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Abstract. We present a sound and complete proof technique, based on
syntactic logical relations, for showing contextual equivalence of expres-
sions in a λ-calculus with recursive types and impredicative universal
and existential types. Our development builds on the step-indexed PER
model of recursive types presented by Appel and McAllester. We have
discovered that a direct proof of transitivity of that model does not go
through, leaving the “PER” status of the model in question. We show
how to extend the Appel-McAllester model to obtain a logical relation
that we can prove is transitive, as well as sound and complete with re-
spect to contextual equivalence. We then augment this model to support
relational reasoning in the presence of quantified types.

Step-indexed relations are indexed not just by types, but also by the
number of steps available for future evaluation. This stratification is es-
sential for handling various circularities, from recursive functions, to re-
cursive types, to impredicative polymorphism. The resulting construction
is more elementary than existing logical relations which require com-
plex machinery such as domain theory, admissibility, syntactic minimal
invariance, and ��-closure.

1 Introduction

Proving equivalence of programs is important for verifying the correctness of
compiler optimizations and other program transformations, as well as for estab-
lishing that program behavior is independent of the representation of an abstract
type. This representation independence principle guarantees that if one imple-
mentation of an abstraction is exchanged for another, client modules will not be
able to detect a difference.

Program equivalence is generally defined in terms of contextual equivalence.
We say that two programs are contextually equivalent if they have the same ob-
servable behavior when placed in any program context C. Unfortunately, proving
contextual equivalence is difficult in general, since it involves quantification over
all possible contexts. As a result, there’s been much work on finding tractable
techniques for proving contextual equivalence. Many of these are based on the
method of logical relations.

Logical relations specify relations on well-typed terms via structural induc-
tion on the syntax of types. Thus, for instance, logically related functions take
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logically related arguments to related results, while logically related pairs con-
sist of components that are related pairwise. Logical relations may be based
on denotational models (e.g. [1, 2, 3]) or on the operational semantics of a lan-
guage [4, 5, 6, 7]. The latter are also known as syntactic logical relations [8] and
it is this flavor that is the focus of this paper.

To prove the soundness of a logical relation, one must prove the Fundamental
Property (also called the Basic Lemma) which says that any well-typed term is
related to itself. For simple type systems, it is fairly straightforward to prove
the Fundamental Property in the absence of nontermination. The addition of
recursive functions, however, complicates matters: establishing the Fundamen-
tal Property now requires proving additional “unwinding” lemmas [9, 6, 7, 10]
which show that in any terminating computation a recursively defined function
is approximated by its finite unrollings. More challenging still is the addition of
recursive types and impredicative quantified types1 since the logical relation can
no longer be defined by induction on types. Thus, showing the existence of a
relational interpretation of recursive types requires proving a nontrivial minimal
invariance property [3, 10, 8, 11, 12].

Appel and McAllester [13] proposed a radically different solution to the prob-
lem of recursive types. They defined intensional types, based on the operational
semantics of the language, that are indexed by the number of available (future)
execution steps. This extra information is sufficient to solve recursive equations
on types. Appel and McAllester also presented a PER (relational) model of re-
cursive types, which we build on in this paper. The advantage of step-indexed
logical relations is that they avoid complex machinery like domain theory, ad-
missibility, syntactic minimal invariance, and ��-closure (biorthogonality). The
approach is promising since unary step-indexed models have scaled well to ad-
vanced features like impredicative quantified types and general references (i.e.,
mutable references that can store functions, recursive types, other references,
and even impredicative quantified types) [14, 15].

Appel and McAllester proved the Fundamental Property for their PER model
of equi-recursive types, and conjectured that their model was sound with respect
to contextual equivalence. We show that their claim is correct — to be precise,
we show soundness for a calculus with iso-recursive types, but the essence of the
model is the same.

We discovered, however, that the expected proof of transitivity for the Appel-
McAllester model does not go through. To definitively show that their model is
not transitive we tried to find a counterexample, but could not. Thus, we note
that the transitivity of the Appel-McAllester model remains an open problem.

In Section 2 we consider a λ-calculus with iso-recursive types and present a
sound and complete logical relation for the language. We also show how a direct
proof of transitivity of the Appel-McAllester model fails, and discuss some of
the peculiarities of the step-indexed approach. In Section 3 we extend the logical
relation to support quantified types. Proofs of all lemmas in the paper and

1 A quantified type such as ∀α. τ is impredicative if α may be instantiated with any
type, including ∀α. τ itself.
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several examples to illustrate the use of our logical relation are given in the
accompanying technical report [16].

2 Recursive Types

We consider a call-by-value λ-calculus with iso-recursive types (dubbed the λrec-
calculus). Figure 1 presents the syntax and small-step operational semantics for
the language, which supports booleans and pairs in addition to recursive types.
We define the operational semantics for λrec as a relation between closed terms e.
We use evaluation contexts to lift the primitive rewriting rules to a standard, left-
to-right, innermost-to-outermost, call-by-value interpretation of the language.
We say that a term e is irreducible (irred(e)) if e is a value (val(e)) or if e is a
“stuck” expression to which no operational rule applies. We also use e ⇓ as an
abbreviation for ∃e′. e �−→∗ e′ ∧ val(e ′).

Types τ ::= bool | τ1 × τ2 | τ1 → τ2 | α | µα. τ
Expressions e ::= x | tt | ff | if e0, e1, e2 | 〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 |

λx. e | e1 e2 | fold e | unfold e
Values v ::= tt | ff | 〈v1, v2〉 | λx. e | fold v

Eval Ctxts E ::= [·] | ifE, e1, e2 | let 〈x1, x2〉 =E in e | E e | v E | foldE | unfoldE

(iftrue) if tt, e1, e2 �−→ e1

(iffalse) if ff, e1, e2 �−→ e2

(letpair) let 〈x1, x2〉 = 〈v1, v2〉 in e �−→ e[v1/x1][v2/x2]

(app) (λx. e) v �−→ e[v/x]

(unfold) unfold (fold v) �−→ v

(ctxt)
e �−→ e′

E[e] �−→ E[e′]

Fig. 1. λrec Syntax and Operational Semantics

Typing judgments in λrec have the form Γ � e : τ where the context Γ is
defined as follows:

Value Context Γ ::= • | Γ, x:τ .

Thus, Γ is used to track the set of variables in scope, along with their (closed)
types. There may be at most one occurrence of a variable x in Γ . The λrec static
semantics is entirely conventional (see, e.g., [17]) so we only show selected rules
in Figure 2. We use the abbreviated judgment � e : τ when the value context is
empty.

Theorem 1 (λrec Safety). If • � e : τ and e �−→∗ e′, then either e′ is a value,
or there exists an e′′ such that e′ �−→ e′′.
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Γ � e : τ

(Var)
Γ � x : Γ (x)

(Fn)
Γ, x:τ1 � e : τ2

Γ � λx. e : τ1 → τ2
(App)

Γ � e1 : τ1 → τ2 Γ � e2 : τ1

Γ � e1 e2 : τ2

(Fold)
Γ � e : τ [µα. τ/α]

Γ � fold e : µα. τ
(Unfold)

Γ � e : µα. τ

Γ � unfold e : τ [µα. τ/α]

Fig. 2. λrec Static Semantics (Selected Rules)

2.1 λrec: Contextual Equivalence

A context C is an expression with a single hole [·] in it. Typing judgments for
contexts have the form Γ1 � C : (Γ � τ) � τ1, where (Γ � τ) indicates the type
of the hole — that is, if Γ � e : τ , then Γ1 � C[e] : τ1.

Definition 2 (λrec Contextual Approximation �ctx & Equivalence 	ctx).
If Γ � e : τ and Γ � e′ : τ , we write Γ � e �ctx e′ : τ to mean

∀C, τ1. • � C : (Γ � τ ) � τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

Two terms are contextually equivalent if they contextually approximate one an-
other:

Γ � e �ctx e′ : τ
def= Γ � e �ctx e′ : τ ∧ Γ � e′ �ctx e : τ .

2.2 λrec: Logical Relation

Our step-indexed logical relation for λrec is based on the PER model for equi-
recursive types presented by Appel and McAllester [13] (henceforth AM). The
latter claimed, but did not prove, that their PER model was sound with respect
to contextual equivalence. We have proved that this is indeed the case. However,
“PER” may be somewhat of misnomer for the AM model since the status of
transitivity is unclear, as we shall show.

In both models, the relational interpretation RV �τ� of a type τ is a set
of triples of the form (k, v, v′) where k is a natural number (called the ap-
proximation index or step index ), and v and v′ are (closed) values. Intuitively,
(k, v, v′) ∈ RV �τ� says that in any computation running for no more than k
steps, v approximates v′ at the type τ . Our model differs from the AM model
in that whenever (k, v, v′) ∈ RV �τ�, we additionally require that • � v′ : τ . This
additional constraint enables us to prove the transitivity of our logical relation.
Moreover, restricting the model to terms that are well-typed seems essential
for completeness with respect to contextual equivalence, as others have also
noted [12]. We defer an explanation of why we don’t also require • � v : τ till
Section 2.3.

Figure 3 gives the definition of our logical relation; shaded parts of the defini-
tions have no analog in the AM model. We use the meta-variable χ to denote sets
of tuples of the form (k, v, v′), where v and v′ are closed values (v, v′∈ CValues).



Step-Indexed Syntactic Logical Relations for Recursive and Quantified Types 73

Relτ
def= {χ ∈ 2Nat×CValues×CValues | ∀(j, v, v′) ∈ χ. • � v′ : τ ∧

∀i ≤ j. (i, v, v′) ∈ χ}
�χ�k

def= {(j, v, v′) | j < k ∧ (j, v, v′) ∈ χ}

RV �α�ρ = ρsem(α)

RV �bool�ρ = {(k, v, v′) | � v′ : bool ∧
(v = v′ = tt ∨ v = v′ = ff)}

RV �τ1 × τ2�ρ = {(k,〈v1, v2〉,〈v′
1, v

′
2〉) | � 〈v′

1, v
′
2〉 : (τ1 × τ2)[ρ] ∧

(k, v1, v
′
1) ∈ RV �τ1�ρ ∧ (k, v2, v

′
2) ∈ RV �τ2�ρ}

RV �τ1 →τ2�ρ = {(k, λx. e, λx. e′) | � λx. e′ : (τ1 → τ2)[ρ] ∧
∀j < k, v, v′.

(j, v, v′) ∈ RV �τ1�ρ =⇒
(j, e[v/x], e′[v′/x]) ∈ RC �τ2�ρ}

RV �µα. τ�ρ = {(k, fold v, fold v′) | � fold v′ : (µα. τ )[ρ] ∧
∀j < k.

let χ = �RV �µα. τ�ρ�j+1 in

(j, v, v′) ∈ RV �τ�ρ[α �→ (χ, (µα. τ )[ρ] )]}
RC �τ� ρ = {(k, e, e′) | ∀j < k, ef .

e �−→j ef ∧ irred(ef ) =⇒
∃e′

f . e′ �−→∗ e′
f ∧ (k − j, ef , e′

f ) ∈ RV �τ�ρ}
RG �•� = {(k, ∅, ∅)}

RG �Γ, x:τ� = {(k, γ[x �→ v], γ′[x �→ v′])| (k, γ, γ′)∈ RG �Γ � ∧ (k, v, v′) ∈ RV �τ�∅}

Γ � e ≤ e′ : τ
def= Γ � e : τ ∧ Γ � e′ : τ ∧

∀k ≥ 0. ∀γ, γ′.
(k, γ, γ′) ∈ RG �Γ � =⇒ (k, γ(e), γ′(e′)) ∈ RC �τ�∅

Γ � e ∼ e′ : τ
def= Γ � e ≤ e′ : τ ∧ Γ � e′ ≤ e : τ

Fig. 3. λrec Relational Model (Shaded �∈ Appel-McAllester)

For any set χ, we define the k-approximation of the set (written �χ�k) as the
subset of its elements whose indices are less than k.

We define Relτ (where τ is a closed syntactic type) as the set of those sets
χ ∈ 2Nat×CValues×CValues that have the following two properties: if (k, v, v′) ∈ χ,
then v′ must be well-typed with type τ , and χ must be closed with respect to a
decreasing step-index.

We use the meta-variable ρ to denote type substitutions. These are partial
maps from type variables α to pairs (χ, τ) where χ is the semantic substitution
for α and τ (a closed syntactic type) is the syntactic substitution for α. We note
that our definitions ensure that if ρ(α) = (χ, τ) then χ ∈ Relτ . Since types in λrec

may contain free type variables, the interpretation of a type τ is parametrized
by a type substitution ρ such that FTV (τ) ⊆ dom(ρ). We use the following
abbreviations:
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– Let ρ(α) = (χ, τ). Then ρsem(α) = χ and ρsyn(α) = τ .
– Let ρ = {α1 �→ (χ1, τ1), . . . , αn �→ (χn, τn)}.

Then τ [ρ] is an abbreviation for τ [τ1/α1, τ2/α2, . . . , τn/αn].

Next, we consider the relational interpretation RV �τ� ρ of each type τ . In
each case, note that if (k, v, v′) ∈ RV �τ� ρ then � v′ : (τ)[ρ].

Booleans. Two values are related at the type bool for any number of steps k ≥ 0,
if they are both tt or both ff.

Pairs. The pairs 〈v1, v2〉 and 〈v′1, v′2〉 are related at type τ1 × τ1 for k steps if vi

and v′i are related for k steps at the type τi (for i ∈ {1, 2}).

Functions. Since functions are suspended computations, their interpretation is
given in terms of the interpretation of types as computations (see below). Two
functions are related if they map related arguments to related results. Specif-
ically, λx. e and λx. e′ are related at the type τ1 → τ2 for k steps if, at some
point in the future, when there are j < k steps left to execute, and there are
arguments va and v′a that are related at the type τ1 for j steps, then e[va/x] and
e′[v′a/x] are related as computations of type τ2 for j steps.

Recursive Types. One would expect the values fold v and fold v′ to be related
at the type µα. τ for k steps if v and v′ are related at the type τ [µα. τ/α] for
j < k steps. We show that the latter is equivalent to what is required by the
definition in Figure 3. Note that by the definition of �·�k

(j, v, v′) ∈ RV �τ [µα. τ/α]]� ρ ⇔ (j, v, v′) ∈ �RV �τ [µα. τ/α]� ρ�j+1 .

We prove a type substitution lemma (see [16]) that allows us to conclude that if
χ = �RV �µα. τ� ρ�j+1 then:

�RV �τ [µα. τ/α]� ρ�j+1 = �RV �τ� ρ[α �→ (χ, (µα. τ )[ρ])]�j+1 .

Hence,

(j, v, v′) ∈ RV �τ [µα. τ/α]� ρ
⇔ (j, v, v′) ∈ �RV �τ [µα. τ/α]� ρ�j+1 by �·�k

⇔ (j, v, v′) ∈ �RV �τ� ρ[α �→ (χ, (µα. τ )[ρ])]�j+1 by type subst
⇔ (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, (µα. τ )[ρ])] by �·�k

which is exactly what is required by the definition of RV �µα. τ� ρ.

Computations. Two closed expressions e and e′ are related as computations of
type τ for k steps as follows. If e steps to an irreducible term ef in j < k steps,
then e′ must also step to some irreducible e′f . Furthermore, both ef and e′f must
be values that are related for the remaining k − j steps.

What is surprising about this definition is that e must terminate in j < k
steps, while e′ may terminate in any number of steps, say i. Hence, i may be
greater than k. This has ramifications for transitivity in the AM model and we
shall return to this point shortly.
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Logical Relation. If Γ � e : τ and Γ � e′ : τ , then we write Γ � e ≤ e′ : τ to
mean that for all k ≥ 0, if γ and γ′ are mappings from variables x to closed
values that are related for k steps at Γ , then γ(e) and γ′(e′) are related for k
steps as computations of type τ . We say e and e′ are logically equivalent, written
Γ � e ∼ e′ : τ , if they logically approximate one another.

We now have to prove that each type τ is a valid type — that is, that the
relational interpretation of τ belongs to Relτ (i.e., RV �τ� ρ ∈ Relτ [ρ]). This
involves showing well-typedness and closure under decreasing step-index.

Next, we prove a number of nontrivial lemmas (see the technical report [16]).
Specifically, we prove that the logical relation defined in Figure 3 has the com-
patibility and substitutivity properties (see e.g., [9]). These allow us to show that
the λrec typing rules preserve the logical relation, and hence prove the following
lemma.

Lemma 3 (λrec Fundamental Property / Reflexivity).
If Γ � e : τ , then Γ � e ≤ e : τ .

2.3 Transitivity and the Appel-McAllester Model

Let us ignore the shaded parts of Figure 3 and try to prove the following lemma
with the resulting definitions.

Proposed Lemma (Transitivity: Appel-McAllester)
If Γ � e1 ≤ e2 : τ and Γ � e2 ≤ e3 : τ , then Γ � e1 ≤ e3 : τ .
Proof Attempt: Suppose k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Show (k, γ(e1), γ′(e3)) ∈ RC �τ� ∅. Suppose j < k, γ(e1) �−→j ef1 , and irred(ef1).
Show ∃ef3 .γ

′(e3) �−→∗ ef3 ∧ (k − j, ef1 , ef3) ∈ RV �τ� ∅.
Instantiate Γ � e1 ≤ e2 : τ with k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Hence, (k, γ(e1), γ′(e2)) ∈ RC �τ� ∅.
Instantiate this with j < k, γ(e1) �−→j ef1 , and irred(ef1).
Hence, ∃ef2 , i such that i ≥ 0, γ′(e2) �−→i ef2 , and (k − j, ef1 , ef2) ∈ RV �τ� ∅.
Now we need to use the premise Γ � e2 ≤ e3 : τ . But what should we instantiate
this with? We consider two ways we could proceed.

(i) Instantiate Γ � e2 ≤ e3 : τ with k, γ, γ′. Note that k ≥ 0 and (k, γ, γ′) ∈
RG �Γ �. Hence, (k, γ(e2), γ′(e3)) ∈ RC �τ� ∅.
Problem: We could instantiate this with i and ef2 , but at that point we are
stuck since we cannot show i < k (since i may be greater than k), and we
cannot show γ(e2) �−→i ef2 (we only have γ′(e2) �−→i ef2).

(ii) Instantiate Γ �e2 ≤ e3 :τ with i + 1, γ′, γ′.
Problem: We cannot show (i + 1, γ′, γ′) ∈ RG �Γ �. All we know is that
(k, γ, γ′) ∈ Γ , where i may be greater than k.

We note that if we restrict our attention to closed terms e1, e2, e3, then
the above lemma can be proved. In the case of open terms, however, the status
of transitivity of the AM model is unclear as we have been unable to find a
counterexample.
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There are several things one could attempt in order to rectify the above
problem with the AM model (unshaded parts of Figure 3). One problem we
encountered was that i may be greater than k. To get around this, we could
change the definition of (k, e, e′) ∈ RC �τ� to require that e′ must terminate
in less than k steps. Unfortunately, if we step back and examine the resulting
meaning of Γ � e1 ∼ e2 : τ , we see that the latter now requires that both e1 and
e2 must terminate in exactly the same number of steps. Clearly such a logical
relation would not be very useful (unless we are concerned with reasoning about
timing leaks in an information-flow setting). Other formulations involving the
use of not one, but two step-indices (where the second bounds the number of
steps in which e′ must terminate) also lead to models where both terms are
required to terminate in exactly the same number of steps.

Since we want a logical relation that considers programs equivalent modulo
the number of steps they take, we will not change the definition of RC �τ�.
Instead we fix the problem with transitivity by moving to a typed setting where
(k, v, v′) ∈ RV �τ� ∅ implies � v′ : τ . Assuming the definitions in Figure 3,
including the shaded parts, let us again try to prove transitivity.

Lemma 4 (λrec : Transitivity). (Our model: Figure 3, including shaded parts)
If Γ � e1 ≤ e2 : τ and Γ � e2 ≤ e3 : τ , then Γ � e1 ≤ e3 : τ .

Proof. We start at the point where we got stuck before. Now from (k, γ, γ′) ∈
RG �Γ � we can conclude that � γ′ : Γ . By reflexivity (Fundamental Property,
Lemma 3) it follows that � γ′ ≤ γ′ : Γ . Hence, we can show that for all z ≥ 0,
(z, γ′, γ′) ∈ RG �Γ � holds. Now we may instantiate Γ � e2 ≤ e3 : τ above with
i+1 since we know that (i+1, γ′, γ′) ∈ RG �Γ �. The rest of the proof is relatively
straightforward and is given in the accompanying technical report [16].

Seemingly Asymmetric Well-Typedness Requirement. The definitions in Figure 3
may have left the reader with the impression that we only require terms on one
side of our logical relation to be well-typed. This, however, is not the case. In
particular, notice that in the definition of Γ � e ≤ e′ : τ , we require that both
e and e′ be well-typed. However, once we have picked a step-index k (i.e., once
we have moved under the ∀k quantifier), there is an asymmetry in the model in
that when (k, e, e′) ∈ RC �τ�, k pertains (as a bound) only to e and not to e′.
As a result of this asymmetry, when working with a specific k (in the definition
of RV �τ�) we do not need to know that v has type τ in the limit, while the
converse is true of v′. Hence, at the value interpretation level RV �τ�, we chose
only to require � v′ : τ . One could add the requirement � v : τ in the interest of
symmetry, but it would simply lead to additional proof obligations being shuffled
around. It would also complicate definitions when we get to quantified types as
Relτ would have to be replaced by Relτ1,τ2 (since in the presence of quantified
types we wish to relate values of different types).

2.4 λrec: Soundness

To prove that our logical relation is sound with respect to contextual equivalence,
we first define what it means for two contexts to be logically related.
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Definition 5 (λrec Logical Relation: Contexts).
Γ1 � C ≤ C′ : (Γ � τ ) � τ1

def= ∀e, e′. Γ � e ≤ e′ : τ =⇒ Γ1 � C[e] ≤ C′[e′] : τ1

Next, we prove the compatibility lemmas for contexts, which allows us to prove
the following.

Lemma 6 (λrec Reflexivity: Contexts).
If Γ1 � C : (Γ � τ) � τ1, then Γ1 � C ≤ C : (Γ � τ) � τ1.

Theorem 7 (λrec Soundness: ≤ ⊆ �ctx ).
If Γ � e ≤ e′ : τ then Γ � e �ctx e′ : τ .

Proof. Suppose • � C : (Γ � τ) � τ1 and C[e] ⇓. Hence, there exist vf , k such
that C[e] �−→k vf . We must show C[e′] ⇓.
Applying Lemma 6 to • � C : (Γ � τ) � τ1, we have • � C ≤ C : (Γ � τ) � τ1.
Instantiate this with Γ � e ≤ e′ : τ . Hence, • � C[e] ≤ C[e′] : τ1.
Instantiate this with k + 1 ≥ 0 and (k + 1, ∅, ∅) ∈ RG �•�.
Hence, (k + 1, C[e], C[e′]) ∈ RC �τ1� ∅.
Instantiate this with k < k + 1, C[e] �−→k vf , and irred(vf ).
Hence, exists v′f such that C[e′] �−→∗ v′f . Hence, C[e′] ⇓.

2.5 λrec: Completeness

To show that our logical relation is complete with respect to contextual equiva-
lence, we make use of the notion of ciu-equivalence introduced by Mason and Tal-
cott [18]. Two closed terms of the same closed type are said to be ciu-equivalent
if they have the same termination behavior in any evaluation context E (a use
of the term). The relation is extended to open terms via closing substitutions
(i.e., closed instantiations). We note that evaluation contexts E are a simply
a subset of general contexts C and that only closed terms can be placed in an
evaluation context.

Definition 8 (λrec Ciu Approximation �ciu & Equivalence 	ciu). Let
Γ � e : τ and Γ � e′ : τ .

Γ � e �ciu e′ : τ
def= ∀γ, E, τ1. • � γ : Γ ∧ • � E : (• � τ ) � τ1 ∧

E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Γ � e �ciu e′ : τ
def= Γ � e �ciu e′ : τ ∧ Γ � e′ �ciu e : τ

Theorem 9 (λrec : �ctx ⊆ �ciu). If Γ � e �ctx e′ : τ then Γ � e �ciu e′ : τ .

To prove that two ciu-equivalent terms are logically related, we will need the
following lemma which shows that our logical relation respects ciu equivalence.
Pitts [9] proves a similar property which he calls “equivalence-respecting”.

Lemma 10 (λrec Equivalence-Respecting: Closed Values). If (k, v1, v2) ∈
RV �τ� ∅ and • � v2 �ciu v3 : τ , then (k, v1, v3) ∈ RV �τ� ∅.
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Proof. By induction on k and nested induction on the structure of the (closed)
type τ .

Theorem 11 (λrec : �ciu ⊆ ≤). If Γ � e �ciu e′ : τ then Γ � e ≤ e′ : τ .

Proof. Suppose k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �. Show (k, γ(e), γ′(e′)) ∈ RC �τ� ∅.
Suppose j < k, γ(e) �−→j ef , and irred(ef ).
Show ∃e′′f . γ′(e′) �−→∗ e′′f ∧ (k − j, ef , e′′f) ∈ RV �τ� ∅.
From Γ � e �ciu e′ : τ , we have Γ � e : τ . Applying Lemma 3 to Γ � e : τ ,
we have Γ � e ≤ e : τ . Instantiate this with k ≥ 0 and (k, γ, γ′) ∈ RG �Γ �.
Hence, (k, γ(e), γ′(e)) ∈ RC �τ� ∅. Instantiate this with j < k, γ(e) �−→j ef , and
irred(ef ). Hence, ∃e′f such that γ′(e) �−→∗ e′f and (k − j, ef , e′f ) ∈ RV �τ� ∅.
Hence, ef ≡ vf and e′f ≡ v′f . Hence, γ′(e) ⇓ v′f .
Instantiate Γ � e �ciu e′ : τ with � γ′ : Γ (follows from (k, γ, γ′) ∈ RG �Γ �),
and • � [·] : (• � τ) � τ , and γ′(e) ⇓. Hence, ∃v′′f such that γ′(e′) �−→∗ v′′f .
Remains to show: (k − j, vf , v′′f ) ∈ RV �τ� ∅.
This follows from Lemma 10 applied to (k − j, vf , v′f ) ∈ RV �τ�∅ and
v′f �ciu v′′f : τ (which follows from Γ � e �ciu e′ : τ and γ′(e) ⇓ v′f and
γ′(e′) ⇓ v′′f ).

3 Type Abstraction

We now extend λrec with impredicative universal and existential types; we call
the extended language the λ∀∃-calculus. The syntactic extensions to support
quantified types are as follows:

Types τ ::= . . . | ∀α. τ | ∃α. τ
Values v ::= . . . | Λ. e | pack v
Expressions e ::= . . . | e [ ] | unpack e1 asx in e2

Note that terms are not decorated with types (which was also the case for λrec).
Here we let the vestigial operators remain in the untyped syntax in order to
preserve the operational semantics. For instance, the term Λ. e is a suspended
computation (normally written Λα.e); e [ ] runs the suspended computation. We
extend the λrec operational semantics as follows:

Evaluation Contexts E ::= . . . | E [ ] | unpackE asx in e

(inst) (Λ. e) [ ] �−→ e

(unpack) unpack (pack v) asx in e �−→ e[v/x]

λ∀∃ typing judgments have the form ∆; Γ � e : τ , where the context Γ is as
before, and the context ∆ is defined as follows:

Type Context ∆ ::= • | ∆, α .

The type context ∆ is used to track the set of type variables in scope. We modify
the typing rules in Figure 2 by adding ∆ to each typing judgment. Figure 4 gives
the typing rules for the additional terms in λ∀∃. We prove soundness of the λ∀∃

typing rules, show that value and type substitution hold, and prove type safety.
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∆; Γ � e : τ

(All)
∆, α; Γ � e : τ

∆; Γ � Λ. e : ∀α. τ
(Inst)

∆; Γ � e : ∀α. τ ∆ � τ1

∆; Γ � e [ ] : τ [τ1/α]

(Pack)
∆ � τ1 ∆; Γ � e : τ [τ1/α]

∆; Γ � pack e : ∃α. τ
(Unpack)

∆; Γ � e1 : ∃α. τ1 ∆ � τ2

∆, α; Γ, x : τ1 � e2 : τ2

∆; Γ � unpack e1 asx in e2 : τ2

Fig. 4. λ∀∃ Static Semantics

Theorem 12 (λ∀∃ Safety). If •; • � e : τ and e �−→∗ e′, then either e′ is a
value, or there exists an e′′ such that e′ �−→ e′′.

3.1 λ∀∃: Contextual Equivalence

Typing judgments for contexts C now have the form ∆1; Γ1 � C : (∆; Γ �τ) � τ1
(where (∆; Γ � τ) represents the type of the hole) indicating that whenever
∆; Γ � e : τ , then ∆1; Γ1 � C[e] : τ1.

Definition 13 (λ∀∃ Contextual Approximation �ctx ).
If ∆; Γ � e : τ and ∆; Γ � e′ : τ , then we write ∆; Γ � e �ctx e′ : τ to mean

∀C, τ1. •; • � C : (∆; Γ � τ ) � τ1 ∧ C[e] ⇓ =⇒ C[e′] ⇓ .

3.2 λ∀∃: Logical Relation

As in the case of λrec, the relational interpretation of a type RV �τ� ρ in λ∀∃

is a set of triples of the form (k, v, v′). However, there is now one additional
property (in addition to well-typedness of the second value of each tuple and
closure under decreasing step-index) that every set χ in Relτ must satisfy. To
motivate this property, we take the reader back to the proof of completeness
of λrec, specifically to Lemma 10 which establishes that the relational value
interpretation RV �τ� is equivalence-respecting. The proof of that lemma requires
induction on k and nested induction on the structure of the closed type τ . In
the case of λ∀∃, when we get to the proof of the corresponding lemma, τ may
have free type variables. Thus, one of the cases we must consider for the inner
induction is τ = α. Assuming that ρ(α) = (χ, τα), we will be required to show
that if (k, v1, v2) ∈ RV �α� ρ ≡ ρsem(α) ≡ χ and � v2 �ciu v3 : α[ρ] (where
α[ρ] ≡ τα), then (k, v1, v3) ∈ χ. Note that χ ∈ Relτα . Thus, we must add this
requirement directly to the definition of Relτ .

A more informal justification is that in the presence of quantified types, we
can instantiate a type variable with a relational interpretation of our own choos-
ing. Thus, we have to show that the relation we pick satisfies certain properties,
one of which is that it must be equivalence-respecting.

The modified definition of Relτ is given below. It makes use of a notion of
ciu-equivalence restricted to closed values.
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v ≺ciu v′ : τ
def= ∀E, τ1. •; • � E : (•; • � τ ) � τ1 ∧ E[v] ⇓ =⇒ E[v′] ⇓

Relτ
def= {χ ∈ 2Nat×CValues×CValues |

∀(j, v, v′) ∈ χ. � v′ : τ ∧
∀i ≤ j. (i, v, v′) ∈ χ ∧
(∀v′′. v′ ≺ciu v′′ : τ =⇒ (j, v, v′′) ∈ χ)}

The relational interpretation of universal and existential types is given in
Figure 5. Two values pack v and pack v′ are related at the type ∃α. τ for k steps
if there exists a syntactic type τ2 and a semantic interpretation χ ∈ Relτ2 such
that for all j < k, (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, τ2)]. Here we only pick a type τ2
for the second value v′ while the type of v is left unrestricted. Intuitively, this
suffices because when showing logical equivalence of two terms (∆; Γ �e∼ e′ :τ),
we pick a type for v′ while proving ∆; Γ �e≤ e′ :τ and we pick a type for v while
proving ∆; Γ � e′ ≤ e : τ . The relational interpretation of universal types is the
dual of existential types.

RV �∀α. τ�ρ = {(k, Λ. e, Λ. e′) | � Λ. e′ : (∀α. τ )[ρ] ∧
∀τ2, χ. χ ∈ Relτ2 =⇒

∀j < k. (j, e, e′) ∈ RC �τ� ρ[α �→ (χ, τ2)]}

RV �∃α. τ�ρ = {(k, pack v, pack v′) | � pack v′ : (∃α. τ )[ρ] ∧
∃τ2, χ. χ ∈ Relτ2 ∧

∀j < k. (j, v, v′) ∈ RV �τ� ρ[α �→ (χ, τ2)]}

RD �•� = {∅}
RD �∆, α� = {ρ[α �→ (χ, τ2)]) | ρ ∈ RD �∆� ∧ χ ∈ Relτ2}

RG �•�ρ = {(k, ∅, ∅)}
RG �Γ, x:τ�ρ = {(k, γ[x �→ v], γ′[x �→ v′]) | (k, γ, γ′) ∈ RG �Γ �ρ ∧ (k, v, v′) ∈ RV �τ�ρ}

∆; Γ � e ≤ e′ : τ
def= ∆; Γ � e : τ ∧ ∆; Γ � e′ : τ ∧

∀k ≥ 0. ∀ρ, γ, γ′. ρ ∈ RD �∆� ∧ (k, γ, γ′) ∈ RG �Γ �ρ =⇒
(k, γ(e), γ′(e′)) ∈ RC �τ�ρ

Fig. 5. λ∀∃ Relational Model

The relational interpretation of types as computations is defined exactly as
before. The definition of the logical relation ∆; Γ � e ≤ e′ : τ appears in Figure 5.

We prove that each type τ is a valid type: RV �τ� ρ ∈ Relτ [ρ] . Specifically,
we have to show well-typedness, closure under decreasing step-index, and the
following lemma.

Lemma 14 (λ∀∃ Rel Equivalence-Respecting). Let ρ ∈ RD �∆� and ∆ � τ .
If (k, v1, v2) ∈ RV �τ�ρ and v2 ≺ciu v3 : τ [ρ], then (k, v1, v3) ∈ RV �τ�ρ.

To show the Fundamental Property of the logical relation, we prove the new set
of compatibility lemmas, as well as value and type substitutivity.
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Lemma 15 (λ∀∃ Fundamental Property / Reflexivity).
If ∆; Γ � e : τ then ∆; Γ � e ≤ e : τ .

3.3 λ∀∃ Soundness and Completeness

We prove that the logical relation in Figure 5 is sound with respect to contextual
equivalence. The overall proof structure is the same as for λrec.

Theorem 16 (λ∀∃ : ≤ ⊆ �ctx ). If ∆; Γ � e ≤ e′ : τ then ∆; Γ � e �ctx e′ : τ .

To establish completeness, we again rely on the notion of ciu-equivalence, which
we define for λ∀∃ as follows.

Definition 17 (λ∀∃ Ciu Approximation �ciu).
Let ∆; Γ � e : τ and ∆; Γ � e′ : τ . If δ is a mapping from type variables α to closed
syntactic types τ , we write δ |= ∆ whenever dom(δ) = ∆.

∆; Γ � e �ciu e′ : τ
def= ∀δ, γ, E, τ1. δ |= ∆ ∧ � γ : δ(Γ ) ∧

•; • � E : (•; • � δ(τ )) � τ1 ∧
E[γ(e)] ⇓ =⇒ E[γ(e′)] ⇓

Theorem 18 (λ∀∃ : �ctx ⊆ �ciu ⊆ ≤).
If ∆; Γ � e �ctx e′ : τ then ∆; Γ � e �ciu e′ : τ .
If ∆; Γ � e �ciu e′ : τ then ∆; Γ � e ≤ e′ : τ .

3.4 Example: Simple Existential Packages

For lack of space, we present only one simple example (from Sumii and Pierce[19])
to illustrate the use of our logical relation to prove contextual equivalence. Addi-
tional examples involving existential packages, recursive types, and higher-order
functions are given in the technical report [16].

Notation: Let χ be a set of tuples of the form (k, v, v′) such that � v′ : τ . We
define the closure of χ under ciu approximation at type τ as follows:

χ∗
τ = {(k, v1, v2) | (k, v1, v2) ∈ χ ∨ ((k, v1, v) ∈ χ ∧ v �ciu v2 : τ )}

Example: Consider the following existential packages e and e′ of type τ :

e = pack 〈1, λx. x
int= 0〉 e′ = pack 〈tt, λx.¬x〉 τ = ∃α. α × (α → bool)

Show •; •�e∼e′ :τ . We only show •; •�e≤ e′ :τ . •; •�e′≤ e :τ is symmetric.
Suppose k ≥ 0. Unwinding definitions, we must show (k, e, e′) ∈ RV �τ� ≡

(k, pack 〈1, λx. x
int= 0〉, pack 〈tt, λx. ¬x〉) ∈ RV �∃α. α × (α → bool)� ∅.

Let χ0 = {(k′, 1, tt) | k′ ≥ 0}. Take τ2 = bool and χ = (χ0)∗bool.
Note that χ ∈ Relbool (from defn of (χ0)∗bool). Suppose j < k.
Show (j, 〈1, λx. x

int= 0〉, 〈tt, λx. ¬x〉) ∈ RV �α × (α → bool)� ∅[α �→ (χ, bool)],
which follows from:

– � 〈tt, λx. ¬x〉 : (α × (α → bool))[bool/α]
– (j, 1, tt) ∈ RV �α� ∅[α �→ (χ, bool)] ≡ (j, 1, tt) ∈ χ (by defn of RV �α� ρ)

which follows from χ ⊇ χ0 ⊇ {(j, 1, tt)}, which follows from defn of χ.
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– (j, (λx. x
int= 0), (λx. ¬x))∈RV �α→bool�∅[α �→(χ, bool)], which follows from:

First, note that � λx. ¬x : (α → bool)[bool/α] ≡ � λx. ¬x : bool → bool.
Next, suppose i < j, and (i, v1, v

′
1) ∈ RV �α� ∅[α �→ (χ, bool)].

Note that RV �α�∅[α �→ (χ, bool)] ≡ χ by defn of RV �α�ρ. Hence,
(i, v1, v

′
1)∈χ.

Then, from defn of χ, v1 = 1 and, using more subtle reasoning, v′1 = tt.
Show: (i, (x int= 0)[v1/x], (¬x)[v′1/x]) ∈ RC �bool� ∅[α �→ (χ, bool)]

≡ (i, v1
int= 0, ¬v′1) ∈ RC �bool� ∅[α �→ (χ, bool)]

≡ (i, 1 int= 0, ¬tt) ∈ RC �bool� ∅[α �→ (χ, bool)] .

Note that (1 int= 0) �−→1 ff and (¬tt) �−→∗ ff. Hence, remains to show:
(i − 1, ff, ff) ∈ RV �bool� ∅[α �→ (χ, bool)], which is immediate.

4 Related Work and Conclusion

Logical relations were first developed for denotational semantics of typed λ-
calculi (e.g., [1, 2]). Early examples of the use of logical relations based on oper-
ational semantics include Tait’s [4] proof of strong normalization of the simply
typed λ-calculus, and Girard’s method of reducibility candidates [5] used to
prove normalization for System F.

Pitts [7, 6, 9] developed syntactic logical relations for a λ-calculus with re-
cursive functions and quantified types (but no recursive types). To support
recursive functions without using denotational techniques, Pitts makes use of
��-closure (or biorthogonality [12]). Relations that are ��-closed can be im-
mediately shown to be equivalence-respecting and admissible [9]. In comparison,
we directly require that our relations be equivalence-respecting and closed under
decreasing step-index — the latter, effectively, gives us admissibility.

Birkedal and Harper [10] and Crary and Harper [8] extended syntactic log-
ical relations with recursive types (the latter also support polymorphic types)
by adapting Pitts’ minimal invariance [3] technique for use in a purely syntactic
setting. Melliès and Vouillon [12, 11] construct a realizability model of a lan-
guage with recursive types and polymorphism based on intuitions from the ideal
model of types [20]. They also present a relational model based on an orthogo-
nality relation between quadruples of terms and contexts [12]. We note that to
show completeness, they too must move to a typed setting. An issue that merits
further investigation is the relationship between the different notions of approx-
imation— i.e., syntactic projections [8], interval types [12], and step counts.

Contextual equivalence may also be proved using bisimulations. Sumii and
Pierce [19] present a bisimulation for recursive and quantified types. Using their
examples as a point of comparison (see [16]) we show that our logical relations
are somewhat easier to use when proving contextual equivalence. Also, unlike
logical relations, Sumii and Pierce note that their bisimulation cannot be used
to derive free theorems [21] based only on types.

We have presented a step-indexed logical relation for recursive and impred-
icative quantified types. The construction is far more elementary than that of
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existing logical relations for such types. In future work, we hope to scale this up
to support dynamically allocated (ML-style) mutable references.
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