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Abstract

We present a proof technique, based on syntactic logical relations, for showing contextual equivalence
of expressions in a A-calculus with recursive types and impredicative universal and existential types. We
show that for recursive and polymorphic types, the method is both sound and complete with respect to
contextual equivalence, while for existential types, it is sound but incomplete. Our development builds on
the step-indexed PER model of recursive types presented by Appel and McAllester. We have discovered
that a direct proof of transitivity of that model does not go through, leaving the “PER” status of the
model in question. We show how to extend the Appel-McAllester model to obtain a logical relation that
we can prove is transitive, as well as sound and complete with respect to contextual equivalence. We
then augment this model to support relational reasoning in the presence of quantified types.

Step-indexed relations are indexed not just by types, but also by the number of steps available for
future evaluation. This stratification is essential for handling various circularities, from recursive func-
tions, to recursive types, to impredicative polymorphism. The resulting construction is more elementary
than existing logical relations which require complex machinery such as domain theory, admissibility,
syntactic minimal invariance, and T T-closure.
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1 Introduction

Proving equivalence of programs is important for verifying the correctness of compiler optimizations and other
program transformations, as well as for establishing that program behavior is independent of the representa-
tion of an abstract type. This representation independence principle guarantees that if one implementation
of an abstraction is exchanged for another, client modules will not be able to detect a difference.

Program equivalence is generally defined in terms of contezrtual equivalence. We say that two programs
are contextually equivalent if they have the same observable behavior when placed in any program context C'.
Unfortunately, proving contextual equivalence is difficult in general, since it involves quantification over all
possible contexts. As a result, there’s been much work on finding tractable techniques for proving contextual
equivalence. Many of these are based on the method of logical relations.

Logical relations specify relations on well-typed terms via structural induction on the syntax of types.
Thus, for instance, logically related functions take logically related arguments to related results, while log-
ically related pairs consist of components that are related pairwise. Logical relations may be based on
denotational models (e.g. [1, 2, 3]) or on the operational semantics of a language [4, 5, 6, 7]. The latter are
also known as syntactic logical relations [8] and it is this flavor that is the focus of this paper.

To prove the soundness of a logical relation, one must prove the Fundamental Property (also called
the Basic Lemma) which says that any well-typed term is related to itself. For simple type systems, it is
fairly straightforward to prove the Fundamental Property in the absence of nontermination. The addition
of recursive functions, however, complicates matters: establishing the Fundamental Property now requires
proving additional “unwinding” lemmas [9, 6, 7, 10] which show that in any terminating computation a
recursively defined function is approximated by its finite unrollings. More challenging still is the addition
of recursive types and impredicative quantified types! since the logical relation can no longer be defined by
induction on types. Thus, showing the existence of a relational interpretation of recursive types requires
proving a nontrivial minimal invariance property [3, 10, 8, 11, 12].

Appel and McAllester [13] proposed a radically different solution to the problem of recursive types. They
defined intensional types, based on the operational semantics of the language, that are indexed by the
number of available (future) execution steps. This extra information is sufficient to solve recursive equations
on types. Appel and McAllester also presented a PER (relational) model of recursive types, which we build
on in this paper. The advantage of step-indexed logical relations is that they avoid complex machinery
like domain theory, admissibility, and syntactic minimal invariance. The approach is promising since unary
step-indexed models have scaled well to advanced features like impredicative quantified types and general
references (i.e., mutable references that can store functions, recursive types, other references, and even
impredicative quantified types) [14, 15].

Appel and McAllester proved the Fundamental Property for their PER model of equi-recursive types,
and conjectured that their model was sound with respect to contextual equivalence. We show that their
claim is correct — to be precise, we show soundness for a calculus with iso-recursive types, but the essence
of the model is the same.

We discovered, however, that the expected proof of transitivity for the Appel-McAllester model does not
go through. To definitively show that their model is not transitive we tried to find a counterexample, but
could not. Thus, we note that the transitivity of the Appel-McAllester model remains an open problem.

In Section 2 we consider a A-calculus with iso-recursive types and present a sound and complete logical
relation for the language. We also show how a direct proof of transitivity of the Appel-McAllester model
fails, and discuss some of the peculiarities of the step-indexed approach. In Section 3 we extend the logical
relation to support quantified types. Specifically, we present a logical relation for a language with recursive
and polymorphic types that is both sound and complete with respect to contextual equivalence, while for
a language that also has existential types, we show a logical relation that is sound but incomplete. Proofs
of all lemmas in the paper and several examples to illustrate the use of our logical relation are given in the
appendix.

LA quantified type such as V. 7 is impredicative if & may be instantiated with any type, including Va. 7 itself.
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Figure 1: A" Syntax and Operational Semantics
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Figure 2: A" Static Semantics (Selected Rules)

2 Recursive Types

We consider a call-by-value A-calculus with iso-recursive types (dubbed the A™¢-calculus). Figure 1 presents
the syntax and small-step operational semantics for the language, which supports booleans and pairs in
addition to recursive types. We define the operational semantics for A" as a relation between closed terms
e. We use evaluation contexts to lift the primitive rewriting rules to a standard, left-to-right, innermost-to-
outermost, call-by-value interpretation of the language. We say that a term e is irreducible (irred(e)) if e
is a value (val(e)) or if e is a “stuck” expression to which no operational rule applies. We also use e |} as an
abbreviation for Je’.e —* €’ A val(e’).
Typing judgments in A" have the form I' - e : 7 where the context I' is defined as follows:

Value Context T == e |, z:7 .

Thus, T' is used to track the set of variables in scope, along with their (closed) types. There may be at most
one occurrence of a variable x in I'. The A" static semantics is entirely conventional (see, e.g., [17]) so we
only show selected rules in Figure 2. We use the abbreviated judgment - e : 7 when the value context is
empty.

Theorem 2.1 (A" Safety)

Ifete:7 and e —* €, then either €' is a value, or there exists an €’ such that € — ¢€”'.

2.1 )\ Contextual Equivalence

A context C is an expression with a single hole [-] in it. Typing judgments for contexts have the form
I'i=C:(Tv>7)~ 71, where (I'>7) indicates the type of the hole — that is, if I' - e : 7, then I'y - Cle] : 7.



Definition 2.2 (A" Contextual Approximation <°** & Equivalence ~°)
IfTFe:Tand e 7, we write ' e X e : 7 to mean
VC,11. 0 C:(Tp71)~ 11 A Cle] 4 = Cle']{ .

Two terms are contextually equivalent if they contextually approxzimate one another:

def

The~™e 7 ThFe<xe 7 ANTFe <X e:r .

2.2 )™ Logical Relation

Our step-indexed logical relation for A" is based on the PER model for equi-recursive types presented by
Appel and McAllester [13] (henceforth AM). The latter claimed, but did not prove, that their PER model
was sound with respect to contextual equivalence. We have proved that this is indeed the case. However,
“PER” may be somewhat of misnomer for the AM model since the status of transitivity is unclear, as we
shall show.

Rel. def {X € gNatx CValues x CValues | V(j,U,U,) €x. oF of 27 A
Vi < j. (i,v,7') € x}
e = AG )G <k A Go) exd
RV[als = /()
RV [boollp = {(k,v,v")| F2 :bool A
(v=0v"=tt V v=0 =f£f)}
RV[n xmlp = {(k (v1,02), (v1,05)) | F (ui,0h): (m x m=2)l1 A
(k,v1,v1) € RV [n]p A (k,v2,v2) € RV [12]p}
RV[r—mlp = {k A v.e, x.e’)| FAz.e:(mn— )P A
Vi < k,v,v".

(4,v,0") e RV [ni]p =
(4, ev/x], '’ /z]) € RC [r2]p}
RV [pa.7]lp = {(k,foldv,foldv’)| F foldv': (ue.7)? A
Vj < k.
let x = |RV [pa. 7]p)j41 in
(G.v0,0") € RV [rlpla = (x, (neem)¥1)]}
RC[r]p = {(ke )| Vji<k,es.
e—7 ef Nirred(ef) =
Je. €' —" ey N (k—j,ep,€r) € RV[7]p}

RG[e] = {(k,0,0)}
RG[L,z:r] = Alk,ylz—v,Y[z— V)] (k7,7) € RG[T] A (k,v,v") € RV [r]0}
TrHe<eée:T ©f Pre:r ATFe:T A
Vk > 0. Vv,v'.
(k,7,7) € RG] = (k,v(e),7'(¢')) € RC[7]0
The~e:m % Dre<e 7 ATF<e:T

Figure 3: A" Relational Model (Shaded ¢ Appel-McAllester)

In both models, the relational interpretation RV [r] of a type 7 is a set of triples of the form (k,v,v")
where k is a natural number (called the approzimation index or step index), and v and v’ are (closed) values.
Intuitively, (k,v,v’) € RV [r] says that in any computation running for no more than k steps, v approximates
v" at the type 7. Our model differs from the AM model in that whenever (k,v,v") € RV [7], we additionally



require that e = v’ : 7. This additional constraint enables us to prove the transitivity of our logical relation.
Moreover, restricting the model to terms that are well-typed seems essential for completeness with respect to
contextual equivalence, as others have also noted [12]. We defer an explanation of why we don’t also require
e - v : 7 till Section 2.3.

Figure 3 gives the definition of our logical relation; shaded parts of the definitions have no analog in the
AM model. We use the meta-variable x to denote sets of tuples of the form (k,v,v’), where v and v’ are
closed values (v,v" € CValues). For any set x, we define the k-approximation of the set (written |x|) as
the subset of its elements whose indices are less than k.

We define Rel, (where 7 is a closed syntactic type) as the set of those sets x €
have the following two properties: if (k,v,v’) € x, then v must be well-typed with type 7, and x must be
closed with respect to a decreasing step-index.

We use the meta-variable p to denote type substitutions. These are partial maps from type variables «
to pairs (x,7) where y is the semantic substitution for oo and 7 (a closed syntactic type) is the syntactic
substitution for a. We note that our definitions ensure that if p(a) = (x,7) then xy € Rel.. Since types in
A"¢ may contain free type variables, the interpretation of a type 7 is parametrized by a type substitution p
such that FTV (1) C dom(p). We use the following abbreviations:

2Nat x CValues x CValues that

e Let p(a) = (x, 7). Then p**™(a) = x and p™" () = 7.

e Let p={a1— (x1,71),--,n — (Xn,Tn)}-
Then 7!7! is an abbreviation for 7[my /a1, 7o/, . . ., Tn /).

Next, we consider the relational interpretation RV [7]p of each type 7. In each case, note that if
(k,v,v") € RV [7] p then F o' : ()le].

Booleans. Two values are related at the type bool for any number of steps k > 0, if they are both tt or
both ff.

Pairs. The pairs (v1,v2) and (v}, vh) are related at type 71 x 7 for k steps if v; and v} are related for &
steps at the type 7; (for i € {1,2}).

Functions. Since functions are suspended computations, their interpretation is given in terms of the
interpretation of types as computations (see below). Two functions are related if they map related arguments
to related results. Specifically, Axz.e and A\z. e’ are related at the type 71 — 7o for k steps if, at some point
in the future, when there are j < k steps left to execute, and there are arguments v, and v/, that are related
at the type 7 for j steps, then e[v,/z] and €'[v),/z] are related as computations of type 7o for j steps.

Recursive Types. One would expect the values foldv and foldv’ to be related at the type pa. 7 for k
steps if v and v’ are related at the type 7[ua. 7/a] for j < k steps. We show that the latter is equivalent to
what is required by the definition in Figure 3. Note that by the definition of |- |

(v, 0") € RV [r[pe.7/o]ll p & (j,v,0") € [RV [rluc.7/a]] pli1 -

We prove a type substitution lemma (see Appendix B.7) that allows us to conclude that if y =
[RV [pa. 7] plj+1 then:

[RV [rlue.m/adl plir = [RVIr]pla = (x; (e 7)) 41

Hence,
(j,v,v") € RV [r[uc. 7/]] p
& (J,v,0") € [RV [ruc. 7/a]] plj+1 by |]k
& (o) € [RV[r] pla v (x, (e 7)P)] 341 by type subst
& (j,0,0") € RV [7] pla = (x, (pa. 7)) by ||k

which is exactly what is required by the definition of RV [ua. 7] p.



Computations. Two closed expressions e and €’ are related as computations of type 7 for k steps as
follows. If e steps to an irreducible term ey in j < k steps, then ¢ must also step to some irreducible e’f.
Furthermore, both ey and e} must be values that are related for the remaining k — j steps.

What is surprising about this definition is that e must terminate in j < k steps, while ¢/ may terminate
in any number of steps, say i¢. Hence, i may be greater than k. This has ramifications for transitivity in the
AM model and we shall return to this point shortly.

Logical Relation. If 't e:7and ' - €' : 7, then we write I' - e < ¢’ : 7 to mean that for all £ > 0,
if v and +' are mappings from variables x to closed values that are related for k steps at I', then ~(e) and
~'(e') are related for k steps as computations of type 7. We say e and e’ are logically equivalent, written
I'ken~¢€ :1,if they logically approximate one another.

We now have to prove that each type 7 is a valid type — that is, that the relational interpretation of
belongs to Rel, (i.e., RV [7] p € Rel.i,). This involves showing well-typedness and closure under decreasing
step-index (see Appendix B.6).

Next, we prove a number of nontrivial lemmas (see Appendix B.7 and B.8). Specifically, we prove that
the logical relation defined in Figure 3 has the compatibility and substitutivity properties (see e.g., [9]).
These allow us to show that the A" typing rules preserve the logical relation, and hence prove the following
lemma.

Lemma 2.3 (A Fundamental Property / Reflexivity)
IfT'Fe:7,thenl’'Fe<e:T.

2.3 Transitivity and the Appel-McAllester Model

Let us ignore the shaded parts of Figure 3 and try to prove the following lemma with the resulting definitions.

Proposed Lemma (Transitivity: Appel-McAllester)

IflFe; <ep:7and'kFey <eg:7,then'Fe; <eg:T.

Proof Attempt: Suppose k > 0 and (k,~,7') € RG [I'].

Show (k,7(e1),7'(e3)) € RC[7] 0. Suppose j < k, y(e1) —7 ey,, and irred(ey, ).
Show Jey, .y (e3) —* e, A (kK —j,ep,,e5,) € RV[7] 0.

Instantiate T' ey < e : 7 with & > 0 and (k,v,7') € RG [I7].

Hence, (k,v(e1),7 (e2)) € RC [7] 0.

Instantiate this with j < k, y(e1) —7 ey, , and irred(ey, ).

Hence, Jey,,i such that i > 0, v/(e2) —" ey,, and (k — j,ep,,ep,) € RV[7] 0.
Now we need to use the premise I' - e5 < ez : 7. But what should we instantiate this with? We consider
two ways we could proceed.

1) Instantiate ex < ez T wit , Y Y ote that > an Y, ) € . ence,
i) I i rr < ith k ~v. N hat £ > 0 and (k d RG[T]. H
(k,v(e2),7'(es)) € RC[7] 0.
Problem: We could instantiate this with ¢ and ey,, but at that point we are stuck since we can-
not show i < k (since i may be greater than k), and we cannot show v(e2) " es, (we only have
V' (e2) —"ep,).

(ii) Instantiate I'Fea < es:7T with i + 1, v/, 7.
Problem: We cannot show (i 4+ 1,+',+") € RG [I']. All we know is that (k,~,~") € I', where i may be
greater than k.

We note that if we restrict our attention to closed terms ey, es, e3, then the above lemma can be proved.
In the case of open terms, however, the status of transitivity of the AM model is unclear as we have been
unable to find a counterexample.

There are several things one could attempt in order to rectify the above problem with the AM model
(unshaded parts of Figure 3). One problem we encountered was that ¢ may be greater than k. To get around



this, we could change the definition of (k,e,e’) € RC [7] to require that ¢’ must terminate in less than k
steps. Unfortunately, if we step back and examine the resulting meaning of I' - e; ~ ey : 7, we see that the
latter now requires that both e; and e; must terminate in ezactly the same number of steps. Clearly such a
logical relation would not be very useful (unless we are concerned with reasoning about timing leaks in an
information-flow setting). Other formulations involving the use of not one, but two step-indices (where the
second bounds the number of steps in which ¢’ must terminate) also lead to models where both terms are
required to terminate in exactly the same number of steps.

Since we want a logical relation that considers programs equivalent modulo the number of steps they
take, we will not change the definition of RC [r]. Instead we fix the problem with transitivity by moving to
a typed setting where (k,v,v") € RV [7] 0 implies - v' : 7. Assuming the definitions in Figure 3, including
the shaded parts, let us again try to prove transitivity.

Lemma 2.4 (A" : Transitivity)

(Our model: Figure 3, including shaded parts)
IfTFe;<ey:7andThey<ez:7,thenlFe; <ez:T.

Proof

We start at the point where we got stuck before. Now from (k,v,7') € RG [I'] we can conclude that
F +": T. By reflexivity (Fundamental Property, Lemma 2.3) it follows that - v <+’ : T'. Hence, we
can show that for all z > 0, (2,7',7’) € RG [I'] holds. Now we may instantiate I' - eq < e3 : 7 above
with ¢+ 1 since we know that (i+1,7',7") € RG [I']. The rest of the proof is relatively straightforward
and is given in Appendix B.10. O

Seemingly Asymmetric Well-Typedness Requirement. The definitions in Figure 3 may have left
the reader with the impression that we only require terms on one side of our logical relation to be well-typed.
This, however, is not the case. In particular, notice that in the definition of I' - e < ¢’ : 7, we require that
both e and ¢’ be well-typed. However, once we have picked a step-index k (i.e., once we have moved under the
Vk quantifier), there is an asymmetry in the model in that when (k,e,e’) € RC [7], k pertains (as a bound)
only to e and not to e’. As a result of this asymmetry, when working with a specific k£ (in the definition of
RV [7]) we do not need to know that v has type 7 in the limit, while the converse is true of v’. Hence, at the
value interpretation level RV [7], we chose only to require - v’ : 7. One could add the requirement - v : 7
in the interest of symmetry, but it would simply lead to additional proof obligations being shuffled around.
It would also complicate definitions when we get to quantified types as Rel, would have to be replaced by
Rel,, +, (since in the presence of quantified types we wish to relate values of different types).

2.4 )\"*°: Soundness

To prove that our logical relation is sound with respect to contextual equivalence, we first define what it
means for two contexts to be logically related.

Definition 2.5 (A" Logical Relation: Contexts)
T FC<C : Tor)wmn ¥ Vee The<e :r = It FCle] <C'[¢] i
Next, we prove the compatibility lemmas for contexts, which allows us to prove the following.
Lemma 2.6 (A" Reflexivity: Contexts)
IFTiEC:To7)~ 1, thenTH FCSC:(T>7) ~ 1.
Theorem 2.7 (\ Soundness: < C =)

IfTrFe<e :7then The = 7.



Proof

Suppose @ = C : (IT'>7) ~ 71 and Cle] . Hence, there exist vy, k such that Cle] —* vy. We must
show Cle'] {.

Applying Lemma 2.6 to e C : (T'>7) ~> 71, we have o - C < C: (T'>7T) ~ 7.

Instantiate this with I' e < €’: 7. Hence, o - Cle] < Cle']: 7.

Instantiate this with k¥ +1 > 0 and (k+ 1,0,0) € RG [e].

Hence, (k + 1,Cle], C[e']) € RC [1] 0.

Instantiate this with k < k + 1, C[e] —* vy, and irred(vy).

Hence, exists v} such that Cle’] —* v}. Hence, Cle'] |l O

2.5 A\ Completeness

To show that our logical relation is complete with respect to contextual equivalence, we make use of the
notion of ciu-equivalence introduced by Mason and Talcott [18]. Two closed terms of the same closed type
are said to be ciu-equivalent if they have the same termination behavior in any evaluation context E (a use
of the term). The relation is extended to open terms via closing substitutions (i.e., closed instantiations).
We note that evaluation contexts E are a simply a subset of general contexts C' and that only closed terms
can be placed in an evaluation context.

Definition 2.8 (\¢ Ciu Approximation <°“ & Equivalence ~¢*)
LetTrFe:Tand e :T.

FFe=<™¢ 7 def Vv, E,7i.eby:T A e E:(e>7)~ 71 A

ER(e)l§ = E[y(e)]

. dof , ,
FFe~™e' 7 £ Trex™e:7 ANTFHe <X™e:r

Theorem 2.9 (\®¢: <z C  <c)
IfTFe=xe¢ 7 thenT e =" ¢ i1,

To prove that two ciu-equivalent terms are logically related, we will need the following lemma which
shows that our logical relation respects ciu equivalence. Pitts [9] proves a similar property which he calls
“equivalence-respecting”.

Lemma 2.10 (\"™¢ Equivalence-Respecting: Closed Values)
If (k,v1,v2) € RV [7]0 and e - vy <™ vz : 7, then (k,vi,v3) € RV [7] 0.
Proof
By induction on k and nested induction on the structure of the (closed) type 7. O
Theorem 2.11 (\®¢: < C <)
IfThFe=®¢e 7 thenTkFe<e :T.
Proof

Suppose k > 0 and (k,v,7") € RG [[']. Show (k,v(e),7'(¢')) € RC[r] 0. Suppose j < k, y(e) —7 ey,
and irred(ey).

Show 3e/f. v'(e') =" € A (k—j,ef,ef) € RV[r]0.

From 'k e <™ ¢ : 7, we have I' - e : 7. Applying Lemma 2.3toT'Fe: 7, wehave 'Fe<e:T.
Instantiate this with k£ > 0 and (k,v,v') € RG [I']. Hence, (k,v(e),7'(€)) € RC[7] 0. Instantiate this



with j < k, y(e) —7 ey, and irred(ey). Hence, 3¢/ such that 7/(e) —* ¢} and (k — j,ef,€}) €
RV [r] 0. Hence, ey = vy and €, = v};. Hence, v'(e) | v}.

Instantiate I' - e < ¢’ : 7 with -+ : T (follows from (k,v,7') € RG[I']), and e - [] : (e > T) ~> T,
and 7'(e) . Hence, Jv} such that 7'(e) —* 0.

Remains to show: (k — j,vs,v}) € RV []0.

This follows from Lemma 2.10 applied to (k — j,vy,v}) € RV [7]0 and v <" v : 7 (which follows
from T'Fe <X ¢ : 7 and +/(e) |} v} and v'(¢') I v}). O

3 Type Abstraction
We now extend A" with impredicative universal and existential types; we call the extended language the

A"3-calculus. (Note that in Section 3.4 we will consider the A\"-calculus which is the extension of A" with
only universal types.) The syntactic extensions to support quantified types are as follows:

Types T u= ... |Vo.T|3arT
Values v = ... |A.e]|packv
Expressions e == ... |e[]]|unpackeiasxines

Note that terms are not decorated with types (which was also the case for \"¢). Here we let the vestigial
operators remain in the untyped syntax in order to preserve the operational semantics. For instance, the
term A.e is a suspended computation (normally written Aa.e); e[] runs the suspended computation. We
extend the A™€ operational semantics as follows:

Evaluation Contexts FE == ... | FE][]|unpack Easzine

(inst) Ae)[]] — e

(unpack) unpack (packv)aszine +—— e[v/z]

Aa;The: T A;T'Fe:Va.r AT AT AT e 7 /al
All) —————— (Inst) (Pack)
A;THAe:Vaor AT Eel]:7[m/q] A;T F packe: Ja. 7

A;TFep : da.m AT

AT 1 Feg:
(Unpack) nren

A;I' - unpackej aszinep : 1

/\VH

Figure 4: Static Semantics

A"7 typing judgments have the form A;T F e : 7, where the context I is as before, and the context A is
defined as follows:
Type Context A == e | A« .

The type context A is used to track the set of type variables in scope. We modify the typing rules in Figure 2
by adding A to each typing judgment. Figure 4 gives the typing rules for the additional terms in A\73. We
prove soundness of the AY2 typing rules, show that value and type substitution hold, and prove type safety.

Theorem 3.1 (\"? Safety)

If e;el-c: 7 and e —* €, then either €' is a value, or there exists an € such that ¢ — €.
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3.1 )\"7: Contextual Equivalence

Typing judgments for contexts C' now have the form Ay;T F C : (A;T>7) ~ 71 (where (A;T'>7) represents
the type of the hole) indicating that whenever A;T' ke : 7, then Ay;Ty F Cle] : 7.

Definition 3.2 (A\"Z Contextual Approximation <¢)
IfA;TFe:7 and A;T Fe 27, then we write A;T e <X ¢’ 1 7 to mean

VC, 1. 050 = C: (A;T>7) 11 A Cle]d = Cle'] | .

3.2 )\"3: Logical Relation and Soundness

In this section, we present a logical relation for A" and prove it sound with respect to contextual equivalence.
(Note, however, that this logical relation is not complete with respect to contextual equivalence. We will
discuss properties required for completeness in Section 3.4.)

As in the case of A\, the relational interpretation of a type RV [7] p in A\"2 is a set of triples of the
form (k,v,v"). We define Rel, as before (see Figure 3), so that every set x in Rel, must be closed under
decreasing step index, and the second value of each tuple in y must be well-typed with type 7.

The relational interpretation of universal and existential types is given in Figure 5. Two values packwv
and packv’ are related at the type Ja.7 for k steps if there exists a syntactic type 72 and a semantic
interpretation x € Rel,, such that for all j < k, (j,v,v") € RV [7] pla — (x, 72)]. Here we only pick a type
79 for the second value v’ while the type of v is left unrestricted. Intuitively, this suffices because when
showing logical equivalence of two terms (A; e~ ¢':7), we pick a type for v' while proving A;TFe<e':7
and we pick a type for v while proving A;T'Fe’ < e:7. The relational interpretation of universal types is the
dual of existential types.

RV [Va.7]p = {(k,A.e,A.€e)| FA.€: (Va. )Pl A
VTQyX- X S Rel7—2 ——
Vi < k. (j,e €) € RC[r] pla— (x,72)]}

RV[3a.7]p = {(k,packv,packv’)| F packv’: (Ja.7)P) A
I1e,x. x € Rel-, A
Vi <k (j,v,0") € RV[r] plo = (x, 72)]}

RD[s] = {0}
RD[Aal = {pla— (x.7)) | p€ RDIA] A X € Rel,}

RG[elp = {(k,0,0)}
RG[C,zrlp = {(kAfe— v,y [e—]) | (k7)€ RG[TDp A (k,v,0') € RV [7]p}

ATrFe<e:7 ¥ ATke:r AATFe: 7T A
Vk > 0.Vp,7,7". p € RD[A] A (k,7,7) € RG[I]lp =

(k,v(e),7'(¢") € RC[r]p
Figure 5: "7 Relational Model

The relational interpretation of types as computations RC [7] is defined exactly as before (see Figure 3).
The definition of the logical relation A;T' e < ¢’ : 7 appears in Figure 5.

We prove that each type 7 is a valid type: RV [7] p € Rel ). Specifically, we have to show well-typedness
and closure under decreasing step-index.

To show the Fundamental Property of the logical relation, we prove the new set of compatibility lemmas,
as well as value and type substitutivity. Thus, we can prove the following lemma.
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Lemma 3.3 ()" Fundamental Property / Reflexivity)
If A;TRe:T then A;TRe<e:T.

Next, we prove that the logical relation in Figure 5 is sound with respect to contextual equivalence. The
overall proof structure is the same as for A™c.

Theorem 3.4 (A : < C =°)
If A\TFe<e :7 then A;TFe=¢ T,

3.3 Example: Simple Existential Packages

For lack of space, we present only one simple example (from Sumii and Pierce[19]) to illustrate the use
of our logical relation to prove contextual equivalence. Additional examples involving existential packages,
recursive types, and higher-order functions are given in Appendix D.

Example: Consider the following existential packages e and €’ of type 7:
e = pack(l,A\z.x o 0) e/ = pack (tt, A\z. ~x) 7 = Ja.a x (o — bool)
Show e;e-e~e':7. We only show e;ee<e':7. e;e¢’ < e:7 is symmetric.
Suppose k > 0. Unwinding definitions, we must show (k,e,e’) € RV [7]
= (k,pack (1, \z. x o 0), pack (tt, Az. ~z)) € RV [Fa. a x (o« — bool)] 0.
Take 75 = bool and x = {(¥’,1,tt) | k¥ > 0}.
Note that x € Relpoo (from defn of x). Suppose j < k.

int

Show (7, (1, \z.x = 0), (tt, Az. ~z)) € RV [a X (a — bool)] D[ — (, bool)], which follows from:
o  (tt,\x.—x) : (a x (v — bool))[bool/c]

e (J,1,tt) € RV [a] O[a — (x; bool)]
= (4,1,tt) € x (by defn of RV [] p)
which follows from defn of x.

o (j, (Az.2=0), (Az. ~x)) € RV [a— bool] v (x, bool)], which follows from:
First, note that F Az. -z : (o — bool)[bool/a] = F Az.—x : bool — bool.
Next, suppose i < j, and (i,v1,v]) € RV [a] O[a — (x, bool)].

Note that RV [a]@[a— (x, bool)] = x by defn of RV [a]p. Hence, (i,v1,v]) € x.
Then, from defn of x, vy = 1 and v} = tt.

Show: (i, (z R 0)[v1/z], (—x)[v]/z]) € RC [bool] B]c — (i, bool)]

= (i,v1 = 0,~}) € RC [bool] Blov > (x, bool)]
= (i,1 2 0, -tt) € RC [bool] P[a — (x, bool)] .
Note that (1 2 0) —1 ££ and (—tt) —* ££.
Hence, remains to show: (i — 1,££,££f) € RV [bool] B[ — (x, bool)], which is immediate.

3.4 )\": Completeness

The A" logical relation presented in Section 3.2 is sound but not complete with respect to contextual
equivalence. In this section, we present an outline of the desired completeness proof in order to illustrate
where the proof gets stuck and to motivate changes to the earlier logical relation that might make it complete
with respect to contextual equivalence. With a minor modification to the logical relation from Section 3.2,
we are able to show completeness in the presence of recursive and polymorphic types, but not for existential
types (i.e., for the language A7, which extends A" with only universal types).

We start by trying to establish completeness for A¥> in a manner similar to that for \"®¢. As for A™, we
rely on the notion of ciu-equivalence, which we define for A" as follows.
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Definition 3.5 (A\"Z Ciu Approximation <)

Let A;Te:7 and A;T €' 2 7. If § is a mapping from type variables o to closed syntactic types T, we write
0 E A whenever dom(d) = A.

AThe=xoe 7 & Vo,v,E,mi. 6EA A Fv:6(0) A

oo F:(e;0>5(7)) 11 A
ER(e)l§ = Eh()]Y

To prove completeness as before, we must show (1) that two contextually equivalent terms are ciu equivalent,
and (2) that two ciu equivalent terms are logically related. It is straightforward to prove the first lemma:

Theorem 3.6 (\77 : <cz C <o)
If AT e = 7 then A;T Fe =™ e 7.

However, the proof of the second lemma (which states that two ciu equivalent terms are logically related)
fails to go through. To see why, let us return to the proof of completeness of \"¢ specifically to Lemma 2.10
which establishes that the relational value interpretation RV [7] is equivalence-respecting: if (k,vq,v2) €
RV [7]0 and e F vy <™ vz : 7, then (k,v1,v3) € RV [r] 0. The proof of that lemma requires induction
on k and nested induction on the structure of the closed type 7. In the case of A", when we get to
the proof of the corresponding lemma, 7 may have free type variables. Thus, one of the cases we must
consider for the inner induction is 7 = «. Assuming that p(a) = (x, 7a), we will be required to show that
if (k,v1,v2) € RV[a]p = p*™(a) = x and F vy < vy : ol (where ol?! = 7,), then (k,v1,v3) € Y.
This is where the proof for A\¥7 gets stuck. Note, however, that x € Rel,, . Thus, for the above proof to
go through for A\¥3, we must add this requirement directly to the definition of Rel,. Hence, every set x
in Rel, must satisfy the equivalence-respecting property (in addition to closure under decreasing step-index
and well-typedness of the second value of each tuple in ).

A more informal justification for this change is that in the presence of quantified types, we can instantiate
a type variable with a relational interpretation of our own choosing. Thus, we have to show that the relation
we pick satisfies certain properties, one of which is that it must be equivalence-respecting.

The modified definition of Rel. is given below. It makes use of a notion of ciu-equivalence restricted to
closed values. With the exception of the definition of Rel,, the logical relation is now defined exactly as in
Figure 5.

v =<y VE,7i. e;e E: (e;0>7)~ 71 A Ev] | = E[]{

2Nat X CValues x C'Values |
V(j,v,v ) eEx. Fv T A

Vi < j. (4,0,0) € x A
(V" v <" i1 = (5,v,0") € )}

Rel, = {x¢€

As before, we now prove that each type 7 is a valid type (RV[7] p € Rel, ), but now in addition
to showing well-typedness and closure under decreasing step-index, we must also show that RV [r] p is
equivalence-respecting. Unfortunately, this property does not hold for existential types. (For details of how
the proof fails, see Appendix E.2, proof of Lemma E.1, the case for existential types.)

Thus, the following lemma holds for the A"-calculus (A" extended with universal types), but not for A"=.

Lemma 3.7 (\Y Equivalence-Respecting)

Let p € RD[A] and At 7.
If (k,v1,v0) € RV [r]p and vy <" v3 : 71l then (k,v1,v3) € RV [r]p.

Note that the change in the definition of Rel, does not affect the proof of the fundamental theorem (for
AY) or the proof of soundness with respect to contextual equivalence, which are proved exactly as before.

Since our relational interpretation of existential types fails to be equivalence-respecting, our logical rela-
tion is incomplete with respect to contextual equivalence in the presence of existential types. However, the
relational interpretations of all the other types in AY7 (i.e., all types in AY) are equivalence-respecting. Thus,
we are able to prove completeness with respect to contextual equivalence for the language A¥.
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Theorem 3.8 (\Y: =< C =< C <)

IfFATFe=ete o7 then A;T e = 7,
IfATFe=e 7 then A;TFe<e 7.

4 Related Work and Conclusion

Logical relations were first developed for denotational semantics of typed A-calculi (e.g., [1, 2]). Early
examples of the use of logical relations based on operational semantics include Tait’s [4] proof of strong
normalization of the simply typed A-calculus, and Girard’s method of reducibility candidates [5] used to
prove normalization for System F.

Pitts [7, 6, 9] developed syntactic logical relations for a A-calculus with recursive functions and quantified
types (but no recursive types). To support recursive functions without using denotational techniques, Pitts
makes use of T T-closure (or biorthogonality [12]). Relations that are T T-closed can be immediately shown
to be equivalence-respecting and admissible [9]. We note that Pitts’ logical relations do not support recursive
types; at the end of [9], he poses syntactic logical relations for recursive types as an open problem in need
of a fresh idea for further progress.

In this paper, we have shown that it is possible to construct a logical relation that is sound and com-
plete with respect to contextual equivalence for a language with recursive functions, recursive types, and
polymorphism, without the use of biorthogonality or T T-closure. For existential types, however, our logical
relation is sound but not complete. We conjecture that it should be possible to combine the T T-closure and
step-indexing techniques to obtain a sound and complete logical relation for a language with recursive and
polymorphic types as well as existential types.

Birkedal and Harper [10] and Crary and Harper [8] extended syntactic logical relations with recursive
types (the latter also support polymorphic types, but not existential types) by adapting Pitts’ minimal
invariance [3] technique for use in a purely syntactic setting. Mellies and Vouillon [12, 11] construct a
realizability model of a language with recursive types and polymorphism based on intuitions from the ideal
model of types [20]. They also present a relational model based on an orthogonality relation between
quadruples of terms and contexts [12]. We note that to show completeness, they too must move to a
typed setting. An issue that merits further investigation is the relationship between the different notions of
approximation — i.e., syntactic projections [8], interval types [12], and step counts.

Contextual equivalence may also be proved using bisimulations. Sumii and Pierce [19] present a bisimula-
tion for recursive and quantified types. Using their examples as a point of comparison (see Appendix D) we
show that our logical relations are somewhat easier to use when proving contextual equivalence. Also, unlike
logical relations, Sumii and Pierce note that their bisimulation cannot be used to derive free theorems [21]
based only on types.

We have presented a step-indexed logical relation for recursive and impredicative quantified types. The
construction is far more elementary than that of existing logical relations for such types. In future work,
we intend to investigate the combination of T T-closure with step-indexing to obtain a logical relation for
"7 that is sound as well as complete with respect to contextual equivalence. We also hope to scale these
techniques up to support dynamically allocated (ML-style) mutable references.
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Appendix: Formal Development

The following appendices present a formal development of the calculi, relational models, and proofs described
in the main body of this technical report, as well as additional examples.

In Appendix A, we present the Appel-McAllester model [13] and show how a direct proof of transitivity
fails to go through. In Appendix B, we present a logical relation for (iso-)recursive types and show that the
relation is transitive, as well as sound and complete with respect to contextual equivalence. In Appendix C,
we present a logical relation for a language with recursive, polymorphic, and existential types that is sound
but incomplete with respect to contextual equivalence. Appendix D presents a number of examples involving
existential packages, higher-order functions, universal types and contravariant recursive types. In Appendix E
we present a slight modification of the logical relation from Appendix C and show that in the absence of
existential types it is sound and complete with respect to contextual equivalence.
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A Appel-McAllester Indexed PER Model (Equi-Recursive Types)

This section gives all the relevant definitions for the Appel-McAllester model (using notational conventions
from [13]) and summarizes the lemmas that should hold of the model. Section A.1 illustrates how a direct
proof of transitivity fails to go through.

Ezpressions e == x|0]| (e1,e2) | mi(e) | m2(e) | Az.e | erez
Values v u= z|0]|(vi,v2) | Az.e
Types T ou= Lllint|mxn|n—on|uF

Figure 6: Appel-McAllester: Syntax

e1— e} ez — €
e1e2 — €] ea (Az.e1) eg — Ax.e1 €h (Az.e)v+— e[v/x]
e1 — e} e — €
(e1,e2) — (e],e2) (v1, e2) — (v1,€5) m1{v1,v2) — V1 2 (V1, V2) — V2

Figure 7: Appel-McAllester: Operational Semantics

V. _— Z _—
(Var) I'tz:T(x) (ero)F}—O:int
embFe:m I'tel:m11 — 7 I'kFes:m
(Fun) (App)
PEAv.e:m — T2 FFeiex:m
TI'Fei:m I'kFezx:m I'Fe:mi xm TP'Fe:m xm
(Pair) (Projl) ———— (Proj2) ——
Tk (e1,e2) : 71 X T2 Pkme):mn T'Fma(e) : 72
I'kFe: F(uF I'ke:pF
(Fold) [re: Ful) (Unfold) —— M7
T'te:uF Pke: F(uF)

Figure 8: Appel-McAllester: Static Semantics
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L = {3
int = {(k0,0)}
nx1 = A{(k (v1,02), (v1,02)) | Vi < k. (4, 01,01) € 1 A (4, 02,03) € T2}
o1 = {(kAz.edr.e)| Vj<kuvv. (jv,0)€emn = e[v/r] <€V /x] T2}
pF = {(k,v,0") | (kv,0") € FF(L)}
e<e T = Vji<ker e—7 ef ANirred(ey) =
Je. €' —" ey N (k—j,ep,ef) €T
<4 % T = dom(y) = dom(y') = dom(T)A
Vz € dom(T). v(z) < +'(z) 1 ['(z)
TEe<e:7 = Vk>0.Yy,7. v<~y 4T = ~(e) <v(¢) e T

FEe~eée :71 TEe<e:7T ATEée <e:r

Figure 9: Appel-McAllester: Indexed PER Model [13]

I'ke:r FEe~eée:r I'kEe ~ex: T I'Fes~es:T
(Symmetry) ————— (Transitivity)
'Ee ~e: 7 I'kFe ~es:T

Reflexivity) ——
( 2 I'Fe~e:r

TEv~v 71 F,m:nkewe/:ﬁ
I'Ee[v/z] ~ €V /x] : T

(Substitutivity)

Compatibility Properties
P y Prop

P(z)=7
(Var) ————— (Zero) —————
F'ex~x:7T I''E0O~0:int
F,$27’1):€N6/2T2 F|=e1~e/1:7'1—>7'2 F'262N6/227'1
(Fun) 7 (App) —
I'EXx.e~Ax.e 171 — T2 I'Feiles~ejey: T
F’:€1Ne/117'1 F':eQNe/Q:T2
(Pair) —
TE (e1,e2) ~ (e}, es) : 71 X T2
(Prof1) FEe~eée i1 X1 (Proj2) FTEe~eé i1 X1
Y TE mi(e) ~mi(e) i T Y TE ma(e) ~ ma(e') : T
FEe~eée : F(uF F'Ee~eée :uF
(Fold) y (uF) (Unfold) v K
T'Ee~e : uF FEe~e : F(uF)

Note: ~ is an equivalence relation if it satisfies the reflexivity, symmetry and transitivity properties.
It is a congruence relation if it satisfies the substitutivity and compatibility properties.

Figure 10: Appel-McAllester: Properties Required of ~
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A.1 Appel-McAllester: Proof of Transitivity Fails

With the exception of transitivity, all of the lemmas shown in Figure 10 are directly provable in the
Appel-McAllester model [13]. A direct proof of transitivity, however, does not go through.

Proposed Lemma (Transitivity)
IfTEe; <ey:7andT Fey<eg:7 thenT Fe <ez:T.

Proof Attempt: We are required to show ' Fe; <e3: 7.
Consider arbitrary k, v, 7/ such that

e k>0, and
o y<v T

We are required to show that v(e1) < +'(e3) :x 7.
Consider arbitrary j, ey, such that

° j <k,
e v(e1) —7 ep,, and
e irred(ey, ).

We are required to show that Jey,. 7v'(e3) —* ey, A (k—j,ep,€p,) €T.
Instantiate I' F ey < ep : 7 with k, 7, 4'. Note that

e £ >0, and
o v <~ T.

Hence, v(e1) < '(e2) % 7.
Instantiate this with j, ef,. Note that

o j <k,

e v(e1) —7 ep,, and

o irred(ey, ).

Hence, there exist ey,, 4, such that
e >0,

e 7'(e2) —' ey,, and

e irred(ey,).

Now we would like to use the second hypothesis I' F e; < ez : 7.
But what index should we instantiate this with? There are two possible ways to proceed.

(i) Instantiate I'F eq < e3: 7 with k, v, and 4’. Note that
e k>0, and
o v <~y T.
Hence, v(e2) < +'(e3) ik 7.

Problem: We could instantiate this with ¢ and eys. But at that point we are stuck since:
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e we cannot show ¢ < k, as ¢ may be greater than k, and

e we cannot show y(e2) —* e, as we only have 7/(e2) —* eo.

(ii) Instantiate T'F es < eg : 7 with some z such that z > i, 7/, and +'.

Problem: We cannot show 7/ < v/ :, I'. All we know is that v < +' :;; ', where z > 7 and ¢ may be
greater than k.
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B Iso-Recursive Types

Types T =
FExpressions e =

bool | 11 — 72 | o | pev. T
x| tt | £f | ifeg,e1,€2 |
Az.e | erez | folde | unfolde

Values v u= z|tt|ff|Az.e| foldv
Figure 1: A" Syntax
Evaluation Contexts E == []|ifE,e1,e2 | FEe|vE |foldE | unfold E
(iftrue) iftt,er,e2 +— e1
(iffalse) ifff,e1,e2 — e
(app) Az.e)v +— elv/x]
(unfold) unfold (foldv) +— w
er— ¢

ctxt e —
(<o) Bl — Bl

Figure 2: A" Operational Semantics

Notation The notation e — ¢’ denotes a single operational step. We write e —/ ¢’ to denote that there

exists a chain of j steps of the form e — e; — ...

—— e; where e; is €. A term e is irreducible (written

irred(e)) if it has no successor in the step relation — that is, if e is a value (written val(e)) or if e is a “stuck”
expression (such as tt(e’)) to which no operational rule applies. We also use the following abbreviations.

PR
def

ele =
def

e | =

def

e =

Ik > 0. e—F e
e—" €' Awal(e")
Je'.ele

Yk > 0.3¢.e —F ¢

21



Type Context A == o] A«

AFT
(VT)aGA (Bool ) (FT)A}_TI Ak 1o (RecTy) AabT
ar 00 _— n _—_— ec _—
Y A« Y A+ bool Y AFT — 1 Y Al po.t

Figure 3: A" Static Semantics I

Value Context T == o |l z:i7 where o T

't eg : bool I'kei:r I'kes:7
(True) — (False) ———— (If)
I'+tt : bool I'+ ££f : bool I'kifeg,e1,ea:7
Dzmbe:m 'Fei:m — 7 I'Fex:m
(Var) (Fn) (App)
I'kz:T(x) THFXe.e:mi — 1 ThFeier:m
I'Fe:Tjpa.7/a I'Fe:pa.t
(Folg) LI ¢:Tlna-7/a] (Unfold) s
'k folde: pa. 7 I' - unfolde : T[pa. 7/a]

Figure 4: A" Static Semantics 11
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B.1 )\ Unary Model

Notation

e We write V [7] for the semantic interpretation of types as values, C [7] for the interpretation of types
as computations, and G [I'] for the interpretation of contexts as substitutions (Figure 5).

e We use the metavariable o to range over sets of tuples of the form (k,v) where k is a natural number
and v is a closed value — i.e., k € Nat and v € C'Values.

e We use ¢ for mappings from type variables a to sets o € 2NVatx CValues,

Type & {o € 2NetxCValues | (5 4) € 6. Vi < . (i,v) € o}

lele = {Gv) ] i<k A (Gv)€a}
Via]d = d(a)
V]bool]d = {(k,v)| v=tt V v==£f}
V[ —m]é = {(kAx.e)| Vj<k,v.

(J,v) eV[n]d =
(J, elv/]) € C =] 6}

Vipa.7]d = {(k,foldv)| Vj <k.
let 0 = |V [pa. 7] d]j41 in
(Gv) € V[rléla— o]}

Clrls = {(he)| Vj<kher
e—’ ey Nirred(ef) =
(k—Jj.er) € V[r] 6}

Glo] = {(%,0)}
G z:7] = {(kz—])]
(ky,v) € GIT] A (k,v) € V7] 0}
[Cre:7] = Vk>0.Vy. (k,y) €G] = (k,v(e)) eC[r]0

Figure 5: A" Step-Indexed Unary Model

De]
DA, q]

{0 | True}
{8la— ]| § e D[A] A o€ Type}

Figure 6: A\"¢ Step-Indexed Unary Model (Additional Notation for Proofs)
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B.2

A" Relational (PER) Model

Notation

We write RV [7] for the relational interpretation of types as values, RC [7] for the relational interpreta-
tion of types as computations, and RG [I'] for the relational interpretation of contexts as substitutions
(Figure 7).

We use the metavariable x to range over sets of tuples of the form (k,v,v’) where k is a natural number
and v, v’ are closed values — i.e., k € Nat and v,v' € CValues.

We use p for mappings from type variables a to pairs (x,7) of sets y € 2NetxCValuesxCValues a5
syntactic types 7.

If p(a) = (x, 7), the notation p**™(«) denotes x, while p™"(«) denotes 7.
If dom(v) = dom(T'), we use 7 : T' as shorthand for Vo € dom(T"). e - v(z) : T'(z).

If p={a1 — (x1,71),--»n = (Xn,Tn)}, the notation 7[?! is an abbreviation for
TIm /o, o, .. T o).
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Rel-,— < {X c 2Nat><CValues><CValues | V(j,U,U,) € x.
oV :7 A
Vi <j. (i,0,0") € x}

e € {Gwo)] G<k A (Gov,0)ex)

RV[alp = #*(a)
RV[bool]lp = {(k,v,v")| ek :bool A
(v=2v'=tt V v=0v =£f)}
RV[n —m]lp = {(kM.edr.e)| oFAz.e:(n —m)f A
Vi < k,v,v.
(J,v,0") ERV[n]p =
(4, efv/x], e'[v" /x]) € RC 2] p}
RV[pa.7]p = {(k,foldv,foldv’)| ek foldv': (ua.7)? A
Vi < k.
let x = |RV [pe. 7] plj+1 in
(G,v,0") € RV [r] pla = (x, (ue.m)?)]}
RClp = {(ked)| V) <kier.
e— es Adrred(ey) =>
Je. € —" e A (k—j,ep,ey) € RV [r] p}
RG] = A{(x0,0)}
RG[C,x:7] = {(kylz— o], [x—0) |
(k,7,7") € RG] A (k,v,0") € RV[r] 0}
The<e:7 ¥ Tre:r ATFE:7 A
Vk > 0. Vv,v'.

(k,7,7) € RG] =
(k,~v(e),7'(¢') € RC[r] 0

The~e :r % The<e:7 ATFe <e:r

Figure 7: A"¢ Step-Indexed Relational Model (Shaded = Not in Appel-McAllester)

RD [e]
RD[A, ]

{0}
{pla = (x,7)] | p€ RD[A] A x € Relr}

Figure 8: A"¢ Step-Indexed Relational Model (Additional Notation for Proofs)
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B.3 )\ Contexts and Contextual Equivalence

Contexts C == []|ifC,e1,es | ifeo,C ez | ifeg,e1,C |
Ax.C | Cel|eC | foldC | unfoldC

Figure 9: A" Syntax - Contexts

’F/I—C:(FDT)WT"

F'I—C’:(FDT)Wbool I'bep:7 Vhkey:7
I'FifC e, ez : (FDT)WT,

(C-id) (' D) (C-if1)

'F[]:(CoT)~ T -
I + e : bool I‘/}—C:(FDT)WT/ Ukey: 7

C-if2
(C-if2) I"Fifep,Coea: (T>T)~ 7

I’ eo : bool I'bep:7 F'I—C:(FDT)WT/ F/,JL'Z’Tl'—CZ(F,ZL‘ZTlDT)WTQ

C-if3 C-f
(C-if3) I'Fifep,e1,C:(T>7)~ 7' (C-fn) I'FXx.C:(T,x:m>7) ~ (11 — T2)
I'EC:(To7)~ (11— m) IMFe:n I'kFe:m =7 I'EC:(To1)~7
(C-app1) 7 (C-app2) 7
I'FCe:(TpT)~ 1 I'FeC:TpT)~ 1
MO : (Do)~ 7' [pa. 7’ I'EC:(To71)~ po. 1’
(C-fold) — (Lor) = 7lpa T/a,] (C-unfold) — (re>7) ,uo/c T 5
I+ £0ldC: (I'>T) ~ pa.7 I FunfoldC : (I'>7) ~ 7' [pa. 7 /a]
IM"FC:(Tivm)~ 7 NMEC :To71)~ 7
(C-ctxt) ; .
I'ECICLH]]: T>T)~ T
I''+Cle]: 7
I'FC:(To7)~ 1 Fke:r
(C-exp)

I'-Cle]: 7

Figure 10: A" Static Semantics - Contexts
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Definition B.1 (Contextual Approximation (<) and Equivalence (~“))
Let e and €' be expressions such thatT'~e: 7 and T'¢' : 1.
The=x®¢:7 ¥ VO 1. e C:(To7)~m A Cll = C[e] 1

Thex™e 7 ¥ Thex®@e 7 A
ke x®e:r

Figure 11: "¢ Contextual Approximation and Equivalence

Note: To prove that our logical relation (<) is sound with respect to contextual equivalence (=) (see
Section B.11), we first define what it means for two contexts to be logically related as follows:

LECLSC :(ToT)~m7 © Ve The<e:7 = T -Cle] <C'le]:m

T FC~C  Tor)wn  IhhC<C :(Tor)w~n A
M EC'<C:(To1)~m71

Figure 12: \"¢ Step-Indexed Logical Relation: Contexts
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B.4 )\ Evaluation Contexts and Ciu Equivalence

e The syntax of A\ evaluation contexts E is given in Figure 2.

e Note that evaluation contexts E are simply a subset of general contexts C' and that only closed terms
can be placed in an evaluation context. Hence, typing judgments for evaluation contexts have the form
ik (ep7) ~ 1.

Definition B.2 (Ciu Approximation (<°*) and Equivalence (~°"))

Let e and €' be expressions such thatT'+e: 7 and "' Fée' : 1.
Fkex*e:7 = Vy,E 1.
Fy:T A eFE:(epT)~ 711 A
Ely(e)] 4 = EQ()] 1
TFex™¢:7 £ Threx™e 7 A

ke <X™e:r

Figure 13: A" Ciu Approximation and Equivalence
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B.5 )™ Proofs: Type Soundness and Substitution
Lemma B.3 (A" Valid Type: V[7] ¢ € Type)

Let 6 € D[A] and AF 7.
Then V7] ¢ € Type.

Proof

By the definition of Type, it suffices to show:

V(k,v) € V] 6. Vj < k. (j,v) € V[r] s

The proof is by induction on the derivation A F 7.

Lemma B.4 (A" Safety)

If et-c: 7 and e —* €, then either €' is a value, or there exists an €' such that ¢ — €.

Proof

Prove the soundness of each typing rule using the unary indexed model of A< (Figure 5).

Lemma B.5 (A" Substitution)

IfTFv:m and Dz e m,
then T' F e[v/z] : To.

Proof
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B.6 )\ Proofs: Validity of Pers

Lemma B.6 (A" Per Values Well-Typed)

Let p € RD[A] and A+ 7.
If (k,v,0") € RV [7] p,
then o v’ : 711,

Proof
By induction on the derivation A F 7.
We only show the (VarTy) case.
In each of the remaining cases, the result is immediate from the definition of (k,v,v’) € RV [7] p,
which requires that e - o’ : 7[7,
aeA
A«
Note that alfl = p¥"(a).
Hence, we are required to show that e - v' : p™"(a).
Note that from (k,v,v") € RV [o] p it follows that (k,v,v") € p*™(«).
Note that from p € RD [A] and a € A it follows that there exists 7 such that
o p*™(a) € Rel,;, and
o P (a) =T.
By the definition of Rel., since (k,v,v’) € p*™(a) € Rel., it follows that e - v’ : 7.
Hence, o - v’ : p¥"(a).

Case (VarTy)

Lemma B.7 (A" Per Value-Context Substitutions Well-Typed)

If (k,v.9') € RGIIT,
then b~ : T.

Proof

By induction on T'.

Case ['=e:
From (k,v,") € RG [e] we conclude that v =~ = 0.
Hence, we are required to show that e - ) : e, which follows trivially.
Case ' =11,z : 7, where o - 7:
From (k,7,v') € RG[I'1,z : 7] we conclude that there exist v1, 71, v, and v’ such that
o y=mfr ],
Y =z,
o (k,v,7) € RG[I'1], and
o (k,v,v") € RV[r]0.
Hence, we are required to show that - ~{[z — '] : T1,2: 7,
which follows from
o Fp: Ty,
which follows from the induction hypothesis applied to (k,v1,71) € RG [I'1], and
ook T,
which follows from Lemma B.6 applied to e - 7 and (k,v,v") € RV [7] 0.

30



Lemma B.8 (A" Per Types Downward Closed)

Let p € RD[A] and AF 7.
If (k,v,0") e RV[7] p and j < k,
then (j,v,v") € RV [7] p.

Proof

The proof is by induction on the derivation A F 7.

a €A
AF«
From (k,v,v") € RV [a] p, it follows that (k,v,v") € p**™(«).
We are required to show that (j,v,v") € RV [a] p
= (j,v,v') € " (a).

Case (VarTy)

Note that

[ ] psem(a) € Relpsyn(a),
which follows from p € RD[A], a € A, and the definition of RD [A].

Hence, by the definition of Reljwn(qy, since (k,v,v") € p*™(a) € Relpon(oy and j < k, it follows
that (4,v,v") € p*™(«).
C BoolTy) ————
ase (BoolTy) g0
From (k,v,v") € RV [bool] p it follows that

e o v :bool, and
e cither v = v = tt or v = v = ff.

We are required to show that (j,v,v") € RV [bool] p,
which follows from

e o7 :bool, and
e v=0' =ttt V v=0v =ff.
AFmn  AFmn
AT — T
From (k,v,v") € RV [ — 7] p it follows that v = Az.e and v/ = A\z.¢€'.
Note that
(A) e \z.€ : (11 — )P and
(B) Vi < k,v1,v]. (i,v1,v]) € RV [r]p =
(¢, elv1 /], €'[v]/x]) € RC [12] p-
We are required to show that (j,v,v’) € RV [ — 72] p
= (j, \z.e, Az e') € RV [ — 72] p.
(C) Consider arbitrary, 4, v, v} such that
e i < j,and
o (i,v1,v]) € RV [m] p.
Instantiate (B) with 4, v;, and v]. Note that
e i < k, which follows from i < j and j < k, and
o (i,v1,v]) € RV[m]p.
Hence, (%, e[v1/z], €'[v]/z]) € RC [12] p.
From (A) and (C) it follows that (j, Az.e, Az.e’) € RV [r1 — 2] p.

Case (FnTy)
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A, at T1
AF po.m
From (k,v,v") € RV [pa. 11] p it follows that v = foldv; and v’ = foldv].
Note that
(A) oF foldw} : (ua.m) and
(B) Vi <k.let x =RV [uc. 7] plit1 in
(i7 U1, Ull) € RV [[7—1]] p[Oé = (X7 (MO" T)[p])]
We are required to show that (j,v,v") € RV [ua. 1] p
= (j,foldwy, foldv}) € RV [ua. 1] p.
(C) Counsider arbitrary i such that
o i< J.
Let x = |[RV [pa. 1] plit1-
Instantiate (B) with 4, noting that
e i < k, which follows from i < j and j < k.
Hence, (i,v1,v}) € RV [11] pla — (x, (pa. 7)P)].
From (A), and (C) it follows that (j,fold vy, foldv]) € RV [ua. 1] p.

Case (RecTy)

Lemma B.9 (A" Per Value Contexts Downward Closed)
Let (k,7,') € RG[T].
If j <k, then (j,7,7") € RG[I].

Proof

Proof by induction on T'.

Case [' =e:
We are required to show that (j,7,7) € RG [e].
Note that v = v' = ), which follows from (k,~,~") € RG [e].
Hence, we are required to show that (7,0,0) € RG [e], which follows trivially.
Case I' =11,z : 7, where o - 7:
From (k,7v,7") € RG[I'1,z : 7], we conclude that there exist 1, 71, v, and v’ such that
o vy=mlz— v,
* Y =z,
o (k,v1,71) € RG[I'1], and
o (k,v,v') e RV[r]0.
Hence, we are required to show that (j, y1[x — v],¥i[x — v']) € RG [y, : 7],
which follows from
* (J:y1,7) € RG[I'1],
which follows from the induction hypothesis applied to (k,v1,v]) € RG [['1] and j < k, and
e (j,v,v") e RV[7]0,
which follows from Lemma B.8 applied to
) € RD[e],
o ol T,
(k,v,v") € RV[7] 0 € Rel,, and
o j<k.
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Lemma B.10 (A" Valid Per: RV [7]p € Rel,i,)

Let p € RD[A] and At 7.
Then RV 7] p € Rel i,

Proof

By the definition of Rel_,, it suffices to show:

V(k,v,0") € RV [r] p. oo =7l A
Vj <k (j,v,0") € RV[T]p

Consider arbitrary (k,v,v") € RV [7] p.

e Applying Lemma B.6 to p € RD[A], A+ 7, and (k,v,v') € RV [r] p it follows that e - v’ : T[],

e Consider arbitrary j < k.

Applying Lemma B.8 to p € RD[A], A F 7, (k,v,v") € RV [7] p, and j < k it follows that
(J,v,v") € RV[7] p.
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B.7 )\ Proofs: Per Type Substitution
Lemma B.11 (A" Per Type Substitution: Recursive Types)

Let p € RD[A] and Aok 7.
Let x = |RV [pa. 7] plit1.

Then RV [r] pla = (x, (uov. 7)) i1 = [RV [r[na. 7/a]] plisa.

Proof

We are required to show that for all k <, v, and v/,

(kyv,0) € [RV 7] pla = (x, (e 7)) fisr i (k,v,0') € |RY [rlua. 7/l pJisa

The proof is by induction on ¢ and nested induction on A, a F 7.

A
Case (VarTy) Aﬁ%l—ﬁ
Case (=«
(k,v,0') € [RV[a]pla— (x, (po. 7)) Jita
& (huo) € RV[a]pla— ( (ua. 7))
& (kv,v) € x
& (kvv') € |RV[pa.1]plit
& (ko) € [RV[alpa.7/o]] plina
Case [ # a:

Case (BoolTy)

Case (FnTy)

TR

3

s

Note that k <4

by defn of |_J i+1

by defn of RV [«]

by premise x = |RV [uc. 7] plit1
by substitution

(k,v,0") € [RVIB]pla > (x, (uo. 7)) i

& (kvv') € |[RV[B]pli+
& (kuv) € [RV[Blua.r/all plin

A, at bool

[RV [bool] pla = (x, (uev. 7)) Jis
RV [bool] pla — (x, (pa. 7))

RV [bool] p

RV [bool{pa. T/a]] p

RV [bool[pa. 7/a]] plit+

Aabn A ab
AabT — 1

~ e~~~

K

<

<
NN N NN
M MMMM

ttee

since a ¢ FTV(()
by substitution

Note that k <1

by defn of |-]it1

since a ¢ FTV (bool)

by substitution

by defn of |-]i41 since k <4

k,v,0") € |RV[n — m]pla— (x, (pa.7))]]is1 Note that k <

(
(k,v,v") € RV[r — 7] pla— (x, (po. T)[p])]
(k,Az.e,Az.€') € RV[mn — ] pla— (x, (uo T)[p])]
e a.e i (11— )P ((ua. 7)) /o] A
Vi < k,v1,v].
(j,v1,01) € RV [m] ple = (x, (po. 7)1P)] =
(J, e[v1/a], € [v1 /]) € RC [72] plev — (x, (per. 7)17)]
etz e (i[pe. T/a] — Tolua.T/a))lPh A
Vi < k,v1,v].
(J,v1,v1) € RV [i[pa.7/a]] p =
(v efor /2], [0} /]) € RC [raljucv. 7/a]] p

(k,Az.e,Az.€') € RV[nlpa.7/a] — mlpa.7/a]] p
(kyv,v") € RV[nlpa.1/a) — mpa.7/a]] p
(kyv,v") € RV[(ri — m)pa.7/a]] p

(k v, v') e |RVI(n — )l /al] pliss

34

by defn of I_J it+1
since v = A\z.e and v’ = A\z. €’

(A)
by defn of RV [11 — 2]

(B)
see proof of (A) < (B) below

since v = A\z.e and v’ = A\z. €’
by substitution
by defn of |-];+1 since k <4



Proof: (A) = (B)
The proof is in 2 parts.

I. From the first conjunct of (A) we have o - \z.e’ : (11 — 72)P[((ue. 7)) /af.
Hence, o - Az. ¢’ : (11 [(pa. 7)P1 Ja] — mo[(pa. 7)1 /a])lPl) which follows by substitution.
We are required to show that e - \z. e’ : (71 [uc. 7/a] — Topa. 1/a])lP)]
which follows by substitution.

II. Consider arbitrary j, vy, v] such that

o j<k,and
o (j,v1,v]) € RV [m[pa.7/al] p.
Note that (j,v1,v]) € |[RV [nlpe. 7/a]] plit1,
which follows from the definition of ||, and j <1+ 1,
which follows from j < k < 4.
Applying the induction hypothesis to A, a - 71, we conclude that

[RV [r1] pler — (x, (pov. 7)) |11 = [RV [ra[pr. a/a]] plia

Hence, (j,v1,v}) € |RV 1] pla = (x, (e 7)1PN]ig1.
Hence, (j,v1,v}) € RV [n]pla — (x, (uo. 7)1P)], which follows from the definition of

ILanktantiate the second conjunct of (A) with j, v1, and v]. Note that
o j<k,and
o (j.vi,v7) € RV[mi] pla = (x, (na. 7).
Hence, (j, e[v1/z], '[v]/2]) € RC [ma] plav = (x. (par. 7)17))).
We are required to show that (j, e[vy /], €’'[v]/z]) € RC [ra|uT. a/]] p.
Consider arbitrary j’ and ey such that
e j <],
o e[v1/z] —7" ef, and
e irred(ey).
Instantiate (j, e[v1/x], €'[v} /z]) € RC [m2] pla = (x, (pe. 7)1P1)] with j” and e;. Note that
e j' <,
o efvy/z] —7 ef, and
o irred(ey).
Hence, there exists e} such that

o ¢'[vy/z] —" €}, and

o (-3 ep€p) €RVIma] pla = (x (na. 7))
Note that (j — 7', er,€}) € [RV [r2] pla = (x, (pae. 7PN 541,
which follows from the definition of |-|; and j — j' < i+ 1,
which follows from j < k < i.
Applying the induction hypothesis to A, a F 79, we conclude that

[RV [2] pler — (x, (pov. 7)) |11 = [RV [r2lpr. a/a]] plia

Hence, (j —j',ez,€}) € [RV [relur.a/a]] plit1-
Hence, (j — j',ef,€}) € RV [r2[u7. a/a]] p, which follows from the definition of [- .
Let e/ = €.
We are required to show that
o ¢'[vy/a] —" €,
which follows from above, and
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o (j—J'sep e}) € RV [relur.a/a]] p,
which follows from above.

Proof: (B) = (A)
Analogous to proof of (A) = (B).

A? «a, B F 1
Case (RecTy) N
(k,v,0) € RV [ub.- 1] pla— (x, (pa.7)PN]]iz1  Note that k < i
& (k) € RV [ub.m]pla— (x, (ua. 7)) by defn of |- |41
& (k,foldwi,foldv)) € RV [upf.n]pla— (x, (uo. 7)) since v = foldv, v’ = foldv]
= e foldv} : (uB. )P [((ue. 7)) /o] A
Vj < k.
let X' = [RV [u8.71] pla = (x, (e 7)!7)] 541 in (A)
(G, o1,01) € RV [ra] pla — (x, (ex. 7)), by defn of RV [ufh. ]
8 (x' (. 72) P (. )P o)
& ek foldv) : (uf. (ri[uc. 7/a]))l
Vi < k. (B)
let X" = [RV . (m1[pe.7/a])] plj+1 in see proof of (A) < (B) below
(G, v1,01) € RV [n[uc. 7/a]] plB = (X', (- (ri[per. 7/a]))?))]
= (k, foldvl,foldvl) € RV[pb. (rilpe.m/a))] p
& (k) € RV[pB. (rilpa.7/a))] p since v = fold vy, v’ = fold v}
< (kv,0) € RV[(uB.m)pa.7/]p by substitution
& (k,v,0) € RV[(uB.m)pue.7/a]] plit1 by defn of |-]i41 since k <4

Proof: (A) = (B)
The proof is in 2 parts.
I. From the first conjunct of (A) we have o - fold v} : (u8. 1) [((ua. 7)) /).

II.

Hence, o - fold v} : (uf. (11[((pa. 7)P)) /o)), which follows by substitution.
We are required to show that e - fold v} : (uf. (11 [ua. 7/a)))P!
which follows by substitution.
Consider arbitrary j such that
o j <k
Let x' = [RV [uB. (r1[pa. 7/a])] p] j41.
Hence, x' = |RV [(u8. m1)[pa. T/a]] p| j+1, which follows by substitution.
Note that 7 + 1 < ¢ + 1, which follows from j < k and k < 1.
Hence, applying the induction hypothesis to A, a .71, we conclude that

[RV [1B. 7] plo = (x, (poe. 7)) 41 = [RV [(uB.71) [pev. 7/a]] pj41-

Instantiate the second conjunct of (A) with j, noting that
o j<k.
Note that x' = [RV [uB. 1] ple = (x, pev. 7)) |1
Hence, (j,v1,v1) € RV [mi] plo = (x, (na. 7)), 31— — (s (- Tl)p][(( .7)7)/a])]
= RV[nlpla = (x (pe T%ﬂ%ﬁ = (X, (B (1 [((par. 7)) fa]))lP))]
B —

=RV [n] pla — (x, (pa. 7)), (O, (1. (71 [per. 7/a]))Ph)]
which follows by substitution.

Hence, (j,v1,v1) € [RV [1i] plo = (x, (na. 7)), 8= (X', (4B (i [mav. 7/a])#))] i1,
which follows from the definition |-]; and j <+ 1.

Hence, (j,v1,v1) € [RV 1] p[B — (X' (uB. (i [pev. 7/a])P)), e = (x;, (pev. 7)1PD)] i1
Note that A, o, B F 7 iff A, B,a b 7.

Also note that p[8 — (x/, (uB. (m1[pa. 7/a)))P))] € RD[A, 8], which follows from
e pe RD[A], and

36



o X' € Relg,s.( which follows from

Tilpa. r/a])) el

RV [Luﬂ (Tl [:ua T/Ot])]] pE Rel(uﬁ. (71 [pa. 7/a]))lPls
which follows from Lemma B.10 applied to p € RD [A] and A F uf. (11[pe. 7/a])

= RV [uB. (ripa. 7/a])] plj+1 € Rel(up. (,ua. 7 /a))ie
which follows from the definition of |-]

= X' € Rel(up. (1, [ua. v/a])o)s
which follows from x' = [RV [uf. (11 [ua. 7/a))] pljt1-

Applying the induction hypothesis to

o plB = (X, (uB. (rua. T/a))lP)] € RD[A, 5],
e A B ,at 1, and
o x = RV [ua. 7] p[B — (X', (pB. (m[ucr. 7/a]) )] Jis1,
which follows from x = |RV [ua. 7] p|it1 since g ¢ FTV (pa. 1),
we conclude that

RV [r1] plB = (X', (1. (rilpe.7/a])) ), 0 = (x; (o 7)) i1
= [RV [ [pe T/Oé]ﬂ plB = O, (B (11 [pa T/a]))[p])HiJrl

Hence, (j,v1,v}) € [RV [ri[pa.7/a]] p[B = (X', (8. (i [nce. 7/a])) D)) |y
Hence, (j,v1,0}) € RV [alua.~ /o]l plf — (x's (uB. (r[.7/a]))%)] " which follows
from the definition of |-]g.
Proof: (B) = (A)
Analogous to proof of (A) = (B).

37



B.8 )¢ Proofs: Fundamental Property of the Logical Relation

The Fundamental Property of a logical relation holds if the latter is a congruence — that is, if it satisfies
the compatibility and substitutivity properties.

Lemma B.12 (A" Compatibility-True)

I'Ftt <tt:bool.

Proof
The proof is in 2 parts.

I. We are required to show I' I tt : bool, which is immediate.
II. Consider arbitrary k, v, 7’ such that
e k>0, and
o (k,v,v') € RG[I].
We are required to show that (k,vy(tt),~'(tt)) € RC [bool] §
= (k,tt, tt) € RC [bool] 0.
Consider arbitrary j, ef such that
o j <k,
e tt —J ey, and
o irred(ey).
Since tt is a value, we have irred(tt).
Hence, j = 0 and ey = tt.
Let e = tt.
We are required to show that

e tt+—" tt,
which is immediate, and

o (k—0,tt,tt) € RV [bool] 0,
which follows from

e o tt: bool, and
e tt =tt = tt.
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Lemma B.13 (A" Compatibility-False)

I'Ff£f < ff : bool.

Proof
The proof is in 2 parts.

I. We are required to show I' - ££ : bool, which is immediate.
II. Consider arbitrary k, v, 7’ such that
e k>0, and
o (k,v,v') € RG[I].
We are required to show that (k,v(££),v'(££)) € RC [bool] §
= (k,£f,£f) € RC [bool] 0.
Consider arbitrary j, ef such that
o j <Kk,
o ff —J ey, and
o irred(ey).
Since ££ is a value, we have irred(££).
Hence, j = 0 and ey = ££.
Let ¢/, = £f.
We are required to show that

o ff —* ff,
which is immediate, and

o (k—0,ff,£f) € RV [bool] 0,
which follows from

e o ff : bool, and
o ff =ff = ff.
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Lemma B.14 () Compatibility-If)

IfTheg<ej:bool, Tke <e}:7,andTFey<eéh:m,
then T'F if eg,e1,e9 < if e), €f,€h : 7.

Proof
The proof is in 2 parts.

I. We are required to show
o ' ifegy,eq, ey : bool, which follows from
e I' ¢ : bool, which follows from I' F ey < ¢, : bool,
e I't ey : 7, which follows from ' ey < €] : 7, and
e I't ey : 7, which follows from ' eg < e, : 7.
o I'F ifep,el, el : bool, which follows analogously.
II. Consider arbitrary k, v, 4" such that
e k>0, and
o (k,v,7') € RG[L].

We are required to show that (k,~v(if eg,e1,e2),v (if ep, €l,¢e5)) € RC[r] 0
= (k,ify(eo),7(e1),v(e2), i 7'(€g), 7 (€1), 7 (€3)) € RC [7] 0.
Consider arbitrary j, ef such that

o j <k,
e ify(eg),y(e1),v(e2) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist jo and ey, such that
* Y(eo) % eg,
o irred(ey,), and
® jo <7
Instantiate the second conjunct of I' F eg < e, : bool with k, 7, and +'.
Note that
e k>0, and
e (k,v,7") € RG[IT].
Hence, (k,v(ep),7 (€f)) € RC [bool] 0.
Instantiate this with jo, ef,. Note that

e jo < k, which follows from jo < j and 7 < k,
o y(eg) —70 ey, and
o irred(eg, ).
Hence, there exists 6}0 such that
e 7'(ep) —* €}, and
o (k—jo,eg,,€}) € RV [bool] 0.

Hence, either ey, =€, =tt or e, =€, = £f.

40



Case ef, = ¢ =tt:
Note that
v(if eo, €1, €2) = if y(eo), y(e1), v(e2)
70 if efy, y(e1), v(e2)
=if tt,y(e1),v(e2)
— y(er)
—7t ef,
where irred(ey,) and ey, = ey and j = jo + 1+ ji.
Instantiate the second conjunct of ' F ey <€} : 7 with k — jo — 1, 7, and 4’/. Note that
e k— jo— 1> 0, which follows from jo < k, and
b (k _jO - 17777,) € Rg IIF]]a
which follows from Lemma B.9 applied to (k,v,7') € RG[I'] and k& — jo — 1 < k.
Hence, (k — jo — 1,7(e1),7'(e})) € RC[7] 0.
Instantiate this with j; and ey, . Note that
e j; <k — jo— 1, which follows from j; = j—jo— 1 and j <k,
e y(e1) —71 ey, and
o irred(ey, ).
Hence, there exists e’f1 such that
o Y(e}) —* ¢}, and
o (k—jo—1—jiep,¢s) € RV[7]D )
= (k—j,ep, e} ) € RV[r]0, since j = jo + 1+ j1
Let e = ¢ .
We are required to show
o y(if ey, €, e5) —" €},

which follows from

" (eh)
— e'f1
and
o (k—jyepey) € RV[r]0
=(k—Jj,epn,e}) € RV[7]0,
which follows from above.
Case ¢f, = ¢ =1f:
Note that
v(if eo, €1, €2) = if y(eo), v(e1), v(e2)
70 if efoa/y(el)v’Y(eQ)
= if £f,y(e1),v(e2)
" 7(e2)
—72 eg,
where irred(ey,) and ey, = ey and j = jo + 1 + Jo.
Instantiate the second conjunct of T'F ey < €}, : 7 with k — jo — 1, v, and /. Note that
e k — jo—1 >0, which follows from jy < k, and
b (k 7].0 - 17777,) €RG HF]]a
which follows from Lemma B.9 applied to (k,v,7’) € RG[I'] and k — jo — 1 < k.
Hence, (k — jo — 1,7(e2), 7 (eh)) € RC[7] 0.
Instantiate this with j, and ey,. Note that
e jo < k — jo— 1, which follows from j, = j — jo — 1 and j < k,
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e y(ez) —72 ey, and
o irred(eg,).
Hence, there exists e}z such that
o 7'(eh) —" e}, and
o (k—jo—1—jaep,¢s) € RV[T]0
= (k—Jj,ep,e,) € RV[7]0, since j = jo + 1 +Jz
Let ef = efZ.
We are required to show
o 7/ (if e, €}, eh) —* e’fz,
which follows from
’y,(lf 6676176,2) — lf’y (60) /(ell) /(6
—* if efw'y'(e'l ~'(e
= if£f,9'(e1), (h)
RAC)

—" e,

)
)

NSNS

and
o (k—jyep.ey,) € RV[r]0
= (k -7, efz,e'fz) e RV[r] 0,
which follows from above.
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Lemma B.15 (A" Compatibility-Var)
Ptz <z:I'(z).

Proof
The proof is in 2 parts.

I. We are required to show I' -« : T'(z), which is immediate.
II. Consider arbitrary k, «, 4" such that
e k>0, and
o (k,v,7) € RG[I].
We are required to show that (k,~v(z),~'(z)) € RC [['(z)] 0.
Consider arbitrary j, ef such that
o j <k,
e y(z) —7 ep, and
o irred(ey).
Since v(z) is a value, we have irred(y(x)).
Hence, j = 0 and ef = ().
Let ¢} = +'(z).
We are required to show that
o ¥ (z) —" (),
which is immediate, and

o (k=0,7(x),"'(z)) € RV[(2)] 0,
which follows from (k,v,v") € RG[I].
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Lemma B.16 (A" Compatibility-Fn)

IfTx:7Fe<e :m,
thenI'F Av.e < Azv.e' : 71 — To.

Proof
The proof is in 2 parts.

I. We are required to show ' Az.e: 71 —w mand '+ Az.e’ : 11 — 7o,
which follow (respectively) from Iz : 7 Fe:mand Ty : 7 b e : 7o,
which follow from I',z: 1y Fe < €' : 1.

II. Consider arbitrary k, -, 4" such that
e £ >0, and
e (k,7,7) € RG[IT.
We are required to show that (k,vy(Az.e),y' (A\x.¢')) € RC [r1 — 2] 0
= (k,Az.v(e), A\x.v/(e)) € RC 11 — 72] 0.
Consider arbitrary j, ey such that
o j <k,
e \z.y(e) —7 e, and
o irred(ey).
Since Az.vy(e) is a value, we have irred(Az. v(e)).
Hence, j = 0 and ey = Az.y(e).
Let e = Az.v'(¢').
We are required to show that
o \z.vy/(e') —* Ax.~/(€),
which is immediate, and
o (k—0, z.v(e),\z.v'(¢/)) € RV[r1 — 1] 0
= (k, Az.y(e), Az. v/ (€))
e {(k, x. e, x.€/)| oF Ax.e: (1 — )0 A
Vi < kyv1,v].
(Jyv1,01) ERV[N]D =
(J: e[v1/a], €'[vi/a]) € RC [r2] 0},
which follows from
e ot Az ()T — 7o,
which follows from
e Note that I,z : 7y €’ : 79, which follows from ',z : 71 F e < €' : 7.
Hence, we have I' - Az. e’ : 71 — To.
Note that -+ : T', which follows from Lemma B.7 applied to (k,v,v") € RG [T].

Note that e F 4/(Az.€’) : 74 — 72, which follows from Lemma B.5 applied to
Fo:Tand 'k Az.e’ : 1y — 7.
Hence, o F Az.v/(e/) : 1) — 7.

o V) < k,up,vg....
Consider arbitrary j, v1, v} such that

e j<k,and
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b (J7 Ulavll) € RV IITl]] @

We are required to show that (4,v(e)[v1/z],~'(¢")[v}/z]) € RC [r=] 0.
Instantiate the second conjunct of ',z : 7+ e < €’ : 75 with j, y[x — v1], and v'[z — v]].
Note that

e j >0, and
e (j,v[x — v1],7[x — v]]) € RG [T, x : 71], which follows from
* (J,7,7) € RG[IT,
which follows from Lemma B.9 applied to (k,v,7") € RG[I'] and j < k, and
hd (ja V1, /US_) € RV [[Tlﬂ (Z)a
which follows from above.

Hence, (j,v[x — v1](e),”'[x — vi](¢/)) € RC [72] 0.
Thus, (j,7(€)[z/v1],7'(¢")[x/v1]) € RC [72] 0.
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Lemma B.17 (A" Compatibility-App)

IfThe;<el:m — 1, andTFey <eé:7,
then Tk ejes < efel: .

Proof
The proof is in 2 parts.

I. We are required to show

o I'H €1 €2 . To,
which follows from

e 'Fey:m — 7,
which follows from I' Fe; < e} : 74 — 72, and

e 'Fey:my,
which follows from I'F e < €}, : 7.

o I'F ¢ €} : 7o, which follows analogously.
II. Consider arbitrary k, v, 7’ such that

e k>0, and

o (k,v,7) € RG[I].

We are required to show that (k,v(eq e2),v/(e
= (k,v(e1) ¥(
Consider arbitrary j, ey such that

1€3)) € RC[m2] 0
€2),7'(e1) 7' (e3)) € RC [r2] 0.
o j <k,
e y(e1)y(e2) —7 eg, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(er) —t ey,
o irred(ey,), and
e j1 <j.
Instantiate the second conjunct of ' ey < €} : 71 — 75 with k, v, and 4'. Note that
e k£ >0, and
o (k,v,v') € RG[I].
Hence, (k,v(e1),7'(e})) € RC[r1 — 72] 0.
Instantiate this with ji, ey,. Note that
e j; < k, which follows from j; < j and j < k,
o y(e1) —7t ey, and
o irred(ey, ).
Hence, there exists e}l such that
e 7(€}) —" €}, and

o (k—ji,ep,ey) €RV[n — ] 0.
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Hence, ey, = Az. ey, and e’f1 = )\m.e}n.
Note that
Y(erez) = v(e1) y(e2)

"t ep v(e2)
= (Az.epy)v(e2)

T ey
Hence, by inspection of the operational semantics it follows that there exist j» and ey, such that
o Y(e2) —" ep,,
e irred(ey,), and
e j2<j—J1
Instantiate the second conjunct of ' F ey < €l : 7 with k& — j1, 7, and /. Note that
e k — j; > 0, which follows from j; < k, and
o (k—j1,7.7") € RG],
which follows from Lemma B.9 applied to (k,v,7') € RG[I'] and k — j; < k.
Hence, (k — j1,v(e2),v'(e5)) € RC [1] 0.
Instantiate this with j, and ey,. Note that
e jo < k — j1, which follows from j, < j — j; and j < k,
e y(ez) —72 ey, and
o irred(ey,).
Hence, there exists 6}2 such that
e 7(e5) —* €}, and
o (k—j1—Ja2,ep,,€},) € RV[m]0.
Hence, ey, = vy, and e, = v},.

Note that
v(e1e2) = vy(e1) y(ez)

—"" ey, y(e2)
= (Az.efy,)v(e2)
72 (Ax'efn)efz

= (/\x' ef11) Ufa

’—>1 €f11 [’Ufz/x]
—73 ey

and irred(ey), where j = j1 + jo + 1 + js.

Instantiate the second conjunct of (k — ji, Az.ef,,, Av. ey ) € RV [11 — 7] 0 with k —j1 —j2 — 1,
vy,, and v%,. Note that

e k—j1—jo—1<k—ji,and
o (k—j1—j2—1,vp,v%) € RV[n]0,
which follows from Lemma B.8 applied to
o ) € RD [e],
o o Ty,
o (k—j1—j2,v5,,v%,) € RV[i] 0, and
e k—j1—ja—1<k—ji—ja
Hence, (k — j1 —ja — L, eg,, [vg, /2], €, [V, /2]) € RC [2] 0.
Instantiate this with jz and e;. Note that
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e j3 < k — j; — jo — 1, which follows from js =j—j1 —jo—1and j <k,
o e, [vp, /2] —73 ef, and
o irred(ey).
Hence, there exists e/ such that
o ¢ [vy, /7] —" €, and
o (k—ji1—j2—1—7jsep,e}y) € RV[r]D
= (k—j.eg.€}) € RV[m] 0, since j = ji +ja + 1 + js.
3 !
Pick ¢y = €.
We are required to show that
o V(e ey) —" e,
which follows from

—1 ¢, [
— ef

and

o (k—jyep e}) € RV[r]0,
which follows from above.
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Lemma B.18 () Compatibility-Fold)

IfTke<e :rpa.7/al,
then ' F folde < folde' : pa. 7.

Proof
The proof is in 2 parts.

I. We are required to show I' - folde : pa.7 and ' folde : pa. 7,
which follow (respectively) from I' - e : 7[ua. 7/a] and T+ €’ : 7[ua. 7/a],
which follow from I'F e < e’ : T[pa. 7/a].

II. Consider arbitrary k, v, 7 such that
e k>0, and
e (k,v,7") € RG[I].
We are required to show that (k,v(folde),~'(folde’)) € RC [uca. 7] 0
= (k,fold~y(e),fold~'(¢')) € RC [ua. 7] 0.
Consider arbitrary j, ey such that
o j <k,
e foldv(e) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(e) — ey,
o irred(ey,), and
e j1<7.
Instantiate the second conjunct of I' e < €' : T[ua. 7/a] with k, v, and v'.
Note that
e k>0, and
o (k,v,v) € RG[I].
Hence, (k,v(e),7'(€¢')) € RC [rpc. 7/a]] 0.
Instantiate this with ji, ef,. Note that
e j; < k, which follows from j; < j <k,
e y(e) —I1 ey, and
o irred(ey, ).
Hence, there exists e}l such that
e Y (e) —" ¢}, and
o (k—ji,ep,€y) € RV[r[pa.7/a]] 0.
Hence, ey, = vy, and ey =0} .
Note that
v(folde) = foldy(e)
71 foldey,

= folduy,
—J—a ey
Since fold vy, is a value, we have irred(fold vy, ).
Hence, j — j1 =0 (and j = j1) and ey = folduy,.
Let e/, = fold v}, .
We are required to show that
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e foldy/(¢/) —" ¢
= fold~'(¢/) =" fold v}
which follows from above, and
o (k—j,epe}) € RV [ua.7]0
= (k —j,foldvy,,fold v} )
€ {(k,foldv,foldv’) |
o foldv' : (ua. )0 A
Vi < k.
let x = |RV [pa. 7] 0] 41 in
(j,v.0') € RV [r] e = (x, (ne. )]}
which follows from
o o foldvf : (pa. 7))
Note that e = v : 7[ua.7/a], which follows from (k — j,vp,, v} ) € RV [r[ua. 7/a]] 0.
Hence, o - fold v : pa. 7.
o Vi<k—j let x=|RV[ua.7]0)is1in (i,v05,0}) € RV [r]0a — (x, (ua.7)D)]).
Consider arbitrary ¢ such that
o 1 <k—j.
Let x = [RV [pa. 7] 0] 11
We are required to show that (i,vy,,v} ) € RV [7] 0[a — (x, (pe. 7))
Applying Lemma B.8 to

e ) € RD o],
o o T[ua.7/a],
o (k—j, vfl,v}l) € RV [r[pa. 7/a]] 0, and
e i< k — ja
we conclude that (i,vy,,v% ) € RV [r[ua.7/a]] 0.

Hence, (i,vy,,v%,) € RV [rlpa.7/a]]0]i41, which follows from the definition of |-]y.

Applying Lemma B.11 to e - pa. 7 and x = |RV [pua. 7] 0];+1 we conclude that
[RV [7]0la — (x. (e 7)) Jia = [RV [7[pe. 7/a]] B)is1-
Hence, (i,vp,,v% ) € [RV 7] 0la — (x, (. )N |41

Hence, (i,vy,,v},) € RV[7] 0 — (x, (nav. 7))], which follows from the definition of
-]

d
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Lemma B.19 (A" Compatibility-Unfold)

IfTFe<eé :pa.r,
then I' F unfolde < unfolde' : T[ua. 7/al.

Proof
The proof is in 2 parts.

I. We are required to show I' F unfolde : 7[pa. 7/a] and I' - unfold e’ : T[ua. 7/a,
which follow (respectively) from 'k e: pa.7 and T F €' : pa. T,
which follow from T'Fe < ¢’ : pa.T.

II. Consider arbitrary k, -, 4" such that
e £ >0, and
o (k,v,7) € RG[I].
We are required to show that (k,y(unfolde),v'(unfolde’)) € RC [r[uc.7/a]] D
= (k,unfoldy(e),unfold~'(¢')) € RC [7[pc. /)] 0.
Consider arbitrary j, ey such that
o j <k,
e unfold~y(e) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o Y(e) —" ey,
o irred(ey,), and
e j1 <.
Instantiate the second conjunct of I' - e < €’ : pa. T with k, v, and 7. Note that
e k>0, and
o (k,v,v') € RG[I].
Hence, (k,v(e),~'(")) € RC [ua. 7] 0.
Instantiate this with ji, ef,. Note that
e j; < k, which follows from j; < j <k,
e y(e) —I1 ey, and
o irred(ey, ).
Hence, there exists e}l such that
e ' (e) —" €}, and
o (k—ji,ep,e}) € RV [ua.7]0.
Hence, ey, = foldvy,, and ey =foldv} .

Note that
~v(unfolde) = unfold~y(e)
——J1 unfoldey,
= unfold (fold vy, )

1 JJ—ij1—1
V11 ef

Since vy, is a value, we have irred(vy,, ).
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Hence, j —j1 —1 =0 (and j = j; + 1) and ey = vy,,.
Furthermore, note that
+'(unfolde’) = unfold vy (e')
—" unfold e,
= unfold (fold v} ,)
'—>1 /U}ll
Since v’ | is a value, we have irred (v}, ).
I
Let e = v}, .
We are required to show that
e unfoldy'(e') —" ¢
= unfoldy'(e’) —* v} |
which follows from above, and
o (k—j.epep) € RV[r[pa.7/a]] 0
= (k — 7, vfu,v}n)RV [r[pa. 7/a]] 0,
which we conclude as follows:
From (k — ji,ep,, €} ) = (k — ji,foldvy,, foldv} ) € RV [ua. 7], we have
e o foldvj, : (pa. )0 and
o Vi<k—ji. let x = RV [pa.7]0]ir1 in (i,vy,,,0},) € RV [7]0a — (x, (ua. 7)),
Instantiate Vi < k — ji. let x = [RV[ua.7]0]iy1 in  (i,vp,,0} ) € RV[7]0a —
(06 (pa. 7)) with & — j.
Note that
e k— j <k — j1, which follows from j = j; + 1.
Let x = |[RV [puo. 7] 05— j41.
Hence, (k — 7, vf“,v}u) e RV [r] 0[a — (x, (pev. 7).
Hence, (k — j,vs,,,0% ) € [RV[7] 0l — (x, (pe. )] |4—j+1, which follows from the defi-
nition of |- |g.

Applying Lemma B.11 to () € RD [e], ® - pucv. 7, and x = |RV [pew. 7] 0] x—j+1, we conclude
that

[RV [ 8la = (x, (por. 7))k —ji1 = [RV [7lpa. 7/a]] 0] k—js1-

Hence, (k — 7, ’UfU,’U}U) € |RV [rlpa.7/a]] 0] k—jt1-

Thus, (k — j,vp,,,0},,) € RV [r[ua.7/a]] 0, which follows from the definition of |-|.
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Lemma B.20 ()¢ Substitutivity)
IfTFv<v :mandD,z:mbFe<e :m,
then T+ e[v/x] < e'[v'/x] : 1.

Proof
The proof is in 2 parts.

I. We are required to show
o I'Fefv/x]: o,
which follows from Lemma B.5 applied to
e 'Fuv:mr,
which follows from I' = v < v’ : 7, and
el x:mFe:m,
which follows from 'z : 71 Fe <e' : m.
o I'F ¢'[v'/x] : T2, which follows analogously.
II. Consider arbitrary k, v, 7’ such that
e k>0, and
e (k,7,7") e RG[IT.
We are required to show that (k,v(e[v/x]),~'(¢'[v'/z])) € RC [2] 0.
Instantiate the second conjunct of I' v < v’ : 7y with k, v, and +'. Note that
e k>0, and
* (k,7,7") € RG]
Hence, (k,v(v),~'(v")) € RC [1] 0.
Instantiate this with 0 and ~(v).
Note that y(v) is a value. Hence,
o y(v) —0 y(v), and
o irred(y(v)).
Hence, there exists e} such that
e (v') —* ¢}, and
o (k—0,7(v),e}) € RV[n] 0.
Since 7/(v') is a value, it follows that v'(v') = +/(v"). Hence ¢/, = ~'(v).
Thus, (k —0,7(v),e}) € RV [11] 0
= (k77(v)7 ’YI(U,)) €ERV [[7_1]] 0.
Instantiate the second conjunct of I'yz : 71 F e <€’ : 1o with k, y[z — v(v)], and v/[x — ~/'(v')].
Note that
e £ >0, and
o (k,[z—=(v)], 2 [z—A()]) € RGT, 2 - ml,
which follows from
e (k,7,7) € RG[I], and
o (k,v(v),7(v")) € RV [r1] 0, which follows from above.
Hence, (k, y[z = ~(v)](e), [z = v/ (v)](€') € RC[r2] 0
= (k7 (eby(0)/2]). /(€1 ())& RE []0
(k;~(ev/a]), 7' (€'[v"/a]) € RC [r2] 0.
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B.9 )¢ Proofs: Reflexivity
Lemma B.21 (\"° Reflexivity)

IfTFe:7,thenTFe<e:rT.

Proof

By induction on the derivation I"' e : 7.

Each case follows from the corresponding compatibility lemma (i.e., Lemmas B.12 through B.19). O
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B.10 )™ Proofs: Transitivity
Lemma B.22 (A Transitivity: Closed Terms)
Let ot T.

(A) If (k,v1,v2) € RV[7]0 and ¥z > 0. (z,v2,v3) € RV [7] 0,
then (k,v1,v3) € RV [7]0.
(B) If (k,e1,e2) € RC[7] 0 and ¥z > 0. (2,e2,e3) € RC[7] 0,
then (k,eq,es) € RC [r] 0.
Proof

We simultaneously prove both (A) and (B) by induction on k and nested induction on the structure
of the (closed) type 7.

(A) Case k=0:

Case (BooITy) o bool

We have as premises
(1) (0,v1,v2) € RV [bool] 0, and
(2) Vz > 0. (z,v2,v3) € RV [bool] 0.
Hence, from (1) it follows that (v; = vo = tt) V (v; = v = £f).
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [bool] 0.
From the latter it follows that (vo = v3 = tt) V (v = v = ££).
We are required to show (0, v1,v3) € RV [bool] 0,
which follows from
e o v3: bool,
which follows from (0, va,v3) € RV [bool] .
. (’Ul = V3 = tt) V (’Ul = V3 = ff),
which follows from (v; = vo = v3 = tt) V (v1 = v = v3 = £f),
which follows from
o (v =vy =1tt)V (v = vy = ££f), and
o (vg =wv3=1tt)V (vy =v3 = £f).
o T1 o T2
Case (FnTy) P ——
We have as premises
(1) (0,v1,v2) € RV [r1 — 72] 0, and
(2) V2 > 0. (2,v2,v3) € RV [ — 72] 0.
Hence, from (1) it follows that v1 = Az.e; and v = Az. €.
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [11 — 72] 0.
From the latter it follows that v3 = Az. es.
We are required to show (0, Az.e1,Az.e3) € RV [ — 72 0,
which follows from
e ok Az.ez:(r — 1),
which follows from (0, Az. ea, Ax. e3) € RV [11 — 2] 0.
o Vi <0,v,v. (j,v,0") € RV[r]0 = (j,e1][v/z], e3[v'/x]) € RC 2] 0,
which follows trivially since there is no j such that 0 < j < 0.

55



Case (RecTy) ﬂ
o pa.m
We have as premises
(1) (0,v1,v2) € RV [uc. 71] 0, and
(2) Vz > 0. (z,v2,v3) € RV [pua. 71] 0.
Hence, from (1) it follows that v; = foldwvy; and vy = fold vas.
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [pa. 71] 0.
From the latter it follows that vs = fold vss.
We are required to show (0, fold vy, foldwss) € RV [ua. 1] 0, which follows from
e o folduwss : (uav. ),
which follows from (0, fold ves, foldvss) € RV [uc. 1] 0.
° VJ < 0. let X = LRV [[,U,Oé 7'1]] (Z)Jj+1 in(j, ’Ull,’l)gg) cRY H’rl]] @[a — (Xv (MOZ-Tl)[@])],
which follows trivially since there is no j such that 0 < j < 0.

Case k > 0:

Case (BooITy)

e - bool
We have as premises
(1) (k,v1,v2) € RV [bool] §, and
(2) Vz > 0. (2,v2,v3) € RV [bool] 0.
Hence, from (1) it follows that (v; = v = tt) V (v = v = £1).
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [bool] 0.
From the latter it follows that (v2 = vz = tt) V (vy = v3 = £f).
We are required to show (k,v1,v3) € RV [bool] 0,
which follows from
e o v3: bool,
which follows from (0, v2,v3) € RV [bool] 0.
o (v; =v3=1tt)V (v =v3 =£ff),
which follows from (v; = vy = v3 = tt) V (v1 = vy = v3 = £f),
which follows from
o (v =vy =1tt)V (v =vg = £f), and
o (v =vz=1tt)V (vy =v3 =£f).
Case (FnTy) ofm eFm
o7 — Ty
We have as premises
(1) (k,v1,v2) € RV[11 — 72] 0, and
(2) V2 > 0. (2,v2,u3) € RV [ — 72] 0.
Hence, from (1) it follows that v1 = Az.e; and v = Az. es.
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [11 — 72] 0.
From the latter it follows that v3 = A\x. es.
We are required to show (k, Ax.e1, Ax.e3) € RV [11 — 12] 0,
which follows from
e ok Az.eg: (1 — )0,
which follows from (0, Az. ez, Az. e3) € RV [11 — 2] 0.
o Vi < k,u,v. (j,v,0) e RV[n]0 = (j,er[v/z],e3[v'/x]) € RC [1=2] 0:
Consider arbitrary j, v, v’ such that
e j <k, and
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Case (RecTy)

e (4,v,v") € RV[nr]0.

Instantiate (1) with 7, v, and v’. Note that
e j <k, and
e (4,v,v") € RV[n]0.

Hence, (j,e1[v/x], exv’/z]) € RC [72] 0.

Applying Lemma B.6 to ® = 7 and (j,v,v") € RV [11] §, we conclude that e - v’ : 77"

Hence, by reflexivity (Lemma B.21) we conclude that e - v < v’ : 7.
Hence, unwinding definitions, we have Vz > 0. (z,v',v") € RV [r1] 0.
Consider arbitrary z’ such that 2’ > 0.
Instantiate (2) with 2z’ + 1.
Hence, (2' + 1, A\z. €2, Ax. e3) € RV [11 — 72] 0.
Instantiate this with 2/, v/, and v’. Note that
e 2/ <2 +1, and
o (2,0, v) e RV[r]0,
which follows from Vz > 0. (z,v',v") € RV [11] 0,
which follows from above.
Hence, (2/,eav’/z], e3[v'/x]) € RC [12] 0.
Thus, V2’ > 0. (2, ea[v'/x], e3[v’ /z]) € RC [7=2] 0.
Applying induction hypothesis (B) to (j,e1[v/z], ea[v’/z]) € RC [12] ® and
Vz' > 0. (2, e2[v'/x], e3[v’/z]) € RC [12] 0, we conclude that
(j,e1[v/z], es[v'/z]) € RV [72] 0.
o, (¥ - T1
o pa.m
We have as premises
(1) (k,v1,v2) € RV [ua. 1] 0, and
(2) V2> 0. (z,v2,v3) € RV [uc. 71] 0.
Hence, from (1) it follows that v; = foldvy; and ve = fold ves.
Instantiate (2) with 0, noting that 0 > 0.
Hence, (0,v2,v3) € RV [pa. 1] 0.
From the latter it follows that v3 = fold vss.
We are required to show (k,foldwvii, foldwsg) € RV [ua. 1], which follows from
e of fold’l}gg : (,U,Oé.’]'l)[m,
which follows from (0, fold veg, foldvss) € RV [ua. 7] 0.
o Vj < k. let x=|RV[ua.m]0] ;11 in(j,vi1,vs3) € RV 1] Dl = (x, (pa. 7))
Consider arbitrary j such that
o j <k
Let X = LRV [[[LO[. Tlﬂ @Jj_i,_l.
Note that from (1) we have
e o folduy : (ua. 7)1 and

[0]

o Vj < k.letx = [RV [ua. 7] 0410 (j,v11,v22) € RV [11] Bla = (x, (pa. 1))

Instantiate Vj < k. let x = [RV[pa.71]0]j41 in (j,v11,v22) € RV [11] 0]
(x, (pa. 7)PN)] with j and y. Note that

e j<k,and

o x = [RV[pa. 1] 0]
Hence, (j,v11,v22) € RV [11] B[ (x, (pev. 7))

—

Hence, (j,v11,v22) € |[RV[r] 0l — (X, (pa.m))]] 11, which follows from the

definition of |-|k.
Applying Lemma B.11 to e F ua.7; and y, we conclude that |RV [r] 0]«
(06 (pee 7)) |1 = [RV [m[pc. 71 /a]] 0] 541
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Hence, (j,v11,v22) € | RV [71[pa. 71 /]] 0] j41.
Hence, (j,v11,v22) € RV [11[ua. 71 /a]] B, which follows from the definition of |- |.
Consider arbitrary z’ such that 2z’ > 0.
Instantiate (2) with 2z’ + 1.
Hence, (z' +1,fold vag, foldwvss) € RV [pa. 71] 0, from which we have
e o folduss : (uo. 7)1 and
e Vj < 2+ 1 let x = |RV[pa.m] mj-!—l = (J,v22,v33) € RV[n] 0 —
(x; (por. 7).
Instantiate Vj < 2/ 4+ 1. let x = [RV [ua.71] 0] ;41 in (j,vee,v33) € RV [11] Ol —
(x, (pa. 7)PN)] with 2’. Note that
o 2 <+ 1
Let X' = |RV [po. 71 ] 0241
Hence, (2, v93,v33) € RV [ma] ]a = (X', (pev. 7)),
Hence, (2/,va2,v33) € [RV[11] Ol = (X, (e 71) )] )41, which follows from the
definition of |- .
Applying Lemma B.11 to e - pu«. 7p and X', we conclude that
[RV [n] Ola = (', (e )N Lorpy = [RV [mifpan 71/a]] 0] 241
Hence, (2',v22,v33) € [RV [r1[pa. 71 /0]] 0] 41
Hence, (#/,v22,v33) € RV [1[pa. 71/a]] @, which follows from the definition of |-].
Thus, V2’ > 0. (2, va2,v33) € RV [11[pee. 11 /a]] 0.
Applying the induction hypothesis (A) to (j,v11,v22) € RV [ri[pa.71/a]]® and
Vz' > 0. (2/,v22,v33) € RV [11[per. 71 /a]] @ — noting that we can apply the induction
hypothesis here since j < k — we conclude that (j,v11,v33 € RV [r1[pa. 71/a]] 0.
Hence, (j,v11,v33 € |RV [1i|pa.71/a]] 0] 41, which follows from the definition of
L]k
Applying Lemma B.11 to e F pa. 7y and x = [RV [pua. 71] 0] 41, we conclude that
[RV [11] 0l — (x, (na. 7)) |41 = [RV [m[pc. 71 /a]] 0] 11
Hence, (j,v11,v33) € [RV [11] Ol = (x;, (e 7)) 41
Hence, (j,v11,v33) € RV [11] 0[a — (x, (ev. 71)1)], which follows from the definition
(B) Case k=0:
We are required to show (0,e1,e3) € RC [r] 0, which is immediate from the definition of
RC [7] 0.
Case k£ > 0:
We have as premises
(1) (ka €1, 62) € RC [[7_]] (Z)a and
(2) V2 > 0. (2,e2,e3) € RV [7] 0.
Consider arbitrary j; and ey, such that
o j1 <k,

e e; —J1 es, and

!

o irred(ey, ).
Instantiate (1) with j; and ey,. Note that
* j1 <k,
® ¢ —J1 €f, and
o irred(ey, ).
Hence, there exists ey, such that
e ep — ey, and

o (k—ji,ep,e5) € RV]r]0.
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Hence, there exists jo > 0 such that ey ——72 €fy-
Consider arbitrary z’ such that 2’ > 0.
Instantiate (2) with 2z’ 4+ 1 4 jo. Note that
e 2/ +1+443,>0.
Hence, (z/ + 1+ ja,ea,e3) € RC[7] 0.
Instantiate this with jo and ef,. Note that
e jo <z +1+ja,
e ¢ —J2 €fy) and
o irred(ey,).
Hence, there exists ey, such that
e e3—" ey, and
o (Z+ 14> *anefzaef:s) € RV[r]0
= (2 +1,ep,ep,) € RV[7]0.
Applying Lemma B.8 to e - 7, we conclude that RV [7] 0 € Rel..
By the definition of Rel, together with (2’41, ey,,ez,) € RV [r] 0 and 2’ < 2’41, we conclude
that (2/,ep,,er,) € RV [7] 0.
Thus, V2’ > 0. (¢, eyp,,ep,) € RV [7] 0.
Pick e/ = ey,.
We are required to show
e e3—"eypy,
which follows from above, and
® (k —J1, 6f1’€f3) € RV [[TH 0,
which follows from (A) applied to (k — j1,eyf,,ep, € RV[7]0 and V2" > 0. (2, eyp,,€ey,) €
RV [7] 0,
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Lemma B.23 (\"¢ Transitivity)

IfTFe;<ey:TandThkex<esz:T,
thenT'Fe; <esz:T.

Proof
The proof is in 2 parts.
I. We are required to show I' ey : 7and ' e3 : 7,
which follow (respectively) from T'Fe; <eg:7and 'k ey <ez: 7.
II. Consider arbitrary k, v, 7 such that
e k£ >0, and
o (k,v,v) € RG[I].
We are required to show that (k,v(e1),v(es)) € RC [] 0.
Consider arbitrary ji, ey, such that
d jl < kv
o (ep) it ef,, and
o irred(ey, ).
Instantiate the second conjunct of I' - e; < ey : 7 with k, y, and 7/. Note that
e k>0, and
o (k,v,v') € RG[I].
Hence, (k,v(e1),7 (e2)) € RC [7] 0.
Consider arbitrary z’ such that 2z’ > 0.
Applying Lemma B.7 to (k,~,v") € RG [I'], we conclude that -+ : T
Hence, by reflexivity (Lemma B.21) we conclude that Vo € dom(T").e - +/'(z) < +/(x) : T'(x).
Hence, unwinding several definitions, we have Vz > 0. (z,7/,v') € RG [I'].
Hence, (2/,7',7") € RG[T].
Instantiate the second conjunct of T' - ey < e3 : 7 with 2/, 4/, and 4'. Note that
e 2/ >0, and
o (2/,7,7") € RG[I'], which follows from above.
Hence, (2',7'(e2),7/(e3)) € RC[7] 0.
Thus, V2’ > 0. (2/,v'(e2),~'(e3)) € RC [7] 0.

Applying Lemma B.22 (B) to e - 7, (k,v(e1),7'(e2)) € RC[7] 0, and V2’ > 0. (2,7 (e2),v'(e3)) €
RC [7] 0, we conclude that (k,~(e1),7 (e3)) € RC [7] 0.
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B.11 )™ Proofs: Soundness w.r.t. Contextual Equivalence

In this section, we show that < C =<¢=,

Lemma B.24 (A" Context Compatibility: Id)

IfFO 2F7
thenTo b [] <[]: (T>7)~ 7.

Proof
Consider arbitrary e and ¢’ such that
el'Fe<eé:T.

We are required to show that ToF[e] <[e] :7 = TotFe<e :7.
Consider arbitrary k, 7o, and v} such that

e k>0, and

* (k,70:7) € RG [Lo].
We are required to show that (k,vo(e),v5(e")) € RC [7] 0.

Let v = 'YO|dom(F) and ’}/ = ’Y6|dom(p). Note that

which follows from (k,%0,7)) € RG [[o] and I'o D T, and

* (k;70(e),70(€") € RC[]0

= (k,~(e),7'(¢")) € RC[7] 0,
which follows from FV (e) C dom(T") and FV(e') C dom(T).

Hence, it suffices to show that (k,~v(e),~'(¢')) € RC [7] 0.
Instantiate the second conjunct of ' - e < €’ : 7 with k, 7, and +'. Note that

e k>0, and

o (k,v,7) € RG[IT,
which follows from above.

Hence, (k,v(e),'(¢/)) € RC [7] 0.
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Lemma B.25 () Context Compatibility: Ifl)

Ifr()'—CSCIZ(FDT)WbOOL F()"@QSG/Q:T(), andl"ol—eggeg:m,
then To b if C,eq,e3 < if ' eh el : (T>T) ~ 7.

Proof

Consider arbitrary e and ¢’ such that
el'Fe<eé 1.

We are required to show that
Ty if Cle], ea,e3 < if C'[€'], eh, €5 : To.

Instantiate To - C < C’: (I'>7) ~ bool with e and €', noting that T He <¢€': 7.
Hence, I'g F Cle] < C'[¢'] : bool.
Applying Lemma B.14 to

e Iy Cle] < C'[€'] : bool,

o Tyt ey <el: 1, and

[ ] F0|_€3§€/32T0,
we conclude that T'g F if Cle], ez, e5 < if C'[€'], €h, €5 : 7.

Lemma B.26 (A Context Compatibility: If2)

IfFol—el §e'1:boo|, Pol_CSC/Z(PDT)WTo, andFOI—eggeg:To,
then To b ife;,Cies < ife],C’ el : (T>T)~ 7.

Proof
Consider arbitrary e and e’ such that
eFe<eé: T.

We are required to show that
o ifey,Cle],es < if e}, C'[€], e : 7p.

Instantiate To F C' < C': (T'>7) ~» 79 with e and €/, noting that T Fe <€’ : 7.
Hence, 'y F Cle] < C'[¢'] : 70.
Applying Lemma B.14 to

o I'ye <eéf:bool,
o I'oF Cle] < C'[¢'] : 10, and

[ ] Fokeggegi’r@,

we conclude that T'g F if e, Cle],e5 < if e}, C’'[€'], €5 : 7.
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Lemma B.27 () Context Compatibility: If3)

IfTobkep <ej:bool,Tokes<e,:m, andTo-C <C": (T'>7) ~ 79,
then To b if ey, eq,C < ifef, e, C": (I'>T) ~ 19.

Proof

Consider arbitrary e and ¢’ such that
el'Fe<eé 1.

We are required to show that
Tk ifey,eq,Cle] < ifel,eh, C'le]: 0.

Instantiate To - C < C': (I'>7) ~ 79 with e and €', noting that T e <¢€': 7.
Hence, I'y F Cle] < C'[¢'] : 70.
Applying Lemma B.14 to
L] F() F €1 < 6/1 : b00|,
o Tyt ey <el: 1, and
o I'oF Cle] < C'[e'] : o,
we conclude that T'g F if eq,eq, Cle] < if ), eh, C'[e’] : 7. O
Lemma B.28 (A Context Compatibility: Fn)

IfTo, 2 :mEFCLSC: (T2 :1>T) ~ 7o,
then Ty FAz.C < Ax.C' : (D, : 1> 7) ~ (11 — T2).

Proof
Consider arbitrary e and e’ such that
elx:mbFe<e:T.

We are required to show that T'g - Az. Cle] < Ax. C'[¢] : 11 — T2.
Instantiate Lo,z : 7 F C < C': (T,z : 7 > 7T) ~ 7 with e and €/, noting that T,z : 7y Fe < e : 7.
Hence, I'g,z : 71 F Cle] < C'[€/] : To.

Applying Lemma B.16 to T'g,z : 71 b Cle] < C'[€'] : 12, we conclude that Ty F Ax. Cle] < Ax. C'[€] :
T1 — T9. |

Lemma B.29 () Context Compatibility: Appl)

IFToFCL<C :To71)~ (11— 7), and Tyl ey < e : 1,
then ToF Cea < C'ely: (T>T) ~ To.

Proof

Consider arbitrary e and ¢’ such that

el'Fe<eée:T.
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We are required to show that Tg b (Cle]) ea < (C'[e]]) € : .

Instantiate T'o F C < C': (T'>7) ~» (11 — 72) with e and ¢/, noting that T' e < e’ : 7.

Hence, T'o F Cle] < C'[e] : 11 — T2.
Applying Lemma B.17 to

e 'y Cle] <C'[€'] : 71 — 72, and
e Tghex<eh:m,
we conclude that Ty - (Cle]) ea < (C'[€']) €} : .
Lemma B.30 () Context Compatibility: App2)

IfTokbe<e :m —>m, andToFC < C: (T>7)~ 11,
thenToFeC <e'C': (T>T)~ 7o.

Proof
Consider arbitrary e and e’ such that
el'Fe<eé:T.

We are required to show that I'g F eq (Cle]) < ef (C'[€]) : .

Instantiate To - C < C': (I'>7) ~ 71 with e and €/, noting that T e <¢€': 7.
Hence, 'y F Cle] < C'[¢'] : 71.

Applying Lemma B.17 to

e Ighe <ej:m — 7, and
o Iy Cle] < C'[e] : 7,
we conclude that T'g F eq (Cle]) < €] (C'[e']) : .
Lemma B.31 (A Context Compatibility: Fold)

IfToEC<C : (T>7)~ 1lua.m/al,
then To F £01dC < £01dC': (T>7) ~ (pa.11).

Proof

Consider arbitrary e and e’ such that
e'Fe<eé: T.

We are required to show that 'y - f01d Cle] < fold C'[€] : pav. tau;.

Instantiate To F C < C' : (T'>7) ~ 71[pa. 71 /o] with e and €', noting that T Fe <¢€': 7.

Hence, 'y - Cle] < C'[e'] : 1y [pa. 71 /al.

Applying Lemma B.18 to T’y F Cle] < C'[¢/] : mi[pa.m1/a], we conclude that Ty - fold C|e]

foldC'[¢/] : pa. 71.
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Lemma B.32 () Context Compatibility: Unfold)

IFToFC<C:(Tpo71)~ (pa.m),
then To F unfold C' < unfold C': (I'> 1) ~ 71 [pa. 71 /al.

Proof

Consider arbitrary e and ¢’ such that
el'Fe<eé 1.

We are required to show that I'g F unfold Cle] < unfold C'[¢/] : m1[pc. 71 /.
Instantiate To F C' < C': (T'>7) ~ po. 7 with e and €/, noting that T e <€’ : 7.
Hence, 'y F Cle] < C'[¢/] : pav. 71.

Applying Lemma B.19 to 'y F C[e] < C'[¢] : pa. 71, we conclude that T’y F fold Cle] < fold C'[€] :
71 [pe. 71 /. O

Lemma B.33 (A" Context Compatibility: ctxt)

IfToECyo<C):(Tib1)~ 710, and T1 FCL < Cp: (D> 7) ~ 7,
then T = Co[C1[-]] < CHICT[]] : (D> T) ~ 7.

Proof
Consider arbitrary e and e’ such that
el'Fe<eé: T.

We are required to show that 'y F Cy[C1[e]] < C{[CLe]] = To-

Instantiate 'y F C; < Cf : (T'>7) ~» 71 with e and €', noting that T e <¢€': 7.

Hence, I'1 F Cie] < Cile'] : m1.

Instantiate I'g F Cy < Cf : (T'1 > 71) ~ 19 with Ci[e] and Ci[e/], noting that T'y F Cyle] < Cfle'] : .

Hence, I'g F Cy[C1[e]] < CLIC1[€]] = To- O
Lemma B.34 (A Context Reflexivity)

Iy EC: (7)1, thenT1 FC<C:(T>7)~ 71,
Proof

By induction on the derivation I'y - C': (T'>7) ~> 71.

Each case follows from the corresponding compatibility lemma (i.e., Lemmas B.24 through B.32). O
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Lemma B.35 (\*c: < C =xcr)
IfTrFe<e :7,then TFe=e 7,
Proof
Consider arbitrary C' and 7, such that
eo-C:(I'b7)~ 1, and
o Cle] |
Hence, there exists some value vy and some k such that
o Cle] —F vy

We are required to show that Cle'] |
Note that ¢ - C < C: (I'>7) ~» 71, which follows from Lemma B.34 applied to ¢ = C': (I'>7) ~» 74.
Instantiate @ - C < C': (I'>7) ~» 7y with e and €/, noting that TFe <e¢': 7.
Hence, o - Cle] < Cle'] : m1.
Instantiate this with & + 1, (), and (). Note that
e k+1>0,and
o (k+1,0,0) € RG[e].
Hence, (k + 1,Cle], C[e']) € RC [1] 0.
Instantiate this with £ and v;. Note that
o k<k+1,
e Cle] —" vy, and
e irred(vy), which follows from the fact that vy is value.
Hence, there exists v such that
e Cle'] —* v}, and
o (k+1—kvypv}) € RV[n]0.

Hence, Cle'] | v} O
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B.12 )™ Proofs: Completeness w.r.t. Contextual Equivalence
In this section, we show that =<¢* C =<¢ C <,
Lemma B.36 (\*¢: =<¢? Congruence)

IfTre=xe 7 andT1FCy: (D7)~ 1,
then T'1 = Cyle] 2% Cye] : 4.

Proof
Consider arbitrary C' and 7 such that
e et C:(Ty>7) ~ 79, and
o ClCi[e]] 4.

We are required to show that C[Cy[e’]] ||
Instantiate T' - e < ¢’ : 7 with C[C;[-]] and 79. Note that

e o C[C1[]] : T'>T) ~ 79, which follows using the (C-ctxt) rule:

OFC:(Plel)W’To Flkcli(FD’T)WTl

(Cretxt) oF CICi[] : (T 7) — 7o

[ C[Cl [6]] »u

Hence, C[C4]e']] I
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Lemma B.37 (\®: =<z C <ciu)

IfTFe=xe 7
then T'F e < ¢! . 7.

Proof
Consider arbitrary v, E, and 7, such that
o F~:T,

e o FE:7~ 7, and

o E[y(e)] I.
If v = {z1 — v1,22 — va,...,Zn — vy}, then let C, = (Az1. Aza. ... Axy. [])v1v2 ... Uy
Note that e = C., : (I'>7) ~ 7. This follows (assuming I' = z1:71,...,%,:7,) from:
1T,y TniTa E [ (OB T) ~ 7
oebAz1,...,zn). []: (7))~ (T1,...,Tn) = T ot (vi,.o.yvn): (T1,- vy Tn)
o (A(z1,...yxn). []) (vi,...;on) : (T>T) T
Note that

o o= C,le] < Cyle] : T,
which follows from Lemma B.36 applied to I't-e <“** ¢/ : 7 and e - C, : (T'>7) ~> 7.

Instantiate this with £ and 7;. Note that

oo FE:(o>T)~ Ty,
which is immediate from e - FE : 7 ~» 7, and

o E[C[e]] I, which follows from

o E[C,[e]] —" E[y(e)],
which follows from the operational semantics and an examination of C.,, and

o E[y(e)] ¥,
which follows from above.

Hence, E[C,[€']] .
By the operational semantics, it must be that E[C,[e/]] —* E[y(e)].
Hence, it must be that E[y(e')] {.
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Lemma B.38 () Equivalence-Respecting: Closed Values)

Let o= T1.
If (k,v1,v2) € RV [7]0 and e - vy X% v : 7,
then (k,v1,v3) € RV [7]0.

Proof

By induction on k and nested induction on the structure of the (closed) type 7.

Case (BOO|Ty) m
[}

We have as premises
(1) (k,v1,v2) € RV [bool] §, and
(2) o vy X 3 : bool.
Hence, from (1) it follows that (v; = vo = tt) V (v1 = vy = £f).
From (2) it follows that e I v3 : bool. Hence, either vy = tt or vz = £f.
We show that vo = v3 by contradiction:
e Suppose vy # vg. Then, either v = tt A v3 = £f, or v = £ff A vz = tt.
Case vy = tt A w3 = ff:
Instantiate (2) with @, if [-],tt,diverge, and bool. Note that
e ol(:oe,
e o if [],tt,diverge : bool ~» bool, and
o if[vg],tt,diverge |, since vy = tt.

Hence, if vs, tt,diverge || = if ff, tt,diverge |, since v = ff.
But clearly, if £f, tt,diverge — diverge and diverge {}. Hence, we have a contra-
diction.

Case vy, = ff A w3 = tt:
Instantiate (2) with @, if [-],diverge, tt, and bool. Note that
e ok(:e,
e o if [],diverge,tt : bool ~» bool, and
e if [vp],diverge, tt |, since vo = ££.

Hence, if v3,diverge,tt || = if tt,diverge,tt |, since vz = tt.
But clearly, if tt,diverge, tt —— diverge and diverge {}. Hence, we have a contra-
diction.

Thus, it must be that vy = vg.

We are required to show that (k,v1,v3) € RV [bool] 0,
which follows from
e e w3 : bool,
which follows from e F vy <% v3 : bool.
o (v =v3=1tt)V (v =v3 = £f),
which follows from (v; = vy = v3 = tt) V (v; = v = v3 = £f),
which follows from
o (v =wvy =1tt)V (v = v = £f), and
o (vy =v3 =1tt)V (vg =v3 = £f).
o T1 o T2
F SE—
Case (FnTy) P ——
We have as premises
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(1) (ku ’U17’U2) S RV [[Tl - 7—2]] ®7 and

(2) o (%) jCiu V3 :T1 — T2.

Hence, from (1) it follows that v1 = A\z.e; and vy = Ax. ea.
From (2) it follows that e - v3 : 71 — 75. Hence, v3 = Ax. e3.

We are required to show that (k, A\z.e1, Ax.e3) € RV [11 — 72] 0,
which follows from

o ok Az.es:(m — )Y,
which follows from (2).

o Vj <k,vi1,v- (J,011,04) € RV [N]0 = (4, e1[vir/a], eslvi, /z]) € RC [r2] 0:
Consider arbitrary j, v11, v]; such that

e j <k, and
e (j,v11,v]1) € RV [m1] 0.
We are required to show that (j, e1[vi1 /], e3[v];/x]) € RC [2] 0.
Consider arbitrary i and ey,, such that
o i<j,
e ci[v11/z] —"ep,, and
o drred(ey,, ).
We are required to show that 3e’y. e3[v};/a] —" € A (j —i,ep,,€}) € RV [r2] 0.
Instantiate the second conjunct of (1) with j, vi1, and v};. Note that
o j<k,and
e (j,v11,v}1) € RV ] 0.
Hence, (j,e1[vi1/z], e2[v]y/x]) € RC [12] 0.
Instantiate this with ¢ and ey,,. Note that
o i< j,
e ei[vi1/x] —' ey, and
o irred(ey,,).
Hence, there exists ey,, such that
o cy[vf;/x] —* ey,,, and
o (j—i,ep,,¢ep,) € RV[r]0.
Hence, ey, = vy, and ef,, = vy,,.
Instantiate (2) with @, [-]v],, and 7. Note that
eel-(:eo
e o [Juiy: (11 — T2) » T, and

o (Az.eq)viy U,
which follows from (Az.ez) v}, —! ealv]; /2] and ex[v), /2] —* vy,,,
which follow from above.
Hence, there exists vys,, such that (Az.e3)vi; | vg,,.
By the operational semantics, it must be that (Az.e3)v]; —1! e3[v],/z].
Hence, it must be that eg[v];/x] | vy,,.
We show that e - vy, < vp. 1o
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e Consider arbitrary -y, Fo and 7y such that
e o7 : o, from which it follows that o = 0,
e o Fy: Ty~ 7y, and
o Eolvg,] |
We are required to show that Egy[vy,,] |
Instantiate (2) with 0, Ey[[-]vi;], and 79. Note that
oo
o o Ey[[-]vi] : (11 — 72) ~ 70, and
o Eo[[Az.e2] v)y] " Eoleafvy, /2] — Eolvp,] |-
Hence, Eqg[[Az. eg] vi1] |-
By the operational semantics, it must be that Eg[[Ax.e3]v};] —1 Eples[v};/z]] —

Ey [Ufas]'
Hence, it must be that Eg[vy,,] -

*

Take €y = vy,,.
We are required to show
i 63[’0111/.’5] —" Ufsss
which follows from above, and
d (.] — 1, efuae/f) € RV [[T2]] @,
which follows from the induction hypothesis applied to & = 7, (j — ¢,vf,,0f,) €
RV [12] 0, and e F vy,, <" vy To.

'_

Case (RecTy) e
o pa.m

We have as premises

(1) (k,v1,v2) € RV [ua. 71] 0, and

(2) o vy <™ w3t pa. 7.

Hence, from (1) it follows that v; = foldwvy; and vy = foldvgs.

From (2) it follows that e F v3 : pa. 7. Hence, vs = fold vss.

We are required to show that (k,foldwviy,foldwsg) € RV [ua. 1],

which follows from

o o foldwss : (pa. 7)Y,
which follows from (2).

o Vj < k.let x = [RV[ua. 1] 0];41 in (j,v11,v33) € RV [11] Olev = (x, (pev. 71)P)]:
Consider arbitrary j such that

e 1<k
Let x = [RV [na. 1] 0] j41.
We are required to show that (j,v11,vs33) € RV [11] O — (x, (pa. 1) ).
Instantiate the second conjunct of (1) with j. Note that

o j<k,and
o x = [RV[pa. 1] 0]
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Hence, (j,v11,v22) € RV [11] B[ = (x, (pev. 71))].
Note that (j,v11,v22) € |RV [11] Ol = x, (ev. 7)1 ] 11, which follows from the definition
of |_ch
Applying Lemma B.11 to e F ua.7; and y, we conclude that |RV[n]0a —
(06 (pa 7)) 41 = [RY [m[pa. 71/a]] 0] 41
Hence, (j,vi1,v22) € | RV [71[pa. 71/a]] 0] j41.
Hence, (j,v11,v22) € RV [11[ucx. 71/a]] 0, which follows from the definition of |- |.
We show that e - vgg < w3 : 7y [ua. 71 /al:
e Consider arbitrary =y, Fo and 7y such that

e o7 : o, from which it follows that o = 0,
e o FEy: 7i|ua.m/a) ~ 19, and
° Eo[’UQQ] 4.
We are required to show that Egvss] |
Instantiate (2) with (), Ey[unfold[-]], and 79. Note that
e ol-0:e,
e o Ey[unfold[]] : pa. 74 ~ 79, and
e Eyfunfold [foldvgs]] ——! Eglvaa] |-
Hence, Ey[unfold [foldvss]] |}

By the operational semantics, it must be that Eg[unfold [foldvss]] —' Eg[vas)-
Hence, it must be that Ey[vss] {.
Applying the induction hypothesis to e & 7i[ua. 71 /al, (J,v11,v22) € RV [r1[pa. 71 /)] 0,
and e - vgy < w33 1 71 [ua. 71 /a], we conclude that (j,v11,vs3) € RV [1[uc. 11 /a]] 0.
Hence, (j,v11,vs3) € RV [71[pe. 71/c]] 0] j41, which follows from the definition of |-]j.
Applying Lemma B.11 to @ - pa. 7 and x = |RV [pua. 71 0]41, we conclude that
[RV [n]0la = (x, (na. )] |51 = [RV [mi[pe. 71 /a]] 0] 1.
Hence, (j,v11,v33) € [RV [1] 0la = (x. (pev. 7)) 1.
Hence, (j,v11,v33) € RV [11] Ol — (x, (. 71))], which follows from the definition of |- .

d
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Lemma B.39 (\*¢: =< C <)

IfTFe=ce 1
thenT'Fe<e :T.

Proof
Consider arbitrary k, v, and 7’ such that
e k>0, and
o (k,v,7) € RG[I].

We are required to show that (k,v(e),v'(e’)) € RC [r] 0.
Consider arbitrary j and ef such that

* j <k,
e y(e) —7 ey, and
o irred(ey).

Note that I' - e < e : 7, which follows from Lemma B.21 applied to ' e : 7.
Instantiate I' - e < e : 7 with k, -, and 7/. Note that

e k>0, and
o (k,7v,7) € RG[I].
Hence, (k,v(e),7'(e)) € RC[7] 0.
Instantiate this with j and e;. Note that
o j <k,
e y(e) —7 ey, and
o irred(ey).
Hence, there exists e/ such that
e 7'(e) —" €}, and
o (k—jyepef) € RV[7]0.
Note that e = vy and e = v'.

Hence, 7/(e) | v}.
Instantiate I' e < ¢’ : 7 with 4/, [], and 7. Note that

o H+:T,
which follows from Lemma B.7 applied to (k,v,7') € RG [T,

e ot []:7~ 7, and

e 7'(e) |
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Hence, there exists v}’ such that +/(e’) | v}'.
" __ 1

Let e 7=}

We are required to show that

° ’Y/(e/) '_>* U”,
which follows from above, and

° (k*j,?}f,'l)}/) € RV[T]] 07
which follows from Lemma B.38 applied to

e of T,
o (k—j,vp,v}) € RV[r]0, and
° U} jciu ,U// T,

which follows from

e Consider arbitrary Fy and 7, such that

e e F:7~ 7, and
o I [v}] .
We are required to show that E4 [v}’] U.
Instantiate I' - e <™ ¢’ : 7 with 4/, E1, and 7;. Note that

o+,
which follows from Lemma B.7 applied to (k,v,7') € RG [I'],

e e FE:7~ 7, and

o Ei[y(e)] U,
which follows from

o Ei[y(e)] —" Erfug],
which follows from +'(e) —* vy, and

° El [’l)f] ‘U’v
which follows from above.
Hence, E1[v'(e')] {.

By the operational semantics, it must be that Ey[y'(e')] —* E1[v}], which follows
from +'(e’) =" v} above.

Hence, it must be that E4[vf] |.
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C Quantified Types

Types T
Expressions e
Values v
Evaluation Contexts FE
(iftrue)
(iffalse)
(app)
(unfold)
(inst)
(unpack)
(ctxt)

w= bool |71 =7 | a|pa.7|Va.7 | 3a.T
n= x| tt]|ff]|ifeo,e1,e2 |

Ax.e | eiex | folde | unfolde |
A.e | e[] | packe | unpacke; aszines

u= x| tt]|ff]| Az.e| foldv | A.e | packwv

)\VH

Figure 1: Syntax

w= []|ifE,ei,e2 | Ee | vE | foldE | unfold E |

E]] | pack E | unpack Easzine

iftt,e1,e2 —— e1
ifff,e;,ea —— e2
(Az.e)v +— ev/x]
unfold (foldv) +— v
Al — e

unpack (packv)aszine +—— e[v/z]

/
er—— e

Ele] — Ele']

Figure 2: A¥? Operational Semantics

Notation The notation e — ¢’ denotes a single operational step. We write e —7 €’ to denote that there
exists a chain of j steps of the form e — e; — ... — e; where ¢; is €. A term e is irreducible if it has no
successor in the step relation, that is, irred(e) if e is a value or if e is a “stuck” expression (such as tt(e’))
to which no operational rule applies. We also use the following abbreviations.

er—*e ¥ >0k e
ele ¥ e e Adrred(e))
e | df e e Jé
et ¥ VE>0.3¢. et e
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Type Context A == o] A«

AFT
a€e A A7 AF T AabT
(VarTy) (BoolTy) ———— (FnTy) —mm (RecTy) ———
A« A+ bool AFT — 1 Al po.t
(AITy) AabT (BxTy) AabT
Y Arva.r Y AT 3ar
Figure 3: \"7 Static Semantics I

Type Context A
Value Context T°

o | A«
o | T z:r

A;T' F e : bool A;Ther s r AT hes: T

(True) ——— (False) ———— (If)
A;T F tt : bool A;T'F ££ : bool A;TFifeg,er,ea:7
AT e bFe:ms A;THer:m — 1 AT Fey:m
(Var) ——————— (Fn) (App)
ATz T(x) A;THEAz.e:m1 — 72 A;TFeres:m
A;THe: a.7/a AT Fe: pao.
(Fold) Tlpa.7/o] (Unfold) po T
A;T F folde: pa. 7 A;T Funfolde : T[ua. 7/d]
A,a;THe: T A;TFe: Va1 AFT AT AT Ee:7m/a]
Ay ——— (Inst) (Pack)
A;THAe: Vot A;TRel]:7m/a] A;T - packe : Jo. T

A;THer:dam A1 ATz bFes:me

(Unpack)
A;T \- unpackejaszines : T2

Figure 4: \"3 Static Semantics II
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C.1 )\ Unary Model

Notation

e We write V [7] for the semantic interpretation of types as values, C [7] for the interpretation of types
as computations, G [I'] for the interpretation of value contexts as value substitutions, and D [A] for
the interpretation of type contexts as type substitutions (Figure 5).

e We use the metavariable o to range over sets of tuples of the form (k,v) where k is a natural number
and v is a closed value — i.e., kK € Nat and v € CValues.

e We use 6 for mappings from type variables a to sets o € 2NVatx CValues,
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Type <

Via]o
V [bool] &

Vrn — m2]o

Vpa.7] o

V[Va. 1] 6

V[3a. 7] 6

Clr]é

De]

DA, o]

Gle]
G0,z :7]6

[ATEe:T]

{o € oNatxCValues | (5 ) € 0. Vi < j. (i,v) € o}

{Gv) | i<k A (Gv) o}

6(cx)
{(k,v) | v=1tt V v=1=f}

{(k, z.e) | Vj<k,v.
(J,v) €eV[n]é =
(J: e[v/z]) € C[r] 6}

{(k,foldv) | Vj < k.
let o0 = [V [pa. 7] 641 in
(U,v) € V[ 8l — o}

{(k,A.e)| Vj<k,o.
o € Type = (j,e) € C[7]d[a — o]}

{(k,packv) | Jo. o € Type A
Vi <k. (j,v) € V[r]d[a— o]}

{(k,e) | Vi <k,es.
e—7 ey Nirred(ey) =
(k—Jj.er) € V[r] 8}

{0}

{6la—o]| 6 € D[A] A o€ Type}

{(k, 0)}
{(k,y[z —]) |
(k,7) € GIT16 A (k,v) € V7] 6}

Vk > 0. V3, 7.
seD[A] AN (k,y)eGI]éd =
(k,v(e)) eClr] o

Figure 5: A" Step-Indexed Unary Model
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C.2

A" Relational (PER) Model

Notation

We write RV [7] for the relational interpretation of types as values, RC [r] for the relational inter-
pretation of types as computations, RG [I'] for the relational interpretation of value contexts as value
substitutions, and RD [A] for the interpretation of type contexts as type substitutions (Figures 6-7).

We use the metavariable x to range over sets of tuples of the form (k,v,v’) where k is a natural number
and v,v" are closed values — i.e., k € Nat and v,v’ € CValues.

We use p for mappings from type variables a to pairs (x,7) of sets y € 2NetxCValuesxCValues a5
syntactic types 7.

If p(a) = (x, 7), the notation p**™(«) denotes x, while p™"(«) denotes 7.
We write | e : 7 as an abbreviation for e;e ¢ : 7.
If dom(y) = dom(T), we use A+ : T as shorthand for Vz € dom(T"). A;e F ~(z) : I'(x).

If p={a1 — (x1,71),-- - n = (Xn,Tn)}, the notation 7[7! is an abbreviation for
TIm /o, o faa, .. T o).
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Rel-

Lx]

RV [a] p

RV [bool] p

RV [ — T2 p

RV [pe. 7] p

RV [Va. 7] p

RY [Ba. 7] p

RC[r]p

def

def

{X c 2Nat>< CValues x C'Values | V(j,’l),?.)/) c X.
Fo' :r A

Vi < j. (i,v,0") € x}

{Go0) [ G <k A (o) ex}

()
{(k,v,v") | F 2" :bool A
(v=2v'=tt V v=0v =£f)}

{(k, z. e, Az e) | FAz.e : (1 — )P A
Vi < k,v,v".
(j,’U,U/) € RV [[Tl]] p =
(J,elv/z],€'[v' /z]) € RC [72] p}

{(k,foldv,foldv’) | F foldv' : (ua.7)P! A
Vj < k.
let x = |RV [pa. 7] plj+1 in
(G, v,0") € RV [r] pla = (x: (pa. 7))}

{(k,A.e,A.e’) | FA€: (Va.T)lP A
VT2, X.
X € Rel,, =
Vi < k. (j,e,€) € RC[7] pla — (x,72)]}

{(k,pack v, packv’) | + packv’: (3. 7)) A
312, x.
X € Relr, A
Vi < k. (j,v,v") € RV [7] pla — (x, 72)]}

{(ke.e) | Vi <k,e;.
er—’ ef Nirred(ef) =
Jel. e —" ey Nk —j,ep,€r) € RV[7] p}

Figure 6: A7 Step-Indexed Relational Model I
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RD [e]
RD[A, o

RG [e]p
RG[T,z:7]p

ATkFe<e:r

ATke~e T

o

{0}
{pla=(x,m)]) | p€ RDJA] A x € Relr,}

{(k,0,0)}
{(k, [z — 0], [z — v']) |
(k,7,9") € RG[T] p A (kyv,0") € RV [7] p}

A;TRe:T A AsTRE (7 A

(Vk > 0. VYp,v,7".
pERDI[A] A (k,v,7)eRG[T]p =
(k,v(e),7'(e")) € RC[] p)

ATFe<e :7 AN ATRHe <e:T

Figure 7: A7 Step-Indexed Relational Model II
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C.3 )3 Contexts and Contextual Equivalence

Contexts C == []|ifC,e1,ez | ifeo,C ez | ifeg,e1,C |
Ax.C | Ce|eC | foldC | unfoldC
A.C| C]] | packC | unpackCaszine | unpackeaszinC

/\VEI

Figure 8: Syntax - Contexts
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AT EC: (AToT)~ 7’

C-id A DAT DT
(Cid) AT R (AT T) ~ T (A 2A,T721)

AT FC: (AT > 7) ~ bool AT ey 7 AT Fey: 7

C-ifl
(Cif) AT FifCrer,ex: (AT 7))~ 7'
(Cif) AT e : bool AT FC: (A ToT)~ 7 AT eyt
B AT Fifeo,Cez: (AT 7))~ 7'
(Cif3) AT F e : bool AT ey 7 AT FC: (A ToT)~ 1
R AT Fifeg,e1,C: (AT >T) ~ 7'
() AT z:m FC: (AT, 211 >7T) ~ T
" AT F Az C: (AT, 2 i 1> 7) ~ (11— T2)
(C-app1) AT FC: (AT T) ~ (11— T2) AT Fe:n
PP AT'FCe: (AT T) ~ T
AT Fe:n — 7 AT EC: (A TeT) w7 AT FC: (AT 7T) ~ 7' [pa. 7'/
(C—app2) =Y (C_fOId) =G 7
AT FeC: (AT >T) ~ T2 AT FfoldC: (AT T) ~ po. T
AT FCO: (AT T) ~ pa. 1’ A" FC: (A, T>7)~ 7
-unfo -a
(C fld) ’ / / / (C ”) ’ /
AT FunfoldC: (AT 7) ~ 7'pa. 7'/l AT'EAC: (AT > 1) ~ Vo
. AT FC: (AT T) ~ Va7 AN AFry AT FC: (AT T) ~ 112/
(C-inst) — (C-pack) —
AT ECO[] (AT T) ~ (11[m2/a)) AT FpackC: (AT > T) ~ Ja

AT FC: (AT T) ~ Ja.m Ak T AT z:m e m
A";T' FunpackCaszines : (A;T>7) ~ 7

(C-unpackl)

AT ey 3am AF 1 AT e:mFC: (A aT,z:Ti>T) ~ T

A";T" - unpacke;asz inC : (A, Ty mi>T) ~ T2

(C-unpack2)

AT FC: (ATibT) ~ 7 AT EC: (A TpT) w7
AT F OO - (AT 7))~ 7'

(C-ctxt)

’A/;F' FCle]: 7'

AT FC: (A ToT)~ 1 A;Tkhe:T
AT = Cle) = '

(C-exp)

Figure 9: \"3 Static Semantics - Contexts
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Definition C.1 (Contextual Approximation (X°“) and Equivalence (~¢*))

Let e and €' be expressions such that A;T'Fe:7 and A;T e @7,
AThex¢ 7 X vOo 5. eekC: (A;To7)~ 71 A Cle] 4 = Cle']

ATke~™e 7 © ATERe=@e 7 A

ATHe <®e:r

Figure 10: \"3 Contextual Approximation and Equivalence

Note: To prove that our logical relation (<) is sound with respect to contextual equivalence (=) (see
Section C.10), we first define what it means for two contexts to be logically related as follows:

AT EFCOLC (AT oT) w7 def Ve,e!. A;TRe<e :7 = AT FCle] <C'e]:m

AT FC~C (AT~ B AT FC<C (A TBT) w1 A
AT EC <C:(ATT) 71

Figure 11: \73 Step-Indexed Logical Relation - Contexts
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C.4 )3 Evaluation Contexts and Ciu Equivalence

e The syntax of A= evaluation contexts E is given in Figure 2.

e Note that evaluation contexts E are simply a subset of general contexts C' and that only closed terms
can be placed in an evaluation context. Hence, typing judgments for evaluation contexts have the form
ApTi b (o0 7) ~ 7.

Definition C.2 (Ciu Approximation (<¢*) and Equivalence (~¢*))

Let e and €' be expressions such that A;T'Fe:7 and A;T e @7,
Let § be a mapping from type variables a to closed syntactic types 7. We write 6 = A whenever
dom(9) = A.

; def
AThe=x™e 7 =

V(S,’Y,E,Tl.
dE=A A
Fy:6() A
oo F:(e;0>5(7)) ~ 711 A
Eh@) 4 = Bie)

def

AT Hex™¢ 7 AT He=™e 7 A

AT e <™e: 7

)\VH

Figure 12: Ciu Approximation and Equivalence
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C.5 )" Proofs: Type Soundness and Substitution
Lemma C.3 (\"2 Valid Type: V[7]d € Type)

Let 6 € D[A] and AF 7.
Then V7] ¢ € Type.

Proof

By the definition of Type, it suffices to show:

V(k,v) € V] 6. Vj < k. (j,v) € V[r] s

The proof is by induction on the derivation A F 7.

Lemma C.4 ()" Safety)

If e;el-c: 7 and e —* €, then either €' is a value, or there exists an € such that ¢ — €.

Proof

Prove the soundness of each typing rule using the unary indexed model of \"= (Figure 5).

Lemma C.5 (\"7 Value Substitution)

IfA;TRHo:m and AT 2 Fe:m,
then A;T = e[v/x] @ 2.

Proof

Lemma C.6 (\"? Type Substitution)

IfAF T and A o;T Fe:m,
then A;T'[m/a] e : 1o /al.

Proof
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C.6 )7 Proofs: Validity of Pers

The goal of this section, is to show that each A" type 7 is a valid type — that is, RV [7] p € Rel..
Specifically, this involves showing that the relational interpretation of a type 7 satisfies the well-typedness
requirement and is closed under decreasing step-index.

Lemma C.7 (\"° Per Values Well-Typed)

Let p € RD[A] and AF 7.
then v : 7Pl

Proof

By induction on the derivation A F 7.

We only show the (VarTy) case.

In each of the remaining cases, the result is immediate from the definition of (k,v,v’) € RV [7] p,

which requires that - v’ : 771,

ae A

AF o

Note that al?l = p¥"(a).

Hence, we are required to show that - v’ : p¥"(«).

Note that from (k,v,v") € RV [a] p it follows that (k,v,v") € p*™(«).

Note that from p € RD [A] and a € A it follows that there exists 7 such that
o p**™(a) € Rel,, and

o P (a) =T.

Case (VarTy)

By the definition of Rel., since (k,v,v") € p**™(«) € Rel, it follows that - v : 7.
Hence, v : p¥"(a).

Lemma C.8 (\"2 Per Value-Context Substitutions Well-Typed)

Let p € RD[A] and AFT.
If (k,v,7') € RG] p,
then -~ : TPl

Proof

By induction on T'.

Case I'=e:
From (k,~v,v") € RG [e] p we conclude that v =+ = ).
Hence, we are required to show that - 0 : e/’ = () : e, which follows trivially.

Case I'=T1,z2:7:
From (k,~,v') € RG[I'1,z : 7] p we conclude that there exist v1, 71, v, and v’ such that

* v=mlz— v,
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[ ’Y/E’yi[ml—)vl]’
b (kvfyl?’}/i) € RG Hrl]] P and
o (k,v,v") € RV[r]p.

Hence, we are required to show that F ~} [z +— o] : (T'1,z : 7)),
which follows from

o b ()l
which follows from the induction hypothesis applied to (k,v1,71) € RG [I'1] p, and

o Fo 7Pl
which follows from Lemma C.7 applied to p € RD[A], A+ 7, and (k,v,v") € RV [7] p.
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Lemma C.9 ()" Per Types Downward Closed)

Let p € RD[A] and AF 7.
If (k,v,0") e RV[7] p and j < k,
then (j,v,v") € RV [7] p.

Proof

The proof is by induction on the derivation A F 7.

a €A
AF«
From (k,v,v") € RV [a] p, it follows that (k,v,v") € p**™(«).
We are required to show that (j,v,v") € RV [a] p
= (j,v,v') € " (a).

Case (VarTy)

Note that

[ ] psem(a) € Relpsyn(a),
which follows from p € RD[A], a € A, and the definition of RD [A].

Hence, by the definition of Reljwn(qy, since (k,v,v") € p*™(a) € Relpon(oy and j < k, it follows
that (4,v,v") € p*™(«).
Case (BoolTy) AT bool
From (k,v,v") € RV [bool] p it follows that
e v’ : bool, and
e cither v =v' = tt or v =o' = ff.
We are required to show that (j,v,v") € RV [bool] p,
which follows from
e v’ : bool, and
e v=0v =tt V v=0v =ff.
AFmn  AFmn
AT — T
From (k,v,v") € RV [ — 7] p it follows that v = Az.e and v/ = A\z.¢€'.
Note that
(A) FAz.€ : (1 — )P, and
(B) Vi < k,v1,v]. (i,v1,v]) € RV [r]p =
(i, e[v1 /], €' [v]/x]) € RC [2] p.
We are required to show that (j,v,v’) € RV [ — 72] p
= (4, \z.e, Az ¢') € RV [ — 2] p.
(C) Consider arbitrary, 4, v, v} such that
e i < j,and
o (i,v1,v]) € RV[m]p.
Instantiate (B) with 4, v;, and v]. Note that
e i < k, which follows from i < j and j < k, and
o (i,v1,v]) € RV[m]p.
Hence, (%, e[v1/z], €'[v]/z]) € RC [12] p.
From (A) and (C) it follows that (j, Az.e, Az.e’) € RV [r1 — 2] p.

Case (FnTy)
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Aol
Case (RecTy) m
From (k,v,v") € RV [ua. 11] p it follows that v = foldwv; and v’ = foldv].
Note that
(A) F foldv) : (ua. )P, and
(B) Vi<k.let x =RV [pa.m1] plit1 in
(4,v1,v1) € RV [11] pla = (x, (nev. Tl)[p])]'
We are required to show that (j,v,v’) € RV [ua. 1] p
= (j,fold vy, foldv)) € RV [pa. 11] p.
(C) Consider arbitrary ¢ such that
o i < J.
Let x = |RV [pa. 7] plit1.
Instantiate (B) with ¢, noting that
e ¢ < k, which follows from ¢ < j and j < k.
Hence, (i,v1,v}) € RV [11] pla — (x, (e 1) PH)].
From (A), and (C) it follows that (j,foldwi,foldv]) € RV [ua. ] p.
Aabmn
A FVa. T1
From (k,v,v") € RV [Va. 7] p it follows that v = A.e and v/ = A.¢€’.
Note that
(A) FA.¢: (Va.m)P and
(B) V7, x. X € Rel,, =
Vi < k. (i,e,e’) € RC [m1] plae — (x, T2)]-
We are required to show that (j,v,v’) € RV [Va. 1] p
= (j,A.e,A.e) € RV [Va. 7] p.
(C) Consider arbitrary, 72, x such that
® Y € Rel,,.
Consider arbitrary ¢ such that
e < 7.
Instantiate (B) with 72, and x. Note that
® X € Rel,,.
Hence, Vi < k. (i,e,€") € RC 1] pla — (x, 72)]-
Instantiate this with 7. Note that
e ¢ < k, which follows from ¢ < j and j < k.
Hence, (i,e,e’) € RC [11] pla — (x, 72)]-
From (A) and (C) it follows that (j,A.e,A.e’) € RV [Va. ] p.
Aabmn
AF3a.m
From (k,v,v") € RV [Ja. 1] p it follows that v = packv; and v = packvf.
Note that
(A) F packv) : (3a.m) and
(B) 31, x. x € Rel, A
Vi < k. (i,v1,v]) € RV [nr1] pla — (x, 72)]-
We are required to show that (j,v,v") € RV [Fa. 1] p
= (j,packvy,packv]) € RV [Fa. 1] p.

Case (AllTy)

Case (ExTy)

90



(C) From (B) it follows that there exist 72 and x such that
® X € Rel,,, and
o Vi < k. (i,v1,v]) € RV [n] pla — (x, 72)]-
Consider arbitrary, ¢ such that
e 1 < 7.
Instantiate Vi < k. (¢,v1,v]) € RV [r1] pla — (x, 72)] with i. Note that
e i < k, which follows from i < j and j < k.
Hence, (4,v1,v]) € RV [n1] pla — (x;, 72)]-
From (A) and (C) it follows that (j, pack vy, packv]) € RV [Fa. 1] p.

Lemma C.10 (A\"2 Per Value Contexts Downward Closed)

Let p e RD[A] and AFT.
If (k,v,v") e RG] p and j <k,
then (4,7,7") € RG [I'] p.

Proof
Proof by induction on I'.

Case '=9:
We are required to show that (j,7,7") € RG [e] p.
Note that v = 4" = (), which follows from (k,~,~") € RG [e] p
Hence, we are required to show that (j,0,0) € RG [e] p, which follows trivially.

Case I'=T1,z2:7:
From (k,~,v') € RG[I'1,z : 7] p, we conclude that there exist 1, 71, v, and v’ such that
* ¥ =z,
e 7 =qilz =),
e (k,v,71) € RG[T'1] p, and
o (k,v,0") € RV[r]p.

Hence, we are required to show that (j,y1[z — v],vi[x — v]) € RG[I'1,2 : 7] p,
which follows from

® (ja ’}/1,’}/1) €RG [[Fl]] P
which follows from the induction hypothesis applied to (k,v1,7]) € RG[I'1] p and j < k,
and

e (j,v,0") € RV [7] p,
which follows from Lemma C.9 applied to
p € RD[A],
e AT,
(k,v,v") € RV [7] p, and
o j <k
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Lemma C.11 (\"2 Valid Per: RV [7]p € Rel ()

Let p € RD[A] and At 7.
Then RV 7] p € Rel i,

Proof

By the definition of Rel_,, it suffices to show:

v(‘I€7’U7’Ul) RV [[Tﬂ p- - ’Ul : T[p] A
Vi <k (j,v,0") e RV[r]p

Consider arbitrary (k,v,v") € RV [7] p.

e Applying Lemma C.7 to p € RD[A], A+ 7, and (k,v,v) € RV [1] p, it follows that F o' : 71¢].

e Consider arbitrary j < k.

Applying Lemma C.9 to p € RD[A], A b 7, (k,v,0v") € RV[7] p, and j < k, it follows that
(J,v,v") € RV[r] p.
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C.7 )\ Proofs: Per Type Substitution
Lemma C.12 (\"2 Per Type Substitution)

Let p € RD[A] and A+ 7.
Let x = RV [1] p-
Then RV [7] pla — (x, (1)!P)] = RV [7[11/a]] p.

Proof

Lemma C.13 (\"? Per Type Substitution: Value Contexts)

Let p € RD[A] and A+ 7.
Let x =RV [1] p.
Then RG [I] pla = (x, (m1)I?)] = RG [Ilr1/a]] p.

Proof

Lemma C.14 (\"? Per Type Substitution: Recursive Types)

Let p € RD[A] and A+ pa. .
Let x = [RV [pc. 7] pi1.
Then |RV [r] plo = (x, (pee. 7)) i1 = [RV [r[ucv. 7/a]] pJisa.

Proof

We are required to show that for all k <, v, and v/,
(kyv,v') € [RV [l plav = (xs (o D)) i1 i (v, 0') € [RV [rluar. 7/a]] p)isa

The proof is by induction on 7 and nested induction on A, a F 7.
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C.8 )" Proofs: Fundamental Property of the Logical Relation

The Fundamental Property of a logical relation holds if the latter is a congruence — that is, if it satisfies
the compatibility and substitutivity properties.

Lemma C.15 (\"° Compatibility-True)

A;TFtt <tt: bool.

Proof
The proof is in 2 parts.

I. We are required to show A;T" I tt : bool, which is immediate.
II. Consider arbitrary k, p, v, 7 such that

e k>0,

e p € RD[A], and

e (k,%,7") € R[] p.

We are required to show that (k,v(tt),~'(tt)) € RC [bool] p
= (k,tt,tt) € RC [bool] p.

Consider arbitrary j, ey such that
* j <k,
o tt—le f, and
o irred(ey).
Since tt is a value, we have rred(tt).
Hence, j = 0 and ey = tt.
Let € = tt.
We are required to show that

e tt —" tt,
which is immediate, and

o (k—0,tt,tt) € RV [bool] p,
which follows from

e - tt : bool, and
e tt =ttt = tt.

94



Lemma C.16 (A" Compatibility-False)

A;TF £ff < £f : bool.

Proof
The proof is in 2 parts.

I. We are required to show A;T"F ££f : bool, which is immediate.
II. Consider arbitrary k, p, v, 7/ such that
e k>0,
e p € RD[A], and
o (k,v,7) € RG] p.
We are required to show that (k,~v(££),'(££)) € RC [bool] p
= (k,ff,£f) € RC [bool] p.
Consider arbitrary j, ey such that
o j <k,
o £f —J ey, and
o irred(ey).
Since £f is a value, we have rred(££).
Hence, j = 0 and ey = £f.
Let e = ££.
We are required to show that

o ff —* ff,
which is immediate, and

o (k—0,ff,ff) € RV [bool] p,
which follows from

e |- ff : bool, and
o ff =ff =1ff.
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Lemma C.17 (\"? Compatibility-If)

If A;TReg <ef:bool, A;sT ey <e€):7, and A;TFey <él:r,
then A;T - ifeg,e1,e0 < ife),ef,eh: 7.

Proof
The proof is in 2 parts.

I. We are required to show
o A;T'F ifeg,eq,es : bool, which follows from
e A;T F eq : bool, which follows from A;T" F ey < e : bool,
e A;T'F ey : 7, which follows from A;T'F ey <e): 7, and
e A;T'F ey : 7, which follows from A;T ey <ef: 7.
o A\;T'F ifef, e, eh : bool, which follows analogously.
II. Consider arbitrary k, p, v, 7 such that
e k>0,
e p e RD[A], and
o (k,v,7) € RG] p.
We are required to show that (k,v(if eg,e1,e2),v (if ej,el,¢e5)) € RC[r] p

= (k,if y(eo),v(e1),v(e2), 1 (ep), 7' (€1), 7 (€3)) € RC [7] p.
Consider arbitrary j, ey such that

o j <k,
o ify(eg),y(e1),v(e2) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist jo and ey, such that
. Yeo) — ey,
o irred(ey,), and
® jo<j.
Instantiate the second conjunct of A;T' F eg < ¢ : bool with k, p, v, and .
Note that
e k>0,
e p € RD[A], and
o (k,v,7) € RG] p.

Hence, (kv ’7(60)7 ’7/ (66)) €RC Hb°°|]] p-
Instantiate this with jo, ef,. Note that

e jo < k, which follows from jo < j and j < k,
o y(eg) —70 ey, and
o irred(eg, ).

Hence, there exists e/, such that

e 7'(ep) —* €}, and
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e (k—jo,efy,€},) € RV [bool] p.
Hence, either ey, =€y =tt or e, = €, = £f.
Case ey, = ¢ = tt:
Note that
v(if eo, €1, €2) = if y(eo), v(e1), v(e2)
70 if efoa’Y(el)a’Y(ez)
= if tt,y(e1), v(e2)
! y(er)
—7t ep,
where irred(ey,) and ey, = ey and j = jo + 1 + ji.
Instantiate the second conjunct of A;T ey < e} : 7 with k —jg— 1, p, 7, and 7. Note that
e k— jo — 1 >0, which follows from jo < k,
e p € RD[A], and
o (k—jo—1,7) € RG[ITp,
which follows from Lemma C.10 applied to (k,v,v') € RG[I'] p and k — jo — 1 < k.
Hence, (k — jo —1,7(e1),7'(e1)) € RC[7] p.
Instantiate this with j; and ey,. Note that
e j; <k — jo — 1, which follows from j; = j — jo — 1 and j < k,
* y(er) —7 ey, and
o irred(ey,).
Hence, there exists e’f1 such that
* ¥'(ey) —" €}, and
o (k—jo—1—ji,ep,¢e}) ERV[r]p .
= (k _jaeflae/fl) € RV [[TH P sincej = jO +1 +.71
Let ¢/ = e’fl..
We are required to show
o /(if ey, ey, e5) —" €},
which follows from
7 (if €p, €1, e5) = if9'(en), 7' (e1)

and
o (k—j,er.er) eRV]r]p
= (k—j.ep.e},) e RV[r] p,
which follows from above.
Case ef, = ¢ =1f:
Note that
Y(if €0, €1, €2) = if y(eo), v(e1), v(e2)
70 if eg,,y(e1), v(e2)
=if£f,7(e1),v(e2)
" y(e2)
—72 ey,
where irred(ey,) and ey, = ey and j = jo + 1 + jo.
Instantiate the second conjunct of A;T'F es < e} : 7 with k — jo — 1, p, v, and 4'. Note that
e k — jo—1 >0, which follows from jy < k,
e p € RD[A], and
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s (k—jo - 17’777/) €RG [[F]]p7
which follows from Lemma C.10 applied to (k,v,7') € RG[[]p and k — jo — 1 < k.

HGHC67 (k - jO - 1,7(62),7’(6%)) € RC IIT]] p-
Instantiate this with jo and ef,. Note that

e jo < k — jo— 1, which follows from jo, =j —jo — 1 and j < k,

e y(ez) —72 ey, and

o irred(ey,).
Hence, there exists e’fz such that

o V(eh) " ¢}, and

o (k—jo—1—ja,ep,ep)eRV[r]p .

= (k *ja ef2aelfz) € RV HTH P since .7 = jO + 1 +j2

Let ¢ = e’fz..
We are required to show

o /(if ey, ey, e5) —" €y,

which follows from

)
)

7' (if eg, €1, e5) = if v'(ef), ¥ (e1), 7 (e
* /
g, /() (e
=if ffa’y (61)77 (62)
—" ' (eh)
A

NSNS

and
o (k—jeesel) e RV p
= (k _ja €f2,€/fz) € RV [[Tﬂ P
which follows from above.
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Lemma C.18 (\"? Compatibility-Var)
AT R <z :T'(x).

Proof
The proof is in 2 parts.

I. We are required to show A;T'F x : T'(z), which is immediate.
II. Consider arbitrary k, p, 7, 7' such that
e k>0,
e p € RD[A], and
e (k,7.7') € RG[I p.
We are required to show that (k,v(z),~'(z)) € RC [I'(z)] p.
Consider arbitrary j, ey such that
o j <k,
o y(z) —7 ey, and
o irred(ey).
Since 7(z) is a value, we have irred(y(z)).
Hence, j = 0 and e; = ~y(z).
Let ey =+'(z).
We are required to show that

o V(z) —" (),
which is immediate, and

o (k—0,v(x),~'(z)) € RV[T(2)] p,
which follows from (k,v,7") € RG [I] p.
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Lemma C.19 (\"? Compatibility-Fn)

IfA;T,z:7hHe<e :m,
then A;TF Az e < Ax.e’ : 1 — To.

Proof
The proof is in 2 parts.

I. We are required to show A;T'F Az.e: 7 — 7o and A;T' - Az.e’ : 1y — 7o,
which follow (respectively) from A;T 2z : 7 Fe:mand A;T,z 1 e i,
which follow from A;T,z: 1 Fe<é : .

II. Consider arbitrary k, p, v, 7/ such that
o k>0,
e p € RD[A], and
e (k,v,7") € RG[I] p.
We are required to show that (k,v(Az.e),7y'(Az.¢')) € RC[r — 2] p
= (k, \z.vy(e), A\x.~v'(¢')) € RC[r1 — 72] p.
Consider arbitrary j, ey such that
o j <k,
e \z.v(e) —7 ef, and
o irred(ey).
Since Az.vy(e) is a value, we have irred(Az. y(e)).
Hence, j =0 and ey = Az. y(e).
Let e/, = Az.v'(¢).
We are required to show that
o \x.v/(e) —* \x.+/(€),
which is immediate, and
o (k—0, z.v(e), \x.v'(¢/) € RV [ — 7] p
= (k Az ~(e), Az 7' ()
e {(k, x.e, x.€/) | FAx.e:(m — )Pl A
Vi < kv, 0.
(yv1,01) €RV[n]p =
(7, e[v1 /], €'[v1/x]) € RC [72] p},
which follows from
o F Az (e): (11 — )P,
which follows from
e Note that A;T',z : 7y F €’ : 79, which follows from A;T,z: 7 Fe<e :T.
Hence, we have A;T' - Az.e' : 1y — 7.
Note that ;T - Az. ¢’ : (11 — 7)[Pl, which follows from Lemma C.6 applied to
ok p¥ and A;TH Ax.e i1 — 7.
Note that ;e - ~ : Tl?l| which follows from Lemma C.8 applied to (k,v,7') €
RG] p.
Note that ;e - ~'(Az.€') : (11 — 7)), which follows from Lemma C.5 applied to
o0t~ Tl and &; TP - Az.e - (1p — 1)l
Hence, o;0 - \z.~/(¢/) : (11 — 7).
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o Vj < k,vi,v1....
Consider arbitrary j, vq, v} such that
e j<k,and
e (jyvi,v1) € RV[n]p.
We are required to show that (j,v(e)[vi/x], 7' (e")[v1/x]) € RC [72] p-

Instantiate the second conjunct of A;T,x : 7+ e < €' : 7 with j, p, y[x — v1], and
v'[x — v{]. Note that

e j=0,

e p € RD[A], and

o (J,y[x — v1],7[x — v]]) € RG[T,x : 71] p, which follows from
* (7,77) € RG] p,

which follows from Lemma C.10 applied to (k,7v,7') € RG[I']p and j < k,
and

e (j,v1,v1) € RV [m] p,
which follows from above.

Hence, (j,y[z — vi](e),7[z — v1](¢)) € RC 7] p.
Thus, (§,7(e)[z/v1l,~' (") [z/v1]) € RC [7a] p.
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Lemma C.20 (\"? Compatibility-App)

IfA;The <€) :im — 7, and A;T F ey < ey iy,
then A;T Fejeq <e€feh: .

Proof
The proof is in 2 parts.

I. We are required to show
o A;T'F eqes: 7o, which follows from

e AT ke i1 — 7o,
which follows from A;T' Fe; <e} : 1 — 79, and

o AsTkeq:T,
which follows from A;T F e < é€f: 7.

o A;T I €] €l : 75, which follows analogously.
II. Consider arbitrary k, p, v, and ' such that

e k>0,

e p € RD[A], and

o (k7,7) € RG[T]p.

1€2)) € RC[ma] p
e2),7'(€1)7'(€2)) € RC[72] p.
Consider arbitrary j, ef such that

o j <k,
e y(e1)v(e2) —7 eg, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(er) —t ey,
o irred(ey, ), and
e j1 <j.
Instantiate the second conjunct of A;T' ey <€) : 71 — 7o with k, p, 7, and /. Note that
o k>0,
e p € RD[A], and
o (k.7,7) € RG[I] p.

Hence, (k,v(e1),7'(e})) € RC [ — 2] p.
Instantiate this with ji, ef,. Note that

e j; < k, which follows from j; < j and j < k,
e y(e1) —It ey, and
o irred(ey, ).
Hence, there exists e}l such that
e 7(e}) —" ¢}, and

o (k—jiep,ey) € RV [ — 2] p.
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Hence, ey, = Az. ey, and e’f1 = )\m.e}n.
Note that

v(e1 e2) = v(ex)v(e2)
71 e y(e2)
= ()‘m',efn)’Y(e?)

—7 I ey
Hence, by inspection of the operational semantics it follows that there exist jo and ey, such that
o Yle2) — e,
o irred(ey,), and
e j2<j—j1
Instantiate the second conjunct of A;T'F ey < €} : 71 with k — 41, p, 7, and /. Note that
e k — j1 > 0, which follows from j; < k,
e p € RD[A], and
o (k—=7j1,7,7") € RG] p,
which follows from Lemma C.10 applied to (k,v,7’) € RG] p and k — j; < k.

Hence, (k —j1,7(e2),7'(€3)) € RC[m] p.
Instantiate this with jp and ef,. Note that
e jo < k — j1, which follows from jo, < j — j; and j < k,
e y(ez) —72 ey, and
o irred(ey,).
Hence, there exists e}z such that
e 7(e5) —* €}, and
o (k—j1—j2ep,€p) € RV [m]p.
Hence, ey, = vy, and e, = v},.

Note that
v(e1 e2) = v(ex) v(ez2)
7 ep, y(e2)
= ()\ZE e ) v(e2)
2 ()‘x' efn) €fo

= (i‘x'efu)vfz
— 11 [V /7]
—73 eg

and irred(ey), where j = ji1 + jo + 1+ js.

Instantiate the second conjunct of (k —j1, Az. ey, ,, Ax. e/fn) € RV [r — =] p with k—j1 —ja— 1,
vy,, and v,. Note that

0k‘—j1—j2—1<kj—j1,and

o (k—j1—j2—1vp,05) € RV[n]p,
which follows from Lemma C.9 applied to

e« p e RD[A],

o Ak,

o (k—7 —j2,0f2,0}2) € RV [n1] p, and
e k—j1—ja—1<k—ji1—jo

103



Hence, (k — j1 — jo — 1, ey, [vg, /2], e’f11 [v}z/x]) € RC [72] p-
Instantiate this with jz and e;. Note that
e j3 < k — j; — jo — 1, which follows from j3 =j — j; — jo — 1 and j < k,
o e, [vp, /2] —73 ey, and
o irred(ey).
Hence, there exists e} such that
o ¢ [V}, /7] —" ¢, and

o (k—j1—Jj2—1—1jsep,e}) €RV[r]p
= (k—j.ef,e}) € RV [m2] p, since j = ji + j2 + 1+ js.
: ! !
Pick ey = €.
We are required to show that
o V'(eyey) —" e,
which follows from
Y (e1ed) =7'(e1) ' (e2)
" e 7 (ed)
= (Az. 6}112 'y’(e%)
—" (A% eful) €fa
= (/}x',efu), VY,
" €,y [U.f2 /w]
— e}
and
4 (k _j76fa6/f) e RV [[T2]] P
which follows from above.
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Lemma C.21 (\"? Compatibility-Fold)

IfAsTRe<e :rlpa.T/al,
then A;T F folde < folde' : pa. 7.

Proof
The proof is in 2 parts.

I. We are required to show A;T'F folde: pa.7 and A; T folde : pa. 7,
which follow (respectively) from A;T' F e : 7[ua. 7/a] and A;T F e : tlpa. 7/a],
which follow from A;T'Fe < e : T{pa. 7/al.

II. Consider arbitrary k, p, v, 7' such that
e k>0,
e p € RD[A], and
o (k,v,v') € RG] p-
We are required to show that (k,v(folde),v'(folde’)) € RC [uca. 7] p
= (k,fold~v(e),foldv (¢')) € RC [pa. 7] p.
Consider arbitrary j, ef such that
o j <k,
e foldv(e) —7 ef, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(e) —t ey,
e irred(ey, ), and
e j1 <.
Instantiate the second conjunct of A;T e <€ : 7[pa.7/a] with k, p, v, and +'.
Note that
e k>0,
e p € RD[A], and
o (k,v,v') € RG] p-
Hence, (k,~(e),~'(e)) € RC [r|ua. 7/]] p-
Instantiate this with ji, ef,. Note that
e j; < k, which follows from j; < j <k,
o y(e) —It ey, and
o irred(ey, ).
Hence, there exists e}l such that
e ' (e) —" ¢}, and

o (k—ji,ep,ey) € RV [rlupa.7/a]] p.
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Hence, ey, = vy, and ey =0} .
Note that
~v(folde) = foldy(e)
71 foldey,
= folduy,
I ey
Since fold vy, is a value, we have irred(fold vy, ).
Hence, j —j1 =0 (and j = j1) and ey = foldvy,.
Let ¢/, = fold v} . We are required to show that
e foldy/(¢') —" ¢
= fold~'(¢/) =" fold v}
which follows from above, and
o (k—jyepe}) € RV [ua.T]p
= (k —j,foldvy,,fold vy )
€ {(k,foldv,fold’) |
- foldv' : (pa.T)lP A
Vi < k.
let x = |RV [uc. 7] p)j+1 in
(j,v,0") € RV [7] pla = (x, (perv. 7))}
which follows from

o - foldvf : (pa. )P
Note that v} : (T]pa. 7/a))[P), which follows from (k—j, vy, V) € RV [rua. 7/a]] p.
Note that v}, : (Tuc. 7/a])l?!
= e;0 - ’U}l : (T[HJO‘- T/a])[ﬁ]
= o0 U}l : (T[p][(//&a.q')[p]/a}).
Hence, o; @ - fold v} : (ua. 7)),
o Vi<k—j let x=|RV[pa.7]plit1 in (z’,vfl,v}l) € RV [1] plac — (x, (e 7)1PD]).
Consider arbitrary ¢ such that
o i < k—j.
Let x = [RV [pa. 7] p)it1-
We are required to show that (i,vy,, v} ) € RV [7] pla— (x; (pa. )]
= (i’vfl’v}l) € RV [7] pla — (x, (pa. 7)1P)].
Applying Lemma C.9 to
p € RD[A],
A b Tlpa.T/al,
o (k—j,vp,0}) € RV [r[uc.7/a]] p, and
° S k— ja

we conclude that (i,vy,, v} ) € RV [7[ua. 7/a]] p.

Hence, (i,vy,,v%,) € RV [rua. 7/a]] plit1, which follows from the definition of |-|.
Applying Lemma C.14 to p € RD[A], A F pa.7, and x = |RV [ua. 7] plit1 we
conclude that

[RV [7] pla = (x, (uev. 7)IP)] Jiy1 = | RV [7[na. 7/a]] pis1.

Hence, (i,vy,,v% ) € [RV [7] pla = (x; (pa. )N ig1.

Hence, (i,vp,,v%,) € RV [7] pla — (x, (pa. 7)[P1)], which follows from the definition of

L]k
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Lemma C.22 (A" Compatibility-Unfold)

IfA;THe<e :pa.,
then A;T - unfolde < unfolde’ : 7[ua.7/a].

Proof
The proof is in 2 parts.

I. We are required to show A;T' F unfolde : 7[ua. 7/a] and A;T F unfolde’ : T[ua. 7/,
which follow (respectively) from A;T'Fe: pa. 7 and A;T e pa. T,
which follows from A;T'Fe < e : pa.T.

II. Consider arbitrary k, p, v, 7 such that
e k>0,
e p € RD[A], and
o (k,7,7") e RG [T p.
We are required to show that (k,y(unfolde),~'(unfolde’)) € RC [r[ua.7/a]] p
= (k,unfold~y(e),unfoldy'(¢’)) € RC [r[pa.T/a]] p.
Consider arbitrary j, ey such that
o j <k,
e unfold~y(e) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o (&) — cp,,
o irred(ey, ), and
e j1 <j.
Instantiate the second conjunct of A;T'Fe < é€': pa.7 with k, p, v, and 7/. Note that
e k>0,
e p € RD[A], and
o (k,v,7') € RG[I].
Hence, (k,v(e),v'(e)) € RC [pa. 7] p.
Instantiate this with ji, ef,. Note that
e j; < k, which follows from j; < j <k,
e y(e) —I1 ey, and
o irred(ey, ).
Hence, there exists e}l such that
e ' (e) =" ¢}, and

o (k—ji,ep,ey) € RV [pa. 1] p.
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Hence, ey, = foldvy,, and e}l = foldv}n.

Note that
~(unfolde) = unfold~y(e)
——J1 unfoldey,
= unfold (foldvy,, )
—! Vfi1 It ef
Since vy, is a value, we have irred(vy,, ).
Hence, j —j1 —1 =0 (and j = j; + 1) and ey = vy, .
Furthermore, note that
+'(unfolde’) = unfoldy'(e')
—" unfold e,

= unfold (fold v} ,)

1,7
UVt

Since v’ is a value, we have irred (v}, ).
Let e/, = v .
We are required to show that
e unfold®y'(e') —" ¢
= unfoldy'(e’) —* v}
which follows from above, and

o (k—Jjes,ef) € RV[rluc.7/a]] p
= (k—J,vp,, 05, )RV [rlpa.m/a]] p,
which we conclude as follows:

From (k — ji,ep,, €} ) = (k — ji,foldvy,, foldv} ) € RV [ua. 7] p, we have
o - foldv} (pa. )P and

o Vi<k—ji. let x=|RV[pa.7]plit1 in .
(601105 0%,,) € RV [7]0[or = (x; (pee. 7)),

Instantiate Vi < k — ji. let x = |RV [pua. 7] plit1 in
(i, 05,0, 05,,) € RV [7] pla = (x, (pa. 7))
with & — j. Note that
e k—j <k — j1, which follows from j = j; + 1.

Let x = |RV [no. 7] plr—jt1-

Hence, (k — 7, vfu,v}u) € RV [1] pla — (x, (e 7)1PD)].

Hence, (k — j,vp,,0%,) € [RV[r]pla — (x, (. 7PN |—j 41, which follows from the
definition of |-]x.

Applying Lemma C.14 to p € RD [A], A F pa. 7, and x = | RV [ua. 7] plk—j+1, we conclude
that

[RV [Tl plo = (x, (pe. 1)) [ jia = RV [r[uc. 7/a]] pli—j1.

Henee, (k — j. sy 0},) € [RY [rlpa. 7/all plicsan.

Thus, (k — j,vf,,v},,) € RV [r[ua. 7/a]] p, which follows from the definition of [-].
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Lemma C.23 (\"? Compatibility-All)

IfA,a;TFe<eé T,
then A;TH A e < A€ :Va.T.

Proof
The proof is in 2 parts.

I. We are required to show A;T'F A.e:Va.7 and A;T A€ : Va. T,
which follow (respectively) from A,a;T'Fe:7and A, ;T e : 7,
which follow from A,a;T'Fe<e : 7.

II. Consider arbitrary k, p, v, 7/ such that
e k>0,
e p € RD[A], and
o (k,7.7") € RG[I] p.
We are required to show that (k,v(A.e),v' (A.€')) € RC [Va. 7] p
= (k,A.v(e),A.~'(¢))) € RC [Va. 7] p.
Consider arbitrary j, ey such that
o j <k,
e A.vy(e) —7 ey, and
o irred(ey).
Since A.~y(e) is a value, we have irred(A. y(e)).
Hence, j =0 and ey = A.y(e).
Let e/, = A.v'(e).
We are required to show that
o Ay () —" AY(€),
which is immediate, and
o (k—0,A.v(e),A.v'(¢')) € RV [Va.T] p
= (k, A.v(e), A.y(€))
c{(k,Ae,A.e) | F A€ (Va.T)lPl A
VT27 X-
X € Rel;, =
Vi <k. (j,ee)eRC[r]plar (x,72)]},
which follows from
o A () (Vau.1)lP],
which follows from
e Note that A, ;T F ¢’ : 7, which follows from A, ;T Fe<e' :T.
Hence, we have A;T'F A.e’ : Va. .
Note that ;T - A.¢’ : (Va.7)lP!, which follows from Lemma C.6 applied to
ok p¥" and A;THA.¢ :Va.T.
Note that F 4" : TPl which follows from Lemma C.8 applied to (k,7v,7') €
RG] p.
Note that e;e F 4/(A.¢') : (Va. 7)), which follows from Lemma C.5 applied to
FA' T and &; Tl F A e : (Va. 7))
Hence, o;0 - A.~/(¢/) : (Va. 7).
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o V7o, x....
Consider arbitrary 75, and x such that

e x € Rel,.

We are required to show that Vj < k. (4,7(e),~'(¢')) € RC [7] plae — (x, 72)]-
Consider arbitrary j such that

o j < k.

We are required to show that (j,7v(e),v'(¢’)) € RC[7] pla — (x;, T2)]-

Instantiate the second conjunct of the premise A, ;T e < €’ : 7 with 7, pla — (x, 72)],
v, and 7'. Note that

*j=0,

e pla— (x, 7)) € RD[A, o],
which follows from p € RD [A] and x € Rel,,, and

e (7,7,7) € RG[I'] plae — (x, 72)], which follows from

* (7,77) € RG] p,
which follows from Lemma C.10 applied to (k,7v,7') € RG[I']p and j < k,
and

e a ¢ FTV (D).
Hence, (j,7(e),7'(€¢')) € RC [7] pla = (X, 72)]-
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Lemma C.24 (\"? Compatibility-Inst)

IfA;TRe<eée :Va.1 and AF 1,
then A;T e[l <ée[]:7[n/al].

Proof
The proof is in 2 parts.

I. We are required to show
o A;T'Fef]: 7[r1/a], which follows from

o A;THe:Va.T,
which follows from A;T e < e’ :Va.r, and

e A Ty.
o A;T'F €' []: 7[r/a], which follows analogously.
II. Consider arbitrary k, p, 7, and 4" such that
e k>0,
e p € RD[A], and
o (k,7,7) € RG[I] p.
We are required to show that (k,~(e []),*y’(]e’

= (k,v(e) [],
Consider arbitrary j, ef such that

1) € RCr[mi/ell p

L (€)[]) e RC[r[m1/a]] p.
o j <k,
* v(e)[] 7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(e) — ey,
o irred(ey, ), and
e j1 <j.
Instantiate the second conjunct of A;T'Fe <€’ :Va.7 with k, p, v, and 7/. Note that
o k>0,
e p € RD[A], and
o (k,v,v') € RG] p-

Hence, (k,v(e),7'(e)) € RC [Va. 7] p.
Instantiate this with ji, ef,. Note that

e j; < k, which follows from j; < j and 7 < k,
e y(e) —It ey, and
o irred(ey, ).
Hence, there exists e}l such that
e Y (e) —" €}, and
o (k—ji,ep,ey) € RV [Va. 1] p.
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Hence, ey, = A.ey,, and ey = A.e) .
Note that
v(ell) =v(e)]]
—" ey (]
= (A'efu) (] —! €f11

—72 e
and irred(ey), where j = j1 + 1 + jo.
Let x = RV [m1] p-

Instantiate the second conjunct of (k—ji,A.ef,,, A €} ) € RV [Va. 7] p with ()], and x. Note
that

® X € Rel(r )i,
which follows from RV [1] p € Rel ., )i,
which in turn follows from Lemma C.11 applied to p € RD [A] and A F 7.

Hence, Vi < k — ji. (i, efme}n) € RC [7] pla — (x, (71)[9])].
Instantiate this with k — j; — 1, noting that k —j; — 1 < k — j;.
Hence, (k —j1 — 1, €f1176;c11) € RC [[TH p[a = (X, (Tl)[p])]'
Instantiate this with j, and e;. Note that

e jo < k — j; — 1, which follows from j, = j — j; — 1 and j < k,

e cp, —72 ep, and

o irred(ey).
Hence, there exists e} such that

. e’f11 —* e’f, and

b (k _.jl -1- j2aef’elf) €RV [[T]] p[a = (Xa (Tl)[p])}

= (k—j,ef,¢}) € RV[r] pla = (x, (1)), since j = j1 + 1+ ja.

Pick e’ = ¢/;.
We are required to show that

o Y (e'[]) " €],
which follows from

and
o (k—jey, G/f) € RV [r[r/a]] p,
which follows from Lemma C.12 applied to
p € RD[A],
AbF T,
x =RV [n] p, and
(k—j.ep ef) € RV[r] pla = (x, (r))].
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Lemma C.25 (\"? Compatibility-Pack)

IfAF T and AT He<e :7(m/ql,
then A;T F packe < packe : Ja. 7.

Proof
The proof is in 2 parts.

I. We are required to show
o A:T'F packe : Ja. 7, which follows from

e A7, and

e AsTFe:T[m/al,
which follows from A;T'Fe <€ :7[r/al.

e A;T + packe’ : Ja. 7, which follows analogously.
II. Consider arbitrary k, p, v, 7' such that
e k>0,
e p € RD[A], and
o (k,7,7') € RG] p.
We are required to show that (k,v(packe),+'(packe’)) € RC [Ta. 1] p
= (k,packy(e),packy/(¢’)) € RC [Fa.. 7] p.
Consider arbitrary j, ey such that
o j <k,
e packy(e) —7 ey, and
o irred(ey).
Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that
o y(e) — ey,
o irred(ey, ), and
e j1 <j.
Instantiate the second conjunct of A;T' e <€’ : 7[r/a] with k, p, v, and +'.
Note that
o k>0,
e p € RD[A], and
o (k,7,7) € RG [T p.
Hence, (k,v(e),7'(e")) € RC [r[r1/a]] p-
Instantiate this with ji, ef,. Note that
e j; < k, which follows from j; < j < k,
e y(e) —I1 ey, and
o irred(ey, ).
Hence, there exists 6}1 such that
e ' (e) —" ¢}, and
o (k—ji,ep,ey) € RV[r[ri/a]] p.
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Hence, ey, = vy, and ey =0} .
Note that
~v(pack e) = packy(e)
1 packey,
= packuy,
—J—a ey
Since packvy, is a value, we have irred(packvy, ).
Hence, j — j1 =0 (and j = j1) and ey = packvy,.
Let e/ = pack v’ . We are required to show that
e packy'(¢/) —" ¢}
= pack”'(¢’) —" pack v},
which follows from above, and
o (k—j,ep.e}) € RV[Ia.7]p
= (k — j,packvy, , pack v} )
€ {(k,packv,pack?’) |
- pack®’ : (Ja. )P A
3712, X-
X € Rel;, N
Vi <k. (J,v,0") € RV[r] pla = (x, 72)]}
which follows from
o - packvf : (3o 1)l
Note that v : (t[r1/a])P, which follows from (k — j, vy, , v} ) € RV [r[ri/a]] p.
Note that e - (71)[?], which follows from A I- 71 and p € RD [A].
Note that v}, (71 /)P
= o0 U}l : (7‘[7’1/04])["]
= e 0 U}l : (T[p][(ﬁ)["]/a]).
Hence, o;e = foldv} : (ua. 7)[P1, which follows from e F (1)) and e;e F v
Tl [(m) P/ al.
e I, x. X € Rely, N Vi<k—j. (i,05,0v}) € RV[r] pla— (x,72)].
Pick 75 = (71)[”) and x = RV [[71]]["].
Note that

® X € Rel(r yi,
which follows from Lemma C.11 applied to p € RD [A] and A F 7.

Consider arbitrary ¢ such that

e i < k—j.
We are required to show that (i,vy,,vs) € RV [7] pla = (x, ()],
which follows from Lemma C.12 applied to

e peRD [[A]],

e Ay,

e x =RV[mr]p, and

o (k—j,vp,v%) € RV[r[r/al] p.
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Lemma C.26 (\"? Compatibility-Unpack)

If A;TRe <é€):3a.m, and AF 1,
and Ajo; Ty im b ey < e,
then A;T unpacke; asz ines < unpack e’1 asrin 6’2 I To.

Proof

The proof is in 2 parts.

I. We are required to show
e A;T' F unpacke; aszines : 79, which follows from

o A;T' ey : Ja. 7,
which follows from A;T'F ey < e} : Ja. 11,

e A7y, and

e AT x:m Feg:my,
which follows from A, a; T,z : 71 Feg <é€fy: 7o.

e A;T' I unpacke) aszine) : 72, which follows analogously.
II. Consider arbitrary k, p, v, and 4’ such that

e k>0,

e p € RD[A], and

o (k,7,7) € RG[I] p.

We are required to show that
(k,~v(unpacke; aszines), (unpacke] asxinel)) € RC [r2] p

= (k,unpacky(e1) asz iny(ez2),unpacky’(e}) asx invy'(e})) € RC [r2] p.

Consider arbitrary j, ef such that
° j <k,
e unpack(er)aszinvy(es) —7 e, and

o irred(ey).

Hence, by inspection of the operational semantics, it follows that there exist j; and ey, such that

b 7(61) 1 €f1»
e irred(ey, ), and

e j1 <.

Instantiate the second conjunct of A;T' F e < e} : Ja. 7 with k, p, v, and 4'. Note that

e k>0,
e p € RD[A], and
o (k,v,v') € RG[I p-
Hence, (k,7v(e1),'(e})) € RC [Ba. 1] p.
Instantiate this with ji, ey,. Note that
e j; < k, which follows from j; < j and j < k,
o y(e1) —7t ey, and

o irred(ey, ).
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Hence, there exists e}l such that
* 7'(e}) —" €}, and
o (k—ji.ep,€}) € RV [Ea.71]p.

Hence, ey, = packwvy,, and e’f1 = pack v}n.

Note that
~v(unpackej as z inez) = unpacky(e1) as x in-y(ez)
+——J1 unpackey, asz iny(ez)
= unpack (packvy,, ) as z iny(e2)
—! 7(62)["}1”11/%} —72 ef

where irred(es) and j = j1 + 1+ jo.

From (k — ji,packvy,,, packv} ) € RV [3a.71] p, it follows that there exist 720 and x such that
® X € Rel,,,, and
o Vi< k— 1. (i,vfll,v}u) € RV [r1] pla — (x, m22)]-

Instantiate the latter with k — j; — 1. Note that £ — j; — 1 < k — j;.

Hence, (k — 71 — 1, vfll,v}u) € RV [n1] pla — (x, T22)].x

Instantiate the second conjunct of A, o; T,z : 71 b ea < € : 7o with k — j; — 1, pla — (x, T22)],
v[z = vp, ], and o'z v} ]. Note that

e k —j; —1 >0, which follows from j; + 1+ jo = j and j < k,
* plo— (x,722)] € RD[A, o],
which follows from
e p € RD[A], and

e X € Rel,,,
which follows from above.

b (k _.jl - 17’7[53 = ’Ufll],’yl[.’b = v}n]) € RG HF,:L’ : 7_1]] p[a = (X»TQQ)]v
which follows from

d (k _jl - 1/757/) €RG [[FH ,O[Oé = (XaTQQ)L
which follows from (k — ji1 — 1,7v,7") € RG[I'] p (since o ¢ FTV(I)),
which follows from Lemma C.10 applied to (k,v,v') € RG[I'] p and k—j; —1 < k, and

o (k—j1—1Lup,, v, ) € RV[n] pla— (x,722)],
which follows from above.

Hence, (k —j1 — 1,7[z = vy, ](e2), 7' [z — v}, [(€5)) € RC [72] pla — (X, 722)]
= (k—j1 — L,7(e2)vp,, /2], 7 () [V}, /2]) € RC [m2] plar = (X, 722))-
Instantiate this with j, and ey. Note that

e jo < k — j; — 1, which follows from j, = j —j; — 1 and j < k,
hd 7(82)[Uf11/x] 72 er, and
o irred(ey).
Hence, there exists e} such that
o 7(e5)[v},, /x] —" €}, and

L4 (k - jl -1- j27ef7€}) € RV [[TQ]] p[a i (Xa7—22)]
= (k—J,ep,e}) € RV [m2] pla— (X, T22)], since j = ji + 1 + ja.

Pick e/ = €.
We are required to show that
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e 7/(unpacke] asxiney) —* e},
which follows from

+'(unpack e] as x ine5) = unpacky’(e}) asz iny’(e5)
+——" unpack e’ as z inv'(e5)
= unpack (pack v} ,) as z in~y'(e3)
"' (e5) [V, /2]

*6}

and

o (k—j,er.€}) € RV[r]p,
which follows from (k — j,ef,€}) € RV [12] pla — (x, 722)] since a ¢ FTV (72).
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Lemma C.27 (\"? Substitutivity: Values)

IfFATFo<V 1 and AT,z :mmbe<e :m,
then A;T Fe[v/x] < €'[v'/z] : 2.

Proof
The proof is in 2 parts.

I. We are required to show
o A;TF e[v/x] : 7, which follows from Lemma C.5 applied to
e A;TH: 7,
which follows from A;T'Fv <’ : 7, and
e AT x:mFe:m,
which follows from A;:T,z: 7 e <eée' :m.
o A;T'F €'[v'/x] : 9, which follows analogously.
II. Consider arbitrary k, p, 7, 7 such that

e k>0,

e p € RD[A], and

e (k,7,7) € RG[IT p.
We are required to show that (k,~v(e[v/z]),v (e'[v'/z])) € RC [12] p-
Instantiate the second conjunct of A;T'F v <o’ : 7 with k, p, v, and 7. Note that

e k>0,

e p € RD[A], and

o (k,1,7) € RG] p.
Hence, (k,~v(v),~'(v")) € RC [1] p.
Instantiate this with 0 and ~(v).
Note that y(v) is a value. Hence,

o y(v) —4(v), and

o grred(y(v)).
Hence, there exists e} such that

e (v') —" ¢}, and

e (k—0,7(v),e}) € RV [m1] p.
Since 7/ (v') is a value, it follows that v/(v') = ~/(v"). Hence ¢/, = ~'(v/).
Thus, (k —0,7v(v), e}/) E/RV [m]p

= (k,’Y(’U)a’Y (U )) € RV [[7_1]] p-

Instantiate the second conjunct of A;T 2z : 7y e < e : 7o with k, y[z — v(v)], and v'[z — ' (v")].
Note that

e k>0,

e p e RD[A], and

o (kv =),y [z =+ ()]) € RG[T,z : 1] p,
which follows from
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o (k,7,7') € RG[I'] p, and
o (k,v(v),7 (V")) € RV [m1] p, which follows from above.

Hence, (k, [ — 1(0)](e), /e — ¥/ (v")](¢') € RC [r2] p
(ko r(ely (o) /o). V(€ () o)) € RE Tl o
— (kr(eo/a]) 2 (B /a]) € RC [l p.
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Lemma C.28 ()" Substitutivity: Types)

IfAFT and AT Fe<e : 1,
then A;T[m/al ke <eé :mlm/al.

Proof
The proof is in 2 parts.

I. We are required to show
o A\;T'[r/a] F e: m2[r/al, which follows from Lemma C.6 applied to

o A 71,
which we have as a premise, and

e AT Fe:m,
which follows from A, o;T'Fe<e: 7.
o A;T'[r1/a] € : m[m1/a], which follows analogously.
II. Consider arbitrary k, p, 7, 7 such that
e k>0,
e p € RD[A], and
o (k,7,7") € RG[T[ni/al] p-
We are required to show that (k,v(e),v'(e)) € RC [r2[m1/a]] p-
Consider arbitrary j and ey such that
° j <k,
e y(e) —7 eg, and
o irred(ey).
We are required to show that Je;. 7/(e') —* e} A (k —j.ef,e}) € RV [r2[mi/a]] p.
Let x = RV [m1] p-
Instantiate the second conjunct of A, ;T e <€ : 7 with k, p[a— (x, (11)1")), 7, and .
Note that
e k>0,
b p[Oé = (Xa (Tl)[p]) € RD [[A,Oé]],
which follows from
e p € RD[A], and
e x=RV[r]pe€ Rel ;i1
which follows from Lemma C.11 applied to p € RD [A] and A F 71.

b (k7 s ’Y/) € RG [Fﬂ p[O{ — (X7 (7-1)[9])]’
which follows from

e (k,7,7) € RG[L[n/] p,
which follows from above, and
o RG] pla— (x,(m))] = RG[T[n/al]p,
which follows from Lemma C.13 applied to p € RD [A] and A F 74, since x = RV [71] p-

Hence, (k,7(e),~'(¢') € RC [r2] pla = (x, (11)17))].
Instantiate this with j and e;. Note that
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o j <k,
e y(e) —J eg, and
e drred(e}).
Hence, there exists e/ such that
e (e/) —* ¢y, and
o (k= joesey) € RV [m] pla > (o ()]
It remains for us to show that (k — j, ey, e}) € RV [r2[m1/a]] p.

Note that RV [mo] plac — (x, (11)P)] = RV [r2[r1/a]] p, which follows from Lemma C.12 applied
to p € RD[A] and A F 7 and x = RV [r1] p-
Hence, (k — j,ef,€}) € RV [r2[r1/a]] p.
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C.9 )\ Proofs: Reflexivity
Lemma C.29 (\"° Reflexivity)

IfA;TRe:7, then A;TRHe<e:T.
Proof

By induction on the derivation A;T'Fe: 7.

Each case follows from the corresponding compatibility lemma (i.e., Lemmas C.15 through C.26). O
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C.10 )" Proofs: Soundness w.r.t. Contextual Equivalence
In this section, we show that < C =<¢=,

Lemma C.30 (\"? Context Compatibility: Id)

IfAQ 2 A and FO 2 F,
then Ag;To F[] < []: (AT 7))~ 7.

Proof
Consider arbitrary e and e’ such that
e AiTFe<¢€ : 7.
We are required to show that Ag;To - [e] < [¢/]:7 = Ap;ToFe<e 7.
Consider arbitrary k, po, 7o, and - such that
o k>0,
e po € RD[Ay], and
* (k,70:7) € RG [Lo] po.
We are required to show that (k,vo(e),v(e)) € RC [7] po-
Let p = poldgom(a). Note that

e pcRD [[A]L
which follows from pg € RD [Ag] and Ay 2 A.

Let v = Y0ldom(r) @and 7" = Y| dom(r)- Note that

b (kv s ’7/) € Rg HFH Po;
which follows from (k,%0,7)) € RG [[o] po and Ty D T.

Hence, note that

o (k7)€ RG[ITp,
which follows from (k,v,7") € RG [I'] po since FTV(T") C dom(A) and p € RD [A].

Note that
e (k,v0(e),v0(e) € RC[7] po

= (k,7(e),7'(¢) € RC 7] po,
which follows from FV(e) C dom(T") and FV(e') C dom(T)

= (k,7(e), v (¢") € RC[7] p,
which follows from FTV (1) C dom(A) and p € RD [A].

Hence, it suffices to show that (k,~v(e),v'(e')) € RC [] p-
Instantiate the second conjunct of A;T' e < ¢’ : 7 with k, p, 7, and 7/. Note that
e k>0,

e pcRD [[A]],
which follows from above, and

L4 (k7 /-y, ,‘Y/) 6 Rg [IF:”7
which follows from above.

Hence, (k,7(e),'(¢')) € RC [1] p.
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Lemma C.31 (\"? Context Compatibility: If1)

If Ag;ToFC < C: (AT 7) ~ bool, Ag;Tg es < ey i1, and Ag;To - e3 < e : 1,
then Ag;To F if C,eq,e3 < if C' eh,eh: (AT T) ~ 7.

Proof

Consider arbitrary e and ¢’ such that
e AsThRe<e :T.

We are required to show that
Ag;To b if Cle], ea,e5 < if C'[e'], €h, €4 : 7.

Instantiate Ag;To H C < C’: (A;T > 1) ~ bool with e and €', noting that A;T Fe <e¢' : 7.
Hence, Ag; T F Cle] < C'[¢'] : bool.
Applying Lemma C.17 to

L] A(]; F(] H C[e] < C’[e’] : b00|7

o Ag;Tykex <él:mg, and

[ ) AO;FO }_63 Seé 70,
we conclude that Ag;To F if Cle], ea,e3 < if C'[€'], €, €4 : To.

Lemma C.32 (\"? Context Compatibility: If2)

If Ag;ToFep <ef:bool, Ag;ToFC < C: (AT >7) ~ 719, and Ag; To Fes < ef @ 1p,
then Ag;To Fife;,Ciez < ife],C e : (AT >T)~ 1.

Proof
Consider arbitrary e and e’ such that
e AsThRe<e :T.

We are required to show that
Ag;To - ifer,Cle],es < ifef,C'[€'], €5 : 7.

Instantiate Ag;Tg - C < C': (A;T > 1) ~ 79 with e and €/, noting that A;T e <e': 7.
Hence, Ag;To F Cle] < C'[e'] : .
Applying Lemma C.17 to

e Ay;Tp ke <é):bool,

o Ag;ToF Cle] < C'[e'] : 79, and

[ ] Ao;roFeg §e§:70,

we conclude that Ag;To F if eq, Cle],es < if e, C'[e'], €% : To.
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Lemma C.33 (\"? Context Compatibility: If3)

If Ag;To b ey <é€f:bool, Ag;To b es <eh:m, and Ag;ToFC < C': (AT > T) ~ 10,
then Ag;To Fifer,eq,C <ifef,eh,C": (A;T>T) ~ 70,

Proof

Consider arbitrary e and ¢’ such that
e AsThRe<e :T.

We are required to show that
Ag;To Fifeg,eq,Cle] < ifef,eh, C'e'] : 7.

Instantiate Ag;To HC < C": (A;T>7) ~ 79 with e and ¢/, noting that A;T'Fe <e€': 7.
Hence, Ag;To F Cle] < C'[e'] : 7.
Applying Lemma C.17 to
° A(];F(] F €1 < 6,1 : bOO',
o Ag;Tykex <él:mg, and
o Ag;To = Cle] < C'[€'] : 7o,
we conclude that Ag;To F if e, eq, Cle] < ifef,eh, C'[€] : 7o. O
Lemma C.34 (\"? Context Compatibility: Fn)

If Ag;To,2:m FCLSC' (AT, 2 : 1> T) ~ 7o,
then Ag;To F Ax.C < Az.C": (AT x> 7) ~ (11 — T2).

Proof

Consider arbitrary e and e’ such that
e AiT\z:mbe<eée:T.

We are required to show that Ag;Tg - Azx. Cle] < Az.C'[€'] : 11 — To.
Instantiate Ag;To,z: 7 = C < C": (A;T,x: 7> T) ~ 7o with e and €', noting that A; T,z : 7 Fe <

e T.

Hence, Ag;To,2: 71 F Cle] < C'[€'] : 7.

Applying Lemma C.19 to Ag;Tg, 2 : 71 F Cle] < C'[€]] : 12, we conclude that Ag; Ty F Az. Cle] <
Ax. C'[e'] i 1 — To. O

Lemma C.35 (\"? Context Compatibility: Appl)

IfAg; ToFC < C: (AT T) ~ (11— T2), and Ag;Tg Fex < ey @ 1y,
then Ag;To b Ces < C'éy: (A;T>T) ~ To.

Proof

Consider arbitrary e and e’ such that

e AsTRe<e :T.
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We are required to show that Ag; T F (Cle]) ea < (C'[€']) € : To.
Instantiate Ag;Tg F C < C': (A;T>7) ~ (11 — 72) with e and ¢/, noting that A;TFe <e€': 7.
Hence, Ag;Tg F Cle] < C'[€'] : 11 — To.
Applying Lemma C.20 to
e Ag;To - Cle] < C'[e'] : 71 — T2, and

[ ] Ao;ro }_62 S 6/2 71,
we conclude that Ag;Tg F (Cle]) ea < (C'[€]) €5 : To. O

Lemma C.36 (\"? Context Compatibility: App2)

IfAg;ToFer <ej:m — 7, and Ag;ToFC < C': (A T>7) ~ 1,
then Ag;ToF e C < el C': (AT 7T) v 7o.

Proof

Consider arbitrary e and e’ such that
e AsThRe<e :T.

We are required to show that Ag;Tg F eg (Cle]) < € (C'[€]) : Ta.
Instantiate Ag;Tg - C < C': (I'>7) ~» 7 with e and €, noting that A;TFe <e': 7.
Hence, Ag;Tg F Cle] < C'[e]] : 7.
Applying Lemma C.20 to
o Ag;Tokep <e}:m — 7, and
L] Ao;ro H C[e] S C/[e’] 1 T1,
we conclude that Ag; T Feg (Cle]) < e} (C'[€]) : To. O

Lemma C.37 (\"? Context Compatibility: Fold)

IfAg;To FC < C: (AT 7) ~ 1 fpa. 11/,
then Ag;To F £01ldC < £foldC': (A;T > 7) ~ (pa. ).

Proof

Consider arbitrary e and e’ such that
e AsTRe<e :T.

We are required to show that Ag;Tg F fold Cle] < fold C'[¢/] : pa. tau;.
Instantiate Ag;To F C < C': (A;T > 1) ~ 7p[pua. 71 /) with e and €/, noting that A;TFe <e': 7.
Hence, Ag; T F Cle] < C'[e/] : mipa. 11 /.

Applying Lemma C.21 to Ag; T F Cle] < C'[¢] : T [pa. 71/a], we conclude that Ag; T - fold Cle]

<
foldC'[¢/] : pa. 71. O
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Lemma C.38 (\"? Context Compatibility: Unfold)

If Ag;ToEC <O (AT >T) ~ (pa. 1),
then Ag;To FunfoldC < unfoldC’: (A;T'>7) ~ 7y [ua. 71 /al.

Proof

Consider arbitrary e and ¢’ such that
e AsThRe<e :T.

We are required to show that Ag;T'g - unfold Cle] < unfoldC'[¢/] : mi[ua. 71 /).
Instantiate Ag;Tg F C < C': (A;T > 7) ~ pa. 71 with e and €/, noting that A;TFe <e' : 7.
Hence, Ag;To F Cle] < C'[€'] : pav. 71

Applying Lemma C.22 to Ag; Ty F Cle] < C'[€'] : pa. 11, we conclude that Ag;Tg F unfold Cle] <
unfold C'[¢] : T [pa. 1/l O
Lemma C.39 (\"° Context Compatibility: All)

If No,a; ToFC < C': (A, T 7T) ~> 7,
then Ag;To = A.C <A.C": (A, 0;T>7) ~ Va. .

Proof

Consider arbitrary e and e’ such that
e Aa;T'Fe<e T

We are required to show that Ag;To F A.Cle] < A.C'[¢/] : Va. 7y.

Instantiate Ag, ;T FC < C": (A, ;T'>7) ~» 71 with e and €/, noting that A, a;TFe <€ : 7.
Hence, Ag,a;To - Cle] < C'[€'] : 1.

Applying Lemma C.23 to Ag, ;T F Cle] < C'[¢] : 71, we conclude that Ag;To F A.Cle] < A.C'[e'] :
Va. 1. O

Lemma C.40 (\"2 Context Compatibility: Inst)

If Ag;To FC <O (AT >7) Va1 and Ag = 7o,
then Ag;To FC[] < C'[]: (AT 7) ~ 1 [12/a].

Proof
Consider arbitrary e and e’ such that
e AiTFe<¢€ i 7.

We are required to show that Ag; T F Cle] [| < C'[€'][] : T2/«
Instantiate Ag;To F C < C": (A;T > 1) ~ Va. 7y with e and €/, noting that A;T' e <e': 7.
Hence, Ag;To F Cle] < C'[e'] : V. 71.

Applying Lemma C.23 to Ag;Tg F Cle] < C'[e/] : YVa. 11 and Ag F 75, we conclude that Ag; T F
Clel[] = C'[e[] s ma[r2 /. O
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Lemma C.41 (\"? Context Compatibility: Pack)

If Ao b and Ag;ToFC < C: (AT 7) ~ 1[0/,
then Ag;To F packC < packC’: (A;T>7) ~» Jan 7.

Proof

Consider arbitrary e and ¢’ such that
e AsThRe<e :T.

We are required to show that Ag;T'g F pack Cle] < packC’[¢/] : o 7y.
Instantiate Ag;Tg F C < C': (A;T > 7) ~ 71[m2/a) with e and €/, noting that A;TFe <e': 7.
Hence, Ag;To F Cle] < C'[€'] : mi[m2/a].

Applying Lemma C.25 to Ag - 7 and Ag; Ty F Cle] < C'[e'] : 11[r2/a], we conclude that Ag;Tg F
pack Cle] < pack C'[¢'] : Jav. 71. O

Lemma C.42 (\"? Context Compatibility: Unpackl)

IfAg; ToFC < C: (AT 7T) ~ Fa. 71, and Ag b 72, and Ao, ;To, 2 : 11 Feg <€l i 7o,
then Ag;Tg F unpack C'asziney < unpackC’asxine): (A; T 7T) ~ 7.

Proof
Consider arbitrary e and e’ such that
e AsThRe<e :T.

We are required to show that Ag;T'g F unpack (Cle]) as z ineg < unpack (C'[¢']) asz ine) : 7o.
Instantiate Ag;To HC < C": (A;T > 7) ~ Ja. 7y with e and €/, noting that A;T e <e': 7.
Hence, Ag;To F Cle] < C'[e'] : Jav. 71.
Applying Lemma C.26 to

o Ag;ToF Cle] < C'e'] : Fa. 71,

e Ag k75, and

[ ] Ao,a;ro,(EZTll_eQ SG/QITQ,

we conclude that Ag; T F unpack (Cle]) as z ines < unpack (C'[¢/]) asz ine) : 7o. O
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Lemma C.43 (\"? Context Compatibility: Unpack?2)

If Ap;To b e <€) :3a.m, and Ag b 1o, and AN, o;To, 2 : i EFC <O : (A,o; T,z : 1 > T) ~ T,
then Ag; T F unpacke; aszinC < unpackejaszinC’: (A, T,z : 71> T) ~ 2.

Proof

Consider arbitrary e and ¢’ such that
e AaTz:mqkFe<eé:T.

We are required to show that Ag;T'g F unpacke; asz in (C[e]) < unpacke) asz in (C'[€/]) : To.

Instantiate Ag,a;Tg,z: 71 HC < C": (A,a;T, 2 : 7 >7T) ~ 72 with e and €/, noting that A, a; T, 2 :
nkFe<e :T.

Hence, Ag, a; T, 2 : 11 = Cle] < C'[¢/] : .
Applying Lemma C.26 to
L] A(];F(] }_ €1 S 6,1 : E'Ck.Tl,
e Ag k75, and
o Ag,o;Tg,z:m F Cle] < C'[e'] : 72,
we conclude that Ag;T'o F unpacke; asz in (C[e]) < unpacke) asz in (C'[€']) : T2. O

Lemma C.44 (\"? Context Compatibility: Ctxt)

Ion;PO = C() é C(/) : (Al;I‘l l>’7'1) ~ 70, and Al;I‘l = Cl S C{ : (A;PDT) ~r T,
then Ag;To F Co[C1[]] < CHICI] : (AT > 7) ~ 79.

Proof

Consider arbitrary e and e’ such that
e AsThRe<e :T.

We are required to show that Ag; T = Co[C1[e]] < CH[Cs[€']] : To-
Instantiate A;;T F Cp < Cf : (A;T>7) ~ 71 with e and €/, noting that A;TFe <e': 7.
Hence, Ay;T1 F Cyle] < Cile'] : .

Instantiate Ag;To F Cy < Cf 1 (A; T >711) ~ 79 with Cyle] and Cf[e'], noting that Ay; T F Cile] <
Cile'] : m.

Hence, Ag; T F Co[Cile]] < ClC1e]] : To. O
Lemma C.45 ()\"° Context Reflexivity)

IfA;;T EC: (A To7)~ 7, then AT FC < C: (AT 7) ~> 71,
Proof

By induction on the derivation A1;Ty F C : (T'>7) ~ 79.
Each case follows from the corresponding compatibility lemma (i.e., Lemmas C.30 through C.43). O
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Lemma C.46 (\"?: < C =xco)
If A\TFe<eée :7, then A;TFe = ¢ 7.
Proof
Consider arbitrary C' and 7, such that
o oo C:(A;T>7)~ 7, and
o Cle] |
Hence, there exists some value vy and some k such that
o Cle] —F vy

We are required to show that Cle'] |

Note that e;e - C < C': (A;T'>7) ~» 71, which follows from Lemma C.45 applied to
oC: (A T>T)~ 7.

Instantiate o;0 - C' < C': (A;T'>7) ~ 71 with e and €/, noting that A;T'Fe <e': 7.
Hence, o;0 - Cle] < Cle'] : 7.
Instantiate this with & + 1, 0, @, and (). Note that

e k+12>0,

o ) € RD[e],

o (E+1,0,0) € RG [e] 0.
Hence, (k + 1,Cle], C[e']) € RC [1] 0.
Instantiate this with £ and v;. Note that

o kL <k+1,

e Cle] —* vy, and

o irred(vy), which follows from the fact that vy is value.
Hence, there exists v} such that

e Cle'] —* v}, and

o (k+1—Fkuvypv}) e RV[n]0.

Hence, Cle'] | v}.

130



D Examples

In this section, we present several examples to illustrate uses of our logical relations method for proving
contextual equivalence. The examples are taken directly from Sumii and Pierce [19] so that the reader
may compare the use of their bisimulation against the use of our step-indexed logical relation for showing
contextual equivalence. These examples involve existential packages, contravariant recursive types, and
higher-order functions (Sections D.1-D.5).

In each of the examples that follow, we wish to show that the closed terms e and e’ of type 7 are
contextually equivalent — that is, e; @ - ¢~ ¢’ : 7. It suffices to show e;el-e~¢' : 7.

Recursive Functions

Encoding Fiz: Some of the examples that follow (see Sections D.4 and D.5) make use of recursive functions
fix f(z). e which can be encoded in A" as follows:

Y
fix f(z).e

AMf. (Az. f ((unfoldx) z)) fold (Az. f ((unfoldz)x))
(Y[DAf Az e

where we can derive the following rules:

AT, fimm >,z :mibe: T
AT Hfixf(z).e:m — 72
With the above formulation, the term fix f(z). e is not itself a value, but it reduces to a lambda abstrac-

tion. Though we could use the above encoding in the examples that follow, the downside is that we would
end up having to desugar £fix f(x). e when establishing the equivalence of recursive functions.

) AT HY Vo (o — a) =« (FixTy)

Fiz as a Language Primitive: To simplify proving equivalence of recursive functions, we will instead tweak
the A" calculus slightly, replacing terms Az. e with fix f(z).e and treating the latter as values in \72. We
will continue to write Az. e whenever f does not appear free in e. We modify the (app) rule in the operational
semantics as follows.

(fix f(x).e)v — e[fix f(z). e/ f]lv/x]

We replace the function typing rule (FnTy) with the (FixTy) rule given above. The relational interpretation
of function types is modified as follows.

RV[n —n]p = {(kfixf(z).e,fix f(z).¢')| F fixf(z).€ : (11 — 1) A
Vi < k,v,v".
(J,v,0") ERV[m]p A
(j, fix f(z). e, fix f(x).€') e RV [r1 — 1] p =
(J, e[v/z],€'[v"/z]) € RC [r2] p}

We note that all the lemmas pertaining to function types proved in Section C are still provable after appro-
priate modifications to comply with the (FixTy) rule and the new relational interpretion of function types.
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D.1 Simple Existential Packages
Consider the following existential packages e and e’ of type 7 (see Sumii and Pierce [19], Section 4.1):
int

= pack(l, \z.z = 0)

e/ = pack(tt,\z. )

T = Ja.ax (a— bool)

We are required to show that e;e ¢ ~ ¢’ : 7. The proof is in two parts.

I. Show e;e e <€ : 7.

Consider arbitrary k, p, v, 7' such that

e k>0,
e p € RD[e], and
e (k,7,7) € RG] p.

Hence, p =0 and v =+ = 0.
We are required to show that (k,e,e’) € RC[7] 0. (Note that if &k = 0 we are done.)
Consider arbitrary j and ey such that

o j<k,
e — ey, and
o irred(ey).

Since e is a value, we conclude that j = 0 and e = ef. Also, note that €’ is a value.

Pick e/ =¢'.

Note that ¢/ —* ¢’ and val(e’).

It remains for us to show that (k — 0,e,¢’) € RV [7] = (k,pack (1, \z.z ot 0), pack (tt, Az. x)) €
RV [Fa. a x (v — bool)] 0.

Note that we already have ¢’ : 7.

Take 7o = bool and x = {(k’,1,tt) | k' > 0}.

Note that x € Relpoo, which follows from the definition of .

Consider arbitrary j such that j < k.

We are required to show that (7, (1, A\z.x R 0), {(tt, Az. ~z)) € RV [a x (o — bool)] B]e — (x, bool)],
which follows from

o F (tt, Az.—x) : (a X (@ — bool))[bool/a]
= F (tt, Az. ~z) : bool x (bool — bool), which is follows easily from the static semantics.

e (j.1,5t) € RV [a] B (x, bool)
= (j,1,tt) € x (by the definition of RV [«] p)
which in turn follows from our definition of x.

int

o (j,(Az.z = 0),(A\z. ~z)) € RV [ao — bool] f]e — (x, bool)], which we conclude as follows:
First, note that F Az. =z : (o — bool)[bool/a] = F Az.—x : bool — bool, which is immediate.

Next, consider arbitrary i, vy, and v} such that
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e ¢ < j,and

e (i,v1,v]) € RV [o] O] — (x, bool)].

Note that RV [a] O — (x, bool)] = x by definition of RV [a] p.
Hence, (i,v1,v]) € x.
Then, it must be that v; = 1 and v| = tt, which follows from the definition of .

We are required to show that

(1, (z e 0)‘[111/35], (—x)[vi/z]) € RC[bool]Bla — (x,bool)]
= (i,v1 =0, -0}) € RC [bool] Ble — (x, bool)]
(i,1 20, —tt) € RC[bool] fle — (x, bool)]

int

Note that (1 = 0) —! £f and (—tt) —* £f.

Hence, it remains for us to show that (i — 1,££,£f) € RV [bool]§ja — (x,bool)], which is
immediate.

II. Show e;el-¢' <e:T.
Consider an arbitrary k such that & > 0.
Unwinding definitions as in (I) above, since e’ and e are closed values of closed type, it suffices to show
(k,e',e) € RV[7] 0 = (k,pack (tt, \z. ~z), pack (1, \z. x ot 0)) € RV [Fa.a X (v — bool)] 0.
Note that we already have e : 7.
Take 72 = int and x = {(¥,tt,1) | & > 0}.
Note that x € Relint, which follows from the definition of y.
Consider arbitrary j such that j < k.

int

We are required to show that (j, (tt, Az. —z), (1, Az.z = 0)) € RV [a x (a — bool)] D]ae — (x;, int)],
which follows from

o F{(1,Az.2 2 0) : (o x (o — bool))[int/a]
= F(l, .z ot 0) : int X (int — bool), which follows easily from the static semantics.
e (j,tt,1) € RV [a] Ola — (x,int)]

= (j,tt,1) € x (by the definition of RV [a] p)
which in turn follows from our definition of .
o (j,(\z.—z), Az.z 2 0)) € RV [ — bool] [a — (x,int)], which we conclude as follows:
int

First, note that - Ax.x = 0: (o — bool)[int/a] = F A\z.x 20 : int — bool, which is immediate.

Next, consider arbitrary i, vy, and v} such that

e i < j,and

e (i,v1,v]) € RV [a] O[a — (x,int)].

Note that RV [a] O]« — (x,int)] = x by definition of RV [a] p.
Hence, (i,v1,v]) € x.

Then, it must be that v; = tt and v] = 1, which follows from the definition of .
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We are required to show that

(i, (~)[vn /2], (z = 0)[vi /a]) € RC[bool] D — (x, int)]
= (i, w1, 0] = 0) € RC[bool] Ble — (x, int)]
= (i,~tt,1 = 0) € RC [bool] Ba — (x,int)]

int

Note that (=tt) —! £f and (1 = 0) —* ££.

Hence, it remains for us to show that (¢ — 1,££,££f) € RV [bool] #[a +— (x, int)], which is imme-
diate.

Discussion The above proof is largely mechanical. The only interesting part of showing that two packages
have types Ja. 7" is the choice of x and 75. This is because we later have to show that x € Rel,,. But even
the choice of x is mostly mechanical:

e We decide on the pairs of values (v,v’) (such that - v’ : 75) that must be related at type o — for
this particular example, the sets of pairs are {(1,tt)} (with 72 = bool), or {(tt,1)} (with 7o = int),
depending on the direction of the proof.

e We define x, which specifies that each of the above pairs of values is related at every step-index k' > 0.
This is necessary in order to ensure that x will be closed with respect to a decreasing step-index —
ie., if (k,v,v") € x and j <k, then (j,v,v’) € x.

For the set x defined in this way, it is trivial to show x € Rel,,.

Comparison with Sumii-Pierce In comparison, if we use Sumii and Pierce’s [19] bisimulation
method, we first have to come up with some bisimulation X and then show that X is in fact a
valid bisimulation. For the above example, Sumii and Pierce show that we can pick either X =

{(0,Ro), (A, R1), (A, Ra), (A, R3), (A, Ry), (A, Rs)} or X = {(A,Rs)} where:

A = (a,int,bool)

Ro = {(ee,7)}

Ri = RoU{((1,Az.2 Z0), (tt,Az.~z), a x (o — bool))}
Ro = R U {(1,tt,0¢)}

Ry = RiU{(\z.2 20, Az.~z, a — bool)}

Ry = RoUR3

R5 = R4 U {(ff, ff, b00|)}

As one would expect, one difference between the bisimulation and logical relations approach is as follows:
with the bisimulation, one must specify at the outset which values are related at each type 75 that is a
subexpression of 7 = Ja. @ X (v — bool), whereas with a logical relation, in the course of the proof, one only
has to specify which values are related at the type «.

For this example, once we have chosen X, proving that X is a valid bisimulation seems to require the
same level of (largely mechanical) effort as was required for the logical relations proof.
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D.2 Functions Generating Packages

Consider the following functions e and ¢’ of type 7, which generate existential packages (see Sumii and
Pierce [19], Section 4.3):

e = M\y.ep e1 = pack(y,\z.x)
e = Ay.€e) el = pack{(y+ 1, z.x—1)
T = int—mn 71 = Ja.ax (a—int)

We are required to show that e;e ¢ ~ ¢’ : 7. The proof is in two parts.

I. Show e;e e <€ : 7.
Consider an arbitrary k& > 0.

Unwinding definitions, we see that since e and ¢’ are closed values of closed type, it suffices to show
that (k,e,e’) € RV [r] 0 = (k, \y. e1, A\y. €}) € RV [int — 7] 0.

Note that we already have - A\y. e} : int — 7.

Consider arbitrary j, v, and v’ such that

e j <k, and
o (j,v,v') € RV [int] 0.

Note that F v’ : int, which follows from Lemma C.7 applied to (j,v,v") € RV [int] 0.
Also, note that v = v’, which follows from the definition of RV [int].

We are required to show that (4, ei[v/x], e} [v'/x]) € RC 1] 0
= (j, pack (v, \x. z), pack (v' + 1, \z.z — 1)) € RC [Fa. a X (@ — int)] 0.

Consider arbitrary j; and ey, such that
° jl < j»
e pack (v, A\z.z) —7! e, and

o irred(ey, ).

Since pack (v, Az. x) is a value, we have j; = 0 and ey, = pack (v, \z. z).
Let €/ = pack (v'+1,A\z.x — 1).
Note that pack (v' + 1, Az.z — 1) —* pack (v'+1, \x. x — 1).

Thus, it remains for us to show that (j — ji,ey,, €} ) € RV[r]0
= (j,pack (v, A\z.x),pack (v + 1, \z.z — 1)) € RV [Fa. a x (o — int)] 0.

Note that F pack (v'+1,Az.z — 1) : Ja. a x (o — int), which follows from the (Pack) rule applied to
p

e o | int, and
e oo (V+1, Az .2 — 1) : (a X (v — int))[int/a]
=e;o (v'+1, \x. 2 — 1) :int X (int — int), which follows from the static semantics and F v’ : int.
Take o =intand x = {(K',n,n+1)| ¥ >0 A Fn:int}.
Note that x € Rel;n, which follows easily from the definition of x.
Consider an arbitrary ¢ such that i < j.

We are required to show that (j, (v, A\z.z), (v + 1, z.2 — 1)) € RV [a X (a — int)]0la — (x,int)],
which follows from
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o F{W+1, .2 —1): (ax (a—int))[int/a]
F (@ +1,Az.2 — 1) :int x (int — int),

which follows from the static semantics and - ¢’ : int.

="

o (j,v,v + 1) € RV [a] Ola — (x,int)]

= (j,v,v" +1) € x (by definition of RV [«] p)
(],v,v +1)ex (since v =" above)
which follows from the definition of .

o (j, z.z, \r.x — 1) € RV [ — int] B[w — (, int)], which we conclude as follows:
First, note that F Az.z — 1 : (a — int)[int/a] = F Az.2 —1:int — int, which is immediate.

Next, consider arbitrary i, vi1, and v}, such that

e { < j,and

e (i,v11,v11) € RV [a] Ola — (x,int)].

Note that RV [a] @[ — (x, int)] = x by definition of RV [a] p.
Hence7 (iavllavlll) € X-
Then, it must be that v1; = n and vj; = n+ 1, where - n : int.
We are required to show that
(i, z[vir /], (x — D[viy/z]) € RC[int] Ola — (x,int)]
= (i,v11,0), — 1) € RC[int] O — (x,int)]
= (i,n,(n+1) —1) € RCint] Ola — (x,int)]
Note that n ——n and ((n +1) — 1) —* n.

Hence, it remains for us to show that (¢ — 0,n,n) € RV [int] O[a — (x, int)], which is immediate.

II. Show e;e k¢’ <e:T.
The proof is analogous to that of (I).

Comparison with Sumii-Pierce For this example, Sumii and Pierce must consider an infinite bisimu-
lation. They choose the following bisimulation, which they point out is not the minimal one:

X = {(AR)
A = {(B;,int,int) | —n < i < n},
R C U_p<i<nRi,
n=012..}
R: = {(e¢, |nt—>71)
(exli/yl, eili/yl, ),
((t, Az x), (i + 1, de.x — 1), B; x (B; — int)),
(4,7 +1,5),
(
(4,

/\ac x,\x.x — 1, 5; — int),

We note that with the logical relations approach, there is no need to consider an infinite set of types 3; or
an infinite set of relations analogous to R;.
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D.3 Higher-Order Functions I

Consider the following higher-order functions e and €’ of type 7 (see Sumii and Pierce [19], Section 4.5).
Note that this example is essentially the “dual” of the example in Section D.1.

= M. f1{0 .2 Z0)

e = M. f[]{tt, Az —x)
o = Va.(ax (a—bool))—1
T = oc—1

We are required to show that e;e e ~ ¢’ : 7. The proof is in two parts.

I. Show e;ee <€ : 7.

Consider an arbitrary k& > 0.
Unwinding definitions, we see that since e and €’ are closed values of closed type, it suffices to show
that (k,e,e’) € RV[r]0 = (kAL £[](1, Az z = 0), Af. f[] (tt, Az. —z)) € RV [o — 1] 0.
Note that we already have F¢’ : 0 — 1.
Consider arbitrary j, v, and v’ such that

e j <k, and

o (4,v,v") € RV [o] 0

= (4,v,v") € RV [Va. (a x (a — bool)) — 1] 0.

Note that v’ : o, which follows from Lemma C.7 applied to (j,v,v") € RV [¢] 0.
Also, note that v = A.e; and v' = A. €}, which follows from (j,v,v") € RV [Va. ...] 0.

We are required to show that

Go (P Az Z o)/ f], (F] (s8, Az —2)) W'/ £)) € RC[1] 0
=0, @[ 2 =0), (@[] (e, A -z)) € RC[1]0
=@, (Aer[]) (1, Az 2 20), (A€} ]]) (tt, \z. —z)) € RC[1] 0.
Consider arbitrary j; and ey, such that
° jl < j)
o (Aer[]) (1, Az 2 2 0)) —i1 ¢, and
o irred(ey, ).
By the operational semantics, it follows that
(A.er []) (1, Az 2 2 0)) —! (&1 (1, Az.2 2 0))
T ey,
Hence, by the operational semantics, it follows that there must exist ji; and ey, such that
e ¢ 1 €fi1)

e irred(ey,,), and

e jiun<j1—1
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Take 75 = bool and x = {(k’,1,tt) | k¥’ > 0}.

Instantiate the second conjunct of (j,A.e1, A.€}) € RV [Va. (o x (o — bool)) — 1] with x and 7o.
Note that x € Relpoo, which follows from the definition of y.

Hence, we have Vi < j. (i,e1,€}) € RC [(a x (w — bool)) — 1] Olcax — (x, bool)].

Instantiate this with j; noting that j; < j.

Hence, we have (j1,e1,¢}) € RC[(a x (o — bool)) — 1] @[ax — (, bool)].

Instantiate this with ji; and ef,,. Note that

e ji11 < j1, which follows from 717 < j; — 1,
® ¢ —J €115 and

o irred(ey,,).
Hence, there exists e}ll such that
o ) —F e,fu and
* (j1 —Jusep,ef,) € RV[(ax (a — bool)) — 1] #la — (x, bool)].

— / _ !/
Hence, ef,, = Az.ep and €} = Az.e5.

Then, by the operational semantics it follows that

(A-er []) (1, Az 2 2 0) =1 (e (1, A2 = 0))
— (e, (1, M2 2 0))
= (Az.ez (1, Az 2 2 0))

int

1 (e2[(1, \z. 2 = 0)/2])

JJ12 er

Note that j; = 1 + ji1 + 1+ j12.
Let v, = (1, \z.x o 0).
Let v, = (tt, \x. ~x).

Instantiate (j1 — ji1, Az. e2, Az. e5) € RV [(a x (o — bool)) — 1] f[a — (x, bool)] with ji2 + 1, v,, and
v.. Note that

® ji1o + 1 < j; — j11, which follows from j12 =j;1 — 1 — 711 — 1, and

e (ji2+1,v,,v.) € RV [a X (a — bool)] Bl — (x, bool)]

= (Jiz+1, (1, .z e 0), (tt,Az.—z)) € RV [a x (a — bool)] O]cx — (x, bool)],
which follows from

o F (tt,\z.—x) : (a X (v — bool))[bool/a]
= F (tt,Az. ~z) : bool x (bool — bool), which follows from the static semantics.

e (ji2+1,1,tt) € RV [a] Ola — (x, bool)]
= (j1z2 +1,1,tt) € x (by the definition of RV [o] p)
which follows from our choice of x.
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int

e (jiz2+1, z.z =0, z. ~z) € RV [a — bool] @[ — (x, bool)], which we conclude as follows:

First, note that - Az. -z : (o — bool)[bool/a] = F Az.—z : bool — bool, which follows
easily from the static semantics.

Next, consider arbitrary 4, v, and v] such that

e i< j1o+1, and
e (i,v1,v]) € RV [o] O[ev — (x, bool)].

Note that RV [a] @[ — (x, bool)] = x by definition of RV [a] p.
Hence, (i,v1,v]) € x.
Then, it must be that v; = 1 and v] = tt, which follows from the definition of .

We are required to show that
(i, (2 ™ 0)[un /a], (~2)[vi/a]) € RC[bool] Bfa > (x,bool)

= (i,01 = 0,~w}) € RC [bool] B[cx — (x, bool)]
(i,1 20, —tt) € RC[bool] e — (x, bool)]

int

Note that (1 = 0) —! £f and (—tt) —* £f.

Hence, it remains for us to show that (i — 1,££,ff) € RV [bool] B[a — (x, bool)], which is
immediate.

Hence, (j12 + 1, e2(v, /2], e4[vL/2]) € RC [1] Ola — (x, bool)].
Instantiate this with ji» and ey, . Note that

® jiz <Jjiz+1,

o es[v,/z] —2 ey, and

o irred(ey, ).
Hence, there exists e}l such that

e eyl /z] " €}, and

e (jiz+1—jia,ep,¢€}) € RV[1]0a — (x, bool)]
= (Leyp,e}) € RV[1]0[a — (x, bool)].

Hence, ey, = () and €} = ().
Hence, by the operational semantics we have
((A.e) []) (tt, Az —z)) =1 (€] (tt, Az ~x))
" (e}, (tt, Az, )

= (Az.eh (tt, \x. ~x))
b (eh[(tt, Az, —z) /2])

—"

Take e, = e€; = (). We are required to show

o (A.ei[])(tt, Az, —z) —" €y
which follows from above, and
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o (j—Ji,epn,€) € RV[1]0,
which follows from ey, = 6}1 = ().

II. ShOW‘;.Fe’Se:T.

The proof is analogous to that of (I).
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D.4 Recursive Types

We now consider an example involving contravariant recursive types, that is, recursive types with a negative
occurrence. Consider the following existential packages e and e’ of type 7 (see Sumii and Pierce [19], Section
4.4):

= pack(fold(0,e1))

e/ = pack(fold(0,e}))

er = fix f(s).(fold({(s+ 1, [)), Ac. (s I fst (unfoldc)))
el = fixf(s).(fold({s—1, f)),Ac. (s o fst (unfoldc)))
T = 3dao

o = pbax(a—y)

¢ = [ x(8— bool)

We are required to show that e;e e ~ ¢’ : 7. The proof is in two parts.

I. Show e;el-ec <€ : 7.
Consider an arbitrary k > 0.

Unwinding definitions, we see that since e and €’ are closed values of closed type, it suffices to show
that (k,e,e’) € RV [7] 0 = (k,pack (fold (0,e1)), pack (fold (0,¢}))) € RV [Fa. o] 0.

Note that we already have - pack (fold (0,¢€})) : Ja. 0.

Take 5 = intand x = {(k',n,—n) | ¥ >0 A Fn:int A n>0}.

Note that x € Relint, which follows easily from the definition of y.

Consider an arbitrary ¢ such that i < j.

We are required to show that (i,fold (0,e1),fold (0,¢})) € RV [o] O[a — (x, int)].
Note that we already have - f0ld (0,¢}) : ofint/a].

Consider arbitrary ¢; such that i; < i.

Let xo = [RV [o] 0l (. int)] iy 1.

We are required to show (i1, (0,e1),(0,€])) € RV [a x (a — ¢)]0la — (x,int), 3 — (xs,clint/a])],
which follows from

* (i1,0,0) € RV[a] O[cx = (x;,int), B — (xg, olint/a])]
= (i1,0,0) € x (by definition of RV [«] p)
which follows from (1,0, —0) € x.

o (ir,e1,eh) € RV[ar — ¢ O]a — (x,int), 3 = (xg, ofint/a])]
= (i1, fix f(s). (fold ({s + 1, f)), Ac. (s o pot (unfoldc))),

int

fix f(s).(fold ({s — 1, f)), Ac. (s = fst (unfoldc))))
€ RV [a — ¢] Ola — (x,int), 8 — (xg,olint/a])], which we conclude as follows:
First, note that

Ffix f(s). (fold({s — 1, f)), Ac. (s R fst (unfoldc))) : (o — o)[int/a][o]int/a]/B]
= b fix f(s). (fold ((s — 1, f)), Ac. (s = £st (unfoldc))) : int — (oint/a] x (ofint/a] — bool))

Next, consider arbitrary 72, v, v’ such that

® iy <1,
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o (iz,v,v") € RV [a] Do — (x,int), 3 — (xs, ofint/a])]
= (i2,v,v") € x, and

o (iz,e1,€1) € RV [a — @] Bl — (x, int), B — (xg, olint/a])]
= (iy, £ix f(s). (fold ({(s + 1, f)), Ac. (s = £st (unfoldc)))

fix f(s).(fold ({(s — 1, f)), Ac. (s 2 fst (unfoldc))))
€ RV [a — ¢] 0o — (x,int), B — (xg,clint/a])].

Note that from (i, v,v") € X, it must be that v = —v’, which we conclude from the definition of
X-

We are required to show (ig, (fold ((v+ 1,e1)), Ac. (v 2 fst (unfoldc))),
(fold (v — 1,€})), Ae. (v = £st (unfoldc))))
€ RC[B x 8 — bool] [ — (x,int), 3 — (xs,ofint/a])].
Noting that both v + 1 and v — 1 reduce to values in one step, it suffices to show

(iy — 1, (fold (v + 1,e1)), Ac. (v = £st (unfoldc))), (fold (v — 1,€},)), Ac. (v 2 £st (unfoldc))))
€ RV[B x (8 — bool)] Bla — (x,int), 8+ (xs,clint/a])], which follows from:

o (ia—1,fold({(v+1,e1)),fold ({(v' —1,€}))) € RV[F] Ol — (x,int), 8 +— (x3,0lint/a])]
(i —1,f0old ({(v + 1,e1)),f0ld ({(v' — 1,€1))) € x5
(ia — 1,f0ld ((v+1,e1)),fold ((v' — 1,¢€}))) € RV [o] Ol — (x,int)] iy +1

)]
(iz — 1,£01d (v + 1,e1)), 201d ((v/ — 1,¢)})) € RV [ a x (o — @)] O = (x, int)]
which we conclude as follows:
Consider arbitrary i3 such that i3 < i — 1.

Let x5, = |RV [o] 0[a — (x,int)]]s,+1. Note that xg, = [x3]iz+1 since iz < iy.
We are required to show that

(is, (v + 1, €1), (V' = 1,€1)) € RV [a x (o = @)] O] = (x;int), B — (xg,, 0lint/a])]

which follows from:

e (iz,0+ 1,0 = 1) € RV[a] B — (x;int), 5 = (xp,, 0lint/a])]
= (is,v+1,v' — 1) € x (by definition of RV [a] p)
which follows from v = —v’ (from above) and (i3, v +1,—v —1) € x.

e (iz,e1,e]) € RV [a — ¢] Ola— (x,int), 3 — (xs,,clint/a])]
which follows by Lemma C.9 applied to i3 < iy and

(iz,€1,€})) € RV [ — @] O]a — (i, int), B — (x5, olint/a])],
both of which follow from above.

o (ia—1,Me. (v st (unfoldc)), Ac. (V' st (unfoldc)))
€ RV [ — bool] Bl — (x,int), 8 — (xg,clint/a])], which we conclude as follows:

Consider arbitrary i3, v1, and v} such that

e i3 <ip—1and

o (i3,v1,v1) € RV[B] Do — (x;int), B — (xg,0(int/a])]
= (i3, v1,v]) € X3

From the latter and xg = |RV [o]] Ola — (x,int)]];,+1, it follows that v; = foldv;; and
v} = foldv},. Hence, (i3, foldvii,foldv];) € RV [o] O[a — (x,int)].
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We are required to show that
(i3, (v = £st (unfoldwy)), (v = £st (unfoldv))))

= (i3, (v = fst (unfold (folduyy))), (v/ = st (

€ RC [bool] O[ax = (x; int), B — (x, olint/a])]

By the operational semantics (v 2 ofst (unfold (foldwyy))) ' (v 2 ofst (v11)) and
(v o est (unfold (foldv},))) —! (v/ o pst (v1y))-
Instantiating (is, foldviy, foldvi,) € RV [uf. a x (o — )] Ola — (x, int)] with is—1 < i3
it follows that (i3 — 1,v11,v];) € RV [a X (a — ¢)] O]a — (x,int), B — (x3,olint/a])].
Hence, it must be that £st (v11) = vy and £st (v];) = v} such that v = —v) which follows
from (i3 — 1,v2,05) € RV [a] Ola — (x,int),8 — (xg,olint/a])] which is equivalent to
(i3 — 1,v2,0%) € X.

unfold (foldvi,))))

Thus, since v = —v’ and v = —v), it easily follows that (v R vg) and (v’ . v}) either both

evaluate to tt or both evaluate to ff.

II. Show e;el-¢' <e: 7.

The proof is analogous to that of (I).
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D.5 Higher-Order Functions II

We now consider a more complicated example involving higher-order functions. The packages ¢ and €’ of
type 7 shown below are implementations of integer multisets with higher-order functions that compute the
weighed sum of all the elements. To prove contextual equivalence of e and ¢’ below, Sumii and Pierce
(see [19], Section 7) had to adopt a weaker and much more complicated condition for showing the validity of
the bisimulation than the intuitive one they proposed initially. In fact, they note that their weaker condition
is reminiscent of step-indexed models.

e = pack (nil, add, weigh)
e’ = pack (If, add’, weigh')
o = ax(int—a— a)x ((int — real) - « — real)
T = da.o
add = M. fix f(s). cons(i,s)
add’ = Xi.fix f(s).case s of If = node(i, lf, If)
| node(j, s1,82) = ifi < 4, node(4, f s1, $2), node(J, s1, f $2)
weigh = Ag.fix f(s).case sof nil =0
| cons (3, 50) = g5+ fs0
weigh’ = M\g.fix f(s).casesof If = 0

| node(j, s1,82) = gj+ fs1+ fs2
We are required to show that e;e e ~ ¢’ : 7. The proof is in two parts.

I. Show e;el-ec<¢e' : 7.
Consider an arbitrary k& > 0.

Unwinding definitions, we see that since e and €’ are closed values of closed types, it suffices to show
that (k,e,e’) € RV [7] 0 = (k, pack (nil, add, weigh), pack (If, add’, weigh')) € RV [Fa. o] 0.

Note that we already have F pack (If, add’, weigh’) : Ja. 0.

Let xo = {(K¥',nil,Iif) | ¥ >0 A FIf :intTree}, and
Xiv1 = {(K',s,8") | (K, si,8}) € xs- In. Fn:int A add(n,s;) —*s A add'(n,s)) —* s'}.

Take 7 = intTree and x = ;> Xi-
Note that x € RelintTree, Which follows from the definition of y; and y = Ui>0 X
Consider an arbitrary kg such that kg < k.

We are required to show that (ko, (nil, add, weigh), (If, add’, weigh')) € RV [o] Dl +— (x, intTree)],
which follows from:

o (ko,nil,lf) € RV [a] Ola — (x, intTree)]
= (ko, nil, leaf) € x (by definition of RV [«] p)
which follows from (ko, nil, If) € xo and xo C x.

o (ko, add, add") € RV [int — a — o] O[a — (x, intTree)], which we conclude as follows:

Consider arbitrary ki, v, and v’ such that

o k1 < ko and

o (k1,v,v") € RV [int] Ol — (x,intTree)].
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Note that from the latter it follows that v = v'.
Let add; = £ix f(s). cons(v, s), and
add] = £ix f(s). case s of If = node(v', If, If)
| node(j, s1, s2) = if v’ < j,node(j, f s1, s2), node(j, s1, f s2).
We are required to show that (ki, addy, add}) € RC [a — o] Ol +— (x, intTree)].

Note that since add; and add) are closed values, it suffices to show that (ki, addy, add)
RV [a — o] O[a — (x, intTree)].

Consider arbitrary ks, s, and s’ such that

o ]f2<k‘1,

o (ka,5,8") € RV [a]O[a — (x,intTree)]
= (ko,s,8) € x, and

o (ko,addy, add}) € RV [a — a] O[a — (x, intTree)].

We are required to show that
(ka, cons(v, s),
case s’ of If = node(v',If,If)
| node(j, 51, s2) = if v’ < j, node(j, add} s1, s2), node(j, s1, add} s3))
€ RC [a] Ol — (x, intTree)],
which is equivalent to showing
(ko + 2, add (v, s), add' (v, s")) € RC [a] B[ — (X, intTree)].

Note that from (ks, s, s’) € ¥, it follows that there exists some i such that (ks,s,s’) € x; C x.

e If i =0, then from (kg,s,s’) € x; it follows that s = nil and s’ = If.

By the operational semantics, add(v,s) —? s; = cons(v,s) and add’(v',s") —* s’
node(v', If , If ).

Note that since v = v/, it follows that (ks, sy, s’f) € X1

Thus, it remains to show that (ko2,sf,s}) € RV[a] Ol — (x,intTree)] = x, which i

immediate from the fact that (k2, sy, s}) € x1 C x.

e Else if ¢ > 0, then from (kg,s,s’) € x; it follows that s = cons(n,sp) and s’
node(m, s1, 82).
By the operational semantics, add(v,s) —? sy and add’(v/,s") —* s’f.

Note that since v = v/, it follows that (ks, sy, s}) € Xit1-

Thus, it remains to show that (k2,sf,s%) € RV [a]0[a — (x,intTree)] = x, which i

immediate fom the fact that (ko, sy, s}) € Yit1 C X-

o (ko, weigh, weigh’) € RV [((int — real) — o — real)] @[ — (x,intTree)], which we conclude
follows:

Consider arbitrary ki, g, and ¢’ such that

e k1 < kg and

e (k1,9,9") € RV [int — real] [ — (x,intTree)].
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Let weigh,; = £ix f(s).case s of nil = 0
| cons(j,50) = gj + f s0, and
weigh) = fix f(s).case sof If = 0
| node(j, s1,82) = g'j+ fs1+ fsa.

We are required to show that (k1, weighy, weigh}) € RC [ — real] B[ — (x, intTree)].

Note that since weigh,; and weigh) are closed values, it suffices to show (k1, weigh, weigh}) €
RV [a — real] Oec — (x, intTree)].

Consider arbitrary ks, s, and s’ such that

o ko < ky,

o (ko,s,s") € RV [a] Ola — (x,intTree)]
= (ka,s,8') € x, and

o (ko, weighy, weigh}) € RV [a — real] 0]a — (x, intTree)].

We are required to show that
(ko, case s of nil = 0
| cons(j, s0) = gj + weighy so,
case s’ of If = 0
| node(j, s1, s2) = g’ j + weigh’ s1 + weigh’y s2)
€ RC [real] Ol — (x, intTree)].

Let e = case s of nil = 0 | cons(j, so) = gJj + weighy so.
Let ¢/ = case s’ of If = 0 | node(j, s1,s2) = g’ j + weigh’ s1 + weigh’] s2).
Consider arbitrary k3 and vy such that

o k3 < ko,

Py — vy, and

o irred(vy).
It remains to show that there exists v, such that e’ —* v} and (k2 —ks, vy, v}) € RV [real] O]ov —
(x, intTree)].
Note that from (ka,s,s’) € x, it follows that there exists some i such that (ks,s,s’) € x; C x.

o If i =0, then from (ko,s,s’) € x; it follows that s = nil and s’ = If.
Then, by the operational semantics, e —* 0. That is, vy =0and k3 = 1.
Furthermore, by the operational semantics, there exists v} = 0 such that ¢/ —* v}.
It remains to show that (ka — 1,0,0) € RV [real] @[ — (x, intTree)] which is immediate
from the definition of RV [real].

e Else if ¢ > 0, then from (ks,s,s’) € x; it follows that:

e s = cons(n, sg), where add(n, sg) —* cons(n, sq),

e s’ = node(...), where there exists some s{, such that add’(n, s})) —* s/,

o (k2,50,50) € Xi—1 C X-
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Then, by the operational semantics, e —' (gn + weigh; so) —*371 vy

Suppose that s = node(m, s}y, $ho)-
Then, either n < m and add’(n, s)) = add’(n, node(m, sy, shy) —
node(m, add(n, s}y), shy) —* s
or else, add’'(n, sy) = add’(n, node(m, s}y, sho) —
node(m, s, add(n, shy)) —* s'.

!

Then, by the operational semantics,
o cither there exists v}, such that ' ——" (¢’ m + weigh’ nsj, + weigh shy) — vy,
where (add(n, siy)) —* nsig
e or there exists some v, such that ¢/ — (¢’ m + weigh! s}y + weigh| nshy) — Vo,

where (add(n, shy)) —* nshy.

Consider the expression (g'm -+ weigh) s}, + weigh' sy, + ¢’ n), which evaluates to some v
Note that it must be that v’ = v} = v},.
Thus, it remains for us to show that (k2 — ks, vy, v}) € RV [real] Ol — (x, intTree)].

Furthermore note that the expression (weigh’ s + ¢g'n) = (weigh] (node(m, sy, sho)) +
g’ n) —1 (¢’ m + weigh] s}y + weigh} shy + g’ n) and therefore, this must also evaluate to
!
V.
!

Finally, note that the expressions (gn + weigh, so) and (g’ n + weigh’y sj) both evaluate to
the same value — that is vy = v}, which we conclude as follows:

e From (k1,9,9") € RV [int — real] O[a — (x, intTree)] and (k1,n,n) € RV [int] O[a —
(x, intTree)] (which is immediate from the definition of RV [int]), with appropriate
applications of Lemma C.9, it follows that gn and ¢’n both evaluate to the same
value.

e From (ko, weigh, weighy) € RV [a — real]@la — (x,intTree)] and (k2, so,5)) €
RV [a] Ol — (x,intTree)] = x, with appropriate applications of Lemma C.9, it
follows that weigh, so and weigh) s) both evaluate to the same value.

From vy = v%, it immediately follows that (kg — k3, vy, v}) € RV [real] §[a — (x, intTree)]
as we needed to show.

II. Show e;el-¢' <e:T.

The proof is analogous to that of (I).
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E Completeness and Quantified Types

In this section, we consider completeness of the logical relation for quantified types. As explained in Sec-
tion 3.4, the proof of completeness fails to go through for the logical relation in Appendix C. In order to
obtain a complete logical relation, we modify the logical relation from Appendix C so that the definition of
Rel; requires that each x € Rel; also be equivalence-respecting. Except for the definition of Rel,, the logical
relation is defined exactly as before.

It turns out, however, that our relational interpretation of existential types fails to satisfy the equivalence-
respecting property. Thus, in this section we show that our modified logical relation is sound and complete
for a language with recursive and quantified types, but no existential types.

Notation: MY refers to the A\73-calculus minus all terms, typing rules, etc. that have to do with existential
types.

Note: Some lemmas in this section hold for A\¥2, while others only hold for the sub-language A¥. The
lemmas are annotated accordingly.
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E.1 )" Relational (PER) Model

v=<y e €OVE . oo FE:(e;enT) 1 A Ep]| = E[]{

RelT d:ef {X c 2Nat>< CValues x CValues | V(j,v,v/) € x.
Fo':r A
Vi < j. (i,0,0") € x A
V'UN. ’U/ <(:7,11, ’U// T = (j,'l},'l)”) e X}

The rest of the model is defined exactly as in Figures 6 and 7 in Appendix C.

Figure 1: AY Step-Indexed Relational Model (Complete)
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E.2 )" Proofs: Validity of Pers

The goal of this section, is to show that each A type 7 is a valid type — that is, RV [r]p € Rel .
Specifically, this involves showing that the relational interpretation of a type 7 satisfies the well-typedness
requirement, is closed under decreasing step-index, and is equivalence-respecting.

Note on Existential Types: It is important to note that for existential types, the equivalence-respecting
property does not hold (see the proof of Lemma E.1, where we have included the case for existential types
in order to show how the proof for existential types breaks down).

Consequences of Existential Types not being Equivalence-Respecting: It is important to note that
the equivalence-respecting property of a type is not required in order to prove the Fundamental Property
of the logical relation (thus we can reuse all lemmas in Section C.8) or to prove soundness with respect to
contextual equivalence (thus we can reuse all lemmas in Section C.10). In fact, the equivalence-respecting
property is required only in the proof of completeness of the logical relation with respect to contextual
equivalence (see Lemma E.5 in Section E.3). Thus, since the relational interpretation of existential types
is not equivalence-respecting, the logical relation in Section E.1 is not complete with respect to contextual
equivalence for existential types. However, if we omit existential types from the language (as we have done
by restricting attention to A¥), the logical relation in Section E.1 is both sound and complete with respect
to contextual equivalence.

Note on Lemmas and Proofs that Follow: In the rest of Appendix E we will only present lemmas
and proofs that are new or different from those in Appendix C. In particular, we note that to prove the
fundamental theorem for A\¥ and to show soundness of our new logical relation for A7, we may reuse all of
the proofs in Sections C.7 through C.10 without any modifications (other than leaving out lemmas and cases
that pertain to existential types). Accordingly, in the proofs that appear in the rest of this section, we have
continued to appeal to lemmas from Appendix C where necessary.
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Lemma E.1 (\" Per Equivalence-Respecting)

Let p € RD[A] and A+ 7.
If (k,v1,v2) € RV[7] p and vy < vy : 71l
then (k,v1,v3) € RV [7] p.

Proof

NOTE: This proof does not go through for existential types.

By induction on k and nested induction on the structure of the derivation A + 7.

a €A
AFa
We have as premises
(1) (k,v1,v2) € RV[a]p = (k,v1,v2) € p**™ (), and
(2) vy <™ g :altl = vy <% 3 pY(a).
We are required to show that (k,v1,v3) € RV [a] p
= (k,v1,v3) € p*M(«).
From p € RD[A] and a € A, it follows that

Case (VarTy)

d psem(a) S Relpsyn(a),
Hence’ by the definition of Relpsy"(a)’ since (k,Ul,Ug) € psem(a> S Relpsyn(oé) and v —<Ciu, v3
Psyn (OZ), it follows that (k" V1, 1}3) c psem (a)

Case (BOO|Ty) m

We have as premises

(1) (k,v1,v2) € RV [bool] p, and

(2) vo <™ w3 : booll”! = vy <€ vg 1 bool.

Hence, from (1) it follows that (v; = v = tt) V (v = v = £1).
From (2) it follows that - vs : bool.

Hence, either v3 = tt or v3 = ff.

We show that vo = v3 by contradiction:

e Suppose vg # v3. Then, either vo = tt A vy =ff, or vy = ff A v3 = tt.
Case v9 = tt A w3 =ff:
Instantiate (2) with if [],tt,diverge and bool. Note that
e o0 if[] tt,diverge : (o; o> bool) ~ bool, and
e if [vg],tt,diverge |, since vy = tt.

Hence, if vs, tt,diverge || = if ff, tt,diverge |, since v = ff.
But clearly, if £f, tt,diverge — diverge and diverge {}. Hence, we have a contra-
diction.

Case vy =ff A vz3=1tt:
Instantiate (2) with if [],diverge, tt and bool. Note that
e o o if[]| diverge,tt : (o; o> bool) ~ bool, and
e if [vp],diverge, tt ||, since vo = ££.

Hence, if vs,diverge,tt | = if tt,diverge,tt |, since v = tt.
But clearly, if tt,diverge,tt — diverge and diverge {}. Hence, we have a contra-
diction.
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Thus, it must be that vy = vg.

We are required to show that (k, vy, v3) € RV [bool] p,
which follows from

e - v3 : bool,

which follows from vy < v5 : bool.
° (1}1 = V3 = tt) V (Ul = V3 = ff),

which follows from (v; = vy = v3 = tt) V (v; = vy = v3 = £f),

which follows from
. (’Ul = Vg = tt) V (Ul = Vg = ff), and
o (vg =wv3 =1tt)V (ve =v3 = £f).

A }_ T1 A l_ T2
AbFT — 1

Case (FnTy)

We have as premises

(1) (k,v1,v2) € RV [ — 72] p, and

(2) va <™ vg: (11— )P = vy <M g ()l — ()L,
Hence, from (1) it follows that v; = Az.e; and v = Az. ea.

From (2) it follows that - v3 : (11)l?! — (m)[Pl. Hence, vz = \z. 3.

We are required to show that (k, A\xz.e1, Az.e3) € RV [r1 — =] p,
which follows from

o FAz.es: (11 — )l
which follows from (2).

o Vj <k,vi1,vyy- (J,011,011) € RV [n]p = (j,erlvnn/a], eslvyy/a]) € RC[m] p
Consider arbitrary j, v11, vj; such that

o j<k,and
e (j,v11,v11) € RV [m] p.
We are required to show that (j, e1[vi1/x], e3[vi;/x]) € RC [2] p.
Consider arbitrary ¢ and ey, such that
o i<j,
e ei[vi1/x] —' ey, and
o irred(ey,,).
We are required to show that 3e’y. es[vy; /2] —* e} A (j —i,ep,,€}) € RV ] p.
Instantiate the second conjunct of (1) with j, vy, and v};. Note that
e j < k,and
o (j,v11,v]1) € RV [m] p.
Hence, (j, e1[v11/z], e2[vly/x]) € RC [72] p.
Instantiate this with ¢ and ey,,. Note that
o i<j,
e ci[v11/z] —'eyp,, and
o drred(ey,, ).

Hence, there exists ey,, such that
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o ex[vhy /x| —" ep,,, and
. (j — 1, 6f1136f22) € RV [[7—2]] p-
Hence, ey, = vy, and ef,, = vy,,.
Instantiate (2) with [-] v}, and 7. Note that
o ;o b []ug; : (o500 (1)l — (7)) ~ (1)), and
o (Az.eq)viy |,
which follows from (Az.ez) vj; —' es[v]; /2] and es[v), /2] —* v,
which follow from above.
Hence, there exists vy, such that (Az.e3)vi; | vy,,.
By the operational semantics, it must be that (Az.e3)v]; —1 e3[v],/z].
Hence, it must be that eg[v];/z] | vy,,.
We show that v,, <% vy, : (12)lP)
e Consider arbitrary Ey and 7 such that
o o0k Fy: (e8> (1)lP)) ~ 79, and
i EO[Ufzz] 2
We are required to show that Ey[vs,,] |
Instantiate (2) with Ey[[-] v{;] and 79. Note that

o o 0k Ey[[]v),]: (o;00 (1)lP) — (12)P)) ~s 75, and
o Eo[[Ax.ex]viy] 1 Eglea[vyy /] —* Eolug,,] I
Hence, Eqg[[Az. e3] vi1] |-
By the operational semantics, it must be that Eg[[Az.e3]v};] —1 Eples[v};/z]] —

Ey [Uf33]'
Hence, it must be that Eg[vy,,] -

*

Take €y = vy,,.
We are required to show

b 63[7)/11/.%'] —" Ufazs
which follows from above, and

° (j—1i, efnue/f) €RV H7—2]] Ps
which follows from the induction hypothesis applied to A F 7, with

e pE A,
o (j—1i,vf,,0f,) € RV [r] p, and
o vp,, <M up (o)l

Aok

AF po.m
We have as premises

(1) (k,v1,v2) € RV [pa. 1] p, and
(2) vy <™ w3 : (pa. )P = vy < vy 1 par. (Tl)[p].

Case (RecTy)

Hence, from (1) it follows that v; = foldwvy; and vy = fold vas.
From (2) it follows that - vz : pa. (Tl)[”]. Hence, v3 = fold vss.

We are required to show that (k,foldwvi1,foldvss) € RV [ua. m1] p,
which follows from
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o - foldwss : (ua. )P,
which follows from (2).

o Vj < k. let x = |RV[uc.mi]pljt1 in (§,vi1,v33) € RV 1] pla = (x, (o 7)) -
Consider arbitrary j such that
o j<k.
Let x = |RV [pe. 1] p]j41-
We are required to show that (j,v11,vs3) € RV [11] pla = (x, (ua. 7))
Instantiate the second conjunct of (1) with j. Note that
o j<k,and
o x =RV [pa. 1] plj+1.
Hence, (j,v11,v22) € RV [11] plov — (x, (ua. 71) 1))
Let p1 = pla — (x, (ua. 71)P)]. Note that (71 [pa. 71 /a])lPl = (7).
We show that vog < ciu V33 . (7-1)[01]
= vgy <" 33 : (71 [pa. 1 /a])lP:
e Consider arbitrary Ey and 7 such that
o o0y (e 00 (1[pa. 11 /a])P) ~ 75, and
e Eplvaa] I
We are required to show that Eglvss] {.
Instantiate (2) with Ep[unfold []] and 7p. Note that

e oo Fylunfold[]] : (e;er (ua. 7)) ~ 7, and
e Eyfunfold [foldwa]] ——! Eglvaa] |-

Hence, Fg[unfold [foldvss]] |-
By the operational semantics, it must be that Ep[unfold [foldvss]] ——' Eg[vas).
Hence, it must be that Ey[vss] {.

Applying the induction hypothesis to A, a - 71, with

e ;1 € RD[A, af,
which follows (since p; = p[a — (x, (uev. 7)[P))]) from

e p € RD[A], and
o x = |RV[pa.m1] plj+1 € Rel(,q. -1, which follows from:

Consider arbitrary (i,vo,v)) € x = [RV [pe. 71] plj+1-
Note that we have the three required properties:

o well-typedness: we have - v}y : (e )P,
which follows fom Lemma C.7 applied to p € RD[A], A F pa.71, and
(i,v0,v() € RV [uc. 1] p;

e closure with respect to decreasing step-index:
we have (', vg,v)) € |RV [ua. 1] plj41 for arbitrary i’ <4,
which follows from Lemma C.9 applied to p € RD[A], A F pa.m,
(i,v0,v)) € RV [ua. 1] p and i’ < i;

o cquivalence-respecting: we have (i,v9,v)) € |RV [ua. 1] p|j4+1 for arbitrary
vy such that vy < vl : (pa. )P
which follows from the outer induction hypothesis, noting that i < k (since
i < j < k), applied to p € RD[A], A F pa.71, (i,v0,v) € RV [ue. 1] p,
and vfy <" vl : (pa. )P
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o (j,v11,v22) € RV [11] p1,
which follows from above, and
o Uy <M vz 1 (p)[P1]]
which follows from above
we conclude that (j,v11,v33) € RV [11] p1.
Hence, (j,v11,v33) € RV [11] pla — (x, (pev. 7))
Aabn
AFVa. 7
We have as premises
(1) (k,vi,v2) € RV [V 1] p, and
(2) vy < vy : (Vo 7)) = vy < w3 : Va. (r)1P.
Hence, from (1) it follows that v; = A.ej; and ex = A. egs.
From (2) it follows that - vz : Vo (71)[”]. Hence, v3 = A. e33.

We are required to show that (k, A.eq1, A e33) € RV [Va. 1] p,
which follows from

o F A ess: (Ya.m)l,
which follows from (2).

o V7o, x. X € Rel,, = Vj < k. (j,e11,e33) € RC 1] pla — (x,72)] :
Consider arbitrary 75, and x such that

Case (AllTy)

e X € Rel,.

We are required to show that Vj < k. (j,e11,e33) € RC [11] pla — (x, 72)]-
Consider arbitrary j such that

o j <k
We are required to show that (j,ei1,es3) € RC [11] pla — (x, 72)]-
Consider arbitrary 7 and ey,, such that

° [ <7,

e e —' ey, and

o irred(ey,,).

We are required to show that 3e;. ess =" € A (j —d,ep,,,€}) € RV [m] pla— (x, 7))
Instantiate the second conjunct of (1) with 72, and x. Note that

® X € Rel,,.

Hencea v.] < k. (.]a €11, 622) € RC [[Tlﬂ p[a = (XvTQ)]'
Instantiate this with j, noting that j < k.

Hence, (j,e11,e22) € RC 1] pla — (x, 72)]-
Instantiate this with ¢ and ey,,. Note that

o < 7,
e ey —' ey, and
o irred(ey,,).
Hence, there exists ey,, such that

® e —" ey,,, and
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o (J—isepn en) € RV[n]pla— (x,72)]

Hence, e, = vy, and ey,, = vy,,.

Instantiate (2) with [-][] and 71[r2/a]. Note that
o o0k [][]: (o;0Va. (1)P)) ~ (11)P)[ra/a], and
o [Aex][],

which follows from A.eg [] —! €2 and egn —* vy,,,
which follow from above.
Hence, there exists vy, such that A.es3[] 4 vy,,.
By the operational semantics, it must that A.es3[] —1! e33.
Hence, it must be that ess || vs,,.
Let p1 = pla = (x, 2)].
We show that vp,, < vy, : ()]
= vgp <" 33 : (11[72/a])?):

e Consider arbitrary Fy and 7y such that

o oo Fj:(o;0> (7'1[7'2/04])[”]) ~ Tg, and

b EO[Ufzz»] Y.
We are required to show that Ey[vg,,] |
Instantiate (2) with Ep[[-][]] and 9. Note that
o o0 Ey[[][]]: (o;0> (Va. 7)) ~s 79, and

o Ey[[A. e []] —' Eglega] —* Eolvy,,] .
Hence, Ey[[A. es3] []] I.

By the operational semantics, it must be that Eg[[A. es3] []] —! Eo[ess] —* Eolvys,)-
Hence, it must be that Ey[vy,,] .

Take €; = vy,,.

We are required to show

[ ] 633 l—)* /Uf337
which follows from above, and

o (J =405, 05,) € RV[] pla — (x,72)] :
Applying the induction hypothesis to A, a - 71, with

e p1 E RD[A, o],
which follows (since p; = p[a +— (X, 72)]) from
e p € RD[A], and
e X € Rel,,,
which follows from above.
i (.7 - i’”fll’”fm) € RV HTl]] P1,
which follows from above, and
hd IUfQ‘Z <Czu /ded : (Tl)[p1]7

which follows from above

we conclude that (j —i,vf,,,vf,) € RV [11] p1.
Hence, (j —i,vf,,,0p,) € RV [m] pla = (x, 72)]-
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Aabn

At da.my

Note that this case of the proof fails to go through.
We have as premises

(1) (k,v1,v2) € RV [3a. 1] p, and

(2) vo < vy : (. 7)) = vy < v3: Ja. (7).

Hence, from (1) it follows that v; = packwvy; and vy = pack vas.

Case (ExTy)

From (2) it follows that - vs : Ja. (71)[P). Hence, v3 = packvss.
We are required to show that (k, packwviy, packvss) € RV [Fa. 1] p,
which follows from
e I packuwss : (304.7'1)[”],
which follows from (2).
e Iy, x. X € Rel,, N Vj<k. (j,v11,v33) € RV 1] pla — (x, 72)]
From the second conjunct of (1) it follows that there exist 75 and x such that
(A) x € Rel,,, and
(B) Vj < k. (j,v11,v22) € RV [11] plo — (X, 72)]-
From (A) we have a 75 and x such that x € Rel,,.
Hence, it remains for us to show that Vj < k. (4, v11,v33) € RV [11] plae — (X, 72)]-
Consider arbitrary j such that
o j <k
Instantiate (B) with j, noting that j < k.
Hence, (j,v11,v22) € RV 1] pla — (x, 72)]-
Let p; = pla — (x,7)]. Note that (ri[ma/a])l/l = (7)),
We are required to show that (j,v11,v33) € RV [11] plae — (X, 72)]
= (J,v11,v33) € RV [11] p1-
We attempt to prove the above as follows:

We can conclude that (j,v11,v33) € RV [r1] p1 by applying the induction hypothesis to
A, a 11, but we require the following;:

e p1 € RD[A, ],
which follows (since p; = p[a — (x, (uev. 71)[P))]) from
e p € RD[A], and
® X € Rel,,,

which follows from above

o (j,v11,v22) € RV ] p1,
which follows from above, and

® Uoo -<Ciu V33 - (7’1)[’01},
Problem: An attempt to prove this gets stuck:
We wish to show that ves <% g : (7'1)[”1]
= V22 < ciu V33 : (Tl[TQ/Oé])[p]:

e Consider arbitrary Ey and 7y such that
o o0 FEy: (e00 (1i[r2/a])[P)) ~ 79, and
[ ] EQ[UQQ] »u
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We are required to show that Ey[vss] .
We could instantiate (2) with Eg[unpack[|aszinz] and 7. To proceed, the

following two conditions should hold:

e (Z) o;0 - Fyunpack [|aszinz] : (e; e (3. 1)) ~ 10.

Problem: (Z) is false. The result of the unpack is x, which has type Tl[p ]

(where FTV’Tl[p] = {a}). Thus, it is not the case that e - Tl[p] as required by
the premises of the unpack typing rule.

o Ejy[unpack [pack vgs] as x inz] ——' Eglva] |,
which follows from the operational semantics.

If (Z) were true, we could have proceeded as follows. We could now conclude that
Ep[unpack [packvss] asz inz] |}. Thus, by the operational semantics, it must be
that Eg[unpack [pack vsz] as x inz] ——! Ey[vss]. Hence, it must be that Eglvss] |}

However, since (Z) does not hold, we cannot conclude that Eylvss] | as
required.
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Lemma E.2 (\Y Valid Per: RV [7] p € Rel, i)

Let p € RD[A] and A+ 7.
Then RV 7] p € Rel i,

Proof

By the definition of Rel_,, it suffices to show:

V(k,’[},’lj/) € RV HT]] pP. - ’Ul : T[P] A
Vi <k. (j,v,0") e RV[r]p A
(Vo' o ~<ciu gt 2ol — (j,v,0") € RV [r] p)

Consider arbitrary (k,v,v’) € RV [7] p.

e Applying Lemma C.7 to p € RD[A], A 7, and (k,v,v") € RV [7] p, it follows that v’ : 7Pl

e Consider arbitrary j < k.
Applying Lemma C.9 to p € RD[A], A b 7, (k,v,v") € RV[7] p, and j < k, it follows that
(J,v,0") € RV [r] p.

e Consider arbitrary v” such that v/ < ¢/ : 1o,

Applying Lemma E.1 to p € RD[A], A+ 7, (k,v,0") € RV [7] p, and v/ <™ v : 7Pl it follows
that (k,v,v"”) € RV [7] p.
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E.3 )" Proofs: Completeness w.r.t. Contextual Equivalence

In this section, we show that =< C <" for A\¥3. Furthermore, for A\ (i.e., \¥? without existential
types), we show that < C <. Thus, we may conclude that our logical relation for AV is complete with
respect to contextual equivalence.

Lemma E.3 (\"?: =< Congruence)

IfFATRe=e i 7 and ATy Oy (AT T) ~ 7,
then Aq;T = Cyle] 2% Cyle] : .

Proof
Consider arbitrary C' and 7y such that
e oo C:(A;T1>71) ~ 79, and
e C[Ci[e]] 4.

We are required to show that C[Cy[e']] |}
Instantiate A;T e <% ¢’ : 7 with C[C4[]] and 9. Note that
o o:0 - C[C1[]] : (A;T'>7) ~» 79, which follows using the (C-ctxt) rule:

oo C: (A7)~ 70 AT FCL: (AT T) ~ 7
o;0 = ClCi[]: (AT 7) ~» 70

(C-ctxt)

o ClCh[e]] 4.

Hence, C[C4]e']] I O
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Lemma E.4 ()\\ﬂ: <cte ¢ jciu)

IfATFe=xe 7
then A;T e < ¢ : 7.

Proof

Consider arbitrary ¢, v, E, and 71 such that
e S EA,
o F:4(1),
o o0 F:(e;01>5(7)) ~ 71, and

* Ely(e)] I

Ifo={o1— 71, a0 —7h ... — 7} and v = {1 — v1,22 — va,..., 2, — v, },

then let C, = (AL A .. A Az Az o Az [ [Ji )2 [Imviv2 ... vy
Note that if we had explicit types in terms, we would have written

Cy = (Aar. Aaz. ... Ao Azt Az2. .. Az []) [T1] [T3] - - - [Tim] viva - .. vy
Note that e;e - C., : (A;T'>7) ~ (7).

Hence, note that

o o0k Cyle] 2 Cye'] - 6(),
which follows from Lemma E.3 applied to A;T' e < ¢’ : 7 and e;0 - C, : (A;T > 7) ~ §(7).

Instantiate this with £ and 7;. Note that

o ool F:(o;0p0(7)) ~ T,
which follows from above, and

o E[Cy[e]] I, which follows from

o E[C,le]] —" E[y(e)],
which follows from the operational semantics and an examination of C, and

o E[y(e)] 4,
which follows from above.

Hence, E[C,[€']] .
By the operational semantics, it must be that E[C,[e/]] —* E[y(e)].
Hence, it must be that E[y(e')] |
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Lemma E.5 (\7: =< C <)

IfATEe=e 7
then A;TFe<e :T.

Proof

NOTE: This lemma holds only for A” (i.e., A2 without existential types), since the proof makes use
of Lemma E.1 which does not hold for existential types.

Consider arbitrary k, p, v, and 4’ such that

e k>0,

e p € RD[A], and

o (k,7,7") e RG[T p-
We are required to show that (k,v(e),~'(e")) € RC [7] p.
Consider arbitrary j and ey such that

o j <k,

e y(e) —7 ey, and

o irred(ey).

Note that A;T' e < e : 7, which follows from Lemma C.29 applied to A;T'Fe: 7.
Instantiate A;T Fe < e: 7 with k, p, 7, and v'. Note that

o k>0,

e p € RD[A], and

e (k,v,7") € RG] p.
Hence, (k,v(e),v'(e)) € RC[7] p.
Instantiate this with j and e;. Note that

o j <k,

e y(e) —7 eg, and

o irred(ey).
Hence, there exists e} such that

e 7'(e) —" €}, and

o (k—j,er.ef) € RV[r]p.
Note that ey = vy and €y = v'.

Hence, 7/(e) | v}.

Let 6, ={a— 7| pla) = (x,7)}-
Instantiate A;T' e < ¢’ : 7 with 6, 7/, [-], and 7. Note that
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® 6P ): A,
which follows from dom(d,) = dom(p) = A,

o -9 :0,(T) ,
= ko Tl
which follows from Lemma C.8 applied to (k,v,7") € RG [I'] p,

o o0t []:(0;00,(7)) ~ 0y(7), and
* 7(e) |-
Hence, there exists v such that 7/(e') | v}.
Let e’Jﬁ = v}’.
We are required to show that
° ,y/(e/) '_)* ,Ulfl,
which follows from above, and

o (k—j,vp,v%) € RV[r]p,
which follows from Lemma E.1 applied to

e p e RD[A],
e AT,
o (k—1j, Ufﬂ)}) € RV [7] p, and
o . <ciu gl 7—[/’]’
which follows from

e Consider arbitrary F; and 7, such that
e ool :(e;0n7P) w7 and
o F; [v}] 1.

We are required to show that E;[v}] {.

Let 0, = {a— 7] pla) = (x,7)}
Instantiate A;T e < ¢’ : 7 with 6, 7/, E1, and 71. Note that

o i, EA,
which follows from dom(d,) = dom(p) = A,

o 7" :4,(I) ,
= ko .Tl,
which follows from Lemma C.8 applied to (k,v,7’) € RG [I] p,

e o0 F: (O;Ol>5p(7)) ~» 71, and

o Ei[y(e)] U,
which follows from

o Ei[y'(e)] —" Erfug],
which follows from +/(e) —* vy, and
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° E1 [’Uf] U,
which follows from above.
Hence, B1[y/(¢)] 4

By the operational semantics, it must be that E1[y/(e’)] =™ E1[v}], which follows
from +'(e’) =" v} above.

Hence, it must be that E1[v}] {.
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E.4 )" Example

In this section, we return to the higher-order function example in Section D.3. This is the only example
we considered in Appendix D that did not involve existential types. In this section, we work out the same
example using our new logical relation, which uses the modified definition of Rel,.

As in Section D, we wish to show that the closed terms e and €’ of type 7 are contextually equivalent —
that is, @; e e ~°® ¢’ . 7. It suffices to show e;e e~ e : 7.

Notation Let x be a set of tuples of the form (k,v,v’) such that o' : 7. We define the transitive closure
of x under ciu approximation at type 7 as follows:

Xro= Ak vnve) | (konve) €x vV ((kon,v) €x A v =0 :7)}

165



Example: Higher Order Functions I (see Section D.3)

Consider the following higher-order functions e and €’ of type 7 (see Sumii and Pierce [19], Section 4.5).
Note that this example is essentially the “dual” of the example in Section D.1.

e = M F1{ Az Z0)

e = M. f[]{tt, Az —x)

o = Va.(ax (a—bool)) —1
T = oc—1

We are required to show that e;e e ~ ¢’ : 7. The proof is in two parts.

I. Show e;e e <€ : 7.
Consider an arbitrary k& > 0.
Unwinding definitions, we see that since e and €’ are closed values of closed type, it suffices to show
that (k,e,e’) e RV[r]0 = (k, \f. f[] (1, z.x p 0), Af. f[]{(tt, Az. —x)) € RV [o — 1] 0.
Note that we already have ¢’ : 0 — 1.

Consider arbitrary j, v, and v’ such that

e j <k, and

o (4,v,v") € RV [o] 0
= (j,v,v") € RV [Va. (a x (o — bool)) — 1] 0.

Note that F v’ : o, which follows from Lemma C.7 applied to (j,v,v") € RV [¢] 0.
Also, note that v = A.e; and v' = A. €}, which follows from (j,v,v") € RV [Va. ...] 0.

We are required to show that

Go (P Az Z o)/ f], (F[] (se, Az —2)) W'/ f)) € RC[1] 0
=0, @[ 2 =0), (@[]t A -z)) € RC[1]0
=@, (Aer[]) (1, Az 20), (A€} ]]) (tt,\z. —z)) € RC[1] 0.
Consider arbitrary j; and ey, such that
° jl < j)
o (Aer[]) (1, Az 2 2 0)) —i1 ¢, and
o irred(ey, ).
By the operational semantics, it follows that
(A.eq []) (1, Az 2 2 0)) —! (&1 (1, Az.2 2 0))
T ey,
Hence, by the operational semantics, it follows that there must exist ji; and ey, such that
e ¢ 1 €fi1)

o irred(ey,, ), and

e jiun<j1—1
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Let xo = {(¥',1,tt) | ¥ > 0}.

Take 75 = bool and x = (X0){e0l-

Instantiate the second conjunct of (j,A.ej, A.e}) € RV [Va. (o x (o — bool)) — 1] with x and 7o.
Note that x € Relpool, which follows from the definition of xo and (X0)fo-

Hence, we have Vi < j. (i,e1,¢}) € RC [(a X (o — bool)) — 1] Blae — (x, bool)].

Instantiate this with j; noting that 5, < j.

Hence, we have (j1,€e1,€;) € RC [(a x (e — bool)) — 1] B[a — (x, bool)].

Instantiate this with ji; and ey, ,. Note that

® j11 < j1, which follows from ji; < j; — 1,
e e —J1 ey and

o irred(ey,,).
Hence, there exists e’f11 such that
e ¢y "¢} and
e (ji—Jisep,€y,) € RV[(ax (a— bool)) — 1] Qe+ (x, bool)].

/ /
Hence, ey, = Az.e2 and €} = Az. e5.

Then, by the operational semantics it follows that

(Aex [1) {1, Az 2 = 0) =1 (e1 (1, Az.z = 0))
—I1 (e, (1,)\x..x ot 0))
= (Az.eg <1,/\glc.x.lgg 0))
1 (ea](1, Az 2 0)/2])

—J12 ef

Note that j; = 1+ ji11 + 1 + j12.

Let v, = (1, Az. @ R 0).

Let v, = (tt, \x. —x).

Instantiate (j1 — j11, A2 €2, Az.€h) € RV [(a X (o — bool)) — 1] @[a — (x, bool)] with j12 + 1, v,, and
v.. Note that

e jio +1 < j1 — j11, which follows from ji2 = j1 — 1 — 711 — 1, and

o (jio+ 1,v,,v,) € RV [a X (v — bool)] D[ — (x, bool)]
int

= (ji2+1, (L,Az.z =0), (tt, \z.~z)) € RV [a X (o — bool)] [a — (x, bool)],
which follows from

o b (tt,\z.—x) : (a X (@ — bool))[bool/a]
= F (tt,Az. ~z) : bool X (bool — bool), which follows from the static semantics.

o (ji2+1,1,tt) € RV [a] Ol — (x, bool)]
= (j12+1,1,tt) € x (by the definition of RV [a] p)
which follows from (j12 + 1,1,tt) € xo and xo C x, which follows from our choice of x.
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int

e (jiz2+1, z.z =0, z. ~z) € RV [a — bool] @[ — (x, bool)], which we conclude as follows:

First, note that - Az. -z : (o — bool)[bool/a] = F Az.—x : bool — bool, which follows
easily from the static semantics.

Next, consider arbitrary ¢, v, and v] such that

e ;< j12+ 1, and

o (i,v1,v]) € RV [a] D[ — (x, bool)].

Note that RV [a] Ola — (x, bool)] = x by definition of RV [a] p.
Hence, (i,v1,v]) € X.
Then, it must be that v; = 1, which follows from the definition of .

Furthermore, it must be that v = tt, which we conclude from the definition of x as follows:
By the definition of x, note that either

e V) =tt, or

e v} = v for some v such that tt < v : bool. Since <¢* = < (by Lemmas C.46, E.4,
and E.5), it follows that tt < v : bool. Hence, from the definiton of < and RV [[bool],
it follows that v = tt.

We are required to show that

(i, (z ot 0)4[1}1/3:], (=z)[vi/z]) € RC [bool]hla — (x,bool)]
= (i,v1 = 0,-0}) € RC[bool] P[e — (x,bool)]
=(i,1 20, -tt) € RC [bool] B[cx — (x, bool)]

int

Note that (1 = 0) —! £f and (—tt) —* £f.

Hence, it remains for us to show that (i — 1,££,£f) € RV [bool] [e — (x, bool)], which is
immediate.

Hence, (j12 + 1, e2[v,/z], e5[v./2]) € RC [1] O]er — (x, bool)].
Instantiate this with ji» and ey, . Note that

® ji2 <jiz+1,
o es[v,/z] —712 ey, and

o irred(ey, ).
Hence, there exists 63‘1 such that

e eyl /z] =" €}, and

. (jlg +1— j19, efl,e’fl) e RV [[1]] (Z)[Oé — (X, b00|)]
= (Les,.ép) € RVI1] o o (v, boo)].
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Hence, ey, = () and ¢/, = ().

Hence, by the operational semantics we have

((A.e) []) (tt, Az —z)) =1 (€] (tt, A\z. )
T, (Bt Az, )

= (Az.eh (tt, \x. ~x))

b (eh[(tt, Az, —x) /2])

—" e

—* (e

Take €, = €y = (). We are required to show

o (A.ei[]) (tt, Az, —z) —" €y
which follows from above, and

o (j—juepn,€y) € RV[1]0,
which follows from ey, = @}1 = ().

II. Show e;e k¢’ <e:T.

The proof is analogous to that of (I).
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