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ABSTRACT
Currently, there is a gap between the tools used by probability
theorists and those used in formal reasoning about probabilistic
programs. On the one hand, a probability theorist decomposes
probabilistic state along the simple and natural product of proba-
bility spaces. On the other hand, recently developed probabilistic
separation logics decompose state via relatively unfamiliar measure-
theoretic constructions for computing unions of sigma-algebras
and probability measures. We bridge the gap between these two
perspectives by showing that these two methods of decomposition
are equivalent up to a suitable equivalence of categories. Our main
result is a probabilistic analog of the classic equivalence between
the category of nominal sets and the Schanuel topos. Through this
equivalence, we validate design decisions in prior work on proba-
bilistic separation logic and create new connections to nominal-set-
like models of probability.
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1 INTRODUCTION
Separation logic [39], now a standard tool for reasoning about
programs with shared mutable state, grew out of Reynolds’s Syn-
tactic Control of Interference [38] — a substructural system for
controlling the interaction of imperative program fragments. The
basic ingredients for today’s interpretations of separation logic
connectives, present in the original model of Syntactic Control
of Interference [32], can be seen as living in a category of func-
tors known as the Schanuel topos, with noninterference defined
in terms of the coproduct of finite sets. Over the years, this model
has been reformulated to suit the needs of formal reasoning about
imperative programs: modern models of separation logic live not in
the Schanuel topos, but in categories more like Set, and separation
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is interpreted not by coproduct, but by algebraic structures such
as partial commutative monoids (PCMs) [6, 19]. In particular, the
now-standard model of separation logic in which separating con-
junction splits stores into disjoint pieces is defined in terms of the
partial function ] sending a pair of disjoint stores to their union,
giving rise to a PCM of stores. This shift in perspective is justified
by a classic equivalence of categories:

Fact 1.1. The Schanuel topos Sch is equivalent to the category
Nom of nominal sets, and the original coproduct-based model of
separation in Sch corresponds to the standard union-based model
in Nom across this equivalence.1

Today, there is a pressing need for syntactic control of prob-
abilistic interference — that is, for establishing the probabilistic
independence of program fragments. In response to this need, re-
cent work has developed a number of probabilistic separation log-
ics [2, 3, 5, 27], whose semantic models are given by PCMs made of
probability-theoretic objects. Lilac [27] is a separation logic whose
PCM-based model is particularly well-behaved: its notion of sepa-
ration coincides with probabilistic independence [27, Lemma 2.5],
and yields a frame rule identical to the standard one for store-based
separation logics.

However, Lilac’s PCM model does not match a probability the-
orist’s intuition. One expects separation to be interpreted via a
standard product of probability spaces [26], but Lilac interprets
separation using independent combination: a partial binary opera-
tion on probability spaces constructed out of low-level set-theoretic
operations on f-algebras. Moreover, Lilac’s model fixes up front an
unconventional sample space — the space [0, 1]l of infinite streams
of real numbers in the interval, known as the Hilbert cube — and
the soundness of Lilac’s proof rules depends on various properties
specific to it. These contrasts between Lilac’s model and textbook
probability raise a question: how do we know Lilac provides a good
notion of separation for probabilistic separation logic?

We answer this question by showing Lilac’s seemingly non-
standard independent combination is in fact equivalent to a prob-
ability theorist’s product-based intuition of state decomposition.
Our result is a probabilistic analog of Fact 1.1: just as the coproduct
model of separation corresponds to the now-standard model based
on ] across an equivalence between the Schanuel topos and Nom,
the probability theorist’s intuitive product-based model of indepen-
dence corresponds to Lilac’s independent-combination-basedmodel
across an equivalence between a category of enhanced measurable
1For a good reference documenting this equivalence, see Pitts [36, §6.3].
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sheaves and a category of absolutely continuous sets (Theorem 4.35).
Our contributions are as follows:
• We introduce absolutely continuous sets: just as nominal sets are

sets equipped with an action by permutations of names, abso-
lutely continuous sets are sets equipped with a continuous action
by measurable permutations of the Hilbert cube.
• We prove analogs of the equivalence Sch ' Nom for both discrete

and continuous probability (Theorems 3.18 and 4.34). In particular,
we show that the category Set� of absolutely continuous sets
is equivalent to a topos EMS of enhanced measurable sheaves: a
probabilistic analog of the Schanuel topos.
• We show that Set� provides a natural background category for a

fragment of Lilac. Theorem 4.35 then shows that, by transporting
across the equivalence Set� ' EMS, Lilac’s model corresponds
to amodel in EMSwhere separation arises naturally from product
of probability spaces via Day convolution [6, 14, 33].

2 THE NOMINAL SITUATION
Our main result is a probabilistic analog of Fact 1.1 (Theorem 4.35).
To set the stage, we first make Fact 1.1 a precise mathematical
statement (Proposition 2.18). We devote this section to describing
the necessary pieces in this comfortable setting; the material in this
section is standard, but we will deviate occasionally from the usual
presentation in order to focus on the aspects that are most relevant
to our eventual probabilistic counterpart.

At its core, Fact 1.1 states that two distinct approaches to mod-
elling store-separation are equivalent. To illustrate this fact we will
study a tiny separation logic consisting of propositions %,& about
integer-valued stores:

%,& ::= G ↦→ 8 | True | % ∗&. (TinySep)

TinySep propositions are well-formed according to a judgment
Γ ` % defined as usual: a context Γ is a set of logical variables G ,
and Γ ` % if Γ contains the variables used in % . Fact 1.1 asserts the
equivalence of two different models for TinySep:

Model 1: separation as coproduct. In this model, a store consists
of two components: (1) a shape ! given as a finite set of available
locations (i.e., memory addresses), and (2) a valuation B : ! ⇀ Z,
a partial function assigning values to a subset of the shape. An
example is shown in Figure 1a; the store B has shape {0x0, 0x1, 0x2},
and the valuation maps 0x0 ↦→ 8 and so on. Under this model, the
meaning of a proposition depends on the shape !: the interpretation
of a proposition Γ ` % has form ÈΓ ` %É!1 : (Γ → !) → P(! ⇀ Z),
associating each substitution W : Γ → ! to the set ÈΓ ` %É!1 (W) of
!-shaped valuations satisfying % .

Under this interpretation, we define B ∈ ÈTrueÉ!1 (W) always and
B ∈ ÈG ↦→ 8É!1 (W) if and only if B (W (G)) = 8 . Separating conjunction
is defined via the coproduct of store shapes: %1 ∗ %2 holds of an
!-shaped valuation B if and only if there are valuations B1 of shape
!1 and B2 of shape !2, and an injective function 8 : !1 + !2 ↩→ !

embedding the coproduct !1 + !2 into ! such that B1 satisfies %1
and B2 satisfies %2 and B1, B2 embed into B along 8 . This situation is
visualized in Figure 1a. For example,

B ∈ È(G ↦→ 8) ∗ (~ ↦→ 3)É{0x0,0x1,0x2}1 ({G ↦→ 0x0, ~ ↦→ 0x1})
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(a) Model 1: coproduct.
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(b) Model 2: union.

Figure 1: Visualizing separation in Model 1 and Model 2.

is witnessed by setting B1 to the {0x0}-shaped valuation {0x0 ↦→ 8}
and B2 to the {0x0}-shaped valuation {0x0 ↦→ 3} and 8 : {0x0} +
{0x1} ↩→ {0x0, 0x1} to the injection defined by 8 (inl(0x0)) = 0x0
and 8 (inr(0x0)) = 0x1, where inl : !1 → !1 + !2 and inr : !2 →
!1 + !2 are the coproduct injections.

Model 2: separation as union. In this model, one fixes upfront a
“universal store shape” into which all store shapes can be embedded.
Any countably-infinite set will do; we choose the natural numbers

N. A store is a partial function B : N
fin−−⇀ Z defined on finitely many

values of its domain, and a proposition Γ ` % denotes a function

ÈΓ ` %É2 : (Γ → N) → P(N fin−−⇀ Z). The interpretations of True
and G ↦→ 8 are as in the shape-indexed model: B ∈ ÈTrueÉ2 (W)
always and B ∈ ÈG ↦→ 8É2 (W) if and only if B (W (G)) = 8 . Sepa-
rating conjunction is defined via union of stores: a store B is in
È%1 ∗ %2É2 (W) if and only if there exist disjoint stores B1 and B2
with B1 ] B2 ⊆ B such that B1 is in È%1É2 (W) and B2 is in È%2É2 (W).
Figure 1b visualizes an example: B ∈ È(G ↦→ 8) ∗ (~ ↦→ 3)É2 {G ↦→
0x0, ~ ↦→ 0x1} holds because B1 and B2 have a union contained in B

and B1 satisfies G ↦→ 8 and B2 satisfies ~ ↦→ 3.

Relating the two models. Model 1 and Model 2 are equivalent
by Fact 1.1. The equivalence is based on the following idea. Every
store shape ! can be encoded as a finite subset of N via a suitable
pair of functions enc! : ! → N and dec! : N ⇀ !. Choosing
an arbitrary such pair (enc!, dec!) for every ! allows translating
Model 1 into Model 2 in a bijective way: an !-shaped store B :

! ⇀ Z corresponds to a finite partial function B ◦ dec! : N
fin−−⇀ Z,

and a Model-1-substitution W : Γ → ! corresponds to a Model-2-
substitution enc! ◦ W : Γ → N. Via these translations, it holds that
B ∈ ÈΓ ` %É!1 (W) if and only if B◦dec! ∈ ÈΓ ` %É2 (enc!◦W) for all!-
shaped valuations B , propositions Γ ` % , and substitutionsW : Γ → !,
so both models induce the same notion of store-satisfaction.

This equivalence should seem plausible enough given how tiny
TinySep is. What is remarkable about Fact 1.1 is that this equiva-
lence continues to hold when the interpretations È−É(−)1 and È−É2
are extended to include all the usual features of separation logic,
including separating implication −∗, the intuitionistic connectives
∧,∨,→, False, quantification at both first-order and higher type,
quantification over propositions, predicates defined by structural
recursion, and so on. In short, the semantic domains of Model 1 are
equivalent in expressive power to those of Model 2.
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Rather than laboriously verifying one by one that the standard
interpretations of each of these features coincide, Fact 1.1 estab-
lishes a general result. The key is to place Model 1 and Model 2 into
the context of suitable categories that bring out their essential struc-
ture. Model 1 naturally lives in a category Sch called the Schanuel
topos: the interpretation ÈΓ ` %É(−)1 of a proposition % defines a
Sch-morphism from a Sch-object representing Γ-substitutions to a
Sch-object representing store-predicates. Model 2 naturally lives in
the category Nom of nominal sets [36]: the interpretation ÈΓ ` %É2
defines a Nom-morphism from a nominal set of Γ-substitutions
to a nominal set of store-predicates. Having placed Model 1 and
Model 2 into suitable background categories, Fact 1.1 follows from
a classic theorem: the categories Sch and Nom are known to be
equivalent [36, §6.3], and inspecting the proof of this equivalence
shows that the functor Sch→ Nom witnessing it sends Model 1 to
Model 2 via the construction involving (enc!, dec!).

The rest of this section is devoted to filling in the details of this
category-theoretic setup. First we will describe howModel 1 lives in
Sch and Model 2 lives in Nom. Then we will highlight the essential
properties of this setup that make the equivalence Sch ' Nom
possible, and how Model 1 and Model 2 are instances of the same
structure across this equivalence; Theorem 4.35 relies crucially on
identifying analogous properties in the probabilistic setting.

2.1 Model 1 in the Schanuel topos
In this section we describe how Model 1 of Section 2 naturally lives
in the Schanuel topos Sch. The benefit of this is that it makes the
invariants maintained by È−É(−)1 explicit: the category Sch is such
that all constructions that make categorical sense — i.e., are well-
defined as objects and morphisms of Sch— are forced to preserve all
invariants. The invariants in this case are the following principles
one intuitively expects to hold when reasoning about stores:
• Extension: propositions should continue to hold when new lo-

cations are introduced (such as when declaring a local variable
or allocating a reference). More precisely, if B ∈ ÈΓ ` %É!1 (W) for
some !-shaped valuation B and substitution W : Γ → !, and if !
is a subset of some extended set of locations !′, then it should
hold that B ∈ ÈΓ ` %É!

′
1 (W), where we have implicitly coerced B

into an !′-shaped valuation and W into an !′-shaped substitution
Γ → !′ along the inclusion ! ⊆ !′. 2
• Renaming: propositions should be stable under renaming of lo-

cations. More precisely, if B ∈ ÈΓ ` %É!1 (W) for some !-shaped
valuation B and substitution W : Γ → !, and if 5 is a bijective func-
tion ! → !′, then it should hold that B ◦ 5 −1 ∈ ÈΓ ` %É!

′
1 (5 ◦W).

• Restriction: the truth of a proposition should not depend on any
unused locations. For example, suppose a proposition % holds of
the {ℓ1, ℓ2}-shaped valuation {ℓ1 ↦→ 1}, which does not use the
location ℓ2. Then % should also hold of {ℓ1 ↦→ 1} considered as
an {ℓ1}-shaped valuation.

As basic principles of store-based reasoning, it is crucial that these
invariants are preserved by the basic separation logic connectives:
if % and & satisfy Extension, Renaming, and Restriction, then their

2This makes the separation logic affine rather than linear; we will restrict our attention
to affine separation logics in this paper, as Lilac is affine and our main goal is to obtain
models for it.

separating conjunction % ∗& , separating implication % −∗& , con-
junction % ∧& , and implication % → & should as well.

A general strategy for preserving invariants like this is to work
with Set-valued functors out of a category � capturing them. Such
functors are very well-behaved: in particular, many subcategories
of the functor category [�op; Set], called categories of sheaves on
� , are automatically cartesian closed, and can be used to quickly
obtain invariant-preserving interpretations of logical connectives.
Placing Model 1 into the Schanuel topos Sch is an instance of this
idea. The Schanuel topos is a particular subcategory of [�op; Set],
where � is chosen so that functors �op → Set capture Extension
and Renaming, consisting only of functors that are atomic sheaves
in order to capture Restriction. We build up to this model in steps.

2.1.1 The base category� . Essentially, Extension says propositions
should be stable under subset-inclusions ! ⊆ !′ and Renaming says
they should be stable under bijections. These two invariants can be
packaged into a category of store shapes:

Definition 2.1. Let Shp be the category whose objects are finite
sets ! and whose morphisms from ! to " are functions " → !

definable by composing subset-inclusions and bijections.

Note the direction " → ! is the reverse of what one might
expect; this is because we will consider contravariant functors on
Shp. Intuitively, there is a morphism" → ! if ! is a “smaller” shape
than " . Since every composite of subset-inclusions and bijections
is an injective function, and every injective function is bijective
onto its image, the category Shp has a simple abstract description:

Proposition 2.2. The category Shp is equal to Injop<l , where Inj<l
is the category of injective functions between finite sets.

With Shp in hand, functors Shpop → Set (equivalently, functors
Inj<l → Set) model Extension- and Renaming-invariant concepts.
In particular, there is a functor modelling stores:

Definition 2.3 (Store functor). The store functor S : Shpop → Set is
a functor that sends a finite set ! to the set of all !-shaped valuations
and a Inj<l -morphism 8 : ! ↩→ " to a function coercing S(")
into S(!) defined by S(8) (!, B) = (", B′), where B′ is the valuation
" ⇀ Z defined by B′ (<) = B (;) iff< = 8 (;) for some ; in !.

The action of S on Shp-morphisms captures the operations that
we expect to be invariant under: if 8 is a subset inclusion ! ⊆ !′,
then S(8) coerces !-shaped stores into !′-shaped stores as in the
description of Extension, and if 5 is a bijective function ! → !′,
then S(5 ) sends an !-shaped valuation B to an !′-shaped valuation
B ◦ 5 −1 as in the description of Renaming.

2.1.2 Using sheaves to capture Restriction. Recall the example used
to illustrate Restriction: if a proposition holds of the {ℓ1, ℓ2}-shaped
valuation {ℓ1 ↦→ 1}, then it should also hold of {ℓ1 ↦→ 1} considered
as an {ℓ1}-shaped valuation. We say that {ℓ1 ↦→ 1} ∈ S{ℓ1, ℓ2}
restricts to {ℓ1 ↦→ 1} ∈ S{ℓ1} along 8 , where 8 is the subset-inclusion
{ℓ1} ⊆ {ℓ1, ℓ2}. This is an instance of a more general property
satisfied by the functor S:

Proposition 2.4. Let 8 : ! ↩→ " be an injective function be-
tween finite sets ! and " , and B ∈ S(") an "-shaped valuation.
If dom(B) ⊆ im(8), then there exists a unique !-shaped valuation
B′ ∈ S(!), the restriction of B along 8 , such that S(8) (B′) = B .
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Proposition 2.4 can be expressed more abstractly:

Definition 2.5. Let � be a functor Shpop → Set and 8 : ! ↩→ "

a Inj<l -morphism. An element ~ of � (") is restrictable along 8 if
for all Inj<l -objects # and Inj<l -morphisms 9, : : " → # with
9 ◦ 8 = : ◦ 8 it holds that � ( 9) (~) = � (:) (~).

Definition 2.6. A functor � : Shpop → Set has a restriction opera-
tion if for all Inj<l -morphisms 8 : ! ↩→ " and elements ~ of � (")
that are restrictable along 8 , there exists a unique G ∈ � (!), called
the restriction of ~ along 8 , such that ~ = � (8) (G).

With these definitions in hand, one can show Proposition 2.4
is equivalent to S having a restriction operation. Functors with a
restriction operation have a special name: they are called atomic
sheaves on Shp [28, Lemma III.4.2]. The Schanuel topos Sch is the
full subcategory of [Shpop; Set] consisting of atomic sheaves.

In these new terms, Proposition 2.4 says S is an atomic sheaf
on Shp, and so an object of Sch. Just as S captures the concept of
stores as shape-indexed valuations, there are other atomic sheaves
for each of the other concepts used to define Model 1:

Proposition 2.7. The following are objects of Sch:
• The constant functor Prop sending every object of Shp to the set
{>,⊥} and every morphism of Shp to the identity function.
• The functor Loc of locations, defined by Loc(!) = ! on objects

of Shp and Loc(8 : ! ↩→ !′)(; : !) = 8 (;) on Inj<l -morphisms
8 : ! ↩→ !′.
• The functor LocΓ of Γ-substitutions, which maps objects ! to the

set of all substitutions ! → Γ, and action on Inj<l -morphisms
inherited pointwise from Loc.

With these sheaves in hand, one can show Model 1 lives in Sch:

Proposition 2.8. If Γ ` % then the !-indexed family of functions(
ÈΓ ` %É!1 : (Γ → !) → P(! ⇀ Z)

)
!∈Shp

is natural in !, so defines a morphism LocΓ → PropS in Sch, where
PropS is the exponential guaranteed to exist because Sch is carte-
sian closed by virtue of being a category of sheaves. Moreover,
every morphism of this type satisfies Extension, Renaming, and
Restriction.

2.2 Model 2 in nominal sets
We now turn to the other side of the equivalence given by Fact 1.1:
the category of nominal sets Nom, and how it naturally houses
Model 2 of Section 2, in which separation is defined via union of
finite partial functions on N.

Just as Sch is a category capturing the invariants implicitly main-
tained by Model 1, Nom is a category capturing the invariants
implicitly maintained by Model 2. In this case, the invariants are:
• Permutation: propositions should be stable under permuting lo-

cations. If B ∈ ÈΓ ` %É2 (W) for some store B : N
fin−−⇀ Z and

substitution W : Γ → N, and c : N → N is a permutation of
finitely-many natural numbers, then it should hold that B ◦ c ∈
ÈΓ ` %É2 (c−1 ◦ W).
• Finiteness: more subtly, stores and substitutions can only mention

finitely-many locations = ∈ N; this models the fact that physical

stores are necessarily finite, and ensures that one always has the
ability to allocate fresh locations.

To capture Permutation, the objects of Nom are sets equipped
with an action by a group of permutations to be invariant under.
Specifically, let (l be the group of permutations of finitely-many
natural numbers: elements of (l are bijective functions c : N→ N
such that there exists some = ∈ N with c (<) = < for all< ≥ =.
An (l -set is a set - equipped with a right action by (l : a function
(·) : - × (l → - satisfying G · 1 = G and G · (cf) = (G · c) · f for
all G ∈ - and c, f ∈ (l . There is an (l -set S of stores, whose group
action says what it means to permute the locations in a store:3

Definition 2.9. Let S be the (l -set of stores B : N
fin−−⇀Zwith action

B · c = B ◦ c .
A morphism of (l -sets (-, ·- ) → (., ·. ) is an equivariant func-

tion: a function 5 : - → . satisfying 5 (G ·- c) = 5 (G) ·. c for
all G ∈ - and ~ ∈ . and c ∈ (l . This captures invariance under
Permutation: (l -morphisms S→ Prop, where Prop is the (l -set
{>,⊥} with trivial action ? · c = ? , are the permutation-invariant
predicates on stores.

To capture Finiteness, the category Nom is a full subcategory
of the category of (l -sets consisting of those (l -sets (-, ·- ) in
which every G ∈ - only uses finitely many locations.The concept of
“using” a location is made precise by looking at stabilizer subgroups:
if G ·c = G (i.e., c is in the stabilizer of G ) then G can only “use” those
locations fixed by c . An element G uses finitely many locations if
its stabilizer is open for a suitable topology:

Definition 2.10 (Topology on (l ). A subset * of (l is open if
for every c in * there exists a finite subset � of N such that c ∈
Fix� ⊆ * , where Fix� is the subgroup of (l -permutations c that
fix every element of �; i.e., c (0) = 0 for all 0 in �.

Intuitively, a stabilizer subgroup StabG is open if every c stabiliz-
ing G does so for some “finite reason”�: there is some subset� fixed
by c such that any other permutation c ′ fixing � also stabilizes G .
Nominal sets are (l -sets with open stabilizers [35, §6.2]:

Definition 2.11. A nominal set is a (l -set (-, ·) such that for every
G in - the stabilizer subgroup StabG is open. Nom is the category
of nominal sets and equivariant functions.

For example, S is a nominal set: if B is a store with B◦c = B , then c
fixes the finite set dom(B), and moreover every permutation fixing
dom(B) fixes B , so dom(B) ⊆ StabG and Stab B is open. There are
nominal sets capturing each of the other concepts used in Model 2:

Proposition 2.12. The following are objects of Nom:
• The (l -set Prop of propositions
• The (l -set Loc of locations N with action G · c = c−1 (G).
• The (l -set LocΓ of Γ-substitutionsW : Γ → Nwith action defined

by W · c = c−1 ◦ W .
With these in hand, one can show Model 2 lives in Nom:

Proposition 2.13. If Γ ` % then the function ÈΓ ` %É2 is a mor-

phism Loc
Γ → Prop

S in Nom, and every morphism of this type
satisfies Permutation and Finiteness.
3In general, we will overline objects of Nom to distinguish them from their Sch-
counterparts.
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2.3 The equivalence
This section sketches the classic equivalence Sch ' Nom and how
Models 1 and 2 correspond across it. We will not be concerned
so much with the details of this particular equivalence, but rather
with highlighting the key properties of Sch and Nom that make it
possible — Theorem 4.35 relies on identifying analogous properties
in the probabilistic setting.

In Section 2 we sketched the correspondence between Model 1
and Model 2, based on the idea that every store shape ! can be
encoded as a finite set of natural numbers via a pair of functions
(enc!, dec!). This idea also forms the basis for the equivalence
Sch ' Nom. In the language of Section 2.1, every enc! encodes the
object ! of Shp as a subset im(enc!) of N. This encoding extends
to morphisms of Shp: every Shp-morphism " → !, equivalently
an injective function 5 : ! ↩→ " , can be encoded as a permutation
c ∈ (l that sends im(enc!) to im(enc" ). More precisely,

Proposition 2.14 (Homogeneity [36, L1.14]). Let !," be finite
sets and enc! and enc" injective functions ! ↩→ N and " ↩→ N.
For any injective function 8 : ! ↩→ " , there exists c ∈ (l such that
c ◦ enc! = enc" ◦ 8 , making the following square commute:

N N

! "

c

enc!

8

enc"

Furthermore, the relationships between encoded store shapes
im(enc!) are faithfully captured by relationships between sub-
groups of (l :

Proposition 2.15 (Correspondence). For any two store shapes !
and " , it holds that Fix(im(enc!)) ⊆ Fix(im(enc" )) if and only if
im(enc!) ⊇ im(enc" ).

Homogeneity and Correspondence together give the equivalence
Sch ' Nom. For details, see MacLane and Moerdijk [28, Theorem
III.9.2]. With this equivalence in hand, we are finally in a position
to make Fact 1.1 precise. Abbreviating LocΓ as ÈΓÉ and the ex-
ponential PropS as Pred, Proposition 2.8 shows that the Hom-set
Sch(ÈΓÉ, Pred) serves as a semantic domain for Model-1 interpre-
tations of TinySep propositions in context Γ. Analogously, Proposi-
tion 2.13 shows that Nom(ÈΓÉ, Pred) serves as a semantic domain

for Model 2, where ÈΓÉ is LocΓ and Pred the exponential PropS.
The next proposition establishes that these semantic domains cor-
respond across Sch ' Nom:

Proposition 2.16. Across the equivalence Sch ' Nom, the sheaf
S corresponds to the nominal set S, Prop to Prop, Loc to Loc, ÈΓÉ
to ÈΓÉ, Pred to Pred, and Sch(ÈΓÉ, Pred) to Nom(ÈΓÉ, Pred).

It remains to show that Model 1 intepretations ÈΓ ` %É(−)1 cor-
respond to their Model 2 counterparts ÈΓ ` %É2. This is straightfor-
ward when % is True or G ↦→ 8; the interesting case is the separating
conjunction %1 ∗ %2. One could show È%1 ∗ %2É(−)1 corresponds to
È%1 ∗ %2É2 by unwinding definitions and showing, via a careful cal-
culation, that they correspond across the functor Sch→ Nom wit-
nessing the equivalence. But Fact 1.1 is far more general. The idea is
to use the internal language of Sch: as a category of sheaves, any con-
struction in higher-order logic can be interpreted in Sch [28, VI.7.1].

In this internal language, types denote sheaves and functions de-
note natural transformations, and Model 1’s separating conjunction
can be defined as ÈΓ ` %1 ∗ %2É(−)1 = ÈΓ ` %1É(−)1 þ ÈΓ ` %2É(−)1 ,
whereþ is a special Sch-morphism denoting separating conjunction
in the internal language of Sch. The meaning of þ can be described
by conveniently using the higher-order logic of Sch:

(þ) : PredÈΓÉ × PredÈΓÉ → PredÈΓÉ

(51 þ 52) (W : ÈΓÉ)(B : S) =
( ∃ B1 B2 : S. B1 • B2 defined ∧
B1 • B2 v B ∧ 51 W B1 ∧ 52 W B2

) (1)

This definition is made of the following key ingredients:
• A symbol v, which in the internal language looks like an order-

ing relation on stores, and externally denotes a suitable natural
transformation S × S→ Prop.
• A symbol •, which internally looks like a partial function com-

bining stores, and externally denotes a natural transformation
S2⊥ → S, where S2⊥ is a subobject 8 : S2⊥ ↩→ S×S of the sheaf S×S
of pairs of stores carving out the domain on which • is defined.

The ordering v is the natural transformation (v) : S × S→ Prop
defined by (B1 v! B2) = > if and only if B1 is a subvaluation of B2.
The combining operation • is a natural transformation • : S2⊥ → S.
Its domain S2⊥ is a sheaf defined in terms of the coproduct of finite
sets. Each S2⊥ (!) is a set consisting of pairs of !-shaped valuations
that “factor through” a coproduct !1+!2 along some 8 : !1+!2 ↩→ !:

S2⊥ (!) =
{ (S(8 ◦ inl)(B1), S(8 ◦ inr)(B2))
| !1, !2 ∈ Shp, B1 ∈ S(!1), B2 ∈ S(!2), 8 : !1 + !2 ↩→ ! }

The morphism • sends each pair (S(8 ◦ inl) (B1), S(8 ◦ inr) (B2)) of
separated stores to the combined store S(8) [B1, B2], where the val-
uation [B1, B2] of type !1 + !2 → Z is the unique one defined by
[B1, B2] ◦ inl = B1 and [B1, B2] ◦ inr = B2. Each S2⊥ (!) is a subset of
(S× S) (!), and collecting the canonical subset-inclusions into an !-
indexed family gives a monic natural transformation 8 : S2⊥ ↩→ S×S.

In the internal language, • looks like a partial function that is asso-
ciative and commutative and monotone with respect to v, with unit
the natural transformation emp : 1→ S sending every store shape
! to the empty valuation on !. Together, the tuple (v, S2⊥, 8, •, emp)
packages up the ingredients needed to model separation logic in
Sch into a resource monoid internal to Sch:

Definition 2.17. A resource monoid [19] is a poset (', v) with a
least element ⊥ and a monotone partial function (·) : ' × ' ⇀ '

such that (', ·,⊥) forms a partial commutative monoid.4

We can similarly construct a resource monoid in Nom. There is
an equivariant function (v) : S × S→ Prop sending a pair (B1, B2)
of finite partial functions on N to > if and only if B1 ⊆ B2, with least
element emp the empty finite partial function. There is a nominal
set S2⊥ of separated stores: the set

{(B1, B2) | B1, B2 ∈ S, dom(B1) ∩ dom(B2) = ∅}
of pairs of stores with disjoint domain, and pointwise action. Both
the canonical inclusion 8 : S

2
⊥ ↩→ S × S and the function (•) :

S
2
⊥ → S sending a pair (B1, B2) of disjoint stores to their union

4In this paper we are concerned with affine models of separation logic, and so consider
an affine variant of the resource monoids defined in Galmiche et al. [19]. Our definition
is closest in spirit to the affine PDMs sketched there.
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B1 ] B2 are equivariant, hence morphisms in Nom. Finally, • is
monotone in 8 and has unit emp so (v, S2⊥, 8, •, emp) forms a resource
monoid internal to Nom, and reinterpreting Eq. (1) inside Nom

with (v, S2⊥, 8, •, emp) in place of (v, S2⊥, 8, •, emp) yields Model 2’s
separating conjunction. The following proposition, connecting the
two resource monoids, makes Fact 1.1 precise:

Proposition 2.18. The resource monoid (v, S2⊥, 8, •, emp) corre-
sponds to (v, S2⊥, 8, •, emp) across the equivalence Sch ' Nom.

We are at last ready to appreciate the full power of this fact. First,
it shows È%1 ∗ %2É(−)1 corresponds to È%1 ∗ %2É2: both arise from
the same internal-language definition, up to the replacement of
types and function symbols following Propositions 2.16 and 2.18.
Next, since the separating implication −∗ and all intuitionistic con-
nectives can be defined similarly using the internal language, they
must correspond as well; this extends the equivalence of Models
1 and 2 from TinySep to all standard separation logic connectives.
More generally, Fact 1.1 says that any construction in higher-order
logic that only uses the types and functions of Propositions 2.16
and 2.18 corresponds across the equivalence Sch ' Nom.

3 THE DISCRETE CASE
Theorem 4.35 imports quite a bit of measure theory in order to
support continuous probability. To describe the key ideas, we tem-
porarily set the measure theory aside by first presenting in detail a
version of Theorem 4.35 adapted to discrete probability.

The structure of this section is completely analogous to Section 2.
We first present two different probabilistic separation logics: one
where separation is defined via the product of sample spaces, and
a second based on Li et al. [27] where separation is defined via
independent combination. Then, we will show how separation-as-
product naturally lives in a category EMSd of discrete enhanced
measurable sheaves analogous to the Schanuel topos, and how
separation-as-independent-combination naturally lives in a cat-
egory Set�d of discrete absolutely continuous sets. Finally, we show
these two categories equivalent, and that the two notions of separa-
tion correspond across this equivalence, giving an analog of Fact 1.1
suitable for discrete probability.

In Section 2 we considered a tiny separation logic TinySep for
integer-valued stores. Analogously, we consider here a logic for
integer-valued random variables:

%,& ::= - ∼ ` | True | % ∗&. (TinyProbSep)

The proposition - ∼ ` asserts that the logical variable - stands for
an integer-valued random variable with probability mass function
` : Z→ [0, 1]. As in TinySep, a proposition is well-formed in con-
text Γ, written Γ ` % , if Γ contains the variables used by % . We shall
establish the equivalence of two different models for TinyProb-
Sep. In both cases, the basic idea is that a proposition denotes a
predicate on probability spaces and logical variables denote random
variables, just as a proposition in ordinary separation logic denotes
a predicate on stores with logical variables denoting heap locations.
The difference is in how these objects are represented:

Model 1: separation as product. In this model, a probability space
consists of two components: (1) a nonempty countable set Ω called

the sample space, and (2) a probability space P on Ω consisting
of a pair (F , `) with F a f-algebra on Ω and ` : F → [0, 1] a
probability measure. A random variable on Ω is a function Ω → Z.
We will write P(Ω) and RV(Ω) for the set of probability spaces and
random variables on Ω respectively.

The meaning of a proposition depends on the underlying sample
space: Γ ` % denotes a map ÈΓ ` %ÉΩ1 : (Γ → RV(Ω)) → �(P(Ω))
associating each random substitution � : Γ → RV(Ω) to the set
ÈΓ ` %ÉΩ1 (�) of probability spaces on Ω satisfying % .

Under this interpretation, we have P ∈ ÈTrueÉΩ1 (�) for all
probability spaces P on Ω, and (F , `) ∈ È- ∼ aÉΩ1 (�) if and only
if � (- ) is F -measurable and has distribution a ; i.e., for all 8 ∈ Z
it holds that � (- )−1 (8) ∈ F and ` (� (- )−1 (8)) = a (8). Separating
conjunction is defined in terms of products of sample spaces. To
make this precise, we need the following definitions:

Definition 3.1 (Pullback probability space). Let - be a nonempty
countable set, (.,G, a) a countable probability space, and 5 : - �
. a surjective function. The pullback of (G, a) along 5 , written
5 −1 (G, a), is the probability space (F , `) on - defined by F =

{5 −1 (�) | � ∈ G} and ` (5 −1 (�)) = a (�). Note ` is well-defined
because 5 surjective, so 5 −1 injective.

Definition 3.2 (Subspace). Given two probability spaces (F , `)
and (G, a) on Ω, say (F , `) is a subspace of (G, a), written (F , `) v
(G, a), if F ⊆ G and a |F = `.

With these definitions, the separating conjunction %1 ∗ %2 holds
of a probability space P on Ω if and only if there exist probability
spaces P1 on Ω1 and P2 on Ω2 and a surjective function ? : Ω �
Ω1 × Ω2 such that P1 satisfies %1 and P2 satisfies %2 and ?−1 (P1 ⊗
P2) is a subspace of P, where P1 ⊗ P2 is the product probability
space on Ω1 × Ω2 whose measure is the product measure induced
by the measures of P1 on Ω1 and P2 on Ω2 in the usual way.

For example, let Ω be the sample space {0, 1}3 of points (G,~, I) ∈
R3 with G,~, I all either 0 or 1. Let � be the random substitution
of type {-,. } → RV(Ω) where � (- ) is the random variable
(G,~, I) ↦→ G and � (. ) is the random variable (G,~, I) ↦→ ~. Let
(F , `) be the uniform probability space on Ω, assigning each tuple
(G,~, I) probability 1/8. It holds that

(F , `) ∈ È(- ∼ Ber(1/2)) ∗ (. ∼ Ber(1/2))ÉΩ1 (�),
witnessed by setting ? to the projection Ω � {0, 1} × {0, 1} defined
by ? (G,~, I) = (G,~).

Model 2: separation as independent combination. In this model,
one fixes upfront a single measurable space to serve as a “universal
sample space” into which all discrete sample spaces can be embed-
ded. Any standard Borel space will do; we choose the interval [0, 1].
The idea is that, just as every finite store shape ! can be encoded as
a finite subset of N via an injective function enc! : ! ↩→ N, every
nonempty countable sample space Ω can be encoded as a countable
partition of the interval via a random variable decΩ : [0, 1] → Ω
with each dec−1Ω (l) nonnegligible, visualized as:

0 11/3 2/3

l1 l2 l3

[0, 1]
decΩ

Ω

(IntervalEncode)
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This illustration gives one possible encoding of the three-point
space {l1, l2, l3} as the partition {[0, 1/3), [1/3, 2/3], (2/3, 1]},
generated by the random variable decΩ : [0, 1] → {l1, l2, l3}
taking value l1 on [0, 1/3), l2 on [1/3, 2/3], and l3 on (2/3, 1].

With this fixed sample space in hand, the random variables Ω →
Z of Model 1 can be encoded as Lebesgue-measurable functions
[0, 1] → Z, quotiented by almost-everywhere equality. We will
write RV for the set of integer-valued random variables.

In order for our encoding of sample spaces as partitions gener-
ated by random variables to respect almost-everywhere equality of
random variables, we must consider such partitions up to negligi-
bility: for example, the partitions {[0, 1/3), [1/3, 2/3], (2/3, 1]} and
{[0, 1/3], (1/3, 2/3), [2/3, 1]} should be considered equivalent, as
they arise from almost-everywhere-equal random variables. This
idea motivates the following definition.

Definition 3.3. A countable measurable partition of [0, 1] is a count-
able partition {�8 }8∈� with each�8 a Lebesgue-measurable and non-
negligible subset of [0, 1], quotiented by almost-everywhere equal-
ity: two partitions are almost-everywhere equal, written {�8 }8∈� =a.s.
{� 9 } 9∈ � , if for all 8 in � there exists a unique 9 in � such that the
symmetric difference �84� 9 is Lebesgue-negligible.

Just as any !-shaped valuation can be encoded as a finite partial
function on N, any discrete probability space can be encoded as a
countable measurable partition equipped with a measure:

Definition 3.4. A countable measured partition of [0, 1] is a pair
({�8 }8∈� , `) with {�8 }8∈� a countable measurable partition of [0, 1]
and ` : {�8 }8∈� → [0, 1] a function satisfying

∑
8 ` (�8 ) = 1. Two

such partitions are equal if their measurable partitions are equal
and their measures agree. Let P be the set of countable measured
partitions of [0, 1].

Now that we have a way of encoding discrete probability spaces
as countable measured partitions of [0, 1], we can define a model
of TinyProbSep purely in terms of countable measured partitions.
A proposition Γ ` % denotes a map ÈΓ ` %É2 : (Γ → RV) →
�(P) assigning each random substitution � : Γ → RV the set
of countable measured partitions satisfying % . The interpretations
of True and - ∼ ` are as in Model 1: P ∈ ÈTrueÉ2 (�) for any
countable measured partition P, and ({�8 }8∈� , `) ∈ È- ∼ aÉ2 (�)
if and only if for all : ∈ Z there exists 8 ∈ � with � (- )−1 (:)4�8

negligible and ` (� (- )−1 (:)) = a (:). Separating conjunction is
defined via independent combination, following Li et al. [27]:

Definition 3.5 (Discrete independent combination). A countable
measured partition (A, `) is an independent combination of (A1, `1)
and (A2, `2) if (1) the partition A is generated by the intersec-
tions �1 ∩ �2 for �1 in A1 and �2 in A2 and (2) ` (�1 ∩ �2) =
`1 (�1)`2 (�2) for all �1 in A1 and �2 in A2. Independent combi-
nations are unique if they exist [27, Lemma 2.3], defining a partial
function • with (A1, `1) • (A2, `2) = (A, `) if and only if (A, `)
is the independent combination of (A1, `1) and (A2, `2).

Definition 3.6 (Ordering on partitions). For two countable mea-
sured partitions (A, `) and (B, a), let v be the ordering relation
defined by (A, `) v (B, a) if and only if the partition A is coarser
than B and a restricts to `.

These definitions give an interpretation of separating conjunc-
tion: a countable measured partition (A, `) on [0, 1] satisfies %1 ∗%2
with random substitution� , written (A, `) ∈ È%1 ∗ %2É2 (�), if and
only if there exist (A1, `1) and (A2, `2) independently combinable
with (A1, `1) • (A2, `2) v (A, `) such that (A1, `1) is in È%1É2 (�)
and (A2, `2) is in È%2É2 (�).

Relating the two models. We will show that Model 1 and Model 2
are equivalent. As shown in IntervalEncode, every nonempty
countable sample space Ω can be encoded as a countable measured
partition on [0, 1] via a suitable random variable decΩ : [0, 1] →
Ω. Choosing a decΩ for every Ω allows translating Model 1 into
Model 2: a Model 1 random variable - ∈ RV(Ω) corresponds to a
Model 2 random variable- ◦decΩ ∈ RV, and probability spaces can
be translated similarly. To extend this into an equivalence analogous
to Fact 1.1, we repeat the recipe of Section 2: we will place Models 1
and 2 into suitable categories, show the categories equivalent, and
show that the models correspond across this equivalence.

3.1 Discrete enhanced measurable sheaves
In Section 2.1 we saw how the Schanuel topos Sch captured the
invariants maintained by Model 1 of TinySep. In this section we
describe analogously how a category of discrete enhanced measur-
able sheaves, written EMSd, captures the invariants maintained by
Model 1 of TinyProbSep. Whereas the invariants of Section 2.1
were about extensions and restrictions of the store shape !, the
invariants in our probabilistic setting are about extensions and re-
strictions of the sample space Ω, as observed by Simpson [44, 45]:

• Extension: propositions that hold in sample space Ω should con-
tinue to hold when Ω is extended to a larger sample space Ω′

via a surjective function ? : Ω′ � Ω. More precisely, if (F , `) ∈
ÈΓ ` %ÉΩ1 (�) for some probability space (F , `) on Ω and ran-
dom substitution � : Γ → RV(Ω), then it should hold that
?−1 (F , `) ∈ ÈΓ ` %ÉΩ

′
1 (� · ?), where� · ? is the random substi-

tution (� · ?) (- ) = � (- ) ◦ ? .5
• Restriction: the truth of a proposition should not depend on any

unused samples. For example, let Ω be an arbitrary sample space.
Suppose � : Γ → RV(Ω) sends every - in Γ to the constant
random variable 0, so � (- ) (l) = 0 for all l , and let (F , `) be
the minimal probability space on Ω where F is the minimal
f-algebra {∅,Ω} and ` the minimal probability measure with
` (∅) = 0 and ` (Ω) = 1. Both � and (F , `) don’t use any of the
samples in Ω: every random variable � (- ) is a deterministic
value, and ` only assigns probabilities to the deterministic events
∅ and Ω. Restriction says that if a proposition % holds in this
situation, then it should hold of the one-point probability space
on the one-point set with substitution sending every - in Γ to
the constant random variable 0.

To capture these invariants, we replay the construction of the
Schanuel topos: whereas the Schanuel topos is a category of atomic
sheaves on the category Shp of store shapes, EMSd is a category of
atomic sheaves on a category of discrete sample spaces.

5Note that this rolls the two invariants Extension and Renaming of Section 2.1 into
one: it captures invariance under permutations of the underlying sample space in the
case where ? is a bijection.

https://johnm.li/lilac.pdf#page=11
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First, we fix a base category capturing Extension: the category
Surj≤l of nonempty countable sets and surjective functions. The
idea is that an object Ω of Surj≤l is a countable sample space, and
a morphism ? : Ω′ � Ω extends a sample space Ω to a larger
space Ω′ in which every sample l in Ω is expanded to a set of
samples ?−1 (l) ⊆ Ω′; surjectivity of ? ensures that every ?−1 (l)
is nonempty, so ? never deletes any samples in Ω.

Functors Surjop≤l → Set model sample-space-dependent con-
cepts. In particular, there is a functor modelling probability spaces:
For a Surj≤l -morphism ? : Ω′ � Ω, setting P(?) to the function
P(Ω) → P(Ω′) that sends a probability space P on Ω to its pullback
?−1P makes P a functor Surjop≤l → Set.

Next, we capture Restriction by cutting the functor category
[Surjop≤l ; Set] down to a full subcategory of atomic sheaves. The
notion of atomic sheaf is given by the notion of atomic topology,
which exists for a given category if and only if the following Ore
property holds [28, p.115]:

Definition 3.7. A category � has the right Ore property if for all

-
5
−→ /

6
←− . there exists -

ℎ←−, :−→ . such that 5 ℎ = 6: .

That Surj≤l satisfies this condition can be straightforwardly
verified: any cospan can be completed to a commutative square by
taking a pullback in Set. Thus the notion of atomic sheaf makes
sense for Surj≤l , a functor is an atomic sheaf if and only if it has a
restriction operation in the sense of Definition 2.6, and the following
definition makes sense:

Definition 3.8. Let EMSd be the full subcategory of the category
[Surjop≤l ; Set] consisting of those functors that are atomic sheaves.

Just as P(Ω) models the concept of probability spaces on Ω,
there are other atomic sheaves corresponding to each of the other
concepts used to define Model 1:

Proposition 3.9. The following are objects of EMSd:
• The constant functor Prop of propositions sending every object

of Surj≤l to the set {>,⊥} and every morphism of Surj≤l to
the identity function.
• The functor RV of random variables, with action on morphisms

defined by RV(? : Ω′ � Ω) (- : RV(Ω)) = (- ◦ ? : RV(Ω′)).
• The functor RVΓ of Γ-substitutions with RVΓ (Ω) = Γ → RV(Ω)

and action on morphisms defined by lifting RV pointwise.

With these sheaves in hand, one can show Model 1 lives in EMSd:

Proposition 3.10. If Γ ` % then the Ω-indexed family of functions(
ÈΓ ` %ÉΩ1 : (Γ → RV(Ω)) → P(P(Ω))

)
Ω∈Surj≤l

is natural in Ω, so defines a morphism RVΓ → PropP in EMSd, and
every morphism of this type satisfies Extension and Restriction.

3.2 Discrete absolutely continuous sets
We now turn to Model 2 of TinyProbSep described in Section 3.
Just as Model 2 of TinySep naturally lives in the category Nom of
nominal sets, Model 2 of TinyProbSep naturally lives in a category
Set�d of discrete absolutely continuous sets. Nom captures two in-
variants held by Model 2 of TinySep: Permutation and Finiteness.
Model 2 of TinyProbSep maintains analogous invariants:

• Permutation: propositions should be stable under permuting the
sample space [0, 1]. More precisely, if (A, `) ∈ ÈΓ ` %É2 (�) for
some countable measured partition (A, `) and random substi-
tution � : Γ → RV, and if c : [0, 1] → [0, 1] is a measurable
bijection, then it should hold that (A, `) · c ∈ ÈΓ ` %É2 (� · c),
where (A, `) · c and � · c are the results of the permutation c

acting on (A, `) and � .
• Sparsity: more subtly, the countable measured partitions (A, `)

represent countable probability spaces only. This ensures (A, `)
always leaves “enough room” in [0, 1] for “fresh randomness”: for
any other discrete probability space, there exists an encoding of
it as a countable measured partition (B, a) such that the discrete
independent combination (A, `) • (B, a) is defined.

To capture Permutation, the objects of Set�d are sets equipped with
an action by a group of measurable automorphisms. Specifically,
let Aut[0, 1] be the group of measurable maps c : [0, 1] → [0, 1]
that are bijective mod almost-everywhere equality. The category
of Aut[0, 1]-sets is the category whose objects are sets - equipped
with a right action by Aut[0, 1] and whose morphisms are equi-
variant functions. Just as there is a (l -set S of stores, there is a
Aut[0, 1]-set P of countable measured partitions on [0, 1]:

Definition 3.11. Let P be the set of countable measured partitions
on [0, 1] with action ({�8 }8∈� , `) · c = ({c−1 (�8 )}8∈� , ` ◦ c).

Sparsity is captured by topologizing Aut[0, 1] via countable mea-
surable partitions, so a stabilizer StabG is open if every c stabilizing
G does so for a “countable reason”: there is a partition A fixed by
c such that any other permutation fixing A also stabilizes G .

Definition 3.12 (Topology on Aut[0, 1]). A subset * of Aut[0, 1]
is open if for every c ∈ * , there exists a countable measurable
partition A of [0, 1] such that c ∈ FixA ⊆ * , where FixA is the
subgroup of Aut[0, 1] consisting of those permutations c that fix
every element of A; i.e., c (�) =a.e. � for all � ∈ A.

Definition 3.13. A discrete absolutely continuous set is a Aut[0, 1]-
set whose elements have open stabilizers. Let Set�d be the category
of discrete absolutely continuous sets and equivariant functions.

In addition to P, there are objects of Set�d corresponding to each
of the other concepts used to define Model 2 of TinyProbSep:

Proposition 3.14. The following are objects of Set�d :

• The Aut[0, 1]-set Prop = {>,⊥} with the trivial action.
• TheAut[0, 1]-set RV of random variables with action- ·c = - ◦c .
• The Aut[0, 1]-set RVΓ of random Γ-substitutions Γ → RV with

action defined by lifting RV pointwise.

With these in hand, one can show Model 2 lives in Set�d :

Proposition 3.15. If Γ ` % then the function ÈΓ ` %É2 is a mor-
phism RV

Γ → PropP in Set�d , and every morphism of this type
satisfies Permutation and Finiteness.

3.3 The equivalence of categories
Having placed Models 1 and 2 of TinyProbSep described in Sec-
tion 3 into the categories EMSd and Set�d respectively, we describe
in this section how EMSd are Set�d equivalent, giving an analog
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of Sch ' Nom for discrete probability. The key step is to establish
probabilistic analogs of Homogeneity and Correspondence:

Lemma 3.16 (Homogeneity). Let Ω,Ω′ be nonempty countable
sets and let decΩ and decΩ′ be measurable functions [0, 1] → Ω
and [0, 1] → Ω′ with dec−1Ω (l) and dec−1Ω′ (l

′) nonnegligible for
all l ∈ Ω and l ′ ∈ Ω′. For any surjective function 5 : Ω′ � Ω,
there exists c ∈ Aut[0, 1] making the following square commute:

[0, 1] [0, 1]

Ω′ Ω

decΩ′

c

decΩ

?

This lemma is particularly important, so we give some intuition
about its proof. Consider the following visualization of a surjection
? from Ω′ = {l ′1, l

′
2, l
′
3} onto Ω = {l1, l2} and two decoding

functions decΩ′ and decΩ visualized as in IntervalEncode:
1/3 2/3

l ′1 l ′2 l ′3Ω′

1/2

l1 l2 Ω

?

Lemma 3.16 asserts that there exists c with ? ◦decΩ′ = decΩ ◦c .
Indeed we can explicitly construct such a c for this example: let
c be an automorphism that sends the interval [0, 1/3] to [0, 1/4],
the interval [2/3, 1] to [1/4, 1/2], and finally [1/3, 2/3] to [1/2, 1].
This construction generalizes nicely to any situation where the
preimages dec−1Ω′ (l

′
8
) and dec−1Ω (l8 ) are all intervals. In the fully

general case, these preimages can be arbitrary Lebesgue-measurable
sets, but every such set is measurably isomorphic to an interval [17,
344J], so the general case reduces to the one sketched above.

Lemma 3.17 (Correspondence). For any countable measurable par-
tition {�8 }8∈� of [0, 1], let Fix{�8 }8∈� be the subgroup of Aut[0, 1]
consisting of those automorphisms c ∈ Aut[0, 1] fixing {�8 }8∈� , so
that c (�8 )4�8 negligible for all 8 ∈ � . For any two partitionsA and
B, it holds that FixA ⊆ FixB iff A is finer than B.

Proof. IfA is finer than B then certainly every c fixingA fixes
B. For the converse, suppose for contradiction that A is not finer
than B, so there is some � ∈ A and �1, �2 ∈ B with � ∩ �1 and
� ∩ �2 both nonnegligible. Pick an arbitrary c swapping � ∩ �1
with�∩�2; c fixesA but not B, contradicting FixA ⊆ FixB. �

The equivalence follows from these lemmas:

Theorem 3.18. EMSd ' Set�d .

For details, see the appendix: Theorem 3.18 follows from a spe-
cialization of Theorem C.33 using Lemmas 3.16 and 3.17 to satisfy
the preconditions. This equivalence of categories extends to an
equivalence of Models 1 and 2 of TinyProbSep. The argument is as
in Section 2.3: we package Models 1 and 2 into resource monoids
in EMSd and Set�d respectively, and then show they correspond
across the equivalence EMSd ' Set�d .

To construct the resource monoid packaging Model 1 into EMSd,
we make use of a general recipe for constructing models of separa-
tion logic via the Day convolution [6, 14, 33]. The Day convolution

is a general construction lifting a monoidal structure on a base
category� to a monoidal structure on [�op; Set], see Day [13]. The
resource monoid (v, S2⊥, 8, •) in Sch described in Section 2.3 can be
constructed using the Day convolution: the base category Shp has a
monoidal product given by coproduct of finite sets, and Day convo-
lution lifts this to a monoidal product ⊗ on [Shpop; Set]; applying
the Day convolution to the sheaf S gives the functor S ⊗ S, which
one can show is naturally isomorphic to S2⊥; the operations v, 8, •
can then be defined straightforwardly.

To apply this recipe for discrete probability, we replace Shp with
Surj≤l and coproduct + of finite sets with product × of sample
spaces. This makes (Surj≤l ,×, 1) a monoidal category, where the
unit 1 is the one-point sample space. Via the Day convolution, ×
lifts to a monoidal product ⊗ on [Surjop≤l ; Set]. Just as S ⊗ S is
isomorphic to the functor S2⊥ modelling separated stores, the Day
convolution P ⊗ P is isomorphic to a sheaf of probability spaces
that can be rendered independent with a suitable joint measure:

Proposition 3.19. The functor P ⊗ P is isomorphic to an atomic
sheaf P2⊥ sending each Ω ∈ Surj≤l to the set

{ ((c1 ◦ ?)−1 (P1), (c2 ◦ ?)−1 (P2))
| Ω1,Ω2 ∈ Surj≤l ,P1 ∈ P(Ω1),P2 ∈ P(Ω2), ? : Ω � Ω1 × Ω2 }

of pairs of probability spaces on Ω that “factor through” a product
Ω1 × Ω2 along some projection ? : Ω � Ω1 × Ω2.

The resource monoid operations can be defined as follows. First,
the subspace ordering v forms a natural transformation (v) : P ×
P → Prop. Next, there is natural transformation (•) : P2⊥ → P
sending a pair ((c1◦?)−1 (P1), (c2◦?)−1 (P2)) of probability spaces
that factor through some ? : Ω � Ω1 ×Ω2 to ?−1 (P1 ⊗P2), where
P1 ⊗ P2 is the usual product probability space on Ω1 × Ω2. Each
P2⊥ (Ω) is a subset of (P×P) (Ω), and collecting the canonical subset-
inclusions into an Ω-indexed family forms a natural transformation
8 : P2⊥ ↩→ P × P. Finally, • is associative and commutative and
monotonewith respect tov, and has unit the natural transformation
emp : 1 → P sending a sample space Ω to the trivial probability
space (Ω, {∅,Ω}, `) with ` (Ω) = 1.

Proposition 3.20. (v, P2⊥, 8, •, emp) is a resource monoid in EMSd.

Model 2 can be packaged into a resource monoid in Set�d analo-

gously. Let P2⊥ be the discrete absolutely continuous set {(P1,P2) |
P1,P2 ∈ P,P1 • P2 defined} of pairs of independently combinable
countable measured partitions of [0, 1] with pointwise group action.
This is a subset of P × P; both the canonical inclusion map 8 and
the function • : P2⊥ → P sending a pair (P1,P2) of independently
combinable probability spaces on [0, 1] to their independent combi-
nation P1 • P2 are equivariant. Finally, the ordering relation v on
probability spaces on [0, 1] is equivariant, so defines a morphism
(v) : P × P→ Prop, and this ordering relation has as least element
emp the measured partition containing a single component with
probability 1.

The following theorem establishes that (v, P2⊥, 8, •) is a resource
monoid together with an analog of Fact 1.1 for discrete probability:

Theorem 3.21. The resource monoid (v, P2⊥, 8, •, emp) corresponds
to (v, P2⊥, 8, •, emp) across the equivalence EMSd ' Set�d .

https://www1.essex.ac.uk/maths/people/fremlin/chap34.pdf#page=38
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4 THE CONTINUOUS CASE
In this section we generalize Section 3 from discrete to continuous
probability: EMSd becomes a category EMS of enhanced measurable
sheaves, and Set�d becomes a category Set� of absolutely continuous
sets. Due to the amount of measure theory required, we stick to
stating the key definitions and lemmas; the full details can be found
in the appendix.

4.1 Enhanced measurable sheaves
The first step in generalizing EMSd to EMS is to replace the base
category Surj≤l of discrete sample spaces with a base category of
continuous sample spaces.

The starting point for this generalization is the following obser-
vation. Let Prob+≤l be the category whose objects are countable
probability spaces (Ω, ` : Ω → [0, 1]) with ` (l) > 0 for all l ∈ Ω,
and whose morphisms (Ω, `) → (Ω′, `′) are measure-preserving
maps 5 : Ω → Ω′; i.e.,

∑
5 (l )=l ′ ` (l) = `′ (l ′) for all l ′ ∈ Ω′.

There is a functor Ud : Prob+≤l → Surj≤l that forgets the mea-
sures `: measure-preserving maps 5 between probability spaces
with strictly positive measure are surjective because 5 −1 (~) must
be nonempty for all ~ ∈ cod(5 ). The category Surj≤l is the im-
age of Prob+≤l under Ud: every nonempty countable set Ω can
be equipped with a strictly positive probability measure, and for
every surjective function ? : Ω′ � Ω, there exist strictly positive
probability measures `′ on Ω′ and ` on Ω making ? a measure-
preserving map (Ω′, `′) → (Ω, `). Thus Surj≤l can be thought
of as a category of probability spaces where one has forgotten all
measures.

To generalize this situation from discrete to continuous prob-
ability, we replace the category Prob+≤l of countable probability
spaces with a category of continuous probability spaces:

Definition 4.1 (The category Probstd). Let Probstd be the category
of standard probability spaces [40] and measure-preserving maps
quotiented by almost-everywhere equality.

Then, we replace the functor Ud : Prob+≤l → Surj≤l with a
functor U that forgets continuous probability measures. The idea
behind this forgetting process is as follows. Given a probability
space (-, F , `), one can forget everything about the measure `

except for which subsets are negligible, leaving behind an enhanced
measurable space (-, F ,N), where N is the f-ideal of `-negligible
sets [34, Definition 4.4]. Given a measure-preserving map [5 ] :
(-, F , `) → (.,G, a) quotiented by almost-everywhere equality
where ` has negligibles N and a has negligiblesM, one can forget
everything about [5 ] measure-preserving except for the fact that
a (�) = 0 iff ` (5 −1 (�)) = 0, leaving behind an equivalence class
[5 ] with 5 −1 (�) ∈ N iff � ∈ M for all � ∈ G. This motivates the
following definitions.

Definition 4.2 (The category EMSstd). A standard enhanced mea-
surable space is tuple (-, F ,N) for which there exists a measure
` making (-, F , `) a standard probability space with negligibles
N . Given enhanced measurable spaces (-, F ,N) and (.,G,M),
a measurable map 5 : (-, F ) → (.,G) is negligible-preserving
and reflecting if 5 −1 (�) ∈ N iff � ∈ M for all � ∈ G; two such
maps 5 , 5 ′ are almost-everywhere equal if 5 −1 (�)45 ′−1 (� ′) ∈ N
for all �,� ′ ∈ G with �4� ′ ∈ M. Let EMSstd be the category of

standard enhanced measurable spaces and negligible-preserving-
and-reflecting maps quotiented by almost-everywhere equality.

Proposition 4.3. Let U : Probstd → EMSstd be the functor that
sends probability spaces (-, F , `) with negligibles N to enhanced
measurable spaces (-, F ,N). This functor is surjective on objects,
and any morphism of standard enhanced measurable spaces arises
from a measure-preserving map equipping those spaces with stan-
dard probability measures.

Then, just as EMSd is the category of atomic sheaves on Surj≤l ,
EMS is the category of atomic sheaves on EMSstd:

Proposition 4.4. EMSstd has the right Ore property.

Definition 4.5. Let EMS be the full subcategory of [EMSopstd; Set]
consisting of atomic sheaves. Objects of EMSwill be called enhanced
measurable sheaves.

Inside EMS, there are continuous analogs of the discrete en-
hanced measurable sheaves RV of random variables and P of dis-
crete probability spaces. The continuous analog of RV models �-
valued random variables for � Polish, following Simpson [44, 45]:

Definition 4.6. For any measurable space (�,G) arising from a
Polish space, the sheaf of random variables is:

RV� (Ω, F ,N) = {measurable maps (Ω, F ) → (�,G)} /=N-a.e.

RV� (? : Ω′ → Ω) ( [- ] : RV� (Ω)) : RV� (Ω′) = [- ◦ ?]
For proof that RV� is indeed a sheaf, see the appendix. Next, to

generalize P from discrete to continuous probability, wemake use of
the following observation: every discrete probability space (Ω, F , `)
arises via pullback from a surjection - : Ω � � in which the set
� is equipped with a probability mass function a : � → [0, 1],
by setting F := {- −1 (0) | 0 ∈ �} and ` (- −1 (0)) = a (0). Thus,
discrete probability spaces (Ω, F , `) can be represented by Surj≤l
morphisms Ω → Ud (�, `) for (�, `) ∈ Prob+≤l , where Ud is the
functor Surj≤l → Prob+≤l that forgets measures. This motivates
the following generalization to the continuous setting.

Definition 4.7. The sheaf of probability spaces is

P := colim� : Core(Probstd )ょ(U�),
whereょis the Yoneda embedding,Core(Probstd) is the subcategory
of Probstd-isomorphisms, and the colimit is taken in presheaves.
(See the appendix for proof that P is indeed a sheaf.) Concretely, the
presheafP sends (Ω, F ,N) : EMSstd to the set of pairs ((�,G, `), - )
where (�,G, `) : Probstd and - is a EMSstd-map from (Ω, F ,N)
to U(�,G, `), quotiented by ((�,G, `), - ) ∼ ((�′,G′, `′), - ′) iff
there is a Probstd-iso 8 : (�,G, `) → (�′,G′, `′) with - ′ = * (8)- .
The action on morphisms is given by precomposition.

Using RV and P, we generalize the resource monoid of Theo-
rem 3.21 to a resource monoid of continuous probability spaces.
The monoidal category (Surj≤l ,×, 1) of discrete sample spaces be-
comes a monoidal category (EMSstd, ⊗, 1) of continuous sample
spaces, with monoidal product ⊗ inherited from the usual tensor
product ⊗Probstd of standard probability spaces:

Definition 4.8. Given two standard enhanced measurable spaces
-,. , their tensor product -⊗. is defined to be U(- ′ ⊗Probstd .

′),
where - ′ and . ′ are arbitrary standard probability spaces with
U(- ′) = - and U(. ′) = . .
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This is well-defined — the choice of - ′, . ′ does not matter — and
extends to a bifunctor onEMSstd making (EMSstd, ⊗, 1) a symmetric
monoidal category with unit the one-point space 1. For details, see
the appendix. Lifting ⊗ to [EMSopstd; Set] via the Day convolution
yields a resource monoid in EMS:

Lemma 4.9. The Day convolution P ⊗ P is a sheaf, and there is a
monic map of sheaves 8 : P ⊗ P ↩→ P × P.

Lemma 4.10. There is a map of sheaves v: P × P→ Prop, where
Prop is the constant sheaf at {>,⊥}, and a map of sheaves emp :
1→ P, making (P, emp) a poset in EMS with least element emp.

Lemma 4.11. There is a map of sheaves • : P ⊗ P→ P, monotone
with respect to v, such that (P, •, emp) is a partial commutative
monoid in EMS.

Theorem 4.12. (v, P2⊥, 8, •, emp) is a resource monoid in EMS.

For details, see the appendix. While the colimit presentation
of P makes it easier to check for sheafhood and to construct the
above resource monoid, it is difficult to work with in the concrete
calculations to follow. To address this, we show P equivalent to a
sheaf of continuous probability spaces that arise via pullback along
EMSstd-maps. To do this, we must take care to define pullback in a
way that respects the negligible ideals contained in EMSstd-objects.

Definition 4.13. For (-, F ,N) ∈ EMSstd and (.,G, `) ∈ Probstd
and 5 : (-, F ,N) → U(.,G, `), the enhanced pullback of (.,G, `)
along 5 , written 5 ∗ (G, `), is the pair (5 ∗G, 5 ∗`) defined by

5 ∗G = {5 −1 (�)4# | � ∈ G, # ′ ∈ N}
5 ∗` (5 −1 (�)4# ) = ` (�) for all � ∈ G, # ∈ N

Enhanced pullback makes (-, 5 ∗G, 5 ∗`) a probability space with
negligibles N and 5 a measure-preserving map (-, 5 ∗G, 5 ∗`) →
(.,G, `).

Definition 4.14. A probability space on (-, F ,N) ∈ EMSstd is a
pair (G, `) with N ⊆ G ⊆ F and ` a probability measure with
negligibles N . Call such a pair standardizable if (-,G, `) arises via
enhanced pullback along a map 5 : (-, F ,N) → U(.,G, `) for
some (.,G, `) ∈ Probstd.

With these definitions in hand, the colimit P is equivalent to
a sheaf of standardizable probability spaces, with action on mor-
phisms given by enhanced pullback:

Lemma 4.15. P is equivalent to the following sheaf:

P̂(Ω) = {(G, `) | (G, `) standardizable on Ω}
P̂(5 : Ω′ → Ω) (G, `) = 5 ∗ (G, `)

Moreover, the Day convolution P ⊗ P corresponds to a sheaf of
independently combinable probability spaces:

Lemma 4.16. P ⊗ P is equivalent to the following sheaf P2⊥:

P2⊥ (Ω) =
{
((G, `), (H , a))

����� (G, `) and (H , a) standardizable
and independently combinable

}
P2⊥ (5 : Ω′ → Ω) ((G, `), (H , a)) = (5 ∗ (G, `), 5 ∗ (H , a))

Via these equivalences, the resource monoid in Theorem 4.12
parallels its discrete analog (Proposition 3.20). Across P � P̂, the
ordering v corresponds to the generalization of Definition 3.6 from
countable measured partitions to standardizable probability spaces.
Across P ⊗ P � P2⊥, the monic map 8 corresponds to the canonical
inclusion P2⊥ ↩→ P × P, and the combining operation • corresponds
to the map P2⊥ → P that sends independently-combinable pairs of
standardizable probability spaces to their independent combination.
For details, see the appendix.

4.2 Absolutely continuous sets
Finding a continuous analog to Set�d boils down to showing con-
tinuous analogs of Lemmas 3.16 and 3.17. In the discrete setting,
these lemmas hold because every discrete probability space can be
encoded as a measured partition that leaves enough room in the
sample space [0, 1] for fresh randomness. To create a continuous
analog, we fix an enormous sample space following Li et al. [27]:

Definition 4.17. The Hilbert cube Il is the standard enhanced
measurable space ( [0, 1]l , F ,N) of infinite sequences in the inter-
val [0, 1]. The f-algebra F and negligiblesN are those of the usual
Lebesgue measure on [0, 1]l .

Then, to ensure that there is always enough room left over in Il

for fresh randomness, we encode all probability spaces using only
finitely many dimensions at a time:

Definition 4.18. A standardizable probability space (G, `) on Il

has finite footprint if it arises by enhanced pullback along a map
Il → - that factors through proj1..= for some =, where proj1..= is
the canonical projection Il → [0, 1]= .

Analogously, the group Aut[0, 1] of Set�d becomes a group of
finite-dimensional permutations of the Hilbert cube:

Definition 4.19. A EMSstd-automorphism c : Il → Il has finite
width if it is of the form c ′ × 1Il for some EMSstd-automorphism
c ′ : [0, 1]= → [0, 1]= . Let G� be the subgroup of AutEMSstd I

l

consisting only of those automorphisms with finite width.

Then, the topology on Aut[0, 1] generated by countable measur-
able partitions becomes a topology on G� generated by standard-
izable sub-f-algebras with finite footprint:

Definition 4.20 (Topology on G�). A subgroup* of G� is open
if for every c in * there exists (F , `) with finite footprint such
that c ∈ FixF ⊆ * , where FixF is the subgroup of those c in G�

with c (� ) =a.e. � for all � ∈ F .

Definition 4.21. Set� is the category of G�-sets with open sta-
bilizers and equivariant functions between them; objects of Set�
will be called absolutely continuous sets.

There are absolutely continuous sets analogous to the sheaves
RV� of random variables and P of standardizable probability spaces:

Definition 4.22. For� a Polish space, a random variable- : Il →
� has finite footprint if it factors through proj1..= for some =. Let
RV� be the set of random variables with finite footprint. This forms
an absolutely continuous set, with action - · c = - ◦ c .
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Definition 4.23. Let P be the set of standardizable probability
spaces on Il with finite footprint. This forms an absolutely contin-
uous set, with action (F , `) · c = c∗ (F , `).

These yield a resource monoid in Set� .

Theorem 4.24. (v, P2⊥, 8, •, emp) is a Set� resource monoid, where

• v: P × P → Prop is the map that sends ((G, `), (H , a)) to > iff
G ⊆ H and a |G = `, where Prop is the two-element set with
trivial action.
• P

2
⊥ is the set of pairs ((G, `), (H , a)) ∈ P × P for which (G, `)

and (H , a) are independently combinable.
• 8 is the inclusion P

2
⊥ ↩→ P × P.

• • : P2⊥ → P is the map that sends independently-combinable
pairs to their independent combination.
• emp : 1→ P is the constant map at the probability space 5 ∗1 on
Il arising from enhanced pullback along the unique EMSstd-map
Il → U(1) into the one-point probability space 1.

4.3 The equivalence
By choosing Il as underlying sample space and topologizingAut Il
to permit only objects that use finitely-many dimensions of Il at
a time, we obtain continuous analogs of Homogeneity and Corre-
spondence. This relies crucially on both the finiteness of footprints
and the inclusion of negligible ideals in the base category EMSstd.
Negligible ideals allow passing to measure algebra [17, 321A]:

Definition 4.25. A measure algebra is a tuple (A, `) consisting of
a complete Boolean algebra A and a function ` : A → [0, 1] such
that (1) ` (�) > 0 for � ≠ ⊥ and (2) ` is countably additive in the
sense that ` (∨8 �8 ) =

∑
8 ` (�8 ) for all countable families {�8 }8∈�

with �8 ∧� 9 = ⊥ for all 8 ≠ 9 . A measure algebra homomorphism
from (A, `) to (B, a) is a complete Boolean algebra homomorphism
5 : A → B, measure-preserving in the sense that a (5 (�)) = ` (�)
for all � ∈ A.

Every (-, F , `) in Probstd yields a measure algebra (F /`, `),
where F/` is the complete Boolean algebra of events � ∈ F mod
� ∼ � ′ iff ` (�4� ′) = 0, and ` ( [� ]) = ` (� ) [17, 321H]. Every
measure-preserving map 5 from (-, F , `) to (.,G, a) defines a
homomorphism 5 ∗ from (G/a, a) to (F /`, `) sending [�] ∈ G/a
to [5 −1 (�)] ∈ F /` [17, 324M]. This gives a duality:

Definition 4.26. A standard probability algebra is a measure alge-
bra (A, `) arising from a standard probability space as described
above. Let ProbAlgstd be the category of standard probability alge-
bras and measure algebra homomorphisms between them.

Lemma 4.27. Probstd ' ProbAlgopstd.

A similar duality holds also for EMSstd:

Definition 4.28. A standard measurable algebra is a complete
Boolean algebraA arising from a standard probability space; i.e.A is
isomorphic to a Boolean algebra F/` for some (-, F , `) ∈ Probstd.
Let MbleAlgstd be the category of standard measurable algebras
and injective complete boolean algebra homomorphisms.

Lemma 4.29. EMSstd ' MbleAlgopstd.

Lemmas 4.27 and 4.29 allow importing the extensive technical de-
velopment of measure algebras from Fremlin [17]. In particular, the
algebraic perspective reveals that the finite-footprint property from
Section 4.2 is a means of producing relatively-atomless subalgebras:

Definition 4.30 (Fremlin [17, 331A]). LetA be a complete Boolean
algebra and B ⊆ A a subalgebra. An element 0 ∈ A is a B-relative
atom ofA if the principal ideal generated by 0 inA is {0∩1 | 1 ∈ B}.
The algebra A is B-relatively atomless if it has no B-relative atoms.

Theorem 4.31. Let A be the measurable algebra of Il . For any
(G, `) with finite footprint, A is G/`-relatively atomless.

Relative-atomlessness is key to obtaining continuous analogs of
Homogeneity and Correspondence, which hold specifically for the
case where subalgebras are relatively atomless:

Lemma 4.32 (Homogeneity). ForA a standard measurable algebra
and subalgebras B,ℭ ⊆ A that render it relatively-atomless, and a
MbleAlgstd-morphism 5 : B ↩→ ℭ, there exists a complete Boolean
algebra automorphism c : A → A with c (1) = 5 (1) for all 1 ∈ B.

Lemma 4.33 (Correspondence). Let A be a standard measurable
algebra. For any subalgebra ℭ ⊆ A, let Fixℭ be the group of A-
automorphisms fixing every 2 in ℭ. If A is ℭ-relatively atomless
then Fixℭ ⊆ FixD iffD ⊆ ℭ.

These yield a continuous analog of Theorem 3.18:

Theorem 4.34. EMS ' Set� .

Finally, a careful calculation across this equivalence shows that
the resource monoids in Theorems 4.12 and 4.24 indeed correspond,
yielding an analog of Fact 1.1 for continuous probability:

Theorem 4.35. Across EMS ' Set� , the sheaf P corresponds to
P, the sheaf RV� corresponds to RV� , and the resource monoid
(v, P⊗P, 8, •, emp) in EMS corresponds to (v, P2⊥, 8, •, emp) in Set� .

5 DISCUSSION & RELATEDWORK

Atomic sheaves for probability. Tao [49] defines probabilistic
notions as those invariant under extension of the sample space.
Along these lines, Simpson [45] constructs a topos of atomic sheaves
on a category of probability spaces and measure-preserving maps;
in it, he presents a sheaf of random variables and an extension of
the Giry monad [20] to sheaves, and shows how concepts such as
independence and expectation can be internalized [44, 46].

Simpson’s topos is similar to our EMS, but our base category
EMSstd omits measures and its maps are quotiented by almost-
everywhere equality; we instead model measures explicitly via
the sheaf P. As we have focused on separation logic, we have not
investigated whether the Giry monad extends to EMS and the prob-
abilistic concepts that can be expressed internally; this would make
interesting future work. Simpson [45] mentions a resemblance to
nominal sets, but does not extensively develop the notion to the
best of our knowledge.

Simpson’s topos also serves as amodel of Atomic Sheaf Logic [47],
a recently-developed logic axiomatizing the interaction between
conditional independence and a notion of atomic equivalence, which

https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=1
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=3
https://www1.essex.ac.uk/maths/people/fremlin/chap32.pdf#page=26
https://www1.essex.ac.uk/maths/people/fremlin/chap33.pdf#page=1
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in the probabilistic setting denotes equidistribution of random vari-
ables, with potential applications to developing proof-relevant prob-
abilistic separation logics; it would be interesting to explorewhether
our topos admits analogous constructions.

Categorical probability. There are numerous categorical formu-
lations of probability. Fritz [18] develops probability theory purely
synthetically by axiomatizing equational properties known to hold
for Markov kernels. Jackson [24], building on Breitsprecher [9],
gives an alternative sheaf-theoretic model of probability by taking
sheaves on a single measurable space rather than a category of
measurable spaces; we speculate that there could be a relationship
between this model and ours similar to the relationship between
petit and gros topoi of sheaves on topological spaces [28].

Quasi-Borel spaces. The category QBS of quasi-Borel spaces [22]
is a richly developed model of higher-order probability. Whereas
QBS has been used extensively to model higher-order probabilistic
languages [1, 42, 43, 50], our goal in constructing EMS and Set� has
been focused on refining models of probabilistic separation logic.
Structurally, QBS and EMS are quite different: QBS is a well-pointed
quasi-topos while EMS is a non-well-pointed topos. However, as
remarked in Heunen et al. [22, Prop. 34], QBS is related to particular
presheaves on the category of standard measurable spaces. This
suggests connections to EMS, since it is a category of sheaves on
EMSstd, but there is a gap between these two settings: EMSstd-
morphisms are quotiented by almost-everywhere equality whereas
maps of standard measurable spaces are not. We leave elucidating
the relationship between our setting and QBS to future work.

General representation theorems. The equivalence Sch ' Nom
can be obtained via a Fraïssé limit [23, §7.1], a recipe for making
universal objects (e.g., N) capable of representing a class of models
(e.g., finite sets). More generally, there is a long line of results giving
groupoid-based representations of categories [7, 8, 10, 15, 25, 29],
with a history going back to Grothendieck [16, 21]. Caramello [11]
is particularly relevant, as it gives conditions closely resembling
Lemmas 3.16 and 3.17 under which categories of atomic sheaves
are equivalent to categories of continuous Aut(D)-sets for suitable
objects D. We are currently investigating whether Theorems 3.18
and 4.34 can be obtained via these general results, with an eye
towards generalizing beyond probability to the quantum setting.

Probabilistic separation logic. PSL [5] is the first separation
logic whose separating conjunction models independence, by split-
ting random substitutions; it has since been extended to support
conditional independence [2] and negative dependence [3], and
to the quantum setting [51]. In contrast to PSL and its extensions,
Lilac [27] has an alternative model of separation, via independent
combination. Lilac’s model is complicated: independent combina-
tion is an intricate measure-theoretic operation, an intricate proof
is required to show it forms a monoid, and many side conditions
on this monoid are needed for soundness of Lilac’s proof rules.

Theorem 4.35 simplifies and clarifies Lilac’s model. It shows that
independent combination arises naturally from the well-known
tensor product of standard probability spaces; that independent
combination forms a monoid then follows from the fact that tensor
product is monoidal. The resource monoid in Theorem 4.35 replaces

the side conditions on Lilac’s monoid with the single notion of
standardizability — a condition well-motivated by the intuition that
probability spaces should arise via pullback along EMSstd-maps.

Theorem 4.35 also improves on the model in Li et al. [27] in
multiple ways. Quotienting by negligiblity yields a model invariant
under almost-everywhere equality, whereas the model in Li et al.
[27] must manually track f-ideals of negligible sets. Interpreting
propositions as equivariant maps implies our model is invariant
under finite-width permutations of Il . Finally, using the internal
language of EMS, one can interpret quantification over propositions,
allowing to generalize Lilac to a higher-order logic; in the future,
we would like to explore whether this higher-order generalization
can be used to specify properties of higher-order programs.

An aspect of Lilac not captured by our model is its condition-
ing modality, interpreted by disintegration [12]. This is difficult to
capture in our model because EMSstd-objects come with a fixed
collection of negligible sets, whereas disintegration can change
which sets are negligible.

Probability and name generation. Recent work has identified
connections between probability theory and name generation: Sta-
ton et al. [48] provides a semantics for a probabilistic language
that treats random variables as dynamically-allocated read-only
names, and Sabok et al. [41] show that QBS can be used to charac-
terize observational equivalence of stateful imperative programs
by interpreting dynamic allocation as probabilistic sampling. The
resemblance between our probabilistic Theorem 4.35 and the store-
based Fact 1.1 provides further evidence along these lines.

Nominal sets. Many constructions exist in Nom beyond its ability
to capture permutation-invariance: freshness quantification [30]
captures the informal convention of picking fresh names [4], a
name abstraction [36, §4] type former gives a uniform treatment
of binding, and nominal restriction sets [36, §9.1] models languages
with locally generated names [31, 37]. It would be interesting to
explore whether analogous constructions can be carried out in
Set� , to obtain analogous treatments of the informal convention
of picking fresh sample spaces [17, §27] and to provide models of
probabilistic languages with locally generated random variables.

6 CONCLUSION
We unify two different approaches to separating probabilistic state:
the usual product of probability spaces and independent combi-
nation. To do this, we show that separation-as-product lives in a
category EMS of enhanced measurable sheaves, that separation-as-
independent-combination lives in a category Set� of absolutely
continuous sets, and that these two notions of separation corre-
spond across an equivalence EMS ' Set� . This validates the use
of independent combination in probabilistic separation logic [27],
clarifies independent combination’s relationship with traditional
formulations of independence, and suggests improvements to exist-
ing models. Finally, as a probabilistic analog of Nom, the category
Set� creates new probabilistic interpretations of nominal concepts,
which we hope will create more opportunities for using nominal
techniques in probability.

https://www1.essex.ac.uk/maths/people/fremlin/chap27.pdf#page=1
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