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Abstract
We show how to reason about “step-indexed” logi-

cal relations in an abstract way, avoiding the tedious,
error-prone, and proof-obscuring step-index arithmetic that
seems superficially to be an essential element of the method.
Specifically, we define a logic LSLR, which is inspired by
Plotkin and Abadi’s logic for parametricity, but also sup-
ports recursively defined relations by means of the modal
“later” operator from Appel et al.’s “very modal model”
paper. We encode in LSLR a logical relation for reasoning
(in-)equationally about programs in call-by-value System F
extended with recursive types. Using this logical relation,
we derive a useful set of rules with which we can prove con-
textual (in-)equivalences without mentioning step indices.

1 Introduction
Appel and McAllester [6] invented the step-indexed

model in order to express “semantic” proofs of type safety
for use in foundational proof-carrying code. The basic idea
is to characterize type inhabitation as a predicate indexed by
the number of steps of computation left before “the clock”
runs out. If a term e belongs to a type τ for any number of
steps, then it is truly semantically an inhabitant of τ .

The step-indexed characterization of type inhabitation
has the benefit that it can be defined inductively on the step
index k. This is especially useful when modeling semanti-
cally troublesome features like recursive and mutable refer-
ence types, whose inhabitants would be otherwise difficult
to define inductively on the type structure. Moreover, the
step-indexed model’s reliance on very simple mathemati-
cal constructions makes it particularly convenient for use in
foundational type-theoretic proofs, in which all mathemati-
cal machinery must be mechanized.

In subsequent work, Ahmed and coworkers have shown
that the step-indexed model can also be used for relational
reasoning about programs in languages with semantically
complex type structure [4, 3, 5, 19].

However, a continual annoyance in working with step-
indexed logical relations, as well as a stumbling block to
their general acceptance, is the tedious, error-prone, and
proof-obscuring reasoning about step indices that seems su-

perficially to be an essential element of the method. To give
a firsthand example: the first two authors (together with
Andreas Rossberg) recently developed a step-indexed tech-
nique for proving representation independence of “genera-
tive” ADTs, i.e., ADTs that employ, in an interdependent
fashion, both local state and existential type abstraction [5].
While the technique is useful on a variety of examples, we
found that our proofs using it tend to be cluttered with step-
index arithmetic, to the point that their main substance is
obscured. Thus, it seems clear that widespread acceptance
of step-indexed logical relations will hinge on the develop-
ment of abstract proof principles for reasoning about them.

The key difficulty in developing such abstract proof prin-
ciples is that, in order to reason about things being infinitely
logically related, i.e., belonging to a step-indexed logical
relation at all step levels — which is, in the end, what one
cares about — one must reason about their presence in the
logical relation at any particular step index, and this forces
one into finite, step-specific reasoning.

To see a concrete example of this, consider Ahmed’s
step-indexed logical relation for proving (in-)equivalence
of programs written in an extension of System F with re-
cursive types [4]. One might expect to have a step-free
proof principle for establishing that two function values are
infinitely logically related, along the lines of: λx1.e1 and
λx2.e2 are infinitely logically related at the type σ → τ iff,
whenever v1 and v2 are infinitely related at σ, it is the case
that e1[v1/x1] and e2[v2/x2] are infinitely related at τ . In-
stead, in Ahmed’s model we have that λx1.e1 and λx2.e2

are infinitely related at σ → τ iff for all n ≥ 0, when-
ever v1 and v2 are related at σ for n steps, e1[v1/x1] and
e2[v2/x2] are related at τ for n steps. That is, the latter is a
stronger property—if λx1.e1 and λx2.e2 map n-related ar-
guments to n-related results (for any n), then they also map
infinitely-related arguments to infinitely-related results, but
the converse is not necessarily true. Thus, in proving infinite
properties of the step-indexed model, it seems necessary to
reason about an arbitrary finite index n.

In this paper, we present a solution to this dilemma in the
form of a logic we call LSLR. Our solution involves a novel
synthesis of ideas from two well-known pieces of prior

1



work: (1) Plotkin and Abadi’s logic for relational reasoning
about parametric polymorphism (hereafter, PAL) [23], and
(2) Appel, Melliès, Richards, and Vouillon’s “very modal
model” paper (hereafter, VMM) [7].

PAL is a second-order intuitionistic logic extended with
axioms for equational reasoning about relational para-
metricity in pure System F. Plotkin and Abadi show how
to define a logical relation interpretation of System F types
in terms of the basic constructs of their logic. Second-order
relation variables are important in defining the relational in-
terpretation of polymorphic types.

In this paper, we adapt the basic apparatus of PAL to-
ward a new purpose: reasoning operationally about contex-
tual (in-)equivalence in a call-by-value language Fµ with
recursive and polymorphic types. We will show how to en-
code in our logic LSLR a logical relation that is sound with
respect to contextual equivalence, based on a step-indexed
relation previously published by Ahmed [4]. Compared
with Ahmed’s relation, ours is more abstract: proofs using
it do not require any step-index arithmetic. Furthermore,
whereas step-indexed logical relations are fundamentally
asymmetric, our logic enables the derivation of equational
reasoning principles as well as inequational ones.

In order to adapt PAL in this way, we need in particular
the ability to (1) reason about call-by-value and (2) logi-
cally interpret recursive types of Fµ. To address (1), we em-
ploy atomic predicates (and first-order axioms) related to
CBV reduction instead of PAL’s equational predicates and
axioms. This approach is similar to earlier logics of partial
terms for call-by-value with simple [21] and recursive (but
not universal) types [2].

For handling recursive types, it suffices to have some
way of defining recursive relations µr.R in the logic. This
can be done when R is suitably “contractive” in r; to ex-
press contractiveness, we borrow the “later” $A operator
from Appel et al.’s VMM, which they in turn borrowed
from Gödel-Löb logic [18]. Hence, LSLR is in fact not
only a second-order logic (like PAL) but a modal one, and
the truth value of a proposition is the set of worlds (think:
step levels) at which it holds. The key reasoning principle
concerning the later operator is the Löb rule, which states
that ($A ⊃ A) ⊃ A. This can be viewed as a principle
of induction on step levels, but we shall see that, when it
is employed in connection with logical relations, it also has
a coinductive flavor reminiscent of the reasoning principles
used in bisimulation methods like Sumii and Pierce’s [26].

Overview In Section 2, we present our language under
consideration, Fµ. In Section 3, we present our logic LSLR
described above. We also give a Kripke model of LSLR
with worlds being natural numbers, and “future worlds”
being smaller numbers, so that semantic truth values are
downward-closed sets of natural numbers.

In Section 4, we define a logical relation interpretation of

Types τ ::= α | unit | int | bool | τ1 × τ2 | τ1 + τ2 |
τ1 → τ2 | ∀α. τ | ∃α. τ | µα. τ

Prim Ops o ::= + | − | = | < | ≤ | . . .

Terms e ::= x | () | ±n | o(e1, . . . , en) |
true | false | if e then e1 else e2 |
〈e1, e2〉 | fst e | snd e | inlτ e | inrτ e |
case e of inlx1⇒e1 |inrx2⇒e2 |
λx : τ. e | e1 e2 | Λα. e | e [τ ] |
pack τ, e as ∃α. τ ′ | unpack e1 asα, x in e2 |
foldτ e | unfold e

Values v ::= x | () | ±n | true | false | 〈v1, v2〉 |
inlτ v | inrτ v | λx : τ. e | Λα. e |
pack τ1, v as ∃α. τ | foldτ v

Figure 1. Syntax of Fµ

the types of Fµ into the logic. Then we present a set of rules
for establishing properties about the logical relation, all of
which are derivable within the logic. Using these rules, it is
easy to show, almost entirely within the logic, that the log-
ical relation is sound w.r.t. contextual approximation. We
also show in this section how to define a symmetric version
of the logical relation for equational reasoning.

In Section 5, we give examples of contextual equivalence
proofs that employ purely logical reasoning using the deriv-
able rules from Section 4 (in particular, without any kind of
step-index arithmetic). Finally, in Section 6, we discuss re-
lated work and conclude.

2 The Language Fµ

We consider Fµ, a call-by-value λ-calculus with impred-
icative polymorphism and iso-recursive types. The syntax
of Fµ is shown in Figure 1. We define a small-step opera-
tional semantics as a relation on terms (written e ! e′). We
use evaluation contexts E to lift the primitive reductions to
a standard left-to-right call-by-value semantics for the lan-
guage. The dynamic semantics is completely standard and
is given in the companion technical appendix [13].

Fµ typing judgments have the form Γ $ e : τ , where
the context Γ binds type variables α, as well as value vari-
ables x: Γ ::= · | Γ, α | Γ, x : τ . The typing rules are also
standard and are given in full in the appendix [13].

Contextual Equivalence A context C is a term with a
single hole [·] in it. The typing judgment for contexts has the
form $ C : (Γ $ τ) ⇒ (Γ′ $ τ ′), where (Γ $ τ) indicates
the type of the hole. This judgment essentially says that if e
is a term such that Γ $ e : τ , then Γ′ $ C[e] : τ ′. Its formal
definition appears in the appendix [13].

We define contextual approximation (Γ $ e1&ctx e2 : τ )
to mean that, for any well-typed program context C with a
hole of the type of e1 and e2, the termination of C[e1] (writ-
ten C[e1] ⇓) implies the termination of C[e2]. Contextual
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Rel. Var’s r, s ∈ RelVar
Fµ Ctxt’s Γ ::= · | Γ, α | Γ, x : τ | Γ, t : τ
Fµ Subst’s γ ::= · | γ, α +→ τ | γ, x +→ v | γ, t +→ e
Rel. Types φ ::= VRel(τ1, τ2) | TRel(τ1, τ2)
Rel. Ctxt’s ∆ ::= · | ∆, r : φ
Rel. Subst’s ϕ ::= · | ϕ, r +→ R
Log. Ctxt’s Θ ::= · | Θ, A
Atomic Prop’s P ::= e1 = e2 | · · ·
Propositions A, B ::= P | , | ⊥ | A ∧B | A ∨B |

A ⊃ B | ∀Γ.A | ∃Γ.A |
∀∆.A | ∃∆.A | (e1, e2) ∈ R | 'A

Relations R, S ::= r | (x1 : τ1, x2 : τ2).A |
(t1 : τ1, t2 : τ2).A | µr.R

Figure 2. Syntax of LSLR

equivalence (Γ $ e1 ≈ctx e2 : τ ) is then defined as approx-
imation in both directions.

Definition 2.1. (Contextual Approximation & Equiva-
lence) Let Γ $ e1 : τ and Γ $ e2 : τ .

Γ $ e1 &ctx e2 : τ
def=

∀C, τ ′. ($ C : (Γ $ τ)⇒(· $ τ ′) ∧ C[e1] ⇓) ⊃ C[e2] ⇓
Γ $ e1 ≈ctx e2 : τ

def=
Γ $ e1 &ctx e2 : τ ∧ Γ $ e2 &ctx e1 : τ

3 The Logic LSLR
LSLR is a second-order intuitionistic modal logic sup-

porting a primitive notion of value/term relations, as well as
the ability to define such relations recursively.

Syntax The syntax of LSLR is given in Figure 2. We ex-
tend Fµ contexts Γ with the ability to bind term variables
t in addition to value variables x (and correspondingly ex-
tend the syntax of terms with t and the Fµ typing judgment
with the obvious hypothesis rule for t). In LSLR, term vari-
ables can be substituted by terms e and value variables by
values v. Fµ substitutions γ map variables bound in Fµ con-
texts to objects of the appropriate syntactic class.

Relation contexts ∆ bind relation variables r with re-
lation types φ, which describe relations between pairs
of values or terms of type τ1 and τ2 (VRel(τ1, τ2) or
TRel(τ1, τ2), respectively). Relation substitutions ϕ map
relation variables to syntactic relations R (i.e., relations ex-
pressible in the logic), which we describe below. Finally,
logical contexts Θ are sets of propositions.

Propositions A fall into four categories: atomic proposi-
tions P , standard first-order propositions (+, ⊥, A ∧ B,
A ∨ B, A ⊃ B, ∀Γ.A, ∃Γ.A), relational propositions
(∀∆.A, ∃∆.A, (e1, e2) ∈ R), and the modal later opera-
tor $A borrowed from VMM.

Atomic propositions P and the axioms concerning them
are essentially a parameter of the logic. We assume the ex-
istence of an atomic proposition, e1 = e2, which says that

Monotonicity:
A ⊃ 'A

Löb Rule:
('A ⊃ A) ⊃ A

Distributivity Laws:

'(A ⊃ B) ≡ 'A ⊃ 'B
'∀Γ.A ≡ ∀Γ.'A
'∀∆.A ≡ ∀∆.'A

'(A ∧B) ≡ 'A ∧ 'B
'(A ∨B) ≡ 'A ∨ 'B

'∃Γ.A ≡ ∃Γ.'A
'∃∆.A ≡ ∃∆.'A

Replacement Axioms:

e1 = e2 ⊃ A[e1/t] ≡ A[e2/t] v1 = v2 ⊃ A[v1/x] ≡ A[v2/x]

Relation Axioms:

(v1, v2) ∈ (x1 : τ1, x2 : τ2).A ≡ A[v1/x1, v2/x2]

(e1, e2) ∈ (t1 : τ1, t2 : τ2).A ≡ A[e1/t1, e2/t2]

(e1, e2) ∈ µr.R ≡ (e1, e2) ∈ R[µr.R/r]

Figure 3. Key Axioms of LSLR

e1 and e2 (of the same type) are syntactically equal modulo
renaming of bound variables. Otherwise, the only require-
ment we impose is that P ’s are first-order in the sense that
they may only depend on variables bound in Γ, not ∆. For
the purpose of this paper, we will be interested in a particu-
lar set of atomic propositions having to do with Fµ’s reduc-
tion semantics (see Section 4), but LSLR is in no way tied
to this particular set of P ’s.

The first-order connectives are self-explanatory. The re-
lational propositions provide the ability to abstract over a
relation, which is important in defining logical relations for
polymorphic and existential types. (x1 : τ1, x2 : τ2).A and
(t1 : τ1, t2 : τ2).A introduce value and term relations (the
x’s and t’s are bound variables.) Finally, we have the later
modality $A, which enables the definition of recursive re-
lations µr.R, as explained in the Introduction. Intuitively,
$A means that A is true in all strictly future worlds of the
current one. For µr.R to be well-formed, R must be con-
tractive in r, i.e., the variable r must only appear inside R
under the $ modality. This ensures that the meaning of R in
the current world only depends recursively on its meaning in
strictly future worlds. Assuming that the notion of “strictly
future” is well-founded, we can then define the semantics
of recursive relations by induction on future worlds.

Inference Rules The main judgment of LSLR is
Γ; ∆;Θ $ A, which says that for any closing instantiation
of Γ and ∆, if the propositions in Θ are true in a world, then
so is A. Most of the inference rules of LSLR are completely
standard; they appear in full, along with the auxiliary judg-
ments, in the appendix [13]. We summarize the interesting
axioms in Figure 3. For brevity, we write these axioms sans
contexts; they hold in any contexts where the propositions
are well-formed. ≡ denotes bidirectional implication.
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The monotonicity rule states that propositions that are
true now (in the current world) are also true later (in fu-
ture worlds). The Löb rule, adapted from VMM, provides
a clean induction principle over future worlds. If under the
assumption that A is true in all strictly future worlds we can
prove that it is true in the current world, then by induction
A is true in the current world. The induction argument re-
quires no base case because all propositions are assumed
true in the final world.

The remainder of the rules concerning the later operator
state that the later operator distributes over all propositional
connectives. Not all these distributivity laws are valid in
classical Gödel-Löb logic or VMM, but they hold here due
to our axiom of monotonicity.

The replacement axioms say that we can substitute equal
terms (resp. values) for equal terms (resp. values) inside a
proposition without affecting its meaning.

The last set of rules concern inhabitation of relations. Of
these the only interesting one is the one for recursive rela-
tions, which states that a recursive relation µr.R is equiva-
lent to its expansion R[µr.R/r].

“Indexed” Model We define a Kripke model for LSLR,
where the worlds are natural numbers and n is a strictly
future world of m if n < m. Thus, the set of seman-
tic truth values is the complete Heyting algebra P↓(N) of
downwards-closed subsets of N, ordered by inclusion.

We interpret propositions, logical contexts, and relations
under some semantic interpretation δ, which maps their free
relation variables to semantic relations (i.e., functions from
pairs of values/terms to semantic truth values). We write
!A"δ

n (resp. !Θ"δ
n, !R"δ

n (e1, e2)) to mean that, under inter-
pretation δ, A (resp. Θ, R(e1, e2)) is true in world n. Thus,
the truth value of A w.r.t. δ is the downwards-closed set of
natural numbers n such that !A"δ

n. We write δ ∈ !∆" to
mean that δ maps all the relation variables in the domain of
∆ to appropriately-typed semantic value/term relations.

The interpretation is mostly standard, e.g., involving a
quantification over future worlds in the interpretation of ⊃
in order to ensure monotonicity. Details are given in the
appendix [13]; most interestingly, !$A"δ

n
def= !A"δ

n−1 and

!µr.R"δ
n

def= !R[µr.R/r]"δ
n. The latter can be shown to be

well-defined so long as R is contractive in r.
The interpretation is parameterized over an interpretation

I of the atomic propositions P . We assume that I maps
closed P ’s to absolute truth values, i.e., in a way that is not
dependent on the world n. Furthermore, we assume that
I(e1 = e2) is + iff e1 is α-equivalent to e2.

We define semantic entailment Γ; ∆;Θ |= A to mean
∀n ≥ 0. ∀γ : Γ. ∀δ ∈ !γ∆" . !γΘ"δ

n ⊃ !γA"δ
n.

Theorem 3.1. (Soundness of LSLR w.r.t. the Model)
If Γ; ∆;Θ $ A, then Γ; ∆;Θ |= A.

When we extend the logic with new axioms pertaining to
atomic propositions (as in the next section), we must prove
that they are sound with respect to the model as well. So
long as such axioms are strictly first-order (i.e., they do not
mention relations), proving soundness will not require any
world-indexed reasoning, since first-order propositions are
true in all worlds iff they are true in world 1.

The Kripke model we have defined here may be viewed
as a “step-indexed” model, but it is important to note that
nothing in either the model or the logic mentions steps of
computation! We happen to be using natural numbers as
our worlds, but there is no computational meaning attached
to them, and other models of LSLR are possible.

4 A Syntactic Logical Relation for Fµ

In this section, we show how to define a logical relation
for Fµ that is sound with respect to contextual approxima-
tion. The relation is defined syntactically within the logic
LSLR, using a particular set of atomic propositions con-
cerning the Fµ reduction semantics.

Atomic Propositions The new atomic propositions are:

P ::= · · · | e1 !∗ e2 | e1 !0 e2 | e1 !1 e2

For each of these atomic propositions, we consider it well-
formed iff its two constituent terms have the same type. The
interpretations of these propositions, I(P ), are:

• I(e1 !∗ e2) means that e1 reduces to e2 in an arbitrary
number of steps (possibly zero).

• I(e1 !0 e2) means that e1 reduces to e2 in an arbi-
trary number of steps (possibly zero), none of which is
an unfold-fold reduction.

• I(e1 !1 e2) means that e1 reduces to e2 in an arbi-
trary positive number of steps, exactly one of which is
an unfold-fold reduction.

The motivation for using this particular set of atomic
propositions will become clear shortly. Along with these
P ’s, we will also extend LSLR with new axioms concern-
ing them. There are many axioms we would like to incor-
porate, all of which are straightforward first-order syntactic
properties of reduction. For example:

∀α, t : α, t1 : α, t2 : α.
(t !1 t1 ∧ t !1 t2) ⊃ (t1 !0 t2 ∨ t2 !0 t1)

For simplicity, instead of enumerating all such axioms, we
will just assert that any first-order property of well-typed
terms that we can prove valid can be made a new axiom of
the logic. Formally, assuming Θ and A are first-order (i.e.,
do not mention relations):

∀γ : Γ. !γΘ"1 ⊃ !γA"1
Γ; ∆;Θ,Θ′ $ A
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V !α" ρ
def
= R, where ρ(α) = (τ1, τ2, R)

V !τb" ρ
def
= (x1 : τb, x2 : τb). x1 = x2, where τb ∈ {unit, int, bool}

V !τ ′ × τ ′′" ρ
def
= (x1 : ρ1(τ

′ × τ ′′), x2 : ρ2(τ
′ × τ ′′)).

∃x′1, x′′1 , x′2, x
′′
2 . x1 = 〈x′1, x′′1 〉 ∧ x2 = 〈x′2, x′′2 〉 ∧ (x′1, x

′
2) ∈ V !τ ′" ρ ∧ (x′′1 , x′′2 ) ∈ V !τ ′′" ρ

V !τ ′ + τ ′′" ρ
def
= (x1 : ρ1(τ

′ + τ ′′), x2 : ρ2(τ
′ + τ ′′)).

(∃x′1, x′2. x1 = inlx′1 ∧ x2 = inlx′2 ∧ (x′1, x
′
2) ∈ V !τ ′" ρ) ∨

(∃x′′1 , x′′2 . x1 = inrx′′1 ∧ x2 = inrx′′2 ∧ (x′′1 , x′′2 ) ∈ V !τ ′′" ρ))

V !τ ′ → τ ′′" ρ
def
= (x1 : ρ1(τ

′ → τ ′′), x2 : ρ2(τ
′ → τ ′′)). ∀y1, y2. (y1, y2) ∈ V !τ ′" ρ ⊃ (x1y1, x2y2) ∈ E !τ ′′" ρ

V !∀α. τ" ρ
def
= (x1 : ρ1(∀α. τ), x2 : ρ2(∀α. τ)). ∀α1, α2. ∀r : VRel(α1, α2). (x1 [α1], x2 [α2]) ∈ E !τ" ρ, α +→ (α1, α2, r)

V !∃α. τ" ρ
def
= (x1 : ρ1(∃α. τ), x2 : ρ2(∃α. τ)). ∃α1, α2, y1, y2. ∃r : VRel(α1, α2).

x1 = packα1, y1 as ∃α. ρ1τ ∧ x2 = packα2, y2 as ∃α. ρ2τ ∧ (y1, y2) ∈ V !τ" ρ, α +→ (α1, α2, r)

V !µα. τ" ρ
def
= µr.(x1 : ρ1(µα. τ), x2 : ρ2(µα. τ)).

∃y1, y2. x1 = fold y1 ∧ x2 = fold y2 ∧ '(y1, y2) ∈ V !τ" ρ, α +→ (ρ1(µα. τ), ρ2(µα. τ), r)

E !τ" ρ
def
= µr.(t1 : ρ1τ, t2 : ρ2τ).(∀x1. t1 !0 x1 ⊃ ∃x2. t2 !∗ x2 ∧ (x1, x2) ∈ V !τ" ρ) ∧ (∀t′1. t1 !1 t′1 ⊃ '(t′1, t2) ∈ r)

Figure 4. Syntactic Logical Relation for Fµ

In other words, our goal here is not to use LSLR to formal-
ize entire proofs, just the part of the proof that involves re-
lational reasoning. We are happy to make use of first-order
syntactic properties proved by other means.

Logical Relation Figure 4 defines two logical relations
for Fµ, one for values (V !τ" ρ) and one for terms (E !τ" ρ).
For brevity, the definition omits type annotations on variable
bindings. These are syntactic LSLR relations R, defined by
induction on τ . Here, ρ is a syntactic relational interpre-
tation of the free type variables of τ , i.e., a mapping from
each α ∈ FV(τ) to a triple (τ1, τ2, R), where R has type
VRel(τ1, τ2). We write ρi to mean the type substitution
mapping each α to the corresponding τi. Thus, V !τ" ρ has
type VRel(ρ1τ, ρ2τ), and E !τ" ρ has type TRel(ρ1τ, ρ2τ).
Except for the last two cases (V !µα.τ" ρ and E !τ" ρ), the
definition of the logical relation is entirely straightforward.

First, let us consider V !µα.τ" ρ. The basic idea here is
to give the relational interpretation of a recursive type using
a recursive relation µr.R. Recall, though, that references to
r in R must only appear under “later” propositions. Thus,
we have that fold v1 and fold v2 are related by V !µα.τ" ρ
“now” iff v1 and v2 are related by V !τ [µα.τ/α]" ρ “later”.

Next, consider E !τ" ρ. Ideally, we would like to say
that two terms e1 and e2 are related if, whenever e1 eval-
uates to a value v1, e2 also evaluates to some value v2, and
(v1, v2) ∈ V !τ" ρ. In fact, the definition of E !τ" ρ says
precisely this, in the case that e1 evaluates to v1 without in-
curring any unfold-fold reductions (i.e., when e1 !0 v1).

However, the interpretation of recursive types forces us
to require something weaker in the case that e1 incurs an
unfold-fold reduction. Specifically, in order to prove
that the logical relation is sound with respect to contex-
tual approximation, we must prove that it is compatible
in the sense of Pitts [20]. Compatibility for unfold de-

mands that if fold v1 and fold v2 are logically related, then
unfold (fold v1) and unfold (fold v2) are related, too.
By definition of V !µα.τ" ρ, knowing fold v1 and fold v2

are related only tells us that v1 and v2 are related “later”. We
need to be able to derive from that that unfold (fold v1)
and unfold (fold v2) are related “now”. Thus, in defin-
ing whether (e1, e2) ∈ E !τ" ρ, in the case that e1 makes an
unfold-fold reduction (i.e., e1 !1 e′1), we only require
that e′1 and e2 be related later (i.e., $(e′1, e2) ∈ E !τ" ρ).

For the reader who is familiar with prior work on step-
indexed models and logical relations, our formulation here
may seem familiar and yet somewhat unusual. Our use of
the later operator corresponds to where one would “go down
a step” in the construction of a step-indexed model. How-
ever, in prior work, step-indexed models typically go down
a step everywhere (i.e., in every case of the logical relation),
not just in one or two places, and “count” every step, not
just unfold-fold reductions. If one is working with equi-
recursive types, this may be the only option, but here we
are working with iso-recursive types, and our present for-
mulation serves to isolate the use of the later operator to
the few places where it is absolutely needed. While we do
not believe there is a fundamental difference between what
one can prove using this logical relation vs. previous ac-
counts, our formulation enables more felicitous statements
of certain properties, such as the extensionality principle for
functions (see discussion of Rule 9 below).

Finally, it is worth noting that, like step-indexed models,
LSLR imposes no “admissibility” requirement on candidate
relations. Intuitively, the reason admissibility is unneces-
sary is that it is an infinitary property. In LSLR, we only
ever reason about finitary properties, i.e., propositions that
hold true in the “current” world; we do not even have the
ability (within the logic) to talk about truth in all worlds.
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Γ; ∆; Θ 2 (v1, v2) ∈ V !τ" ρ

Γ; ∆; Θ 2 (v1, v2) ∈ E !τ" ρ
(1)

Γ; ∆; Θ1, Θ2 2 A

Γ; ∆; Θ1, 'Θ2 2 'A
(2)

Γ; ∆; Θ 2 ∀x. e′2 !∗ x ⊃ e2 !∗ x Γ; ∆; Θ 2 (e1, e
′
2) ∈ E !τ" ρ

Γ; ∆; Θ 2 (e1, e2) ∈ E !τ" ρ
(3)

Γ; ∆; Θ 2 e1 !∗ e′1 ∨ e′1 !0 e1 Γ; ∆; Θ 2 (e′1, e2) ∈ E !τ" ρ

Γ; ∆; Θ 2 (e1, e2) ∈ E !τ" ρ
(4)

Γ; ∆; Θ 2 e1 !1 e′1 Γ; ∆; Θ 2 '(e′1, e2) ∈ E !τ" ρ

Γ; ∆; Θ 2 (e1, e2) ∈ E !τ" ρ
(5)

Γ; ∆; Θ 2 (e1, e2) ∈ E !τ" ρ Γ, x1, x2; ∆; Θ, (x1, x2) ∈ V !τ" ρ, e1 !∗ x1, e2 !∗ x2 2 (E[x1], f) ∈ E !τ ′" ρ′

Γ; ∆; Θ 2 (E[e1], f) ∈ E !τ ′" ρ′
(6)

Γ; ∆; Θ 2 (f1, f2) ∈ E !τ ′ → τ ′′" ρ Γ; ∆; Θ 2 (e1, e2) ∈ E !τ ′" ρ

Γ; ∆; Θ 2 (f1 e1, f2 e2) ∈ E !τ ′′" ρ
(7)

Γ; ∆; Θ 2 (e1, e2) ∈ E !µα. τ" ρ

Γ; ∆; Θ 2 (unfold e1, unfold e2) ∈ E !τ [µα. τ/α]" ρ
(8)

Γ, x1, x2; ∆; Θ, (x1, x2) ∈ V !τ ′" ρ 2 (v1x1, v2x2) ∈ E !τ ′′" ρ

Γ; ∆; Θ 2 (v1, v2) ∈ V !τ ′ → τ ′′" ρ
(9)

Γ; ∆; Θ 2 '(e1, e2) ∈ E !τ [µα. τ/α]" ρ

Γ; ∆; Θ 2 (fold e1, fold e2) ∈ E !µα. τ" ρ
(10)

Fi = fix f(xi). ei Γ, x1, x2; ∆; Θ1, Θ2, (F1, F2) ∈ V !τ ′ → τ ′′" ρ, (x1, x2) ∈ V !τ ′" ρ 2 (e1[F1/f ], e2[F2/f ]) ∈ E !τ ′′" ρ

Γ; ∆; Θ1, 'Θ2 2 (F1, F2) ∈ V !τ ′ → τ ′′" ρ
(11)

Figure 5. Some Useful Derivable Rules

Derivable Rules Figure 5 shows a number of useful in-
ference rules that are derivable in the logic. To be clear,
by saying a rule is “derivable” we mean that if one adds
the premises of the rule as axioms of the logic, then one
can construct a derivation of the conclusion. (The proof of
derivability may rely, however, on techniques of the meta-
logic, such as induction on the structure of types.) In all
these rules, we assume implicitly that all propositions are
well-formed. For the rules concerning V !τ" ρ and E !τ" ρ,
we assume that ρ binds the free variables of τ and maps
them to triples (τ1, τ2, R) where R : VRel(τ1, τ2).

Rule 1 says that E !τ" ρ coincides with V !τ" ρ when re-
stricted to values.

Rule 2 is a weakening property that is easy to derive
from the distributivity laws for the $ operator. Assum-
ing Θ = A1, . . . , An, the notation $Θ used here denotes
$A1, . . . , $An. The rule says that if we want to show A is
true later, given some assumptions (Θ1) that are true now,
and others (Θ2) that are true later, then we can just prove
that A is true now given that all the assumptions are true
now. This rule is particularly useful in conjunction with the
Löb rule. Specifically, thanks to the Löb rule, a frequently
effective approach to proving two terms e1 and e2 related
is to assume inductively that they are related later and then
prove that they are related now. Eventually, we may reduce
our proof goal (via, e.g., Rule 5 or 10) to showing that two
other terms e′1 and e′2 are related later. At that point, Rule 2
allows us to un-$ both our new proof goal (relatedness of e′1
and e′2) and our original inductive assumption (relatedness
of e1 and e2) simultaneously. We will see an instance of this
proof pattern in Example 2 in Section 5.

Rules 3–5 allow one to prove that two terms e1 and e2

are related by converting one of the terms to something else.

Rule 3 allows one to replace e2 with some e′2 that approx-
imates it, and then show that e1 is related to e′2. (For in-
stance, this rule applies if e2 and e′2 are interconvertible by
some sequence of reductions and expansions.) Rule 4 al-
lows one to reduce or expand e1 to some e′1 according to the
!0 relation and then show that e′1 is related to e2. Rule 5 is
similar, but addresses the case when e1 incurs an unfold-
fold reduction on the way to e′1. In this case, unrolling the
definition of E !τ" ρ, all we have to show is that e′1 and e2

are related later.
The aforementioned rules are all useful when we know

what the terms in question reduce/expand to. Rule 6 is im-
portant because it handles the case when a term is “stuck”.
For instance, suppose we want to show that e and f are re-
lated, where e is of the form E[e1] (i.e., e1 is in evaluation
position in e, and E is the evaluation context surrounding
it). Perhaps e1 is something like y1(v1), in which case there
is no way to reduce it. However, if we can prove that y1(v1)
is logically related to some other expression e2, then there
are two cases to consider. In the case that they both ter-
minate, we can bind their unknown values as x1 and x2,
assume x1 and x2 are related by V !τ" ρ, and reduce the
goal to showing that E[x1] is related to f . In the case that
e1 diverges, there is nothing to show, since E[e1] will di-
verge, too. Proving this rule derivable, while not difficult,
is slightly less obvious than for the other rules, and thus a
good exercise for the reader: the proof is given in the ap-
pendix [13].

Rule 6 is also useful in deriving compatibility proper-
ties [20], which are necessary in order for the logical rela-
tion to be a precongruence (and hence contained in con-
textual approximation). Rules 7 and 8 are examples of
such properties (for function application and unfold, re-
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spectively), and Rule 6 reduces their derivations to the case
where the e’s and f ’s are values. Rule 8 is also invertible,
thus providing a kind of extensionality property for recur-
sive types, which we exploit in the proof of the second ex-
ample in Section 5.

Rule 9 demonstrates a similar extensionality property for
function values. (The property does not hold for arbitrary
terms in our call-by-value semantics.) It is worth noting
that, in prior step-indexed models, this extensionality prop-
erty is not quite so clean to state. For example, if one were
to encode Ahmed’s relation [4] in our logic directly, the as-
sumption (x1, x2) ∈ V !τ ′" ρ would have to be $’d. We find
our present formulation more convenient to work with.

Rule 10 shows a strong compatibility rule for fold. That
is, the relatedness of fold e1 and fold e2 only requires that
e1 and e2 be related later. Combining this with both the Löb
rule and Rule 2, we may obtain the following (co-)inductive
rule for fold that does not mention the $ modality at all: to
show that fold e1 and fold e2 are related, we may assume
they are related while showing that e1 and e2 are related.

Along the same lines, Rule 11 gives the rule for recur-
sive functions, which are encodable in a well-known way in
terms of recursive types. We formalize the encoding in the
appendix [13]; it has the property that if F = fix f(x). e,
then F (v) !1 e[F/f, v/x]. Consequently, to show two re-
cursive functions related, we may (co-)inductively assume
they are related while proving that their bodies are related.

Soundness of the Logical Relation We now state some
key theorems concerning the logical relation, the primary
one being that it is sound w.r.t. contextual approximation.

Lemma 4.1. (Type Substitution)
1. V !τ [σ/α]"ρ = V !τ"ρ, α 1→ (ρ1σ, ρ2σ,V !σ"ρ).
2. E !τ [σ/α]"ρ = E !τ"ρ, α 1→ (ρ1σ, ρ2σ,V !σ"ρ).

Definition 4.2. (Logical Approximation Judgment)
Suppose Γ = α1, . . . , αn, x1 : τ1, . . . , xm : τm. Let

Γ′= α1
1, α

2
1, . . ., α

1
n, α2

n, x1
1: τ1

1 , x2
1: τ2

1 , . . ., x1
m: τ1

m, x2
m: τ2

m

∆ = r1 : VRel(α1
1, α

2
1), . . . , rn : VRel(α1

n, α2
n)

Θ = (x1
1, x

2
1)∈V !τ1" ρ, . . . , (x1

m, x2
m)∈V !τm" ρ

where ρ = {α1 1→ (α1
1, α

2
1, r1), . . . , αn 1→ (α1

n, α2
n, rn)},

τ1
i = ρ1τi and τ2

i = ρ2τi.
Also, let γj = {x1 1→xj

1, . . ., xm 1→xj
m} for j ∈{1, 2}.

Then
Γ $ e1 &log e2 : τ

def=
Γ′; ∆;Θ $ (ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E !τ" ρ

Theorem 4.3. (Fundamental Property)
If Γ $ e : τ then Γ $ e &log e : τ .

The proof of Theorem 4.3 is by induction on typing deriva-
tions, in each case using the appropriate compatibility rules
(as discussed above), which are all derivable in the logic.

Theorem 4.4. (Soundness w.r.t. Contextual Approx.)
If Γ $ e1 &log e2 : τ then Γ $ e1 &ctx e2 : τ .

The proof of Theorem 4.4 is by induction on contexts C. As
for the previous theorem, most of the cases follow from the
compatibility rules. There is only one piece of the proof that
requires interpreting E !τ" ρ into the model — namely, the
proof that the logical relation is adequate (in Pitts’ termi-
nology [20]), i.e., that if two closed terms are related in the
empty context, then termination of the first implies termina-
tion of the second. For more details, see the appendix [13].

As in Ahmed [4], the converse of Theorem 4.4 does not
hold. To make the logical relation complete w.r.t. contextual
approximation is not difficult, however. It involves closing
the definition of V !τ" ρ, in the cases where τ is a type vari-
able or an existential type, w.r.t. ciu-approximation on the
right [20]. Assuming one introduces ciu-approximation as
an atomic proposition, this is easy to do inside the logic.
Space considerations preclude further discussion here.

Symmetric Version of the Logical Relation We have
shown that our logical relation supports sound inequational
reasoning, but we would like to support equational reason-
ing as well. Of course, one can prove two terms equivalent
by proving that each approximates the other, but often this
results in a tedious duplication of work. Fortunately, we can
define a symmetric version of our logical relation directly in
terms of the asymmetric one.

First, some notation: for a term relation R of type
TRel(τ1, τ2), let Rop denote (t2 : τ2, t1 : τ1).(t1, t2) ∈ R,
and similarly for value relations. Also, let ρop denote
the mapping with domain equal to that of ρ such that if
ρ(α) = (τ1, τ2, R), then ρop(α) = (τ2, τ1, Rop).

Now, perhaps the most natural way of defining a sym-
metric version of our logical relation would be to say that
two terms/values are symmetrically related if they are log-
ically equivalent, i.e., asymmetrically related (by E !τ") in
both directions. Interestingly, this does not work. In par-
ticular, there are a variety of properties (described below)
that we would like our symmetric relation to enjoy, one of
them being the property that symmetrically-related function
values f1 and f2 (of type τ ′ → τ ′′) are precisely those
that map symmetrically-related arguments (of type τ ′) to
symmetrically-related results (of type τ ′′). However, just
knowing that f1 and f2 map equivalent arguments to equiv-
alent results does not imply that they map V !τ ′"-related ar-
guments to E !τ ′′"-related results, which must hold in order
for f1 and f2 to be logically related in even one direction.

Thus, instead, we define the symmetric relation to be:

E≈!τ" ρ
def= (t1 : ρ1τ, t2 : ρ2τ).

(d = true ∧ (t1, t2) ∈ E !τ" ρ)
∨ (d = false ∧ (t2, t1) ∈ E !τ" ρop)

and similarly for V≈!τ" ρ. Here, d is a value variable of
type bool that we assume is bound in the context Γ in which

7



Γ; ∆; Θ 2 e1 !∗ e′1 ∨ e′1 !0 e1 Γ; ∆; Θ 2 e2 !∗ e′2 ∨ e′2 !0 e2 Γ; ∆; Θ 2 (e′1, e
′
2) ∈ E≈!τ" ρ

Γ; ∆; Θ 2 (e1, e2) ∈ E≈!τ" ρ
(4S)

Γ; ∆; Θ 2 e1 !1 e′1 Γ; ∆; Θ 2 e2 !1 e′2 Γ; ∆; Θ 2 '(e′1, e
′
2) ∈ E≈!τ" ρ

Γ; ∆; Θ 2 (e1, e2) ∈ E≈!τ" ρ
(5S)

Γ; ∆; Θ 2 (e1, e2) ∈ E≈!τ" ρ Γ, x1, x2; ∆; Θ, (x1, x2) ∈ V≈!τ" ρ, e1 !∗ x1, e2 !∗ x2 2 (E1[x1], E2[x2]) ∈ E≈!τ ′" ρ′

Γ; ∆; Θ 2 (E1[e1], E2[e2]) ∈ E≈!τ ′" ρ′
(6S)

Figure 6. Symmetric Versions of Derivable Rules 4–6

these symmetric relations appear. When d is true, E≈!τ" ρ
and V≈!τ" ρ are equivalent to the asymmetric logical rela-
tion in one direction; and when d is false, they are equiva-
lent to the asymmetric relation in the other direction. Thus,
by proving two terms to be symmetrically-related in a con-
text where d’s identity is unknown, we can effectively prove
logical approximation in both directions simultaneously.

This formulation has several nice properties. First, it is
straightforward to show that if we take each case of the
definition of V !τ" ρ in Figure 4, replace all occurrences
of V !τ" ρ and E !τ" ρ with their symmetric versions, and
substitute ≡ for def= , we have a set of valid relational equiv-
alences. The same goes for the relational equivalences in
Lemma 4.1. (The same is not true, however, for the defini-
tion of E !τ" ρ, because it is inherently asymmetric.)

Furthermore, we can derive symmetric versions of most
of our derived rules. In most cases, the symmetric rule looks
like the asymmetric one, except with E≈ and V≈ in place
of E and V . Exceptions to this pattern include Rules 3–6.
Figure 6 gives symmetric versions for the last three of these.
To give the reader a concrete sense of how these rules work,
we present in the next section two detailed examples of how
to use them to prove contextual equivalences.

Since LSLR is inspired by Plotkin and Abadi’s logic for
parametricity one might expect to see some axiom corre-
sponding to “identity extension.” In fact, we do not have
an identity extension axiom since, as we have discovered in
the course of carrying out this work, identity extension does
not hold for the step-indexed model! For identity extension
to hold, one would need that contextual equivalence at τ
should equal the semantics of E≈!τ" , but it only equals the
subset of E≈!τ" for which the relation holds for all n, i.e.,
roughly, the subset {(e1, e2) | ∀n.(e1, e2) ∈ !E≈!τ" "n}.
In spite of this, we are still able to prove Wadler-style free
theorems [27]; see the appendix [13] for an example.

5 Examples
We now show two examples of how to use our LSLR-

based logical relation to prove contextual equivalences.
The first example is from Crary and Harper [12] (who

adapted it from one in Sumii and Pierce [26]) and con-
cerns representation independence of “objects” with exis-

tential recursive type. The second example, from Sumii
and Pierce [26], is concerned with proving that the syntac-
tic projection function associated with a general recursive
type is equivalent to the identity [9]. We reason informally
in LSLR but present the proofs in some detail to emphasize
the use of the derivable rules from Section 4. Observe that
the proofs do not involve any step-indexed reasoning!

Example 1 Consider the following type for flag objects,
which have an instance variable (with abstract type α) and
two methods. The first method returns a new object whose
flag is reversed, while the second method returns the current
state of the flag.

fldα = µβ. α× ((β → β)× (β → bool))
flag = ∃α. fldα

We consider two implementations of flags, in which the hid-
den flag state is represented by a bool and an int, respec-
tively. We assume that not : bool→ bool and even : int→
bool are implemented in the obvious way.
bflag = pack bool, (fold 〈true, 〈bflip, bret〉〉) as flag
bflip = λx : fldbool. fold 〈not (fst (unfoldx)),

snd (unfoldx)〉
bret = λx : fldbool. fst (unfoldx)

iflag = pack int, (fold 〈0, 〈iflip, iret〉〉) as flag
iflip = λx : fldint. fold 〈1 + (fst (unfoldx)),

snd (unfoldx)〉
iret = λx : fldint. even (fst (unfoldx))

To prove contextual equivalence of bflag and iflag, it
suffices to show d : bool $ (bflag, iflag) ∈ E≈!flag" ∅.
Equivalently, by Rule 1, since both terms are values, we
must show d : bool $ (bflag, iflag) ∈ V≈!flag" ∅.
Following the definition of V≈!∃α. fldα" ∅, we substitute
α1 1→ bool, α2 1→ int, y1 1→ v1, y2 1→ v2, and r 1→R where:
v1 = fold 〈true, 〈bflip, bret〉〉
v2 = fold 〈0, 〈iflip, iret〉〉
R = (x1: bool, x2 : int).∃y : int. (x1 = true ∧ 2y !∗ x2)

∨ (x1 = false ∧ 2y +1!∗ x2)
Let ρ =α 1→ (bool, nat, R). It now suffices to show
(v1, v2)∈V≈!fldα"ρ, or equivalently (using the compati-
bility rules and several applications of Rule 1):

1. Show (true, 0) ∈ V≈!α" ρ. This is immediate from
the definition of R by substituting y 1→ 0.
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2. Show (bflip, iflip)∈V≈!fldα → fldα" ρ. Follow-
ing Rule 9, we assume that x1 : fldbool, x2 : fldint, and
(x1, x2) ∈ V≈!fldα" ρ, and are required to show:
(fold 〈not (fst (unfoldx1)), snd (unfoldx1)〉,
fold 〈1 + (fst (unfoldx2)), snd (unfoldx2)〉)

∈ E≈!fldα" ρ

By compatibility and Rule 1, we can show that
(fst (unfoldx1), fst (unfoldx2))∈E≈!α"ρ. Thus,
by Rule 6, we can assume that they evaluate to some z1

and z2, and that (z1, z2) ∈ V≈!α" ρ ≡ R, and show:
(fold 〈not z1, snd (unfoldx1)〉,
fold 〈1 + z2, snd (unfoldx2)〉) ∈ E≈!fldα" ρ

By compatibility and Rule 1, this reduces to showing
that (not z1, 1 + z2) ∈ E≈!α" ρ. By Rule 4, we can
reduce this to showing the following:
∀z1 : bool, z2 : int. (z1, z2) ∈ R ⊃ ∃z′1 : bool, z′2 : int.
not z1 !∗ z′1 ∧ 1 + z2 !∗ z′2 ∧ (z′1, z′2) ∈ R

Expanding out the definition of membership in R, we
arrive at a strictly first-order statement that is provable
by straightforward means in the meta-logic and can
thus be included as an axiom (as per the discussion
in the first part of Section 4).

3. Show (bret, iret)∈V≈!fldα→ bool" ρ. This is
similar to part 2, with the proof boiling down to the
first-order statement:

∀z1 : bool, z2 : int. (z1, z2) ∈ R ⊃
∃z′2 : bool. even z2 !∗ z′2 ∧ z1 = z′2

Example 2 Let τ = µα. unit + (α → α). We show that
the identity function id = λx : τ. x is equivalent to
v = fix f(x : τ). case (unfoldx) of inl ⇒fold (inl())

|inr g⇒fold (inr (λy : τ. f(g(fy))))
By Rule 1, to prove contextual equivalence of id and v,
we can show d : bool $ (id, v)∈V≈!τ → τ" ∅. Our
proof will be parametric in d, and we will omit the ∅ on
the logical relation hereafter. By the Löb rule, we assume
$(id, v) ∈ V≈!τ → τ" and proceed to prove (id, v) ∈
V≈!τ → τ". Now, by Rules 9 and 4S, we assume x1 : τ ,
x2 : τ , (x1, x2)∈V≈!τ", and it suffices to show:

(x1, case (unfoldx2) of . . .) ∈ E≈!τ"
By Rule 8 (extensionality for unfold), it suffices to show:

(unfoldx1, unfold (case (unfoldx2) of . . .))
∈ E≈!unit + (τ → τ)"

From (x1, x2)∈V≈!τ", it follows that there exist y1, y2

such that x1 = fold y1, x2 = fold y2, and $(y1, y2) ∈
V≈!unit + (τ → τ)". Thus, by expanding out the defini-
tions of x1 and x2 and applying Rules 2 and 5S, our proof
goal reduces to showing that

(y1, unfold (case y2 of . . .)) ∈ E≈!unit + (τ → τ)"

under a strengthened context where the $ modali-
ties have been removed from the earlier assumptions
(y1, y2)∈V≈!unit + (τ → τ)" and (id, v)∈V≈!τ → τ",
thus allowing us to use them (co-)inductively. Now, from
(y1, y2)∈V≈!unit + (τ → τ)", there are two cases:

Case 1 y1 = inl y′1, y2 = inl y′2, and (y′1, y′2)∈V≈!unit".
Hence, y1 = y2 = inl (). Since y1 and
unfold (case y2 of . . .) both !∗ inl (), the result
follows by Rule 4S.

Case 2 y1 = inr y′1, y2 = inr y′2, and (y′1, y′2)∈V≈!τ→τ".
Since unfold (case y2 of . . .)

!∗ unfold (fold (inr (λy : τ. v (y′2 (v y)))))
!∗ inr (λy : τ. v (y′2 (v y))),

to complete the proof, it suffices to show
(y′1, λy : τ. v (y′2 (v y))) ∈ V≈!τ → τ"

Applying Rule 9 (followed by Rule 4S), we assume
z1 : τ , z2 : τ , and (z1, z2)∈V≈!τ", and have to show:

(y′1 z1, v (y′2 (v z2)))∈E≈!τ"
From (id, v) ∈ V≈!τ → τ", together with relatedness
of z1 and z2, we may conclude by Rules 7 and 4S
that (z1, v z2) ∈ E≈!τ". By relatedness of y′1 and y′2
and Rule 7, we have that (y′1 z1, (y′2 (v z2)))∈E≈!τ".
Thus, by Rule 6S, choosing as the evaluation contexts
of interest [·] and v [·], our proof goal reduces to show-
ing that for any z′1 : τ, z′2 : τ such that (z′1, z′2) ∈
V≈!τ", it is the case that (z′1, v z′2) ∈ E≈!τ". As be-
fore, this follows from (id, v) ∈ V≈!τ → τ", together
with Rules 7 and 4S.

6 Related Work and Conclusion
As explained in the Introduction, LSLR is greatly in-

debted to (1) Plotkin and Abadi’s logic for parametricity,
and (2) Appel et al.’s ”very modal model”. However, there
are also significant differences between our work and theirs.

Plotkin and Abadi’s logic was originally developed for
pure System F, as was Abadi, Cardelli and Curien’s Sys-
tem R [1]. (The latter is less expressive, in that the only
relations definable in the logic are those that are maps of
System F functions.) In recent years, several extensions of
PAL to richer languages with effects have been proposed.
Plotkin [22] suggested a variant for a second-order linear
type theory with a polymorphic fixed-point combinator to
combine polymorphism with recursion; it relies on an ab-
stract notion of admissible relations (see also [10]), whereas
our logic LSLR does not. Bierman, Pitts and Russo [8]
equipped the language suggested by Plotkin with an op-
erational semantics, resulting in a programming language
called Lily. Here instead we consider a standard call-by-
value language with impredicative polymorphism and re-
cursive types and show how to define a logic for reasoning
about that language’s operational semantics.
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Our work differs from Appel et al.’s very modal model
in the following ways. The main difference is in the applica-
tion of the Kripke model: whereas Appel et al. use the later
operator $A to reason about type safety (a unary property)
in a low-level language, we use it to reason about contex-
tual approximation and equivalence (binary properties) in a
high-level language. Certain issues, such as the develop-
ment of both symmetric and asymmetric reasoning princi-
ples, do not arise in the unary setting. There are other con-
cerns that do not apply to our setting, such as the desire for
non-monotone predicates (hence our monotonicity axiom,
which simplifies matters). Second, unlike Appel et al., who
define logical operators and types directly in terms of their
model-theoretic interpretation and then prove lemmas about
them, we define our logic axiomatically and then prove it
sound w.r.t. a Kripke model. Although this is perhaps in
practice a minor difference, we adopted our approach to
make clear that our proofs of contextual (in-)equivalences
are completely free of step-indexed reasoning.

As already mentioned, our application of the Löb
rule in connection with a logical-relations method results
in coinductive-style reasoning principles reminiscent of
those used in bisimulation-based methods like Sumii and
Pierce’s [26], or Lassen and Levy’s [16]. Bisimulations
have also been developed for (in-)equational reasoning in
languages with general references and/or control opera-
tors [15, 25, 24]. We hope that the present work will help
to illuminate the relationship between step-indexed logical
relations and bisimulation techniques, perhaps leading to a
more unifying account.

Also related to our use of the Löb rule is the work of
Brandt and Henglein [11], who gave a coinductive axiom-
atization of recursive type equality and subtyping via a
coinduction-like rule. They also defined the semantic in-
terpretation of their subtyping judgment using a stratified,
essentially step-indexed, interpretation.

Finally, a number of logical-relations-based reasoning
methods have been proposed for languages with paramet-
ric polymorphism, recursion, and/or recursive types, e.g.,
[20, 14, 17, 4, 12]. We do not claim that the method pre-
sented in this paper is per se more powerful than prior ap-
proaches. Rather, our goal is to show how to reason about
step-indexed logical relations in a more abstract way, be-
cause step-indexed relations have proven more easily adapt-
able than other logical-relations methods to languages with
effects (particularly state) [3, 5, 19]. We believe that the
work presented here makes an important first step toward
logical step-indexed logical relations for effectful programs.
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