) 2 E JB1!B2K ⇢ and ⌃;�`B1!B2 ��↵ A1!A2 and need to
show that

 
W,

(e1 : ⇢(B1)! ⇢(B2)
�↵
=) ⇢(A1)! ⇢(A2)),

(e2 : ⇢(B1)! ⇢(B2)
�↵
=) ⇢(A1)! ⇢(A2))

!
2 E JA1!A2K ⇢

Let

E1 = ([·] : ⇢(B1)! ⇢(B2)
�↵
=) ⇢(A1)! ⇢(A2))

E2 = ([·] : ⇢(B1)! ⇢(B2)
�↵
=) ⇢(A1)! ⇢(A2))
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We need to show that (W,E1[e1], E2[e2]) 2 E JA1!A2K ⇢.
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that W1 w W
and (W1, v1, v2) 2 V JB1!B2K ⇢. Related values are related terms (Lemma 5.13), so it suffices
to show that (W1, E1[v1], E2[v2]) 2 V JA1!A2K ⇢.
We unfold the definition of V JA1!A2K ⇢. Consider arbitrary W2, v3, v4 such that W2 w W1

and (W2, v3, v4) 2 V JA1K ⇢. We need to show that (W2, E1[v1] v3, E2[v2] v4) 2 E JA2K ⇢. We
have

W2.⌃1 .E1[v1] v3 7�! (v1 (v3 : ⇢(A1)
+↵
=) ⇢(B1)) : ⇢(B2)

�↵
=) ⇢(A2))

W2.⌃2 .E2[v2] v4 7�! (v2 (v4 : ⇢(A1)
+↵
=) ⇢(B1)) : ⇢(B2)

�↵
=) ⇢(B2))

So by anti-reduction (Lemma 5.14), it suffices to show
 
IW2,

(v1 (v3 : ⇢(A1)
+↵
=) ⇢(B1)) : ⇢(B2)

�↵
=) ⇢(A2)),

(v2 (v4 : ⇢(A1)
+↵
=) ⇢(B1)) : ⇢(B2)

�↵
=) ⇢(A2))

!
2 E JA2K ⇢

Note that IW2 w W .
By 1 of the induction hypothesis for A1, noting that
• ↵:=Bb 2 ⌃

• dom(⌃) ✓ dom(IW2.⌃1) by the definition of world extension
• ↵:=Bb 2 IW2.⌃1 by the definition of world extension
• dom(⌃) ✓ dom(IW2.⌃2) by the definition of world extension
• ↵:=Bb 2 IW2.⌃2 by the definition of world extension
• IW2.(↵) =

j
bV JBbK ⇢cW.j

k

IW2.j
= bV JBbK ⇢cIW2.j

by the definition of world extension

and Lemma 5.3 (successive approximation)
• (IW2, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• ⌃;�`A1 �+↵ B1

• (W2, v3, v4) 2 E JB1K ⇢ by Lemma 5.13 (related values are related terms)
we have

(IW2, (v3 : ⇢(A1)
+↵
=) ⇢(B1)), (v4 : ⇢(A1)

+↵
=) ⇢(B1))) 2 E JB1K ⇢

We proceed via monadic bind (Lemma 5.15), with the contexts

E3 = (v1 [·] : ⇢(B2)
�↵
=) ⇢(A2)) and E4 = (v2 [·] : ⇢(B2)

�↵
=) ⇢(A2))

Consider arbitrary W3, v
0
3, v

0
4 such that W3 w IW2 and (W3, v

0
3, v

0
4) 2 V JB2K ⇢. We need to

show
(W3, E3[v

0
3], E4[v

0
4]) 2 E JB2K ⇢

Because (W, v1, v2) 2 V JB1!B2K ⇢, we have (W3, v1 v03, v2 v04) 2 E JB2K by Lemma 5.13
(related values are related terms). We proceed again via monadic bind. Consider arbitrary
W4, v5, v6 such that W4 w W3 and (W4, v5, v6) 2 V JB2K. We need to show that

(W4, (v5 : ⇢(B2)
�↵
=) ⇢(A2)), (v6 : ⇢(B2)

�↵
=) ⇢(A2))) 2 E JA2K ⇢

Note that W4 w W .
By 2 of the induction hypothesis for A2, noting that
• ↵:=Bb 2 ⌃

• dom(⌃) ✓ dom(W4.⌃1) by the definition of world extension
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• ↵:=Bb 2 W4.⌃1 by the definition of world extension
• dom(⌃) ✓ dom(W4.⌃2) by the definition of world extension
• ↵:=Bb 2 W4.⌃2 by the definition of world extension
• W4.(↵) =

j
bV JBbK ⇢cW.j

k

W4.j
= bV JBbK ⇢cW4.j

by the definition of world extension and

Lemma 5.3 (successive approximation)
• (W4, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• ⌃ ;� `B2 ��↵ A2

• (W4, v5, v6) 2 E JA2K by Lemma 5.13 (related values are related terms)
we have what we are required to show.

Case A = 8X.A0

In both parts, by Lemma 6.1 (canonical forms for conversion), we have that B = 8X.B0.

1. Let E1 = ([·] : 8X. ⇢(A0
)

+↵
=) 8X. ⇢(B0

)) and E2 = ([·] : 8X. ⇢(A0
)

+↵
=) 8X. ⇢(B0

)). We assume
(W, e1, e2) 2 E J8X . A0K ⇢ and need to show (W,E1[e1], E2[e2]) 2 E J8X.B0K ⇢. We proceed
by monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that W1 w W and
(W1, v1, v2) 2 V J8X . A0K ⇢. Related values are related terms (Lemma 5.13), so it suffices to
show

(W1, E1[v1], E2[v2]) 2 V J8X.B0K ⇢
We unfold the definition of V J8X.B0K ⇢. Consider arbitrary W2, B1, B2, R, e3, e4,↵

0 such that
the following hold:
• W2 w W1

• W2.⌃1; · `B 1

• W2.⌃2; · `B 2

• R 2 RelW 0.j [B 1,B 2]

• W2.⌃1 .E1[v1] [B 1] 7�! W2.⌃1,↵
0
:=B 1 . (e3 : ⇢(B

0
)[↵0/X ]

+↵0
=) ⇢(B0

)[B 1/X ])

• W2.⌃2 .E2[v2] [B 2] 7�! W2.⌃2,↵
0
:=B 2 . (e4 : ⇢(B

0
)[↵0/X ]

+↵0
=) ⇢(B0

)[B 2/X ])

Let W 0
2 = W2 � (↵0, B1, B2, R) and ⇢0 = ⇢[X 7! ↵0

].
We need to show

(W 0
2, e3, e4) 2 IE JB0K ⇢0

Note that from the definition of E1 and E2 and the operational semantics, we have that

W2.⌃1 .E1[v1] [B1] 7�! ((v1 [↵
0
] : ⇢1(A

0
)[↵0/X ]

+↵
=) ⇢(B0

)[↵0/X ]) : ⇢(B0
)[↵0/X ]

+↵0
=) ⇢(B0

)[B 1/X ])

= W2.⌃1 .E1[v1] [B1] 7�! ((v1 [↵
0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

)) : ⇢0(B0
)

+↵0
=) ⇢(B0

)[B 1/X ])

W2.⌃2 .E2[v2] [B2] 7�! ((v2 [↵
0
] : ⇢(A0

)[↵0/X ]

+↵
=) ⇢(B0

)[↵0/X ]) : ⇢(B0
)[↵0/X ]

+↵0
=) ⇢(B0

)[B 2/X ])

= W2.⌃2 .E2[v2] [B2] 7�! ((v2 [↵
0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

)) : ⇢0(B0
)

+↵0
=) ⇢(B0

)[B 2/X ])

Therefore, it suffices to show that
 
W 0

2,
(v1[↵

0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

)),

(v2[↵
0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

))

!
2 IE JB0K ⇢0

Consider the case where W 0
2.j = 0. Then, by definition of later relations, we have what we are

required to show.
Otherwise, we are required to show

 
IW 0

2,
(v1[↵

0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

)),

(v2[↵
0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

))

!
2 E JB0K ⇢0
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Note that IW 0
2 w W .

By 1 of the induction hypothesis for A0, noting that
• ↵:=Bb 2 ⌃

• dom(⌃) ✓ dom(IW 0
2.⌃1) by the definition of world extension

• ↵:=Bb 2 IW 0
2.⌃1 by the definition of world extension

• dom(⌃) ✓ dom(IW 0
2.⌃2) by the definition of world extension

• ↵:=Bb 2 IW 0
2.⌃2 by the definition of world extension

• IW 0
2.(↵) =

j
bV JBbK ⇢0cW.j

k

IW 0
2.j

= bV JBbK ⇢0cIW 0
2.j

= bV JBbK ⇢cIW 0
2.j

by the defini-

tion of world extension, Lemma 5.3 (successive approximation), and since ⌃; · `Bb

• (IW 0
2, ⇢

0
) 2 D J�, XK by Lemma 5.10 (monotonicity) and the definition of D J�, XK

• ⌃ ;� , X `A0 �+↵ B0 by the structure of the derivation
We have

(IW 0
2, v1 [↵

0
], v2 [↵

0
]) 2 E JA0K ⇢0 =)

 
IW 0

2,
(v1[↵

0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

)),

(v2[↵
0
] : ⇢0(A0

)

+↵
=) ⇢0(B0

))

!
2 E JB0K ⇢0

The conclusion of the above satisfies what we need to show, so it remains to prove the premise.
Since (W, v 1, v 2) 2 V J8X .A0K ⇢ and W 0

2 w W , we have that (W 0
2, v 1, v 2) 2 V J8X .A0K ⇢ by

Lemma 5.6 (monotonicity).
Choose ↵00 such that ↵00 /2 W 0

2.⌃1 and ↵00 /2 W 0
2.⌃2.

By Lemma 5.18 (type application steps), there exist e5 and e6 such that

W 0
2.⌃1 . v1 [↵

0
] 7�! W 0

2.⌃1,↵
00
:=↵0 . (e5 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X])

W 0
2.⌃2 . v2 [↵

0
] 7�! W 0

2.⌃2,↵
00
:=↵0 . (e6 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X])

Instantiate (W 0
2, v 1, v 2) 2 V J8X .A0K ⇢ with W 0

2,↵
0, bV J↵0K ⇢cW 0

2.j
, e5, e6,↵

00. Note the follow-
ing:
• W 0

2 w W 0
2 by reflexivity.

• W 0
2.⌃1; · `↵0 and W 0

2.⌃2; · `↵0 since ↵0 2 W 0
2.⌃1 and ↵0 2 W 0

2.⌃2.
• bV J↵0K ⇢cW 0

2.j
2 RelW 0

2.j
[↵0,↵0

] by Lemma 5.7

• W 0
2.⌃1 . v1 [↵

0
] 7�! W 0

2.⌃1,↵
00
:=↵0 . (e5 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X])

• W 0
2.⌃2 . v2 [↵

0
] 7�! W 0

2.⌃2,↵
00
:=↵0 . (e6 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X])

Let W3 = W 0
2 � (↵00,↵0,↵0, bV J↵0K ⇢cW 0

2.j
).

Hence, we have that (W3, e5, e6) 2 IE JA0K ⇢[X 7! ↵00
]. Since W3.j = W 0

2.j > 0, we have that

(IW3, e5, e6) 2 E JA0K ⇢[X 7! ↵00
]

Let ⌃b = ⌃,↵0
:=bool ,↵00

:=↵0.
Therefore, by the inductive hypothesis for A

0
[↵00/X ], noting that

• ↵00
:=↵0 2 ⌃b

• ↵00
:=↵0 2 IW3.⌃1

• ↵00
:=↵0 2 IW3.⌃2

• (IW3).(↵
00
) = bV J↵0K ⇢cIW3.j

by the definition of I
• (IW3, ⇢) 2 D J�K which follows by Lemma 5.10 (monotonicity) from (W, ⇢) 2 D J�K
• (IW3, e5, e6) 2 E JA0

[↵00/X ]K ⇢
• ⌃b;� `A

0
[↵00/X ]�+↵00

A

0
[↵0/X ] by Lemma 6.2 (convertibility substitution)
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• (IW3, e5, e6) 2 E JA0
[↵00/X]K ⇢ by Lemma 5.17 (Compositionality) from (IW3, e5, e6) 2

E JA0K ⇢[X 7! ↵00
]

we have that

(IW3, (e5 :A[↵00/X]

+↵00
=) A[↵0/X]), (e6 :A[↵00/X]

+↵00
=) A[↵0/X])) 2 E JA0

[↵0/X ]K ⇢

We next apply Lemma 5.14 (anti-reduction) noting the following
• IW3 w IW 0

2 by Lemma 5.2 (properties of later relations) since W3 w W 0
2

• IW 0
2.j  IW3.j + 1 since IW3.j = W 0

2.j � 1 = IW 0
2.j

• IW 0
2.⌃1 . v1[↵

0
] 7�! IW 0

2.⌃1,↵
00
:=↵0 . (e5 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X]) sinceIW 0
2.⌃1 =

W 0
2.⌃1

• IW 0
2.⌃2 . v2[↵

0
] 7�! IW 0

2.⌃2,↵
00
:=↵0 . (e6 : ⇢(A

0
)[↵00/X]

+↵00
=) ⇢(A0

)[↵0/X]) sinceIW 0
2.⌃2 =

W 0
2.⌃2

• (IW3, (e5 :A[↵00/X]

+↵00
=) A[↵0/X]), (e6 :A[↵00/X]

+↵00
=) A[↵0/X])) 2 E JA0

[↵0/X ]K ⇢
Hence, we have that (IW 0

2, v 1[↵
0
], v 2[↵

0
]) 2 E JA0

[↵0/X ]K ⇢ and therefore (IW 0
2, v 1[↵

0
], v 2[↵

0
]) 2

E JA0
[↵0/X ]K ⇢0 by Lemma 5.11 (logical relation weakening) as we were required to show.

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A = A1 ⇥A2: The proof of this case is straightforward.
Case A = ↵0 where ↵0 6= ↵

1. We have that (W, e1, e2) 2 E J↵0K ⇢ and ⌃ ;� `↵0 �+↵ ↵0 and need to show that

(W, (e1 :↵
0 +↵
=) ↵0

), (e2 :↵
0 +↵
=) ↵0

)) 2 E J↵0K ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V J↵0K ⇢. Note that

W 0.⌃1 . (v1 :↵
0 +↵
=) ↵0

) 7�! v1 and W 0.⌃2 . (v2 :↵
0 +↵
=) ↵0

) 7�! v2

We apply anti-reduction, (Lemma 5.14) so it remains to show that (IW 0, v1, v2) 2 E J↵0K ⇢.
We have (IW 0, v1, v2) 2 V J↵0K ⇢ by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A = ↵

1. We have that (W, e1, e2) 2 E J↵K ⇢ and ⌃ ;� `↵�+↵ Bb and need to show that

(W, (e1 :↵
+↵
=) Bb), (e2 :↵

+↵
=) Bb)) 2 E JBbK ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V J↵K ⇢. It suffices to show that

(W 0, (v1 :↵
+↵
=) Bb), (v2 :↵

+↵
=) Bb)) 2 E JBbK ⇢

By the definition of V J↵K ⇢, we have that v1 = (v3 :Bb
�↵
=) ↵), v2 = (v4 :Bb

�↵
=) ↵), and

(W 0, v3, v4) 2 IW.(↵) = (W 0, v3, v4) 2 I bV JBbKcW.j .
If W 0.j = 0 then we have what we are required to show. Otherwise, we have that (IW 0, v3, v4) 2
bV JBbKcW.j . Since bV JBbKcW.j ⇢ V JBbK, we have that (IW 0, v3, v4) 2 V JBbK and because
related values are related terms, we have that (IW 0, v3, v4) 2 E JBbK.
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Note that IW 0 w W 0 by Lemma 5.2 (properties of later), W 0.j  IW 0.j + 1, and that

W 0.⌃1 . ((v3 :Bb
�↵
=) ↵) :↵

+↵
=) Bb) 7�! IW 0.⌃1 . v3

W 0.⌃2 . ((v4 :Bb
�↵
=) ↵) :↵

+↵
=) Bb) 7�! IW 0.⌃2 . v4

By anti-reduction, we have that

(W 0, (v1 :↵
+↵
=) Bb), (v2 :↵

+↵
=) Bb)) 2 E JBbK ⇢

as we were required to show.
2. We have that (W, e1, e2) 2 E JBbK ⇢ and ⌃ ;� `Bb ��↵ ↵ and need to show that

(W, (e1 :Bb
�↵
=) ↵), (e2 :Bb

�↵
=) ↵)) 2 E J↵K ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V JBbK ⇢. It suffices to show that

(W 0, (v1 :Bb
�↵
=) ↵), (v2 :Bb

�↵
=) ↵)) 2 V J↵K ⇢

Note that W 0.(↵) = bV JBbK ⇢cW 0.j from the premises and the definition of world extension.
Assume W 0.j > 0. Since W 0.j � 1 < W 0.j, we have that (IW 0, v1, v2) 2 bV JBbK ⇢cW 0.j .
We then have that (W 0, v1, v2) 2 I bV JBbK ⇢cW 0.j and so (W 0, v1, v2) 2 IW 0.(↵) by the
definition of I. The result is then immediate from the definition of V J↵K ⇢.

Case A = X

1. We have that (W, e1, e2) 2 E JXK ⇢ and ⌃ ;� `X �+↵ X and need to show that

(W, (e1 :X
+↵
=) X), (e2 :X

+↵
=) X)) 2 E JXK ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V JXK ⇢. Note that

W 0.⌃1 . (v1 :X
+↵
=) X) 7�! W 0.⌃1 . v1 and W 0.⌃2 . (v2 :X

+↵
=) X) 7�! W 0.⌃2 . v2

We apply anti-reduction, (Lemma 5.14) so it remains to show that (IW 0, v1, v2) 2 E JXK ⇢.
We have (IW 0, v1, v2) 2 V JXK ⇢ by monotonicity (Lemma 5.6) and recall that related values
are related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
Case A = ?

1. We have that (W, e1, e2) 2 E J?K ⇢ and ⌃ ;� ` ?�+↵ ? and need to show that

(W, (e1 : ?
+↵
=) ?), (e2 : ?

+↵
=) ?)) 2 E JXK ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V J?K ⇢. Note that

W 0.⌃1 . (v1 : ?
+↵
=) ?) 7�! W 0.⌃1 . v1 and W 0.⌃2 . (v2 : ?

+↵
=) ?) 7�! W 0.⌃2 . v2

We apply anti-reduction, (Lemma 5.14) so it remains to show that (IW 0, v1, v2) 2 E J?K ⇢. We
have (IW 0, v1, v2) 2 V J?K ⇢ by monotonicity (Lemma 5.6) and recall that related values are
related terms (Lemma 5.13).

2. The proof of part 2 has the same structure as the proof for part 1 above.
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Lemma 6.4 (Pre-Compatibility: Type Application)
If (W, v1, v2) 2 V J8X.AK ⇢ and W.⌃1; · ` ⇢(B), then (W, v1 [⇢(B)], v1 [⇢(B)]) 2 E JA[B/X]K ⇢

Proof

Choose ↵ such that ↵ /2 W.⌃1 and ↵ /2 W.⌃2.
By Lemma 5.18 (type application steps), there exist e1 and e2 such that

W.⌃1 . v [⇢(B)] 7�! W.⌃1,↵:=⇢(B) . (e1 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X])

W.⌃2 . v [⇢(B)] 7�! W.⌃2,↵:=⇢(B) . (e2 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X])

Instantiate (W, v 1, v 2) 2 V J8X .AK ⇢ with W, ⇢(B), ⇢(B), bV JBK ⇢cW.j , e1, e2,↵. Note the following:

• W w W by reflexivity.

• W.⌃1; · ` ⇢(B) from the premises

• W.⌃2; · ` ⇢(B) from the premises

• bV JB K ⇢cW.j 2 RelW.j [⇢(B), ⇢(B)] by Lemma 5.7.

• W.⌃1 . v [⇢(B)] 7�! W.⌃1,↵:=⇢(B) . (e1 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X])

• W.⌃2 . v [⇢(B)] 7�! W.⌃2,↵:=⇢(B) . (e2 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X])

Let W2 = W � (↵, ⇢(B), ⇢(B), bV JB K ⇢cW.j).
Hence, we have that (W2, e 1, e 2) 2 IE JAK ⇢[X 7! ↵].
By Lemma 5.17 (Compositionality), we then have that (W2, e 1, e 2) 2 IE JA [↵/X]K ⇢.
Assume W.j = 0. Then the result is immediate.
Otherwise, W2.j = W.j > 0, and we have that (IW2, e 1, e 2) 2 E JA [↵/X]K ⇢.
Let ⌃b = ⌃,↵:=B.
Note that, since IW2 2 S J⌃bK which follows by Lemma 5.9 (monotonicity) from W 2 S J⌃K and from
the definition of S J⌃bK, we have

• ↵:=B 2 ⌃b

• dom(⌃b) ✓ dom(IW2.⌃1)

• ↵:=B 2 IW2.⌃1

• dom(⌃b) ✓ dom(IW2.⌃2)

• ↵:=B 2 IW2.⌃2

• IW2.(↵) = bV JBK ⇢cIW2.j

By Lemma 6.3 (Conversion), additionally noting that

• ⌃b;� `A [↵/X ]�+↵
A [B /X ] by Lemma 6.2 (convertibility substitution)

• (IW2, ⇢) 2 D J�K which follows by Lemma 5.10 (monotonicity) from (W, ⇢) 2 D J�K
• (IW2, e 1, e 2) 2 E JA [↵/X]K ⇢
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we have that

(IW2, (e1 :A[↵/X]

+↵
=) A[⇢(B)/X]), (e2 :A[↵/X]

+↵
=) A[⇢(B)/X])) 2 E JA [B /X ]K ⇢

We next apply Lemma 5.14 (anti-reduction) noting the following

• IW2 w W by Lemma 5.4 (adding to the world extends it),

• W.j  W2.j + 1 since IW2.j + 1 = W.j

• W.⌃1 . v [⇢(B)] 7�! W.⌃1,↵:=⇢(B) . (e1 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X]) and that IW2.⌃1 =

W.⌃1,↵:=⇢(B)

• W.⌃2 . v [⇢(B)] 7�! W.⌃2,↵:=⇢(B) . (e2 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X]) and that IW2.⌃2 =

W.⌃2,↵:=⇢(B)

• (IW2, (e1 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X]), (e2 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[⇢(B)/X])) 2 E JA [B /X ]K ⇢

Hence, we have that (W, v 1 [⇢(B)], v 2 [⇢(B)]) 2 E JA [B /X ]K ⇢ as we were required to show.

Lemma 6.5 (Cast)
Let ⌃ ;� `A �B , W 2 S J⌃K, and (W, ⇢) 2 D J�K.
If (W, e 1, e 2) 2 E JAK ⇢ then (W, (e 1 : ⇢(A)

p

=) ⇢(B )), (e 2 : ⇢(A)

p

=) ⇢(B ))) 2 E JB K ⇢.

Proof

By induction on the step index and on the derivation of ⌃ ;� `A �B .

Case
`⌃

⌃ ;� ` int � int

We assume (W, e1, e2) 2 E JAK ⇢ and need to show that

(W, (e1 : int
p

=) int), (e2 : int
p

=) int)) 2 E JintK ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V JintK ⇢. Note that

W 0.⌃1 . (v1 : int
p

=) int) 7�! W 0.⌃1 . v1 and W 0.⌃2 . (v2 : int
p

=) int) 7�! W 0.⌃2 . v2

We apply anti-reduction, (Lemma 5.14) so it remains to show that (IW 0, v1, v2) 2 E JintK ⇢. We
have (IW 0, v1, v2) 2 V JintK ⇢ by monotonicity (Lemma 5.6) and recall that related values are
related terms (Lemma 5.13).

Case
`⌃

⌃ ;� ` bool � bool

This case has the same structure as the case for int .

Case
⌃ ;� `B1 �A1 ⌃ ;� `A2 �B2

⌃ ;� `A1!A2 �B1!B2

We assume that (W, e1, e2) 2 E JA1 ! A2K ⇢. Let

E1 = ([·] : ⇢(A1)! ⇢(A2)
p

=) ⇢(B1)! ⇢(B2))

E2 = ([·] : ⇢(A1)! ⇢(A2)
p

=) ⇢(B1)! ⇢(B2))

We need to show that (W,E1[e1], E2[e2]) 2 E JB1!B2K ⇢.
We proceed via monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that
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• W1 w W

• (W1, v1, v2) 2 V JA1!A2K ⇢
Related values are related terms (Lemma 5.13), so it suffices to show that (W1, E1[v1], E2[v2]) 2
V JB1!B2K ⇢.
We unfold the definition of V JB1!B2K ⇢. Consider arbitrary W2, v3, v4 such that
• W2 w W1

• (W2, v3, v4) 2 V JB1K ⇢
We need to show that (W2, E1[v1] v3, E2[v2] v4) 2 E JB2K ⇢. We have

W2.⌃1 .E1[v1] v3 7�! (v1 (v3 : ⇢(B1)
�p
=) ⇢(A1)) : ⇢(A2)

p
=) ⇢(B2))

W2.⌃2 .E2[v2] v4 7�! (v2 (v4 : ⇢(B1)
�p
=) ⇢(A1)) : ⇢(A2)

p
=) ⇢(B2))

So by anti-reduction (Lemma 5.14), it suffices to show
 
IW2,

(v1 (v3 : ⇢(B1)
�p
=) ⇢(A1)) : ⇢(A2)

p
=) ⇢(B2)),

(v2 (v4 : ⇢(B1)
�p
=) ⇢(A1)) : ⇢(A2)

p
=) ⇢(B2))

!
2 E JB2K ⇢

By the induction hypothesis for ⌃ ;� `B1 �A1, noting that
• IW2 2 S J⌃K by Lemma 5.9 (monotonicity)
• (IW2, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• (IW2, v3, v4) 2 V JB1K ⇢ by Lemma 5.6 (monotonicity)

we have

(IW2, (v3 : ⇢(B1)
�p
=) ⇢(A1)), (v4 : ⇢(B1)

�p
=) ⇢(A1))) 2 E JA1K ⇢

We proceed via monadic bind (Lemma 5.15), with the contexts

E3 = (v1 [·] : ⇢(A2)
p

=) ⇢(B2)) and E4 = (v2 [·] : ⇢(A2)
p

=) ⇢(B2))

Consider arbitrary W3, v
0
3, v

0
4 such that

• W3 w IW2

• (W3, v
0
3, v

0
4) 2 V JA1K ⇢

We need to show
(W3, E3[v

0
3], E4[v

0
4]) 2 E JB2K ⇢

Note that (W1, v1, v2) 2 V JA1!A2K ⇢.
Instantiate the definition of V JA1!A2K ⇢ with W3, v

0
3, v

0
4, noting that

• W3 w W1

• (W3, v
0
3, v

0
4) 2 V JA1K ⇢

We have that (W3, v1 v03, v2 v04) 2 E JA2K ⇢.
We proceed again via monadic bind. Consider arbitrary W4, v5, v6 such that
• W4 w W3

• (W4, v5, v6) 2 V JA2K
We need to show

(W4, (v5 : ⇢(A2)
p

=) ⇢(B2)), (v6 : ⇢(A2)
p

=) ⇢(B2))) 2 E JB2K ⇢

By the induction hypothesis for ⌃ ;� `A2 �B2, noting that
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• W4 2 S J⌃K by Lemma 5.9 (monotonicity)
• (W4, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• (W4, v5, v6) 2 E JA2K ⇢ by Lemma 5.13 (related values are related terms)

we have what we are required to show.

Case
⌃ ;� ,X `A�B0

X /2 A

⌃ ;� `A�8X . B0

We assume (W, e1, e2) 2 E JAK ⇢. Let E1 = ([·] : ⇢(A) p
=) 8X. ⇢(B0

)) and E2 = ([·] : ⇢(A) p
=)

8X. ⇢(B0
)). We need to show that

(W,E1[e1], E2[e2]) 2 E J8X.B0K ⇢

We proceed by monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that
• W1 w W

• (W1, v1, v2) 2 V JAK ⇢
We may equivalently show that

(W1, E1[v1], E2[v2]) 2 V J8X.B0K ⇢

and then conclude because related values are related terms (Lemma 5.13).
We unfold the definition of V J8X.B0K ⇢. Consider arbitrary W2, B1, B2, R, e1, e2,↵ such that

• W2 w W1

• W2.⌃1; · `B1 and W2.⌃2; · `B2

• R 2 RelW1.j [B1, B2]

• W2.⌃1 .E1[v1] [B1] 7�! W2.⌃1,↵:=B1 . (e3 : ⇢(B
0
)[↵/X]

+↵
=) ⇢(B0

)[B1/X])

• W2.⌃2 .E2[v2] [B2] 7�! W2.⌃2,↵:=B2 . (e4 : ⇢(B
0
)[↵/X]

+↵
=) ⇢(B0

)[B2/X])

Let W3 = W2 � (↵, B1, B2, R) and ⇢0 = ⇢[X 7! ↵].
We need to show that

(W3, e1, e2) 2 E JB0
[↵/X]K ⇢0

= (W3, e1, e2) 2 E JB0K ⇢0[X 7! ↵]
= (W3, e1, e2) 2 E JB0K ⇢0

by Lemma 5.17 (Compositionality).
By our operational semantics we have that

W2.⌃1 .E1[v1] [B1] 7�! W2.⌃1,↵:=B1 . ((v1 : ⇢(A)

p
=) ⇢(B0

)[↵/X]) : ⇢(B0
)[↵/X]

+↵
=) ⇢(B0

)[B1/X])

W2.⌃2 .E2[v2] [B2] 7�! W2.⌃2,↵:=B2 . ((v2 : ⇢(A)

p
=) ⇢(B0

)[↵/X]) : ⇢(B0
)[↵/X]

+↵
=) ⇢(B0

)[B2/X])

and therefore that

e3 = (v1 : ⇢(A)

p
=) ⇢(B0

)[↵/X])

e4 = (v2 : ⇢(A)

p
=) ⇢(B0

)[↵/X])

Thus, by Lemma 5.13 (related values are related terms), and since X /2 A, it suffices to show that

(W3, (v1 : ⇢(A)

p
=) ⇢(B0

)[↵/X]), (v2 : ⇢(A)

p
=) ⇢(B0

)[↵/X])) 2 V JB0K ⇢0
= (W3, (v1 : ⇢

0
(A)

p
=) ⇢0(B0

)), (v2 : ⇢
0
(A)

p
=) ⇢0(B0

))) 2 V JB0K ⇢0

By the inductive hypothesis for ⌃ ;� ,X `A�B0, noting that
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• W3 2 S J⌃K by Lemma 5.9 (monotonicity)
• (W3, ⇢

0
) 2 D J�, XK by definition since (W3, ⇢) 2 D J�K by Lemma 5.10 (monotonicity) and

↵ 2 dom(W3.)

• (W3, v1, v2) 2 V JAK ⇢0 by Lemmas 5.6 (monotonicity) and 5.11 (weakening).
we have that

(W3, (v1 : ⇢
0
(A)

p
=) ⇢0(B0

)), (v2 : ⇢
0
(A)

p
=) ⇢0(B0

))) 2 V JB0K ⇢0

as we were required to show.

Case
⌃ ;� `A0

[?/X ]�B

⌃ ;� `8X . A0 �B

We assume (W, e1, e2) 2 E J8X.A0K ⇢ and need to show that

(W, (e1 : 8X. ⇢(A0
)

p
=) ⇢(B)), (e2 : 8X. ⇢(A0

)

p
=) ⇢(B))) 2 E JBK ⇢

We proceed by monadic bind (Lemma 5.15). Consider arbitrary W1, v1, v2 such that W1 w W and
(W1, v1, v2) 2 V J8X.A0K ⇢. It suffices to show that

(W1, (v1 : 8X. ⇢(A0
)

p
=) ⇢(B)), (v2 : 8X. ⇢(A0

)

p
=) ⇢(B))) 2 E JBK ⇢

Assume W1.j = 0. Then the result is immediate.
Otherwise, W1.j > 0.
By the operational semantics, we have that

W1.⌃1 . (v1 : 8X. ⇢(A0
)

p
=) ⇢(B)) 7�! W1.⌃1 . (v1 [?] : ⇢(A

0
)[?/X]

p
=) ⇢(B))

W1.⌃2 . (v2 : 8X. ⇢(A0
)

p
=) ⇢(B)) 7�! W1.⌃2 . (v2 [?] : ⇢(A

0
)[?/X]

p
=) ⇢(B))

So by anti-reduction (Lemma 5.14), noting that IW1 w W1 and W1.j = IW1.j + 1, it suffices to
show that

(IW1, (v1 [?] : ⇢(A
0
)[?/X]

p
=) ⇢(B)), (v2 [?] : ⇢(A

0
)[?/X]

p
=) ⇢(B))) 2 E JBK ⇢

By the inductive hypothesis for ⌃ ;� `A0
[?/X ]�B , noting that

• IW1 2 S J⌃K by Lemma 5.9 (monotonicity)
• (IW1, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)

it suffices to show that

(IW1, v1 [?], v2 [?]) 2 E JA0
[?/X ]K ⇢

Choose ↵ such that ↵ /2 W1.⌃1 and ↵ /2 W1.⌃2.
By lemma 5.18 (type application steps), we have that for some e3, e4

W1.⌃1 . v1 [?] 7�! W1.⌃1,↵:= ?. (e3 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

W1.⌃2 . v2 [?] 7�! W1.⌃2,↵:= ?. (e4 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

We instantiate the definition of (W1, v1, v2) 2 V J8X.A0K ⇢ with W1, ?, ?, bV J?K ⇢cW1.j
, e3, e4,↵,

noting that

• W1 w W1 by reflexivity
• W1.⌃1; · ` ? and W1.⌃2; · ` ?

• bV J?K ⇢cW1.j
2 RelW1.j [?, ?] by Lemma 5.7 (type interpretations are valid)
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• W1.⌃1 . v1 [?] 7�! W1.⌃1,↵:= ?. (e3 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

• W1.⌃2 . v2 [?] 7�! W1.⌃2,↵:= ?. (e4 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

Let W2 = W1 � (↵, ?, ?, bV J?K ⇢cW1.j
).

Therefore, by Lemma 5.17 (compositionality), we have that

(W2, e3, e4) 2 IE JA0K ⇢[X 7! ↵]
= (W2, e3, e4) 2 IE JA0

[↵/X]K ⇢

Note that ⌃,↵:=?;�`A0
[↵/X]�+↵ A0

[?/X] by Lemma 6.2 (conversion substitution).
Then, by the induction hypothesis for ⌃,↵:=?;�`A0

[↵/X]�+↵ A0
[?/X], noting that

• W2 2 S J⌃,↵:=?K by the definition of S J⌃,↵:=?K and from W1 2 S J⌃K by Lemma 5.9
(monotonicity)

• (W2, ⇢) 2 D J�K by Lemma 5.10
since W2.j = W1.j > 0, we have that

(W2, (e3 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X])), (e4 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))) 2 IE JA0
[?/X]K ⇢

= (IW2, (e3 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X])), (e4 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))) 2 E JA0
[?/X]K ⇢

By Lemma 5.14 (anti-reduction), noting that IW2 w IW1 by Lemma 5.2 (properties of later
relations), IW2.j < IW1.j + 1, and

IW1.⌃1 . v1 [?] 7�! IW2.⌃1 . (e3 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

IW1.⌃2 . v2 [?] 7�! IW2.⌃2 . (e4 : ⇢(A
0
[↵/X])

+↵
=) ⇢(A0

[?/X]))

since IW1.⌃i = W1.⌃i and IW2.⌃i = W2.⌃i = W1.⌃i,↵:=?, we have that

(IW1, v1 [?], v2 [?]) 2 E JA0
[?/X ]K ⇢

as we were required to show.

Case
⌃ ;� `A1 �B1 ⌃ ;� `A2 �B2

⌃ ;� `A1 ⇥A2 �B1 ⇥B2
: The proof of this case is straightforward.

Case
`⌃ ↵ 2 ⌃

⌃ ;� `↵ �↵

We assume (W, e1, e2) 2 E J↵K ⇢ and need to show

(W, (e1 :↵
p

=) ↵), (e2 :↵
p

=) ↵)) 2 E J↵K ⇢

We proceed via monadic bind (Lemma 5.15). Consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V J↵K ⇢. Note that

W 0.⌃1 . (v1 :↵
p

=) ↵) 7�! W 0.⌃1 . v1

W 0.⌃2 . (v2 :↵
p

=) ↵) 7�! W 0.⌃2 . v2

We apply anti-reduction (Lemma 5.14), so it suffices to show that (IW 0, v1, v2) 2 E J↵K ⇢, which
we have by monotonicity (Lemma 5.6) since related values are related terms (Lemma 5.13).

Case
`⌃ X 2 �

⌃ ;� `X �X

We assume (W, e1, e2) 2 E JXK ⇢ and need to show that

(W, (e1 : ⇢(X)

p
=) ⇢(X)), (e2 : ⇢(X)

p
=) ⇢(X))) 2 E JXK ⇢
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Because (W, ⇢) 2 D J�K, we have ⇢(X) = ↵0 and ↵0 2 dom(W.) for some ↵0. So it suffices to show

(W, (e1 :↵
0 p
=) ↵0

), (e2 :↵
0 p
=) ↵0

)) 2 E JXK ⇢

The rest of this case follows the same structure as the previous case.

Case
⌃ ;� `A

⌃ ;� `A � ?

We assume (W, e1, e2) 2 E JAK ⇢ and need to show that

(W, (e1 : ⇢(A)

p
=) ?), (e2 : ⇢(A)

p
=) ?)) 2 E J?K ⇢

Proceeding by monadic bind (Lemma 5.15), we consider arbitrary W 0, v1, v2 such that W 0 w W
and (W 0, v1, v2) 2 V JAK ⇢. Next we consider two cases regarding A:
1. A = G: Because related values are related terms (Lemma 5.13), it suffices to show

(W 0, (v1 :G
p

=) ?), (v2 :G
p

=) ?)) 2 V J?K ⇢

We consider the three cases for G.
• If G = ◆ , then our goal follows from (W 0, v1, v2) 2 V J◆K ⇢ since v1 = v2.
• If G = ?! ?, then by the definition of V J?K ⇢, our goal follows from (W 0, v1, v2) 2

V J?! ?K ⇢ by Lemma 5.6 (monotonicity) since IW 0 w W 0 by Lemma 5.2 (properties of
later relations)

• If G = ↵, by the definition of V J↵K ⇢ we have

vi = (v0i :Ai
�↵
=) ↵) for i 2 {1, 2} and (W, v01, v

0
2) 2 IW 0.(↵)

for some v01, v
0
2, A1, A2. So by the definition of V J?K ⇢ we conclude

(W 0, (v1 :↵
p

=) ?), (v2 :↵
p

=) ?)) 2 V J?K ⇢

2. A = 8X.A0 we need to show that

(W 0, (v1 : 8X.A0 p
=) ?), (v2 : 8X.A0 p

=) ?)) 2 E J?K ⇢

By Lemma 5.14 (anti-reduction), noting that
• IW 0 w W 0 by Lemma 5.2 (properties of I)
• W 0.j = W 0.j � 1 + 1 = IW 0.j + 1

• W 0.⌃1 . (v1 : 8X.A0 p
=) ?) 7�! IW 0.⌃1 . (v1 [?] :A

0
[?/X]

p
=) ?)

• W 0.⌃2 . (v2 : 8X.A0 p
=) ?) 7�! IW 0.⌃2 . (v2 [?] :A

0
[?/X]

p
=) ?)

It suffices to show that

(IW 0, (v1 [?] :A
0
[?/X]

p
=) ?), (v2 [?] :A

0
[?/X]

p
=) ?)) 2 E J?K ⇢

By Lemma 6.4 (pre-compatibility for type application), noting that (W 0, v1, v2) 2 V J8X.AK ⇢,
we have that

(W 0, v1 [?], v2 [?]) 2 E JA[?/X]K ⇢

By induction on the step index, noting that
• ⌃;�`A[?/X]� ? by definition since ⌃;�`A[?/X]

• IW 0 2 S J⌃K by Lemma 5.9 (monotonicity)
• (IW 0, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
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• (W 0, v1 [?], v2 [?]) 2 E JA[?/X]K ⇢
We have that (IW 0, (v1 [?] :A0

[?/X]

p
=) ?), (v2 [?] :A0

[?/X]

p
=) ?)) 2 E J?K ⇢ as we were

required to show.
3. A = A1!A2 and A1!A2 6= ?! ?. We have that

W 0.⌃i . (vi : ⇢(A1!A2)
p

=) ?) 7�! W 0.⌃i . ((vi : ⇢(A1!A2)
p

=) ?! ?) : ?! ?
p

=) ?)

for i 2 {1, 2}. Let v0i = (vi : ⇢(A1!A2)
p

=) ?! ?) and v00i = (v0i : ?! ?
p

=) ?). We apply
anti-reduction (Lemma 5.14), noting that
• IW 0 w W 0 by Lemma 5.2 (properties of I)
• W 0.j = W 0.j � 1 + 1 = IW 0.j + 1

• W 0.⌃1 . (v1 : ⇢(A1!A2)
p

=) ?) 7�! IW 0.⌃1 . v
00
1

• W 0.⌃2 . (v2 : ⇢(A1!A2)
p

=) ?) 7�! IW 0.⌃2 . v
00
2

and because related values are related terms (Lemma 5.13), it suffices to show (IW 0, v001 , v
00
2 ) 2

V J?K ⇢. So by the definition of V J?K ⇢, we need to show

(IW 0, v01, v
0
2) 2 IV J?! ?K ⇢

We proceed according to the definition of V J?! ?K ⇢. Consider arbitrary W 00, v3, v4 such that
• W 00 w IIW 0

• (W 00, v3, v4) 2 V J?K ⇢
We need to show that (W 00, v01 v3, v

0
2 v4) 2 E J?K ⇢. We have

W 00.⌃1 . v
0
1 v3 7�! W 00.⌃1 . (v1 (v3 : ?

�p
=) ⇢(A1)) : ⇢(A2)

p
=) ?)

W 00.⌃1 . v
0
2 v4 7�! W 00.⌃2 . (v2 (v4 : ?

�p
=) ⇢(A1)) : ⇢(A2)

p
=) ?)

so, by anti-reduction (Lemma 5.14), it suffices to show that

(IW 00, (v1 (v3 : ?
�p
=) ⇢(A1)) : ⇢(A2)

p
=) ?), (v2 (v4 : ?

�p
=) ⇢(A1)) : ⇢(A2)

p
=) ?)) 2 E J?K ⇢

By the inductive hypothesis for the step index, noting that
• ⌃;�` ?�A1 by definition
• IW 00 2 S J⌃K by Lemma 5.9 (monotonicity)
• (IW 00, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• (IW 00, v3, v4) 2 E J?K ⇢ by Lemma 5.6 (monotonicity) and Lemma 5.13 (related values are

related terms)
We have

(IW 00, (v3 : ?
�p
=) ⇢(A1)), (v4 : ?

�p
=) ⇢(A1))) 2 E JA1K ⇢

We proceed by monadic bind, so we consider arbitrary W3, v
0
3, v

0
4 such that W3 w IW 00 and

(W3, v
0
3, v

0
4) 2 V JA1K ⇢. It suffices to show that

(W3, (v1 v03 : ⇢(A2)
p

=) ?), (v2 v04 : ⇢(A2)
p

=) ?)) 2 E J?K ⇢

By the definition of (W 0, v1, v2) 2 V JA1!A2K ⇢, we have

(W3, v1 v03, v2 v04) 2 E JA2K ⇢

By the inductive hypothesis for the step index, noting that
• ⌃;�`A2 � ? by definition
• W3 2 S J⌃K by Lemma 5.9 (monotonicity)
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• (W3, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• (W3, v1 v03, v2 v04) 2 E JA2K ⇢

We have what we were required to show.

Case
⌃ ;� `B

⌃ ;� ` ?�B

We assume (W, e1, e2) 2 E J?K ⇢ and need to show that

(W, (e1 : ?
p

=) ⇢(B)), (e2 : ?
p

=) ⇢(B))) 2 E JBK ⇢

We proceed by monadic bind, so we consider arbitrary W 0, v1, v2 such that W 0 w W and
(W 0, v1, v2) 2 V J?K ⇢.
We proceed by cases on B:
1. B = ◆. So ⇢(B) = ◆. Based on (W 0, v1, v2) 2 V J?K ⇢, we have three subcases to consider:

(a) v1 = (v : ◆0
q

=) ?) and v2 = (v : ◆0
q

=) ?)
Suppose ◆0 = ◆. Then

W 0.⌃i . ((v : ◆
q

=) ?) : ?
p

=) ◆) 7�! W 0.⌃i . v for i 2 {1, 2}.

We apply anti-reduction (Lemma 5.14), so it suffices to prove that

(IW 0, v, v) 2 E J◆K ⇢

which is true because related values are related terms (Lemma 5.13).
Suppose ◆0 6= ◆. Then

W 0.⌃i . ((v : ◆
0 q
=) ?) : ?

p
=) ◆) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

We apply anti-reduction (Lemma 5.14), so it suffices to prove that

(IW 0, blame p , blame p ) 2 E J◆K ⇢

Which is immediate from the definition of E J◆K ⇢.
(b) v1 = (v01 : ?! ?

q
=) ?) and v2 = (v02 : ?! ?

q
=) ?) and (W 0, v01, v

0
2) 2 V J?! ?K ⇢

We have
W 0.⌃i . (vi : ?

p
=) ◆) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

so the proof is similar to the above case in which ◆0 6= ◆.
(c) v1 = (v01 :↵

q
=) ?) and v2 = (v02 :↵

q
=) ?) and (W 0, v01, v

0
2) 2 V J↵K ⇢

We have
W 0.⌃i . (vi : ?

p
=) ◆) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

so the proof is similar to the above case.
2. B = B1 ! B2.

Based on (W 0, v1, v2) 2 V J?K ⇢, we have three subcases to consider:
(a) v1 = (v : ◆

q
=) ?) and v2 = (v : ◆

q
=) ?)

We have

W 0.⌃i . (vi : ?
p

=) ⇢(B1)! ⇢(B2)) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

and the rest of this case is straightforward.
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(b) v1 = (v01 : ?! ?
q

=) ?) and v2 = (v02 : ?! ?
q

=) ?) and (W 0, v01, v
0
2) 2 V J?! ?K ⇢

Suppose B = ? ! ?. Then we have

W 0.⌃i . ((v
0
i : ?! ?

q
=) ?) : ?

p
=) ?! ?) 7�! W 0.⌃i . v

0
i for i 2 {1, 2}.

We apply anti-reduction (Lemma 5.14). By monotonicity, we have (IW 0, v01, v
0
2) 2

V J?! ?K ⇢ and we conclude because related values are related terms (Lemma 5.13).
Suppose B 6= ?! ?. Then ⇢(B) 6= ?! ?.
So

W 0.⌃i . (vi : ?
p

=) ⇢(B1)! ⇢(B2))

�! W 0.⌃i . ((vi : ?
p

=) ?! ?) : ?! ?
p

=) ⇢(B1)! ⇢(B2))

�! W 0.⌃i . (v
0
i : ?! ?

p
=) ⇢(B1)! ⇢(B2)) for i 2 {1, 2}

We proceed via anti-reduction (Lemma 5.14), noting that W 0.j = IIW 0.j +2, so we need
to show

(IIW 0, (v01 : ?! ?
p

=) ⇢(B)), (v02 : ?! ?
p

=) ⇢(B))) 2 E JBK ⇢

which we obtain by the induction hypothesis for the step index.
(c) v1 = (v01 :↵

0 q
=) ?) and v2 = (v02 :↵

0 q
=) ?)

We have

W 0.⌃i . (vi : ?
p

=) ⇢(B1)! ⇢(B2)) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

and the rest of this case is straightforward.
3. B = 8X.B0: Because related values are related terms (Lemma 5.13) it suffices to show

(W 0, (v1 : ?
p

=) 8X. ⇢(B0
)), (v2 : ?

p
=) 8X. ⇢(B0

))) 2 V J8X.B0K ⇢

Consider arbitrary W 00,↵0 such that W 00 w W 0 and ↵0 2 dom(W 00.). Let v0i = (vi : ?
p

=)
8X. ⇢(B0

)) We need to show that

(W 00, v01 [↵
0
], v02 [↵

0
]) 2 E JB0K ⇢[X 7! ↵0

]

We have

W 00.⌃i . v
0
i [↵

0
] �! W 00.⌃i . (vi : ?

p
=) ⇢(B0

)[↵0/X])

We proceed via anti-reduction (Lemma 5.14), so we need to show
 
IW 00,

(v1 : ?
p

=) ⇢(B0
)[↵0/X]),

(v2 : ?
p

=) ⇢(B0
)[↵0/X])

!
2 E JB0K ⇢[X 7! ↵0

]

which we obtain by the induction hypothesis for the step index.
4. B = X: We have X 2 � and (W 0, ⇢) 2 D J�K (by monotonicity), so ⇢(X) = ↵0 and

↵0 2 dom(W 0.) for some ↵0. We need to show that

(W 0, (v1 : ?
p

=) ↵0
), (v2 : ?

p
=) ↵0

)) 2 E JXK ⇢

The rest of this case follows the same reasoning as for the next case where B = ↵.
5. B = ↵: So ⇢(B) = ↵. Based on (W 0, v1, v2) 2 V J?K ⇢, we have three subcases to consider:
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(a) v1 = (v : ◆
q

=) ?) and v2 = (v : ◆
q

=) ?)
We have

W 0.⌃i . (vi : ?
p

=) ↵) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

so it is straightforward to finish this case.
(b) v1 = (v01 : ? ! ?

q
=) ?) and v2 = (v02 : ? ! ?

q
=) ?) and (W 0, v01, v

0
2) 2 V J? ! ?K ⇢

We have
W 0.⌃i . (vi : ?

p
=) ↵) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

so it is straightforward to complete this case.

(c) v1 = ((v001 :A1
�↵0
=) ↵0

) :↵0 q
=) ?) and v2 = ((v002 :A2

�↵0
=) ↵0

) :↵0 q
=) ?)

and (W 0, v001 , v
00
2 ) 2 IW 0.(↵0

).
Let v01 = (v001 :A1

�↵0
=) ↵0

) and v02 = (v002 :A2
�↵0
=) ↵0

).

We need to show that

(W 0, ((v01 :↵
0 q
=) ?) : ?

p
=) ↵), ((v02 :↵

0 q
=) ?) : ?

p
=) ↵)) 2 E J↵K ⇢

As an aside, recall that ⌃;� ` B and B = ↵ so ↵ 2 dom(⌃). Also, because W 0 2 S J⌃K
(by monotonicity, Lemma 5.6), we have ↵ 2 dom(W 0.).
• Suppose ↵ = ↵0. Then

W 0.⌃i . ((v
0
i :↵

0 q
=) ?) : ?

p
=) ↵) 7�! W 0.⌃i . v

0
i for i 2 {1, 2}.

We proceed via anti-reduction (Lemma 5.14). From (W 0, v001 , v
00
2 ) 2 IW 0.(↵0

), we have
(W 0, v01, v

0
2) 2 V J↵K ⇢ and so we conclude that (W 0, v01, v

0
2) 2 E J↵K ⇢ because related

values are related terms (Lemma 5.13).
• Suppose ↵ 6= ↵0. Then

W 0.⌃i . ((v
0
i :↵

0 q
=) ?) : ?

p
=) ↵) 7�! W 0.⌃i . blame p for i 2 {1, 2}.

So it is straightforward to complete this case.
6. B = ?: We have

W 0.⌃i . (vi : ?
p

=) ?) �! W 0.⌃i . vi for i 2 {1, 2}

We conclude this case by anti-reduction (Lemma 5.14) and note that related values are related
terms (Lemma 5.13).

47



7 Fundamental Property / Parametricity

Lemma 7.1 (Compatibility: True)
⌃ ;� ;� ` true � true : bool .

Proof

Clearly, ⌃ ;� ;� ` true : bool .
Consider arbitrary W ,⇢, � such that:

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, � ) 2 G J�K ⇢

We need to show that
(W, ⇢(�1(true)), ⇢(�2(true))) 2 E JboolK ⇢
⌘ (W, true , true) 2 E JboolK ⇢

Since (W, true , true) 2 V JboolK ⇢, by Lemma a 5.13 (related values are related terms) we have what we
needed to show.

Lemma 7.2 (Compatibility: False)
⌃ ;� ;� ` false � false : bool .

Proof

The proof is analogous to that for true .

Lemma 7.3 (Compatibility: If)
If ⌃ ;� ;� ` e � e

0
: bool , ⌃ ;� ;� ` e 1 � e

0
1 :A , and ⌃ ;� ;� ` e 2 � e

0
2 :A ,

then ⌃ ;� ;� ` if e then e 1 else e 2 � if e

0
then e

0
1 else e

0
2 :A .

Proof

Note that ⌃ ;� ;� ` if e then e 1 else e 2 :A and ⌃ ;� ;� ` if e

0
then e

0
1 else e

0
2 :A are immediate from

the premise.
Consider arbitrary W, ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We need to show that

(W, ⇢(�1(if e then e 1 else e 2)), ⇢(�2(if e
0
then e

0
1 else e

0
2))) 2 E JAK ⇢

⌘ (W, if ⇢(�1(e )) then ⇢(�1(e 1)) else ⇢(�1(e 2)), if ⇢(�2(e
0
)) then ⇢(�2(e

0
1)) else ⇢(�2(e

0
2))) 2 E JAK ⇢
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Let

E1 = if [·] then ⇢(�1(e1)) else ⇢(�1(e2))

E2 = if [·] then ⇢(�2(e
0
1)) else ⇢(�2(e

0
2))

Instantiating the first premise with W , ⇢, and �, we have that (W, ⇢(�1(e)), ⇢(�2(e
0
))) 2 E JboolK ⇢. We

will use monadic bind to proceed.
Let W 0 w W and let (W 0, v 1, v 2) 2 V JboolK ⇢. By Lemma 5.15 (Monadic Bind), it suffices to show that

(W 0, E1[v 1], E2[v 2]) 2 E JAK ⇢

So v1 = v2 = b by the definition of V JboolK ⇢, and depending on whether b = true or b = false we have
either

E1[true ] 7�! ⇢(�1(e 1)) and E2[true ] 7�! ⇢(�2(e
0
1))

or
E1[false ] 7�! ⇢(�1(e 2)) and E2[false ] 7�! ⇢(�2(e

0
2))

Hence, by Lemma 5.14 (anti-reduction), noting that W 0 w W 0 and W 0.j  W 0.j + 1, it suffices to show
that

(W 0, ⇢(�1(e 1)), ⇢(�2(e
0
1))) 2 E JAK ⇢ and (W 0, ⇢(�1(e 2)), ⇢(�2(e

0
2))) 2 E JAK ⇢

We can obtain these by instantiating the second and third premises with W 0, ⇢, and �, noting that
W 0 2 S J⌃K, (W 0, ⇢) 2 D J�K, and (W 0, �) 2 G J�K ⇢ by the monotonicity lemmas (5.8,5.9, 5.10).

Lemma 7.4 (Compatibility: Int)
⌃ ;� ;� `n �n : int .

Proof

Clearly, ⌃ ;� ;� `n : int .
Consider arbitrary W , ⇢, � such that:

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We need to show that
(W, ⇢(�1(n )), ⇢(�2(n ))) 2 E JintK ⇢
⌘ (W,n ,n ) 2 E JintK ⇢

Since (W, n , n ) 2 V JintK ⇢, by Lemma 5.13 (related values are related terms), we have what we needed
to show.

Lemma 7.5 (Compatibility: Op)
If ⌃ ;� ;� ` e 1 � e

0
1 : int and ⌃ ;� ;� ` e 2 � e

0
2 : int , then ⌃ ;� ;� ` e 1~ e 2 � e

0
1~ e

0
2 : int .

Proof
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The first and second conjuncts are immediate.

For the third conjunct, consider arbitrary W, ⇢, � such that:

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that:

(W, ⇢(�1(e 1~ e 2)), ⇢(�2(e
0
1~ e

0
2))) 2 E JintK ⇢

= (W, ⇢(�1(e1)~ ⇢(�1(e2))), ⇢(�2(e
0
1)~ ⇢(�2(e

0
2)))) 2 E JintK ⇢

Instantiate the first premise with W, ⇢, �, noting that

• W 2 S J⌃K
• (W, ⇢) 2 D J�K
• (W, �) 2 G J�K ⇢

We have that (W, ⇢(�1(e1)), ⇢(�2(e
0
1))) 2 E JintK ⇢.

We will use monadic bind to proceed. Consider arbitrary W 0, v1, v
0
1 such that

• W 0 w W

• (W 0, v1, v
0
1) 2 V JintK ⇢

It suffices to show that (W 0, v1~ ⇢(�1(e2))), v
0
1~ ⇢(�2(e

0
2)))) 2 E JintK ⇢.

By the definition of V JintK ⇢, we have that v1 = v01, so we may equivalently show that

(W 0, v1~ ⇢(�1(e2)), v1~ ⇢(�2(e
0
2))) 2 E JintK ⇢

Instantiate the second premise with W 0, ⇢, �, noting that

• W 0 2 S J⌃K by Lemma 5.9 (monotonicity)
• (W 0, ⇢) 2 D J�K by Lemma 5.10 (monotonicity)
• (W 0, �) 2 G J�K ⇢ by Lemma 5.8 (monotonicity)

We have that (W 0, ⇢(�1(e2)), ⇢(�2(e
0
2))) 2 E JintK ⇢.

We will use monadic bind to proceed. Consider arbitrary W 00, v2, v
0
2 such that

• W 00 w W 0

• (W 00, v2, v
0
2) 2 V JintK ⇢

It suffices to show that (W 00, v1~ v2, v1~ v02) 2 E JintK ⇢.
By the definition of V JintK ⇢, we have that v2 = v02, so we may equivalently show that

(W 00, v1~ v2, v1~ v2) 2 E JintK ⇢

If W 00.j = 0, we have what we are required to show. Otherwise, by Lemma 5.14 (anti-reduction),
it suffices to show that (IW 00, J~K (v1,v2), J~K (v1,v2)) 2 E JintK ⇢. Then, since related values are
related terms (Lemma 5.13), it suffices to show that (IW 00, J~K (v1,v2), J~K (v1,v2)) 2 V JintK ⇢, which
is immediate.
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Lemma 7.6 (Compatibility: Var)
If ⌃ ;� ;� ` x :A then ⌃ ;� ;� ` x � x :A .

Proof

The first and second conjuncts are exactly equivalent to the premise.
Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(x ))), ⇢(�2(x )))) 2 E JAK ⇢
⌘ (W, �1(x ), �2(x )) 2 E JAK ⇢

Since (W, �) 2 G J�K ⇢, there exist v 1 and v 2 such that:

• � (x ) = (v 1, v 2)

• (W, v 1, v 2) 2 V JAK ⇢

By lemma 5.13 (related values are related terms), we then have that

(W, v 1, v 2) 2 E JAK ⇢
⌘ (W, �1(x ), �2(x )) 2 E JAK ⇢

as we were required to show.

Lemma 7.7 (Compatibility: Lambda)
If ⌃ ;� ;� , x :A ` e 1 � e 2 :B then ⌃ ;� ;� ` �(x :A). e 1 � �(x :A). e 2 :A!B .

Proof

Note that ⌃ ;� ;� ` �(x :A). e 1 :A!B and ⌃ ;� ;� ` �(x :A). e 2 :A!B are immediate from the
premise.
Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that:

(W, ⇢(�1(�(x :A). e 1)), ⇢(�2(�(x :A). e 2))) 2 E JA!B K ⇢
⌘ (W, �(x : ⇢(A)). ⇢(�1(e 1)), �(x : ⇢(A)). ⇢(�2(e 2))) 2 E JA!B K ⇢

By Lemma 5.13 (related values are related terms) it suffices to show that

(W, �(x : ⇢(A)). ⇢(�1(e 1)), �(x : ⇢(A)). ⇢(�2(e 2))) 2 V JA!B K ⇢

Consider arbitrary W 0, v 1, v 2 such that
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• W 0 w W

• (W 0, v 1, v 2) 2 V JAK ⇢

It suffices to show that

(W 0, (�(x : ⇢(A)). ⇢(�1(e 1))) v 1, (�(x : ⇢(A)). ⇢(�2(e 2))) v 2) 2 E JB K ⇢

Note that
W 0.⌃1 . (�(x : ⇢(A)). ⇢(�1(e 1))) v 1 7�! W 0.⌃1 . ⇢(�1(e 1))[v 1/x ]

and
W 0.⌃2 . (�(x : ⇢(A)). ⇢(�2(e 2))) v 2 7�! W 0.⌃2 . ⇢(�2(e 2))[v 2/x ]

Hence, by Lemma 5.14 (anti-reduction), noting W 0 w W 0 by reflexivity and W 0.j  W 0.j + 1, it further
suffices to show that

(W 0, ⇢(�1(e 1))[v 1/x ], ⇢(�2(e 2))[v 2/x ]) 2 E JB K ⇢

Instantiate the first premise with W 0, ⇢, and � [x 7! (v 1, v 2)]. Note that

• W 0 2 S J⌃K by store monotonicity (Lemma 5.9)

• (W 0, ⇢) 2 D J�K by monotonicity (Lemma 5.10)

• (W 0, � [x 7! (v 1, v 2)]) 2 G J� , x :AK ⇢, which follows from (W 0, � ) 2 G J�K (which we have by
monotonocity (Lemma 5.8)) and (W 0, v 1, v 2) 2 V JB K ⇢ (which we have from above)

Hence we have
(W 0, ⇢(�1[x 7! v 1](e 1)), ⇢(�2[x 7! v 2](e 2))) 2 E JB K ⇢

Since v 1 and v 2 contain no free type or term variables, the above is equivalent to

(W 0, ⇢(�1(e 1))[v 1/x ], ⇢(�2(e 2))[v 2/x ]) 2 E JB K ⇢

which is what we needed to show.

Lemma 7.8 (Compatibility: Application)
If ⌃ ;� ;� ` e 1 � e 2 :B!A and ⌃ ;� ;� ` e

0
1 � e

0
2 :B , then ⌃ ;� ;� ` e 1 e

0
1 � e 2 e

0
2 :A .

Proof

Note that ⌃ ;� ;� ` e 1 e

0
1 :A and ⌃ ;� ;� ` e 2 e

0
2 :A are immediate from the premises.

Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(e 1 e

0
1)), ⇢(�2(e 2 e

0
2))) 2 E JAK ⇢

⌘ (W, (⇢(�1(e 1))) (⇢(�1(e
0
1))), (⇢(�2(e 2))) (⇢(�2(e

0
2)))) 2 E JAK ⇢
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Instantiating the first premise with W , ⇢, and �, we have that (W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E JB!AK ⇢.
We will use monadic bind to proceed.
Let W 0 w W and let (W 0, v 1, v 2) 2 V JB!AK ⇢. By Lemma 5.15 (monadic bind), it suffices to show

(W 0, v 1 (⇢(�1(e
0
1))), v 2 (⇢(�2(e

0
2)))) 2 E JAK ⇢

Instantiating the second premise with W , ⇢, and �, we have that (W, ⇢(�1(e
0
1)), ⇢(�2(e

0
2))) 2 E JB K ⇢.

We will again use monadic bind to proceed.
Let W 00 w W 0 and let (W 00, v 01, v

0
2) 2 V JB K ⇢. Applying Lemma 5.15 (monadic bind), it suffices to show

(W 00, v 1 v

0
1, v 2 v

0
2) 2 E JAK ⇢

Instantiate (W 0, v 1, v 2) 2 V JB!AK ⇢ with W 00, v 0
1, and v

0
2, noting that W 00 w W 0 and (W 00, v 0

1, v
0
2) 2

V JB K ⇢. Hence, we have (W 00, v 1 v

0
1, v 2 v

0
2) 2 E JAK ⇢ as we needed to show.

Lemma 7.9 (Compatibility: Type Abstraction)
If ⌃ ;� ,X ;� ` v 1 � v 2 :A and ⌃ ;� `� , then ⌃ ;� ;� `⇤X .v 1 �⇤X .v 2 : 8X .A .

Proof

Note that ⌃ ;� ,X ;� `⇤X .v 1 : 8X .A and ⌃ ;� ,X ;� `⇤X .v 2 : 8X .A are immediate from the premise.

Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(⇤X .v 1)), ⇢(�2(⇤X .v 2))) 2 E J8X .AK ⇢
⌘ (W,⇤X .⇢(�1(v 1)),⇤X .⇢(�2(v 2))) 2 E J8X .AK ⇢

By Lemma 5.13 (related values are related terms), it suffices to show that

(W,⇤X .⇢(�1(v 1)),⇤X .⇢(�2(v 2))) 2 V J⇤X .AK ⇢

Consider arbitrary W 0, B1, B2, R, e1, e2,↵ such that

• W 0 w W

• W 0.⌃1; · `B1 and W 0.⌃2; · `B2

• R 2 RelW 0.j [B1, B2]

• W 0.⌃1 .⇤X .⇢(�1(v 1)) [B1] 7�! W 0.⌃1,↵:=B1 . (e1 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[B1/X])

• W 0.⌃2 .⇤X .⇢(�2(v 2)) [B2] 7�! W 0.⌃2,↵:=B2 . (e2 : ⇢(A)[↵/X]

+↵
=) ⇢(A)[B2/X])
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Let W2 = W 0 � (↵, B1, B2, R).
It suffices to show that

(W2, e1, e2) 2 E JAK ⇢[X 7! ↵]

Note that by the operational semantics,

W 0.⌃1 .⇤X .⇢(�1(v 1)) [B1] 7�! W 0.⌃1,↵:=B1 . (⇢(�1(v 1))[↵/X] : ⇢(A)[↵/X]

+↵
=) ⇢(A)[B1/X])

W 0.⌃2 .⇤X .⇢(�2(v 2)) [B2] 7�! W 0.⌃2,↵:=B2 . (⇢(�2(v2))[↵/X] : ⇢(A)[↵/X]

+↵
=) ⇢(A)[B2/X])

Therefore, we may equivalently show that

(W2, ⇢(�1(v 1))[↵/X], ⇢(�2(v2))[↵/X]) 2 E JAK ⇢[X 7! ↵]
= (W2, ⇢

0
(�1(v 1)), ⇢

0
(�2(v2))) 2 E JAK ⇢0

where ⇢0 = ⇢[X 7! ↵].
Instantiate the assumption with W2, ⇢

0, �, noting that

• W2 2 S J⌃K by Lemma 5.9 (monotonicity) since W2 w W

• (W2, ⇢
0
) 2 D J� , XK by the definition of D J� , XK and from (W2, ⇢) 2 D J�K, which we obtain

from Lemma 5.10 (monotonicity)

• (W2, �) 2 G J�K ⇢0 by Lemma 5.8 (monotonicity) and Lemma 5.11 (logical relation weakening)

We then have that
(W2, ⇢

0
(�1(v 1)), ⇢

0
(�2(v2))) 2 E JAK ⇢0

as we were required to show.

Lemma 7.10 (Compatibility: Type Application)
If ⌃ ;� ;� ` e 1 � e 2 : 8X .A and ⌃ ;� `B then ⌃ ;� ;� ` e 1 [B]� e 2 [B] :A [B/X ].

Proof

First, note that ⌃ ;� ;� ` e 1 [B] :A [B/X ] and ⌃ ;� ;� ` e 2 [B] :A [B/X ] are immediate from the first
two premises.
Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, � ) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(e 1 [B])), ⇢(�2(e 2 [B]))) 2 E JA [B/X ]K ⇢
⌘ (W, ⇢(�1(e 1)) [⇢(B)], ⇢(�2(e 2)) [⇢(B)]) 2 E JA [B/X ]K ⇢

Instantiating the first premise with W , ⇢, � we have that (W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E J8X .AK ⇢. We
will use monadic bind to proceed.
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Let W 0 w W and let (W 0, v 1, v 2) 2 V J8X .AK ⇢. By Lemma 5.15 (monadic bind), it suffices to show
that

(W 0, v 1 [⇢(B)], v 2 [⇢(B)]) 2 E JA [B/X ]K ⇢

Note that W 0.⌃i; · ` ⇢(B), which follows from the premise ⌃ ;� `B along with W 0 2 S J⌃K (which
follows by monotonicity from W 2 S J⌃K) and (W 0, ⇢) 2 D J�K (which follows by monotonicity from
(W, ⇢) 2 D J�K).
The result is then immediate from Lemma 6.4 (pre-compatibility for type application).

Lemma 7.11 (Compatibility: Pair)
If ⌃ ;� ;� ` e 1 � e 2 :A and ⌃ ;� ;� ` e

0
1 � e

0
2 :B, then ⌃ ;� ;� ` he 1,e

0
1i� he 2,e

0
2i :A⇥B.

Proof

The proof of the lemma is standard.

Lemma 7.12 (Compatibility: Left Projection)
If ⌃ ;� ;� ` e 1 � e 2 :A⇥B then ⌃ ;� ;� `⇡

1

e 1 �⇡
1

e2 :A .

Proof

The proof of the lemma is standard.

Lemma 7.13 (Compatibility: Right Projection)
If ⌃ ;� ;� ` e 1 � e 2 :A⇥B then ⌃ ;� ;� `⇡

2

e 1 �⇡
2

e2 :B.

Proof

The proof of the lemma is standard.

Lemma 7.14 (Compatibility: Conversion)
If ⌃ ;� ;� ` e 1 � e 2 :A and ⌃ ;� `A ��

B , then ⌃ ;� ;� ` (e 1 :A
�

=) B )� (e 2 :A
�

=) B ) :B .

Proof

Note that ⌃ ;� ;� ` (e 1 :A
�

=) B ) :B and ⌃ ;� ;� ` (e 2 :A
�

=) B ) :B follow from the premises.
Consider arbitrary W ,⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, � ) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(e 1 :A
�

=) B )), ⇢(�2(e 2 :A
�

=) B ))) 2 E JB K ⇢
⌘ (W, (⇢(�1(e 1)) :A1

�
=) B 2), (⇢(�2(e 2)) :A2

�
=) B 2)) 2 E JB K ⇢
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where A1 = ⇢(A), A2 = ⇢(A), B 1 = ⇢(B ), and B 2 = ⇢(B ).
Instantiating the first premise with W , ⇢, � we have that

(W, ⇢(�1(e 1))), ⇢(�2(e 2)))) 2 E JAK ⇢

We will use monadic bind to proceed.
Let W 0 w W and let (W 0, v 1, v 2) 2 V JAK ⇢. By Lemma 5.15 (monadic bind), it suffices to show that

(W 0, (v 1 :A1
�

=) B 1), (v 2 :A2
�

=) B 2)) 2 E JB K ⇢

Note that we have ⌃ ;� `A ��
B as a premise, and that by monotonicity we have W 0 2 S J⌃K (by

Lemma 5.9) and (W 0, ⇢) 2 D J�K (by Lemma 5.10). Also, note that (W 0, v 1, v 2) 2 E JAK ⇢ since related
values are related terms (by Lemma 5.13).
The desired result now follows by the Conversion Lemma (Lemma 6.3).

Lemma 7.15 (Compatibility: Cast)
If ⌃ ;� ;� ` e 1 � e 2 :A , ⌃ ;� `A �B then ⌃ ;� ;� ` (e 1 :A

p

=) B )� (e 2 :A
p

=) B ) :B .

Proof

Note that ⌃ ;� ;� ` (e 1 :A
p

=) B ) :B and ⌃ ;� ;� ` (e 2 :A
p

=) B ) :B follow from the premises.
Consider arbitrary W ,⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, � ) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(e 1 :A
p

=) B )), ⇢(�2(e 2 :A
p

=) B ))) 2 E JB K ⇢
⌘ (W, (⇢(�1(e 1)) : ⇢(A)

p

=) ⇢(B)), (⇢(�2(e 2)) : ⇢(A)

p

=) ⇢(B))) 2 E JB K ⇢

Instantiating the first premise with W , ⇢, � we have that

(W, ⇢1(�1(e 1)), ⇢2(�2(e 2))) 2 E JAK ⇢

We will use monadic bind to proceed.
Let W 0 w W and let (W 0, v 1, v 2) 2 V JAK ⇢. By Lemma 5.15 (monadic bind), it suffices to show that

(W 0, (v 1 : ⇢(A)

p

=) ⇢(B)), (v 2 : ⇢(A)

p

=) ⇢(B))) 2 E JB K ⇢

Note that we have ⌃ ;� `A �B as a premise, and that by monotonicity we have W 0 2 S J⌃K (by
Lemma 5.9) and (W 0, ⇢) 2 D J�K (by Lemma 5.10). Also, note that (W 0, v 1, v 2) 2 E JAK ⇢ since related
values are related terms (by Lemma 5.13).
The desired result now follows by the Cast Lemma (Lemma 6.5).

Lemma 7.16 (Compatibility: Blame)
⌃ ;� ;� ` blame p � blame p :A .
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Proof

Clearly, ⌃ ;� ;� ` blame p :A .
Consider arbitrary W , ⇢, � such that

• W 2 S J⌃K

• (W, ⇢) 2 D J�K

• (W, �) 2 G J�K ⇢

We are required to show that

(W, ⇢(�1(blame p )), ⇢(�2(blame p ))) 2 E JAK ⇢
⌘ (W, blame p , blame p ) 2 E JAK ⇢

This is immediate from the definition of E JAK ⇢.

Theorem 7.17 (Fundamental Property)
If ⌃ ;� ;� ` e :A , then ⌃ ;� ;� ` e � e :A .

Proof

By induction on the derivation of ⌃ ;� ;� ` e :A . Each case follows from the appropriate compatibility
lemma.
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8 Soundness W.r.t. Contextual Equivalence

Lemma 8.1 (Weakening)
If ⌃ ;� ;� ` e 1 � e 2 :A , ⌃

0 ◆ ⌃ , �

0 ◆ � , and �

0 ◆ � then ⌃

0
;�

0
;�

0 ` e 1 � e 2 :A .

Proof

Consider arbitrary W , ⇢0, �0 such that

• W 2 S J⌃0K

• (W, ⇢0) 2 D J�0K

• (W, �0
) 2 G J�0K ⇢0

We need to show that (W, ⇢0(�0
1(e 1)), ⇢

0
(�0

2(e 2))) 2 E JAK ⇢0.
Let ⇢ w ⇢0 such that dom(⇢) = � . Let � w �0 such that dom(�) = dom(�).
Since ⌃ ;� ;� ` e 1 :A , for any x in e 1, x 2 dom(�). Similarly, for any X in e 1, X 2 � . Therefore,
⇢0(�0

1(e 1)) = ⇢(�1(e 1)).
The same reasoning holds for e 2.
Hence, it suffices to show that (W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E JAK ⇢0.
Further, by Lemma 5.11, it suffices to show that (W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E JAK ⇢.
Instantiate the premise with W , ⇢, �. Note that W 2 S J⌃K since S J⌃K ◆ S J⌃0K. Further note that
(W, ⇢) 2 D J�K because for all X 2 � , we have that ⇢(X ) = ⇢0(X ) = ↵ where ↵ 2 dom(W.).
We claim that (W, �) 2 G J�K ⇢. For all x 2 dom(�), we have that �(x ) = �0

(x ) = (v 1, v 2) where
(W, v 1, v 2) 2 V J�(x )K ⇢0. By Lemma 5.11 (logical relation weakening), we have that (W, v 1, v 2) 2
V J�(x )K ⇢. This gives us (W, �) 2 G J�K ⇢.
Hence, we have that (W, ⇢(�1(e 1)), ⇢(�2(e 2))) 2 E JAK ⇢ as we were required to show.

Lemma 8.2 (Congruence)
If ⌃ ;� ;� ` e 1 � e 2 :A and `C : (⌃ ;� ;� `A)  (⌃

0
;�

0
;�

0 `B ) then ⌃

0
;�

0
;�

0 `C [e 1]�C [e 2] :B .

Proof

By induction on the type derivation for C, using Lemma 8.1 (weakening) for the cases where C is empty,
and the compatibility lemmas for all other cases.

Lemma 8.3 (Adequacy)
If ⌃ ; · ; · ` e 1 � e 2 :A and ⌃ . e 1+ then ⌃ . e 2+.

Proof

Assume that ⌃ . e 1+j .
Let W = (j,⌃ ,⌃ , {↵ 7! bV JAK ;cj | ↵ :=A 2 ⌃}).
Instantiate the premise with W , ;, ;, noting that W 2 S J⌃K, (W, ;) 2 D J·K, and (W, ;) 2 G J·K ;.
Hence, we have that (W, e 1, e 2) 2 E JAK ;. Thus, we also have that ⌃ . e2+ as we were required to
show.
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Theorem 8.4 (Soundness: Logical Approx. implies Contextual Approx.)
If ⌃ ;� ;� ` e 1 � e 2 :A then ⌃ ;� ;� ` e 1 �ctx

e 2 :A .

Proof

Clearly, ⌃ ;� ;� ` e 1 :A and ⌃ ;� ;� ` e 2 :A .
Consider arbitrary C , ⌃0, B such that

• `C : (⌃ ;� ;� `A)  (⌃

0
; · ; · `B )

We are required to show that ⌃

0 .C [e 1]+ =) ⌃

0 .C [e 2]+.
By Lemma 8.2 (congruence), we have that ⌃

0
; · ; · `C [e 1]�C [e 2] :B .

Additionally, by Lemma 8.3 (adequacy), we have that ⌃0 .C [e 1]+ =) ⌃

0 .C [e 2]+ as we were required
to show.
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9 Examples

Lemma 9.1 (Identity Conversions are Contextually Equivalent)
If ⌃;�;�` (e :A

�
=) A) :A then ⌃;�;�` (e :A

�
=) A)⇡ctx e :A

Theorem 9.2 (Free Theorem: K-Combinator)
Suppose ⌃; · ; · ` v : 8X. 8Y.X!Y!X, ⌃; · ; · ` v1 :A, and ⌃; · ; · ` v2 :B. Then either

1. ⌃ . v [A] [B] v1 v2 7�!⇤
⌃

0 . ve ^ ⌃

0
; · ; · ` ve ⇡ctx v1 :A for some ⌃

0, ve, or

2. ⌃ . v [A] [B] v1 v2 *, or

3. ⌃ . v [A] [B] v1 v2 7�!⇤
⌃

0 . blame p for some ⌃

0, p

Proof

Let e = v [A] [B] v1 v2.
If ⌃ . e * or ⌃ . e 7�!⇤

⌃

0 . blame p then we have what we are required to show.
Otherwise, it must be that ⌃ . e 7�!⇤

⌃

0 . vres and we are required to show that ⌃0
; · ; · ` vres ⇡ctx v1 :A.

We use Lemma 4.10 (redex termination) to guarantee that all subexpressions terminate in values. This
reasoning is omitted in the rest of the proof for brevity.
Let  = {↵ 7! bV J⌃(↵)K ;cn+1 | ↵ 2 ⌃} and let W0 = (n+ 1,⌃,⌃,).
By the Fundamental Property (Theorem 7.17), ·; · ; · ` v� v : 8X. 8Y.X!Y!X. We instantiate this
with W0, ;, ; so we have (W0, v, v) 2 E J8X. 8Y.X!Y!XK ; and therefore

(W0, v, v) 2 V J8X. 8Y.X!Y!XK ;

Choose some ↵. Define

RX = {(W, vr, vr) 2 Atom

val
W0.j [A,A] | vr = v1 _ vr = (v1 :A

�0

=) A)}
W1 = W0 � (↵, A,A,RX)

By Lemma 5.18 (instantiation steps), we have

W0.⌃i . v [A] 7�! W1.⌃i . (e1 : 8Y.↵!Y!↵
+↵
=) 8Y.A!Y!A)

for some e1.
Instantiate (W0, v, v) 2 V J8X. 8Y.X!Y!XK ; with W0, A,A,RX , e1, e1,↵, noting that

• W0 w W0 by reflexivity
• ·; · `A

• RX 2 RelW0.j [A,A]

• W0.⌃i . v [A] 7�! W1.⌃i . (e1 : 8Y.↵!Y!↵
+↵
=) 8Y.A!Y!A)

We have that (W1, e1, e1) 2 IE J8Y.X!Y!XK ;[X 7! ↵] or equivalently, by Lemma 5.17 (composi-
tionality) and since W1.j > 0, that (IW1, e1, e1) 2 E J8Y.↵!Y!↵K ;.
We have that IW1.⌃i . e1 7�!m

⌃1 . v
0 where m < n, ⌃1 ◆ IW1.⌃i, and W2 = (IW1.j �

m,⌃1,⌃1, bIW1.cIW1.j�m). Therefore, we have (W2, v
0, v0) 2 V J8Y.↵!Y!↵K ;.
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Choose ↵0 such that ↵0 /2 ⌃1.
By the operational semantics, we have that

· . e 7�!⇤ W1.⌃i . e
0
1 [B] v1 v2

7�!⇤
⌃1,↵

0
:=B . ((v0 [↵0

] :↵!↵0!↵
+↵
=) A!↵0!A) :A!↵0!A

+↵0
=) A!B!A) v1 v2

Choose some ↵00 such that ↵00 /2 (⌃1,↵
0
:=B). Define

W3 = W2 � (↵0, B,B, bV JBK ⇢cW2.j
)

W4 = W3 � (↵00,↵0,↵0, bV J↵0K ⇢cW2.j
)

By Lemma 5.18 (instantiation steps), we have

W2.⌃i,↵
0
:=B . v0 [↵0

] 7�! W4.⌃i . (e2 :↵!↵0!↵
+↵0
=) ↵!B!↵)

for some e2.
Instantiate (W2, v

0, v0) 2 V J8Y.A!Y!AK ; with W3,↵
0,↵0, bV J↵0K ⇢cW2.j

, e2, e2,↵
00, noting that

• W3 w W2 by the definition of world extension
• W3.⌃i; · `↵0

• bV J↵0K ⇢cW2.j
2 RelW3.j [↵

0,↵0
]

• W3.⌃i . v
0
[↵0

] 7�! W4.⌃i . (e2 :↵!↵00!↵
+↵00
=) ↵!↵0!↵)

We have that (W4, e2, e2) 2 IE J↵!Y!↵K ;[Y 7! ↵00
] or, by Lemma 5.17 (compositionality) and since

W4.j > 0, equivalently that (IW4, e2, e2) 2 E J↵!↵00!↵K ;.
We have that IW4.⌃i . e2 7�!l

⌃2 . v
00 where l < IW4.j, ⌃2 ◆ IW4.⌃i, and W5 = (IW4.j �

l,⌃2,⌃2, bIW4.cIW4.j�l). Therefore, we have (W5, v
00, v00) 2 V J↵!↵00!↵K ;.

By the operational semantics we have that

· . e 7�!⇤ W2.⌃i . ((v
0
[↵0

] :↵!↵0!↵
+↵
=) A!↵0!A) :A!↵0!A

+↵0
=) A!B!A) v1 v2

7�!⇤
⌃2 . (((v

00
:↵!↵00!↵

+↵00
=) ↵!↵0!↵) :↵!↵0!↵

+↵
=) A!↵0!A) :A!↵0!A

+↵0
=) A!B!A) v1 v2

7�!⇤
⌃2 . (((v

00 v01 :↵
00!↵

+↵00
=) ↵0!↵) :↵0!↵

+↵
=) ↵0!A) :↵0!A

+↵0
=) B!A) v2

where either v01 = ((v1 :A
�↵0
=) A) :A

�↵
=) ↵) or v01 = (v1 :A

�↵
=) ↵). Then by preservation, ⌃2; ·; · ` v01 :↵.

We have that (W5, v
0
1, v

0
1) 2 V J↵K ; by definition since (W5, (v1 :A

�↵0
=) A), (v1 :A

�↵0
=) A)) 2 RX and

(W5, v1, v1) 2 RX .
Instantiate the definition of (W5, v

00, v00) 2 V J↵!↵00!↵K ; with W5, v
0
1, v

0
1, noting that

• W5 w W5 by reflexivity
• (W5, v

0
1, v

0
1) 2 V J↵K ;

We have that (W5, v
00 v01, v

00 v01) 2 E J↵00!↵K ; and that ⌃2 . v
00 v01 7�!k

⌃3 . v3 for some k < W5.j, v3,
and ⌃3 ◆ ⌃2.
Let W6 = (W5.j � k,⌃3,⌃3, bW5.cW5.j�k).
We then have that (W6, v3, v3) 2 V 0 J↵00!↵K ;.
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By the operational semantics, we have that

· . e 7�!⇤ W4.⌃i . (((v
00 v01 :↵

00!↵
+↵00
=) ↵0!↵) :↵0!↵

+↵
=) ↵0!A) :↵0!A

+↵0
=) B!A) v2

7�!⇤ W5.⌃i . (((v3 :↵
00!↵

+↵00
=) ↵0!↵) :↵0!↵

+↵
=) ↵0!A) :↵0!A

+↵0
=) B!A) v2

7�!⇤ W5.⌃i . (((v3 v02 :↵
+↵00
=) ↵) :↵

+↵
=) A) :A

+↵0
=) A)

for some v02 such that, by preservation, ⌃3; · ; · ` v02 :↵
00.

By the Fundamental Property (Theorem 7.17), ⌃,↵0
:=B,↵00

:=↵0
; · ; · ` v02 � v02 :↵

00. Instantiate this
with W6, ;, ;. We have that (W6, v

0
2, v

0
2) 2 E J↵00K ; and therefore

(W6, v
0
2, v

0
2) 2 V J↵00K ;

Instantiate the definition of (W6, v3, v3) 2 V J↵00!↵K ; with W6, v
0
2, v

0
2, noting that

• W6 w W6 by reflexivity
• (W6, v

0
2, v

0
2) 2 V J↵00K ;

We have that (W6, v3 v02, v3 v02) 2 E J↵K ; and that ⌃3 . v3 v02 7�!n0
⌃4 . v4 for some n0 < W6.j, v4, and

⌃4 ◆ ⌃3.
Let W7 = (W6.j � n0,⌃4,⌃4, bW6.cW6.j�n0).

We then have that (W7, v4, v4) 2 V J↵K ; and by the definition of V J↵K ;, we have that v4 = (v04 :A
�↵
=) ↵)

and (W7, v
0
4, v

0
4) 2 IW7.(↵).

By the operational semantics, we have that

· . e 7�!⇤
⌃2 . (((v3 v02 :↵

+↵00
=) ↵) :↵

+↵
=) A) :A

+↵0
=) A)

7�!⇤
⌃4 . (((v4 :↵

+↵00
=) ↵) :↵

+↵
=) A) :A

+↵0
=) A)

7�! ⌃4 . (((v
0
4 :A

�↵
=) ↵) :↵

+↵
=) A) :A

+↵0
=) A)

7�! ⌃4 . (v
0
4 :A

+↵0
=) A)

Since W7.j > 0, we have that (IW7, v
0
4, v

0
4) 2 bRXcW7.j

. Thus, we have that either v04 = v1 or

v04 = (v1 :A
�↵0
=) A).

Consider the case where v04 = v1. By Lemma 9.1 (identity conversion equivalence), we have ⌃4; · ; ·
` (v04 :A

+↵0
=) A)⇡ctx v1 :A as we were required to show.

Otherwise, v04 = (v1 :A
�↵0
=) A). By two applications of Lemma 9.1 (identity conversion equivalence),

we have ⌃4; · ; · ` (v04 :A
+↵0
=) A)⇡ctx v1 :A as we were required to show.

Theorem 9.3 (Free Theorem: Swap)
Let

⌃; · ; · ` r : 8X.X ⇥X!X ⇥X
⌃; · ; · ` f : A!B
⌃; · ; · ` v : A⇥A
f⇥

= �(x :A). �(y :A). hf x,f yi

If ⌃ . f (⇡
1

v)+ and ⌃ . f (⇡
2

v)+ then ⌃; · ; · ` f⇥
(r [A] v)⇡ctx r [B] (f⇥ v) :B⇥B.
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Proof

By Lemma 4.1 (canonical forms), we have that v = hv1,v2i.
From the assumptions, we have that ⌃ . f (⇡

1

v) 7�!⇤
⌃,⌃1 . v

0
1 and ⌃ . f (⇡

2

v) 7�!⇤
⌃,⌃2 . v

0
2 for

some ⌃1,⌃2, v
0
1, v

0
2.

It suffices to show that ⌃; · ; · ` f⇥
(r [A] v)⇡ r [B] (f⇥ v) :B⇥B by Theorem 8.4 (soundness). We

prove each conjunct separately.

Left: We are required to show that ⌃; · ; · ` f⇥
(r [A] v)� r [B] (f⇥ v) :B⇥B.

Consider arbitrary W, ⇢, � such that
• W 2 S J⌃K
• (W, ⇢) 2 D J·K
• (W, �) 2 G J·K ⇢

We have that ⇢ = ; and � = ; by definition.
It suffices to show that (W, f⇥

(r [A] v), r [B] (f⇥ v)) 2 E JB⇥BK ⇢.
By the Fundamental Property (Theorem 7.17), we have ⌃; · ; · ` r� r : 8X.X ⇥X!X ⇥X. We
instantiate this with W, ;, ;, noting that
• W 2 S J⌃K by definition of S J⌃K
• (W, ;) 2 D J·K by definition D J·K
• (W, ;) 2 G J·K ; by definition of G J·K ;

We then have (W, r, r) 2 E J8X.X ⇥X!X ⇥XK ;.
Assume that W.⌃i . r 7�!n

⌃

0
i . rv where n < W.j. Otherwise, we have what we are required to

show.
By the definition of E J8X.X ⇥X!X ⇥XK ;, we have that there exists W 0 such that
• W 0 wn W

• W 0.⌃1 = ⌃

0
1

• W 0.⌃2 = ⌃

0
2

• (W 0, rv, rv) 2 V J8X.X ⇥X!X ⇥XK ;
Choose ↵ such that ↵ /2 W 0.⌃1 and ↵ /2 W 0.⌃2.
Let R = {(W, v3, v4) 2 Atom

val
W 0.j [A,B] | ⌃ . f v3 7�!⇤

⌃

0 . v03 ^ (W, v03, v4) 2 V JBK ;} and let
W2 = W 0 � (↵, A,B,R).
By Lemma 5.18 (instantiation steps) there exists e1 such that

W 0.⌃1 . rv [A] �! W 0.⌃1,↵:=A . (e1 :↵⇥↵!↵⇥↵
+↵
=) A⇥A!A⇥A)

W 0.⌃2 . rv [B] �! W 0.⌃2,↵:=B . (e1 :↵⇥↵!↵⇥↵
+↵
=) B⇥B!B⇥B)

Instantiate (W 0, rv, rv) 2 V J8X.X ⇥X!X ⇥XK ; with W 0, A,B,R, e1, e1,↵, noting that
• W 0 w W 0 by reflexivity
• W 0.⌃1; · `A by weakening
• W 0.⌃2; · `B by weakening
• R 2 RelW 0.j [A,B]

• W 0.⌃1 . rv [A] �! W 0.⌃1,↵:=A . (e1 :↵⇥↵!↵⇥↵
+↵
=) A⇥A!A⇥A)

• W 0.⌃2 . rv [B] �! W 0.⌃2,↵:=B . (e1 :↵⇥↵!↵⇥↵
+↵
=) B⇥B!B⇥B)
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We have that (W2, e1, e1) 2 E JX ⇥X!X ⇥XK ;[X 7! ↵].
Then, by Lemma 5.17 (compositionality) we have that

(W2, e1, e1) 2 E J↵⇥↵!↵⇥↵K ;

Assume that W2.⌃1 . e1 7�!m
⌃3 . v3 where m < W2.j. Otherwise, we have what we are required

to show.
Instantiate (W2, e1, e1) 2 E J↵⇥↵!↵⇥↵K ; with m,⌃3, v3. There exist W3,⌃4, v4 such that
• W2.⌃2 . e1 7�!⇤

⌃4 . v4
• W3 wm W2

• W3.⌃1 = ⌃3

• W3.⌃2 = ⌃4

• (W3, v3, v4) 2 V J↵⇥↵!↵⇥↵K ;
By the operational semantics, we have that W.⌃2 . f

⇥ v 7�!⇤
⌃,⌃1,⌃2 . hv01,v02i.

Let W 00
= (W.j, (W.⌃1,⌃1), (W.⌃2,⌃1),W. [ {↵ 7! bV J⌃1(↵)K ;cW.j | ↵ 2 dom(⌃1))}). Note

that W 00 w W .
By the Fundamental Property (Theorem 7.17), we have that ⌃,⌃1; · ; · ` v01 � v01 :B. We instantiate
this with W 00, ;, ;, noting that
• W 00 2 S J⌃,⌃1K
• (W 00, ;) 2 D J·K
• (W 00, ;) 2 G J·K ;

Therefore, since values related in E JBK ; are related in V JBK ;, we have that (W 00, v01, v
0
1) 2 V JBK ;.

Let W 0
3 = (W3.j, (W3.⌃1,⌃1), (W3.⌃2,⌃1),W3. [ {↵ 7! bV J⌃1(↵)K ;cW3.j

| ↵ 2 dom(⌃1))}).

Note that (W 0
3, (v1 :A

�↵
=) ↵), (v01 :B

�↵
=) ↵)) 2 V J↵K ; since W 0

3.(↵) = bRcW3.j
, ⌃ . f v1 7�!⇤

⌃,⌃1 . v
0
1, and (W 0

3, v
0
1, v

0
1) 2 V JBK ; by Lemma 5.6 (monotonicity) since W 0

3 w W 00.
Likewise, let W 000

= (W.j, (W.⌃1,⌃2), (W.⌃2,⌃2),W. [ {↵ 7! bV J⌃2(↵)K ;cW.j | ↵ 2 dom(⌃2))}).
Note that W 000 w W .
By the Fundamental Property (Theorem 7.17), we have that ⌃,⌃2; · ; · ` v02 � v02 :B. We instantiate
this with W 000, ;, ;, noting that
• W 000 2 S J⌃,⌃2K
• (W 000, ;) 2 D J·K
• (W 000, ;) 2 G J·K ;

Therefore, since values related in E JBK ; are related in V JBK ;, we have that (W 000, v01, v
0
1) 2 V JBK ;.

Let W 00
3 = (W3.j, (W3.⌃1,⌃2), (W3.⌃2,⌃2),W3. [ {↵ 7! bV J⌃2(↵)K ;cW3.j

| ↵ 2 dom(⌃2))}).

Note that (W 00
3 , (v2 :A

�↵
=) ↵), (v02 :B

�↵
=) ↵)) 2 V J↵K ; since W 00

3 .(↵) = bRcW3.j
, ⌃ . f v2 7�!⇤

⌃,⌃1 . v
0
2, and (W 00

3 , v
0
2, v

0
2) 2 V JBK ; by Lemma 5.6 (monotonicity) since W 00

3 w W 000.
Let W 000

3 = (W3.j, (W3.⌃1,⌃1,⌃2), (W3.⌃2,⌃1,⌃2),W3.[{↵ 7! bV J⌃1(↵)K ;cW3.j
| ↵ 2 dom(⌃1))}[

{↵ 7! bV J⌃2(↵)K ;cW3.j
| ↵ 2 dom(⌃2))}).

Note that W 000
3 w W 0

3 and W 000
3 w W 00

3 by definition.
We then have (W 000

3 , (v1 :A
�↵
=) ↵), (v01 :B

�↵
=) ↵)) 2 V J↵K ; and (W 000

3 , (v2 :A
�↵
=) ↵), (v02 :B

�↵
=)

↵)) 2 V J↵K ; by Lemma 5.6 (monotonicity).
Let v↵ = h(v1 :A

�↵
=) ↵),(v2 :A

�↵
=) ↵)i and let v0↵ = h(v01 :B

�↵
=) ↵),(v02 :B

�↵
=) ↵)i.

Therefore, we have (W 000
3 , v↵, v

0
↵) 2 V J↵⇥↵K ; by definition.

We instantiate (W3, v3, v4) 2 V J↵⇥↵!↵⇥↵K ; with W 000
3 , v↵, v

0
↵, noting that

• W 000
3 w W3 by definition
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• (W 000
3 , v↵, v

0
↵) 2 V J↵⇥↵K ;

We then have that (W 000
3 , v3 v↵, v4 v0↵) 2 E J↵⇥↵K ;

Assume that W 000
3 .⌃1 . v3 v↵ 7�!k

⌃5 . v5 where k < W3.j. Otherwise, we have what we are
required to show. If k � W3.j then k � W3.j = W2.j �m = W.j � n �m so k + n +m � W.j
and we vacuously have what we are required to show.
Instantiate (W 000

3 , v3 v↵, v4 v0↵) 2 E J↵⇥↵K ; with k,⌃5, v5. There exist W4,⌃6, v6 such that
• W 000

3 .⌃2 . v4 v0↵ 7�!⇤
⌃6 . v6

• W4 wk W 000
3

• W4.⌃1 = ⌃5

• W4.⌃2 = ⌃6

• (W4, v5, v6) 2 V J↵⇥↵K ;

By the definition of V J↵⇥↵K ;, we have that v5 = h(v05 :A
�↵
=) ↵),(v005 :A

�↵
=) ↵)i and v6 =

h(v06 :B
�↵
=) ↵),(v006 :B

�↵
=) ↵)i where (W4, (v

0
5 :A

�↵
=) ↵), (v06 :B

�↵
=) ↵)) 2 V J↵K ; and (W4, (v

00
5 :A

�↵
=) ↵),

(v006 :B
�↵
=) ↵)) 2 V J↵K ;. By the definition of V J↵K ;, since W4.(↵) = R, we further have that

⌃5 . f v05+ v07 and ⌃5 . f v005+ v007 where (W4, v
0
7, v

0
6) 2 V JBK ; and (W4, v

00
7 , v

00
6 ) 2 V JBK ;.

By the operational semantics, we then have that

⌃ . f⇥
(r [A] v) 7�!k+n+m

⌃5 . f
⇥

(v5 :↵
+↵
=) A) 7�!l

⌃5,⌃1,⌃2 . v6
⌃ . r [B] (f⇥ v) 7�!⇤

⌃6 . v6

Recall that it suffices to show that (W, f⇥
(r [A] v), r [B] (f⇥ v)) 2 E JB⇥BK ⇢.

We apply Lemma 5.14 (anti-reduction), noting that
• W4 w W by transitivity of extension
• W.j  W4.j + k + n+m

• ⌃ . f⇥
(r [A] v) 7�!k+n+m

⌃5 . f
⇥

(v5 :↵
+↵
=) A)

• ⌃ . r [B] (f⇥ v) 7�!⇤
⌃6 . v6

Then it suffices to show that (W4, f
⇥

(v5 :↵
+↵
=) A), hv06,v006 i) 2 E JB⇥BK ⇢.

Assume that W4.⌃1 . f
⇥
(v5 :↵

+↵
=) A) 7�!m0

⌃5 . v7 where m0 < W4.j. Otherwise, we have what
we are required to show.
Let W5 = (W4.j �m0,W4.⌃1,W4.⌃2, bW4.cW4.j�m0).
By Lemma 5.14 (anti-reduction), it suffices to show that (W5, v7, hv06,v006 i) 2 E JB⇥BK ⇢,
which we have from the definition since v7 = hv07,v007 i and (W5, v

0
7, v

0
6) 2 V JBK ; and (W5, v

00
7 , v

00
6 ) 2

V JBK ; by Lemma 5.6 (monotonicity).
Right: We are required to show that ⌃; · ; · ` r [B] (f⇥ v)� f⇥

(r [A] v) :B⇥B.
Consider arbitrary W, ⇢, � such that
• W 2 S J⌃K
• (W, ⇢) 2 D J·K
• (W, �) 2 G J·K ⇢

We have that ⇢ = ; and � = ; by definition.
It suffices to show that (W, r [B] (f⇥ v), f⇥

(r [A] v)) 2 E JB⇥BK ⇢.
By the Fundamental Property (Theorem 7.17), we have ⌃; · ; · ` r� r : 8X.X ⇥X!X ⇥X. We
instantiate this with W, ;, ;, noting that
• W 2 S J⌃K by definition of S J⌃K
• (W, ;) 2 D J·K by definition D J·K
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• (W, ;) 2 G J·K ; by definition of G J·K ;
We then have (W, r, r) 2 E J8X.X ⇥X!X ⇥XK ;.
Assume that W.⌃i . r 7�!n

⌃

0
i . rv where n < W.j. Otherwise, we have what we are required to

show.
By the definition of E J8X.X ⇥X!X ⇥XK ;, we have that there exists W 0 such that
• W 0 wn W

• W 0.⌃1 = ⌃

0
1

• W 0.⌃2 = ⌃

0
2

• (W 0, rv, rv) 2 V J8X.X ⇥X!X ⇥XK ;
Choose ↵ such that ↵ /2 W 0.⌃1 and ↵ /2 W 0.⌃2.
Let R = {(W, v3, v4) 2 Atom

val
W 0.j [B,A] | ⌃ . f v4 7�!⇤

⌃

0 . v04 ^ (W, v3, v
0
4) 2 V JBK ;} and let

W2 = W 0 � (↵, B,A,R).
By Lemma 5.18 (instantiation steps) there exists e1 such that

W 0.⌃1 . rv [B] �! W 0.⌃1,↵:=B . (e1 :↵⇥↵!↵⇥↵
+↵
=) B⇥B!B⇥B)

W 0.⌃2 . rv [A] �! W 0.⌃2,↵:=A . (e1 :↵⇥↵!↵⇥↵
+↵
=) A⇥A!A⇥A)

Instantiate (W 0, rv, rv) 2 V J8X.X ⇥X!X ⇥XK ; with W 0, B,A,R, e1, e1,↵, noting that
• W 0 w W 0 by reflexivity
• W 0.⌃1; · `B by weakening
• W 0.⌃2; · `A by weakening
• R 2 RelW 0.j [B,A]

• W 0.⌃1 . rv [B] �! W 0.⌃1,↵:=B . (e1 :↵⇥↵!↵⇥↵
+↵
=) B⇥B!B⇥B)

• W 0.⌃2 . rv [A] �! W 0.⌃2,↵:=A . (e1 :↵⇥↵!↵⇥↵
+↵
=) A⇥A!A⇥A)

We have that (W2, e1, e1) 2 E JX ⇥X!X ⇥XK ;[X 7! ↵].
Then, by Lemma 5.17 (compositionality) we have that

(W2, e1, e1) 2 E J↵⇥↵!↵⇥↵K ;

Assume that W2.⌃1 . e1 7�!m
⌃3 . v3 where m < W2.j. Otherwise, we have what we are required

to show.
Instantiate (W2, e1, e1) 2 E J↵⇥↵!↵⇥↵K ; with m,⌃3, v3. There exist W3,⌃4, v4 such that
• W2.⌃2 . e1 7�!⇤

⌃4 . v4
• W3 wm W2

• W3.⌃1 = ⌃3

• W3.⌃2 = ⌃4

• (W3, v3, v4) 2 V J↵⇥↵!↵⇥↵K ;
By the operational semantics, we have that W.⌃1 . f

⇥ v 7�!⇤
⌃,⌃1,⌃2 . hv01,v02i.

Let W 00
= (W.j, (W.⌃1,⌃1), (W.⌃2,⌃1),W. [ {↵ 7! bV J⌃1(↵)K ;cW.j | ↵ 2 dom(⌃1))}). Note

that W 00 w W .
By the Fundamental Property (Theorem 7.17), we have that ⌃,⌃1; · ; · ` v01 � v01 :B. We instantiate
this with W 00, ;, ;, noting that
• W 00 2 S J⌃,⌃1K
• (W 00, ;) 2 D J·K
• (W 00, ;) 2 G J·K ;
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Therefore, since values related in E JBK ; are related in V JBK ;, we have that (W 00, v01, v
0
1) 2 V JBK ;.

Let W 0
3 = (W3.j, (W3.⌃1,⌃1), (W3.⌃2,⌃1),W3. [ {↵ 7! bV J⌃1(↵)K ;cW3.j

| ↵ 2 dom(⌃1))}).

Note that (W 0
3, (v

0
1 :B

�↵
=) ↵), (v1 :A

�↵
=) ↵)) 2 V J↵K ; since W 0

3.(↵) = bRcW3.j
, ⌃ . f v1 7�!⇤

⌃,⌃1 . v
0
1, and (W 0

3, v
0
1, v

0
1) 2 V JBK ; by Lemma 5.6 (monotonicity) since W 0

3 w W 00.
Likewise, let W 000

= (W.j, (W.⌃1,⌃2), (W.⌃2,⌃2),W. [ {↵ 7! bV J⌃2(↵)K ;cW.j | ↵ 2 dom(⌃2))}).
Note that W 000 w W .
By the Fundamental Property (Theorem 7.17), we have that ⌃,⌃2; · ; · ` v02 � v02 :B. We instantiate
this with W 000, ;, ;, noting that
• W 000 2 S J⌃,⌃2K
• (W 000, ;) 2 D J·K
• (W 000, ;) 2 G J·K ;

Therefore, since values related in E JBK ; are related in V JBK ;, we have that (W 000, v01, v
0
1) 2 V JBK ;.

Let W 00
3 = (W3.j, (W3.⌃1,⌃2), (W3.⌃2,⌃2),W3. [ {↵ 7! bV J⌃2(↵)K ;cW3.j

| ↵ 2 dom(⌃2))}).

Note that (W 00
3 , (v

0
2 :B

�↵
=) ↵), (v2 :A

�↵
=) ↵)) 2 V J↵K ; since W 00

3 .(↵) = bRcW3.j
, ⌃ . f v2 7�!⇤

⌃,⌃1 . v
0
2, and (W 00

3 , v
0
2, v

0
2) 2 V JBK ; by Lemma 5.6 (monotonicity) since W 00

3 w W 000.
Let W 000

3 = (W3.j, (W3.⌃1,⌃1,⌃2), (W3.⌃2,⌃1,⌃2),W3.[{↵ 7! bV J⌃1(↵)K ;cW3.j
| ↵ 2 dom(⌃1))}[

{↵ 7! bV J⌃2(↵)K ;cW3.j
| ↵ 2 dom(⌃2))}).

Note that W 000
3 w W 0

3 and W 000
3 w W 00

3 by definition.
We then have (W 000

3 , (v01 :B
�↵
=) ↵), (v1 :A

�↵
=) ↵)) 2 V J↵K ; and (W 000

3 , (v02 :B
�↵
=) ↵), (v2 :A

�↵
=)

↵)) 2 V J↵K ; by Lemma 5.6 (monotonicity).
Let v↵ = h(v1 :A

�↵
=) ↵),(v2 :A

�↵
=) ↵)i and let v0↵ = h(v01 :B

�↵
=) ↵),(v02 :B

�↵
=) ↵)i.

Therefore, we have (W 000
3 , v0↵, v↵) 2 V J↵⇥↵K ; by definition.

We instantiate (W3, v3, v4) 2 V J↵⇥↵!↵⇥↵K ; with W 000
3 , v0↵, v↵, noting that

• W 000
3 w W3 by definition

• (W 000
3 , v0↵, v↵) 2 V J↵⇥↵K ;

We then have that (W 000
3 , v3 v0↵, v4 v↵) 2 E J↵⇥↵K ;

Assume that W 000
3 .⌃1 . v3 v0↵ 7�!k

⌃5 . v5 where k < W3.j. Otherwise, we have what we are
required to show. If k � W3.j then k � W3.j = W2.j �m = W.j � n �m so k + n +m � W.j
and we vacuously have what we are required to show.
Instantiate (W 000

3 , v3 v0↵, v4 v↵) 2 E J↵⇥↵K ; with k,⌃5, v5. There exist W4,⌃6, v6 such that
• W 000

3 .⌃2 . v4 v↵ 7�!⇤
⌃6 . v6

• W4 wk W 000
3

• W4.⌃1 = ⌃5

• W4.⌃2 = ⌃6

• (W4, v5, v6) 2 V J↵⇥↵K ;
By the definition of V J↵⇥↵K ;, we have that v5 = h(v05 :B

�↵
=) ↵),(v005 :B

�↵
=) ↵)i and v6 =

h(v06 :A
�↵
=) ↵),(v006 :A

�↵
=) ↵)i where (W4, (v

0
5 :B

�↵
=) ↵), (v06 :A

�↵
=) ↵)) 2 V J↵K ; and (W4, (v

00
5 :B

�↵
=) ↵),

(v006 :A
�↵
=) ↵)) 2 V J↵K ;. By the definition of V J↵K ;, since W4.(↵) = R, we further have that

⌃5 . f v06+ v07 and ⌃5 . f v006+ v007 where (W4, v
0
5, v

0
7) 2 V JBK ; and (W4, v

00
5 , v

00
7 ) 2 V JBK ;.

By the operational semantics, we then have that

⌃ . r [B] (f⇥ v) 7�!l
⌃5 . r [B] hv01,v02i 7�!k+n+m

⌃5 . v5

⌃ . f⇥
(r [A] v) 7�!⇤

⌃6 . f
⇥

(v6 :↵
+↵
=) A) 7�!⇤

⌃6,⌃1,⌃2 . v5

Recall that it suffices to show that (W, f⇥
(r [A] v), r [B] (f⇥ v)) 2 E JB⇥BK ⇢.

We apply Lemma 5.14 (anti-reduction), noting that
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• W4 w W by transitivity of extension
• W.j  W4.j + k + n+m

• ⌃ . r [B] (f⇥ v) 7�!k+n+m+l
⌃5 . v5

• ⌃ . f⇥
(r [A] v) 7�!⇤

⌃6 . f
⇥

(v6 :↵
+↵
=) A)

Then it suffices to show that (W4, hv05,v005 i, f⇥
(v6 :↵

+↵
=) A)) 2 E JB⇥BK ⇢.

By Lemma 5.14 (anti-reduction), it suffices to show that (W4, hv05,v005 i, hv07,v007 i) 2 E JB⇥BK ⇢.
which we have from the definition since (W5, v

0
5, v

0
7) 2 V JBK ; and (W5, v

00
5 , v

00
7 ) 2 V JBK ; by

Lemma 5.6 (monotonicity).
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