
Linear Regions Are All You Need

Matthew Fluet1, Greg Morrisett2, and Amal Ahmed2

1 Cornell University
Ithaca, NY

fluet@cs.cornell.edu
2 Harvard University

Cambridge, MA
greg@eecs.harvard.edu, amal@eecs.harvard.edu

Abstract. The type-and-effects system of the Tofte-Talpin region calcu-
lus makes it possible to safely reclaim objects without a garbage collector.
However, it requires that regions have last-in-first-out (LIFO) lifetimes
following the block structure of the language. We introduce λrgnUL, a core
calculus that is powerful enough to encode Tofte-Talpin-like languages,
and that eliminates the LIFO restriction. The target language has an
extremely simple, substructural type system. To prove the power of the
language, we sketch how Tofte-Talpin-style regions, as well as the first-
class dynamic regions and unique pointers of the Cyclone programming
language can be encoded in λrgnUL.

1 Introduction

Most type-safe languages rely upon a garbage collector to reclaim storage safely.
But there are domains, such as device drivers and embedded systems, where
today’s garbage collection algorithms result in unacceptable space or latency
overheads. In these settings, programmers have been forced to use languages,
like C, where memory management can be tailored to the application, but where
the lack of type-safety has lead to numerous bugs. To address these concerns,
we have been developing Cyclone [1], a type-safe dialect of C that is intended to
give programmers as much control over memory management as possible while
retaining strong, static typing.

The initial design of Cyclone was based upon the region type system of
Tofte and Talpin [2]. Data are allocated within lexically-scoped regions and
all of the objects in a region are deallocated at the end of the region’s scope.
Unfortunately, the last-in-first-out (LIFO) lifetimes of lexically-scoped regions
place severe restrictions on when data can be effectively reclaimed, and we found
many programs that resulted in (unbounded) leaks when compared to a garbage
collected implementation.

To address these concerns, we added a number of new features to Cyclone,
including dynamic regions and unique pointers that provide more control over
memory management. Dynamic regions are not restricted to LIFO lifetimes and
can be treated as first-class objects. They are particularly well suited for iterative

computations, CPS-based computations, and event-based servers where lexical
regions do not suffice. Unique pointers are essentially lightweight, dynamic re-
gions that hold exactly one object. To ensure soundness, both dynamic regions
and unique pointers depend upon a notion of linear capabilities which must be
carefully threaded through a program. To alleviate this tedium, Cyclone pro-
vides convenient mechanisms to temporarily “open” a dynamic region or unique
pointer and treat it as if it were in a freshly allocated, lexically-scoped region.

The efficacy of these new memory management features was detailed in previ-
ous papers [3, 4], where we analyzed a range of applications, including a stream-
ing media server, a space-conscious web server, and a Scheme runtime system
with a copying garbage collector. And while the soundness of Cyclone’s lexical
regions and type-and-effects system has been established [5, 6], a model that
justifies the soundness of the new features has eluded our grasp, due to sheer
complexity.

Therefore, the goal of this work is to provide a simple model where we can
easily encode the key features of Cyclone in a uniform target language for which
type soundness may be easily established. The first step of our encoding was
detailed in a previous paper [6], where we gave a translation from a type-and-
effects, region-based language to a monadic variant of System F called FRGN. This
calculus is summarized in Section 2. The meat of this paper picks up where this
translation left off by further translating FRGN to a substructural polymorphic
lambda calculus where the internals of the indexed monad are exposed (Sec-
tion 3). The target language and translation are extremely simple, yielding a
relatively straightforward proof of soundness for lexically scoped regions. Then,
in Section 5, we sketch how the features in the target language allow us to encode
Cyclone’s dynamic regions and unique pointers, as well as their interactions with
lexically-scoped regions. Throughout, it is our intention that the target calculus
serve as a compiler intermediate language and as vehicle for formal reasoning,
not as a high-level programming language.

2 Source Calculus: FRGN

Launchbury and Peyton Jones introduced the ST monad to encapsulate stateful
computations within the pure functional language Haskell [7]. Three key insights
give rise to a safe and efficient implementation of stateful computations. First,
a stateful computation is represented as a store transformer, a description of
commands to be applied to an initial store to yield a final store. Second, the
store can not be duplicated, because the state type is opaque and all primitive
store transformers use the store in a single-threaded manner; hence, a stateful
computation can update the store in place. Third, parametric polymorphism can
be used to safely encapsulate and run a stateful computation.

All of these insights can be carried over to the region case, where we interpret
stores as stacks of regions. We introduce the types and operations associated with
the rgn monad:

τ ::= . . . | rgn s τ | ref s τ | hnd s | pf (s1 ≤ s2)

8

return : ∀ς.∀α. α→ rgn ς α
then : ∀ς.∀α, β. rgn ς α→ (α→ rgn ς β) → rgn ς β
new : ∀ς.∀α. hnd ς → α→ rgn ς (ref ς α)
read : ∀ς.∀α. ref ς α→ rgn ς α
write : ∀ς.∀α. ref ς α→ α→ rgn ς 1

runRgn : ∀α. (∀ς. rgn ς α) → α
letRgn : ∀ς1.∀α. (∀ς2. pf (ς1 ≤ ς2) → hnd ς2 → rgn ς2 α) → rgn ς1 α

coerceRgn : ∀ς1, ς2.∀α. pf (ς1 ≤ ς2) → rgn ς1 α→ rgn ς2 α
reflSub : ∀ς. pf (ς ≤ ς)
transSub : ∀ς1, ς2, ς3. pf (ς1 ≤ ς2) → pf (ς2 ≤ ς3) → pf (ς1 ≤ ς3)

The type rgn s τ is the type of computations which transform a stack indexed by
s and deliver a value of type τ . The type ref s τ is the type of mutable references
allocated in the region at the top of the stack indexed by s and containing a
value of type τ . The type hnd s is the type of handles for the region at the top
of the stack indexed by s; we require a handle to allocate a reference in a region,
but do not require a handle to read or write a reference.

The operations return and then are the unit and bind operations of the rgn
monad, the former lifting a value to a computation and the latter sequencing
computations. The next three operations are primitive stack transformers. new
takes a region handle and an initial value and yields a stack transformer, which,
when applied to a stack of regions, allocates and initializes a fresh reference
in the appropriate region, and delivers the reference and the augmented stack.
Similarly, read and write yield computations that respectively query and update
the mappings of references to values in the current stack of regions. Note that
all of these operations require the stack index ς of rgn and ref to be equal.

Finally, the operation runRgn encapsulates a stateful computation. To do
so, it takes a stack transformer as its argument, applies it to an initial empty
stack of regions, and returns the result while discarding the final stack (which
should be empty). Note that to apply runRgn, we instantiate α with the type
of the result to be returned, and then supply a stack transformer, which is
polymorphic in the stack index ς. The effect of this universal quantification is
that the stack transformer makes no assumptions about the initial stack (e.g., the
existence of pre-allocated regions or references). Furthermore, the instantiation
of the type variable α occurs outside the scope of the stack variable ς; this
prevents the stack transformer from delivering a value whose type mentions ς.
Thus, references or computations depending on the final stack cannot escape
beyond the encapsulation of runRgn.

However, the above does not suffice to encode region-based languages. The
difficulty is that, in a region-based language, it is critical to allocate variables in
and read variables from an outer (older) region while in the scope of an inner
(younger) region. To accommodate this essential idiom, we include a powerful
letRgn operation that is similar to runRgn in the sense that it encapsulates a
stateful computation. Operationally, letRgn transforms a stack by (1) creating
a new region on the top of the stack, (2) applying a stack transformer to the
augmented stack to yield a transformed stack, (3) destroying the region on the

9

Kinds κ ::= STACK | ?

Type-level Variables ε, ς, α ::= TVars
Stack Indices s ::= ς
Types τ ::= α | τ1 → τ2 | 1 | τ1 × τ2 | ∀ε:κ. τ

rgn s τ | ref s τ | hnd s | pf (s1 ≤ s2)
Type-level Terms ε ::= s | τ
Type-level Contexts ∆ ::= • | ∆, ε:κ

rgn Monad Operations ops ::= runRgn | coerceRgn | transSub |
return | then | letRgn | new | read | write

Expressions e ::= ops | x | λx:τ. e | e1 e2 | 〈〉 | let 〈〉 = e1 in e2 |
〈e1, e2〉 | let 〈x1, x2〉 = e1 in e2 | Λε:κ. e | e [ε]

Expression-level Contexts Γ ::= • | Γ, x:τ

Fig. 1. Syntax of FRGN

top of the transformed stack and yielding the bottom of the transformed stack.
Ignoring for the moment the argument of type pf (ς1 ≤ ς2), we see that we
may apply exactly the same reasoning as applied to runRgn: the computation
makes no assumptions about the newly augmented stack ς2, nor can the newly
augmented stack ς2 be leaked through the return value.

What, then, is the role of the pf (ς1 ≤ ς2)? The answer lies in the fact that the
stack index ς2 does not denote an arbitrary stack; rather, it should denote a stack
that is related to ς1 by the addition of a newly created region (i.e., ς2 ≡ r::ς1). In
fact, we may consider ς1 to be a subtype of ς2, since every region in the stack ς1 is
also in the stack ς2; values of type pf (s1 ≤ s2) are witnesses of this relationship.
The operation coerceRgn applies a subtyping witness to a stack transformer
for the substack to yield a stack transformer for the superstack; intuitively, the
operation is sound as a stack transformer may simply ignore extra regions. The
operations reflSub and transSub are combinators witnessing the reflexivity and
transitivity of the subtyping relation.

Figure 1 gives the complete syntax for FRGN, which is a natural extension of
System F. We introduce a simple kind system to support abstraction over both
types and stack indices. (In the text, we often omit kind annotations, using the
convention that ς stands for a type-level variable of STACK kind, and α of ?.)

We adopt the standard type system for System F; the only typing judgement
of interest is ∆;Γ ` e : τ meaning that expression e has type τ , where ∆ records
the free type-level variables and their kinds and Γ records the free expression-
level variables and their types. The types for the rgn monad operations are as
given in the text above.

Our previous work [6] gave an operational semantics for FRGN and proved the
type soundness of FRGN. However, the operational semantics of FRGN is somewhat
cumbersome, due to the intertwining of contexts for pure evaluation and monadic
evaluation. Hence, in the present setting, we will define the operational behavior
of FRGN by its translation into the target language of Section 3.

10

3 Target Calculus: λrgnUL

In another line of work [8], we introduced λURAL, a core substructural polymor-
phic λ-calculus, and then extended it to λrefURAL by adding a rich collection of
mutable references. Providing four sorts of substructural qualifiers (unrestricted,
relevant, affine, and linear) allowed us to encode and study the interactions of
different forms of uniqueness that appear in other high-level programming lan-
guages. Notable features of λrefURAL include: deallocation of references; strong
(type-varying) updates; and storage of unique objects in shared references.

Here, we augment λrefURAL by adding region primitives, and also simplify the
language by removing features, such as the relevant and affine qualifiers, that do
not play a part in the translation. We call the resulting language λrgnUL.

In contrast to the letRgn operation of FRGN, which encapsulates the creation
and destruction of a region, the primitives of λrgnUL include newrgn and freergn
for separately creating and destroying a region. All access to a region (for allo-
cating, reading, and writing references) is mediated by a linear capability that is
produced by newrgn and consumed by freergn.

As noted above, λrgnUL is a substructural polymorphic λ-calculus. A substruc-
tural type system provides the core mechanisms necessary to restrict the number
and order of uses of data and operations. In our calculus, types and variables
are qualified as unrestricted (U) or linear (L). Essentially, unrestricted variables
are allowed to be used an arbitrary number of times, while linear variables are
allowed to be used exactly once.

Figure 2 gives the syntax for λrgnUL, excluding intermediate terms that would
appear in an operational semantics. Many of the types and expressions are based
on a traditional polymorphic λ-calculus.

We structure our types τ as a qualifier q applied to a pre-type τ , yielding
the two sorts of types noted above. The qualifier of a type dictates the number
of uses of variables of the type, while the pre-type dictates the introduction and
elimination forms. The pre-types 1�, τ1�· · ·�τn, and τ1 (τ2 correspond to the
unit, product, and function types of the polymorphic λ-calculus. Quantification
over qualifiers, region names, pre-types, and types is provided by the pre-types
∀ε:κ. τ and ∃ε:κ. τ . (In the text, we often omit kind annotations, using the con-
vention that ξ stands for a type-level variable of QUAL kind, % of RGN, α of ?,
and α of ?.)

The pre-types ref r τ and hnd r are similar to the corresponding types in FRGN;
the former is the type of mutable references allocated in the region r and the
latter is the type of handles for the region r. The pre-type cap r is the type of
capabilities for accessing the region named r. We shall shortly see how linear
capabilities effectively mediate access to a region.

Space precludes us from giving a detailed description of the type system for
λrgnUL; the major features are entirely standard for a substructural setting [9, 8].
First, in order to ensure the correct relationship between a data structure and
its components, we extend the lattice ordering on constant qualifiers to arbitrary
qualifiers (∆ ` q � q′), types (∆ ` τ � q′), and contexts (∆ ` Γ � q′). Second,
we introduce a judgement ∆ ` Γ1 � Γ2 ; Γ that splits the assumptions in Γ

11

Kinds κ ::= QUAL | RGN | ? | ?

Type-level Variables ε, ξ, %, α, α ::= TVars
Constant Qualifiers q ∈ Quals = {U, L} U v L
Qualifiers q ::= ξ | q

Constant Region Names r ∈ RNames
Region Names r ::= % | r

PreTypes τ ::= α | τ1 (τ2 | 1� |
τ1 � · · ·� τn | ∀ε:κ. τ | ∃ε:κ. τ |
ref r τ | hnd r | cap r

Types τ ::= α | qτ
Type-level Terms ε ::= q | r | τ | τ
Type-level Contexts ∆ ::= • | ∆, ε:κ

Region Primitives prims ::= newrgn | freergn | new | read | write
Expressions e ::= prims | x | qλx:τ. e | e1 e2 | q〈〉 | let 〈〉 = e1 in e2 |

q〈e1, . . . , en〉 | let 〈x1, . . . , xn〉 = e1 in e2 |
qΛε:κ. e | e [ε] | qpack(ε:κ, e) | let pack(ε:κ, x) = e1 in e2

Expression-level Contexts Γ ::= • | Γ, x:τ

Fig. 2. Syntax of λrgnUL

between the contexts Γ1 and Γ2. Splitting the context is necessary to ensure that
variables are used appropriately by sub-expressions. Note that � must ensure
that an L assumption appears in exactly one sub-context, while U assumptions
may appear in both sub-contexts.

The main typing judgement has the form ∆;Γ ` e : τ ; Figure 3 gives typing
rules for each of the expression forms of λrgnUL.

Finally, we assign types for each of the region primitives of λrgnUL:
newrgn : U(L1� (L∃%. L(Lcap %� Uhnd %))
freergn : U∀%. U(L(Lcap %� Uhnd %) (L1�)

new : U∀%. U∀α. U(L(Lcap %� Uhnd %� Uα) (L(Lcap %� U(ref % Uα)))

read : U∀%. U∀α. U(L(Lcap %� U(ref % Uα)) (L(Lcap %� Uα))

write : U∀%. U∀α. U(L(Lcap %� U(ref % Uα) � Uα) (L(Lcap %� U1�))

We have purposefully “streamlined” the type of the reference primitives in or-
der to simplify the exposition. For example, note that we may only allocate,
read, and write references whose contents are unrestricted. However, there is
no fundamental difficulty in adopting a richer set of reference primitives (à la
λrefURAL [8]), which would allow references to contain arbitrary values.

Space again precludes us from giving a detailed description of the operational
semantics for λrgnUL; however, it is entirely standard for a region-based language.
The small-step operational semantics is defined by a relation between configu-
rations of the form (ψ, e), where ψ is a global heap mapping region names to
regions and regions are mappings from pointers to values.

The primitives newrgn and freergn perform the complementary actions of
creating and destroying a region in the global heap. Note that the type of newrgn

12

∆;Γ ` e : τ

∆; •, x:τ ` x : τ

∆;Γ1 � Γ2 ; Γ ∆ ` Γ1 � U ∆;Γ2 ` e : τ

∆;Γ ` e : τ

∆ ` q : QUAL

∆; • ` q〈〉 : q1�

∆ ` Γ1 � Γ2 ; Γ ∆;Γ1 ` e1 : q1� ∆;Γ2 ` e2 : τ

∆;Γ ` let 〈〉 = e1 in e2 : τ

∆ ` Γ1 � · · ·� Γn ; Γ
∆;Γ1 ` e1 : τ1 ∆ ` τ1 � q . . .

∆;Γn ` en : τn ∆ ` τn � q

∆;Γ ` q〈e1, . . . , en〉 : q(τ1 � · · ·� τn)

∆ ` Γ1 � Γ2 ; Γ
∆;Γ1 ` e1 : q(τ1 � · · ·� τn)
∆;Γ2, x1:τ1, . . . , xn:τn ` e2 : τ

∆;Γ ` let 〈x1, . . . , xn〉 = e1 in e2 : τ

∆ ` Γ � q
∆;Γ, x:τx ` e : τ

∆;Γ ` qλx:τx. e : q(τx (τ)

∆ ` Γ1 � Γ2 ; Γ
∆;Γ1 ` e1 : q(τx (τ) ∆;Γ2 ` e2 : τx

∆;Γ ` e1 e2 : τ

∆ ` Γ � q ∆, ε:κ;Γ ` e : τ

∆;Γ ` qΛε:κ. e : q(∀ε:κ. τ)
∆;Γ ` e1 : q(∀ε:κ. τ) ∆ ` ε2 : κ

∆;Γ ` e1 [ε2] : τ [ε2/ε]

∆ ` ε1 : κ ∆;Γ ` e2 : τ [ε1/ε]
∆ ` τ [ε1/ε] � q

∆;Γ ;Σ ` q
pack(ε1:κ, e2) : q(∃ε:κ. τ)

∆ ` Γ1 � Γ2 ; Γ ∆ ` τ ′ : ?
∆;Γ1 ` e1 : q(∃ε:κ. τ)
∆, ε:κ;Γ2, x:τ ` e2 : τ ′

∆;Γ ` let pack(ε:κ, x) = e1 in e2 : τ ′

Fig. 3. Static Semantics of λrgnUL

specifies that it returns an existential package, hiding the name of the fresh re-
gion. The primitives new, read, and write behave precisely as their counterparts
in any region-based language. Additionally, their types specify that they thread
Lcap % values through the evaluation; the capability is simply presented at each
access of a region and returned to allow future access. In the semantics, the
capability is represented as a dummy token, which has no run-time significance.

As expected, the type system for λrgnUL is sound with respect to its opera-
tional semantics:

Theorem 1 (λrgnUL Safety). If •; • ` e1 : τ and ({}, e1) 7−→∗ (ψ2, e2), then either
there exists v such that e2 ≡ v or there exists ψ3 and e3 such that (ψ2, e2) 7−→ (ψ3, e3).

We have formally verified this result (for a rich superset of λrgnUL) in the Twelf
system [10] using its metatheorem checker [11]. The mechanized proof can be ob-
tained at http://www.cs.cornell.edu/People/fluet/research/substruct-regions/.

13

4 Translation: FRGN to λrgnUL

Having introduced both our source and target calculi, we are in a position to
consider a (type-preserving) translation from FRGN to λrgnUL. Before giving the
details, we discuss a few of the high-level issues.

First, we note that FRGN has no notion of linearity in the syntax or type
system. Rather, all variables and types are implicitly considered unrestricted.
Hence, we can expect that the translation of all FRGN expressions will yield
λrgnUL expressions with a U qualified type.

On the other hand, we claimed that a stateful region computation could be
interpreted as a stack transformer. Recall that the type rgn s τ is the type of
computations which transform a stack indexed by s and deliver a value of type
τ . A key characteristic of FRGN is that all primitive stack transformers are meant
to use the stack in a single-threaded manner; hence, a stateful computation can
update the stack in place. This single-threaded behavior is precisely the sort
of resource management that may be captured by a substructural type system.
Hence, we can expect that the representation of a stack of regions in λrgnUL will
be a value with L qualified type. In particular, we will represent a stack of regions
as a sequence of linear capabilities, formed out of nested linear tuples.

Third, we must be mindful of a slight mismatch between the hnd and ref
types in FRGN and the corresponding types in λrgnUL. Recall that, in FRGN, hnd s
and ref s τ are handles for and references allocated in the region at the top of
the stack indexed by s. Whereas, in λrgnUL, hnd r and ref r τ explicitly name the
region of the handle or reference. This subtle distinction (whether the region is
implicit or explicit) will need to be handled by the translation.

Bearing these issues in mind, we turn our attention to the translation of FRGN

type-level terms given in Figure 4. S? JsK translates a FRGN term of STACK kind
to a λrgnUL term of ? kind. As the STACK kind of FRGN is inhabited only by
variables, the translation is trivial: in λrgnUL, ς is considered a variable of ? kind.

T? JτK and T? JτK translate a FRGN term of ? kind to λrgnUL terms of ? and ?
kinds, respectively. As we observed above, when we translate a FRGN type to a
λrgnUL type, we ensure that the result is a U qualified type. The T? JτK translation
is straightforward on the functional types. (However, note that a FRGN variable
α of ? kind is translated to a λrgnUL variable α of ? kind; this ensures that every
type corresponding to a FRGN type is manifestly qualified with U.)

More interesting are the translations of the types associated with the rgn
monad. In the translation of the rgn s τ type, we see the familiar store (stack)
passing interpretation of computations. Since the representation of a stack of
regions is linear, the resulting store/value pair is qualified with L. Next, consider
the translation of the pf (s1 ≤ s2) type. Recall that it is the type of witnesses
to the fact that the stack indexed by s1 is a subtype of the stack indexed by s2.
Hence, we translate to a type that expresses the isomorphism between S? Js2K and
L(S? Js1K�β), for some “slack” β. Note that while the types S? Js2K, S? Js1K, and
β may be linear, the pair of functions witnessing the isomorphism is unrestricted.
This corresponds to the fact that the proof that s1 is a subtype of s2 is persistent,
while the existence of the stacks s1 and s2 are ephemeral.

14

FRGN STACK to λrgnUL ?
S? JςK = ς

FRGN ? to λrgnUL ?

T? JτK = UT? JτK

FRGN ? to λrgnUL ? (functional types)
T? JαK = α

T? Jτ1 → τ2K = T? Jτ1K (T? Jτ2K
T? J1K = 1�

T? Jτ1 × τ2K = T? Jτ1K � T? Jτ2K
T? J∀α: ? . τK = ∀α:?. T? JτK

T? J∀ς:STACK. τK = ∀ς: ? . T? JτK

FRGN ? to λrgnUL ? (rgn monad types)

T? Jrgn s τK = S? JsK (L(S? JsK � T? JτK)
T? Jpf (s1 ≤ s2)K = ∃β: ? . Iso(S? Js2K , L(S? Js1K � β))

T? Jhnd sK = ∃%:RGN. U(U∃β: ? . Iso(S? JsK , L(β � L(cap %))) � U(hnd %))
T? Jref s τK = ∃%:RGN. U(U∃β: ? . Iso(S? JsK , L(β � L(cap %))) � U(ref % T? JτK))

λrgnUL Type-level Macros

Iso(τ1, τ2) = U(U(τ1 (τ2) � U(τ2 (τ1))

Fig. 4. Type-level Translation

The translation of the hnd s and ref s τ types are similar. An existentially
bound region name % fixes the region for the λrgnUL handle or reference, while
an isomorphism witnesses the fact that % may be found within the stack S? JsK.

With the translation of FRGN type-level terms in place, the translation of
FRGN expressions follows almost directly. We elide the translation of the intro-
duction and elimination forms for the functional types in FRGN (it is simply the
homomorphic mapping of the given expression translations) and focus on the
translation of the rgn monad operations. For readability, we give translations for
fully applied region primitives only, assuming that partially applied primitives
have been eta-expanded. The translation of return and then follow directly
from our store (stack) passing interpretation of rgn s τ types:

E Jreturn [s] [τα] eK =
let res:T? JταK = E JeK in
Uλstk :S? JsK . L〈stk , res〉

E Jthen [s] [τα] [τβ] e1 e2K =
let f :T? Jrgn s ταK = E Je1K in

let g:T? Jτα → rgn s τβK = E Je2K in
Uλstk :S? JsK . let 〈stk , res〉 = f stk in

g res stk

The translation of letRgn is the most complicated, but breaks down into
conceptually simple components. We bracket the execution of the inner com-
putation with a newrgn/freergn pair, creating and destroying a new region.
We construct the representation of the new stack stk2 for the inner computa-
tion by pairing the old stack stk1 with the new region capability cap. Finally,
we construct isomorphisms witnessing the relationships between the new region
capability and the new stack and between the old stack and the new stack. We
carefully chose the isomorphism types so that the identity function suffices as a
witness. Putting all of these pieces together, we have the following:

15

E JletRgn [s1] [τα] eK =
let f :T? J∀ς2:STACK. pf (s1 ≤ ς2) → hnd ς2 → rgn ς2 ταK = E JeK in
Uλstk1:S? Js1K . let pack(%:RGN, 〈cap, hnd〉) = newrgn L〈〉 in

let id = Uλstk :L(S? Js1K � Lcap %). stk in

let ppf = Upack(L(cap %):?, U〈id , id〉) in

let phnd = Upack(%:RGN, U〈Upack(S? Js1K :?, U〈id , id〉), hnd〉) in

let stk2 = L〈stk1, cap〉 in
let 〈stk2, res〉 = f [L(S? Js1K � L(cap %))] ppf phnd stk2 in

let 〈stk1, cap〉 = stk2 in

let 〈〉 = freergn [%] L〈cap, hnd〉 in
L〈stk1, res〉

We can see the isomorphisms in action in the translation of coerceRgn:
E JcoerceRgn [s1] [s2] [τα] e1 e2K =

let ppf :T? Jpf (s1 ≤ s2)K = E Je1K in

let f :T? Jrgn s1 ταK = E Je2K in
Uλstk2:S? Js2K . let pack(β:?, 〈spl , cmb〉) = ppf in

let 〈stk1, stkβ〉 = spl stk2 in

let 〈stk1, res〉 = f stk1 in

let stk2 = cmb L〈stk1, stkβ〉 in
L〈stk2, res〉

Note how the the stack “slack” stkβ is split out and then combined in, bracketing
the execution of the rgn s1 τα computation.

As a final example, we can see an “empty” stack (represented by a L1� value)
being provided as the initial stack in the translation of runRgn:

E JrunRgn [τα] eK =
let f :T? J∀ς:STACK. rgn ς ταK = E JeK in

let 〈〈〉, res〉 = f [L1�] L〈〉 in res

The translations of the remaining rgn monad primitives are given in Figure 5.
We strongly believe, but have not mechanically verified, that the translation is
type preserving.

5 Extensions

The primary advantage of working at the target level is that we can expose the
capabilities for regions as first-class objects instead of indirectly manipulating
a stack of regions. In turn, this allows us to avoid the last-in-first-out lifetimes
dictated by a lexically-scoped letRgn. For example, we can now explain the
semantics for Cyclone’s dynamic regions and unique pointers using the concepts
in the target language.

Dynamic Regions In Cyclone, a dynamic region r is represented by a key
(key r) which is treated linearly by the type system. At the target level, a key
can be represented by a pair of the capability for the region and its handle:

key r = L(Lcap r � Uhnd r)

Then creating a new key is accomplished by calling newrgn, and destroying the
key is accomplished by calling freergn.

16

E Jnew [s] [τα] e1 e2K =
let phnd :T? Jhnd sK = E Je1K in

let x:T? JταK = E Je2K in
Uλstk :S? JsK . let pack(%:RGN, 〈pack(β:?, 〈prj , inj 〉), hnd〉) = phnd in

let 〈stkβ , cap〉 = prj stk in

let 〈cap, ref 〉 = new [%] [T? JταK] L〈cap, hnd , x〉 in
let pref = Upack(ρ:RGN, U〈Upack(β:?, U〈prj , inj 〉), ref 〉) in

let stk = inj L〈stkβ , cap〉 in
L〈stk , pref 〉

E Jread [s] [τα] eK =
let pref :T? Jref s ταK = E JeK in
Uλstk :S? JsK . let pack(%:RGN, 〈pack(β:?, 〈prj , inj 〉), ref 〉) = pref in

let 〈stkβ , cap〉 = prj stk in

let 〈cap, res〉 = read [%] [T? JταK] L〈cap, ref 〉 in
let stk = inj L〈stkβ , cap〉 in
L〈stk , res〉

E Jwrite [s] [τα] e1 e2K =
let pref :T? Jref s ταK = E Je1K in

let x:T? JταK = E Je2K in
Uλstk :S? JsK . let pack(%:RGN, 〈pack(β:?, 〈prj , inj 〉), ref 〉) = pref in

let 〈stkβ , cap〉 = prj stk in

let 〈cap, res〉 = write [%] [T? JταK] L〈cap, ref , x〉 in
let stk = inj L〈stkβ , cap〉 in
L〈stk , res〉

E JreflSub [s]K =

let spl = Uλstk :S? JsK . let su = L〈stk , L〈〉〉 in su in

let cmb = Uλsu:L(S? JsK � L1�). let 〈stk , 〈〉〉 = su in stk in
Upack(L1�:?, U〈spl , cmb〉)

E JtransSub [s1] [s2] [s3] e1;2 e2;3K =
let ppf 1;2:T? Jpf (s1 ≤ s2)K = E Je1;2K in

let ppf 2;3:T? Jpf (s2 ≤ s3)K = E Je2;3K in

let pack(α:?, 〈spl2;1�α, cmp1�α;2〉) = ppf 1;2 in

let pack(β:?, 〈spl3;2�β , cmp2�β;3〉) = ppf 2;3 in

let spl = Uλstk3:S? Js3K . let 〈stk2, stkβ〉 = spl3;2�β stk3 in

let 〈stk1, stkα〉 = spl2;1�α stk2 in

let sss = L〈stk1,
L〈stkβ , stkα〉〉 in

sss in

let cmb = Uλsss:L(S? Js1K � L(β � α)). let 〈stk1, 〈stkβ , stkα〉〉 = sss in

let stk2 = cmb1�α;2
L〈stk1, stkα〉 in

let stk3 = cmb2�β;3
L〈stk2, stkβ〉 in

stk3 in
Upack(L(β � α):?, U〈spl , cmb〉)

Fig. 5. Translation of rgn Monad Operations

17

To access a value allocated in a dynamic region, or to allocate a value in a
dynamic region, Cyclone requires that the region be opened by presenting its
key. The openDRgn is similar to a letRgn in that it conceptually pushes the
dynamic region onto the stack of regions, executes the body, and then pops the
region off the stack. During execution of the openDRgn’s body, the key becomes
inaccessible, ensuring that the region cannot be deallocated. At the end of the
openDRgn scope, the key is given back. The programmer is then able to destroy
the region or later re-open it.

The openDRgn primitive can be implemented as a higher-order function with
a signature like this (eliding the L and U qualifiers, and using source-level rgn to
abbreviate the store passing translation):

openDRgn : ∀%, ς, α.key % ((hnd % (rgn (ς � cap %)α) (rgn ς (α� key %)

The function takes the key for % and a computation, which, when given the
handle for %, expects to run on a stack of the form ς � cap % for some ς. Once
applied, openDRgn returns a computation, which, when run on a stack ς, opens
up the key to get the capability and handle, pushes the capability for % on the
stack, passes the handle to the computation and runs it in the extended stack
to produce an α value. Then, it pops the capability, and returns a (linear) pair
of the result and the re-packaged key. (We leave the definition of openDRgn as
an exercise for the reader.)

Furthermore, since keys are first-class objects, they can be placed in data
structures. For example, in our space-conscious web server [3], we use a list of
dynamic regions, each of which holds data corresponding to a particular con-
nection. When we receive data from a connection, we find the corresponding
key, open it up, and then place the data in the region. When a connection is
terminated, we pull the corresponding key out of the queue, perform freeDRgn
on it, and thus deallocate all of the data associated with the connection. The
price paid for this flexibility is that the list of keys must be treated linearly to
avoid creating multiple aliases to the keys.

Unique Pointers Cyclone’s unique pointers are anonymous dynamic regions,
without the handle. Like the keys of dynamic regions, they can be destroyed at
any time and the type system treats them linearly. At the target level, a unique
pointer to a τ object can be represented as a term with type:

L∃%. L(Lcap %� U(Lcap % (U1�) � U(ref % τ))

Note that the actual reference is unrestricted, whereas the capability is linear; the
handle is not available for further allocations, but is caught up in the function
closure, which may be applied to free the region. This encoding allows us to
“open” a unique pointer, just as we do dynamic regions, and for a limited scope,
freely access (and duplicate) the underlying reference. Of course, during the
scope of the open, we temporarily lose the capability to deallocate the object,
but regain the capability upon exit from the scope.

In practice, the ability to open dynamic regions and unique pointers has
proven crucial for integrating these facilities into the language. They make it
relatively easy to access a data structure and mitigate some of the pain of thread-
ing linear resources through the program. Furthermore, they make it possible

18

to write re-usable libraries that manipulate data allocated in lexically-scoped
regions, dynamic regions, or as unique objects.

Phase-Splitting In our target language, we represented capabilities and proof
witnesses as explicit terms. But we have also crafted the language and transla-
tion so that these values are never actually needed at run-time. For instance,
our witnesses only manipulate (products of) capabilities, which are themselves
operationally irrelevant. These objects are only used to make the desired safety
properties easy to check statically. So in principle, we should be able to erase
the capabilities and witnesses before running a program.

To realize this goal, we should introduce a phase distinction via another
modality, where we treat capabilities and proof witnesses as static objects, and
all other terms as dynamic. The modality would demand that, as usual, static
computations cannot depend upon dynamic values. Furthermore, we must be
sure that witness functions (i.e., proof objects) are in fact total, effect-free func-
tions so that they and their applications to capabilities may be safely erased.
This sort of phase-splitting is effectively used in other settings that mix pro-
gramming languages and logics, such as Xi et al.’s Applied Type System [12]
and Sheard’s Omega [13]. Perhaps the most promising approach is suggested by
Mandelbaum, Walker, and Harper’s work [14], where they developed a two-level
language for reasoning about effectful programs.

The primary reason we did not introduce phase splitting here is that it com-
plicates the translation and the target language, and thus obscures what is actu-
ally a relatively simple and straightforward encoding. A secondary reason is that,
as demonstrated by the cited work above, there are many domains that would
benefit from a general solution to the problem of type relevant, but operationally
irrelevant, values.

6 Related Work and Open Issues

There has been much prior work aimed at relaxing the stack discipline imposed
on region lifetimes by the Tofte-Talpin (TT) approach. The ML Kit [15] uses a
storage-mode analysis to determine when it is safe to deallocate data in a region
(known as region resetting) prior to the deallocation of the region itself. The
safety of the storage-mode analysis has not been established formally.

Aiken et al. [16] eliminate the requirement that region allocation and deallo-
cation should coincide with the beginning and end of the scope of region variables
introduced by the letregion construct. They use a late allocation/early deallo-
cation approach that delays the allocation of a region until just before its first
access, and deallocates the region just after its last access. We believe that the
results of their analysis can be encoded explicitly in our target language.

Unlike the previous two approaches which build on TT, Henglein et al. [17]
present a region system that (like ours) replaces the letregion primitive with
explicit commands to create and free a region. To ensure safety, they use a Hoare-
logic-based region type system and consequently have no support for higher-order

19

functions. While they provide an inference algorithm to annotate programs with
region manipulation commands, we intend for our system to serve as a target
language for programs annotated using TT region inference, or those written in
languages like Cyclone. The Calculus of Capabilities [18] is also intended as a
target for TT-annotated programs, but unlike λrgnUL, it is defined in terms of a
continuation-passing style language and does not support first-class regions.

The region system presented by Walker and Watkins [19] is perhaps the
most closely related work. Like our target, they require a linear capability to be
presented upon each access to a region. However, they provide a primitive, similar
to letregion, that allows a capability to be temporarily treated as unrestricted
for convenience’s sake. We have shown that no such primitive is needed. Rather,
we use a combination of monadic encapsulation (to thread capabilities) coupled
with unrestricted witnesses to achieve the same flexibility. In particular, our open
construct for dynamic regions (and unique pointers) achieves the same effect as
the Walker-Watkin’s primitive.

A related body of work has used regions as a low-level primitive on which
to build type-safe garbage collectors [20–22]. Each of these approaches requires
non-lexical regions, since, in a copying collector, the from- and to-spaces have
non-nested lifetimes. Hawblitzel et al. [22] introduce a very low-level language
in which they begin with a single linear array of words, construct lists and
arrays out of the basic linear memory primitives, introduce type sequences for
building regions of nonlinear data. Such a foundational approach is admirable,
but there is a large semantic gap between a high-level language and such a target.
Hence, λrgnUL serves as a useful intermediate point, and we may envision further
translation from λrgnUL to such a low-level language.

The Vault language [23, 24] includes many of the features described in our
target, including linear capabilities for accessing resources and a mechanism,
called adoption, for temporarily transferring ownership of a capability to another
capability, for a limited scope. But Vault also includes support for strong (i.e.,
type-changing) updates on linear resources, as well as features for temporarily
treating an unrestricted resource as if it were linear. On the other hand, to the
best of our knowledge, there exists no formal model that justifies the soundness
of all of these mechanisms. We believe that it may be possible to combine λrgnUL

with our previous work on strong updates [25, 26] to achieve this.

References

1. Cyclone, version 0.9. (2005) http://www.eecs.harvard.edu/ greg/cyclone/.

2. Tofte, M., Talpin, J.P.: Region-based memory management. Information and
Computation 132(2) (1997) 109–176

3. Hicks, M., Morrisett, G., Grossman, D., Jim, T.: Experience with safe manual
memory-management in Cyclone. In: Proc. International Symposium on Memory
Management. (2004) 73–84

4. Fluet, M., Wang, D.: Implementation and performance evaluation of a safe runtime
system in Cyclone. In: Proc. SPACE Workshop. (2004)

20

5. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in Cyclone. In: Proc. Programming Language Design
and Implementation. (2002) 282–293

6. Fluet, M., Morrisett, G.: Monadic regions. In: Proc. International Conference on
Functional Programming. (2004) 103–114

7. Launchbury, J., Peyton Jones, S.: State in Haskell. Lisp and Symbolic Computation
8(4) (1995) 293–341

8. Ahmed, A., Fluet, M., Morrisett, G.: A step-indexed model of substructural state.
In: Proc. International Conference on Functional Programming. (2005) 78–91

9. Walker, D.: Substructural type systems. In Pierce, B., ed.: Advanced Topics in
Types and Programming Languages. MIT Press, Cambridge, MA (2005) 3–43

10. Pfenning, F., Schürmann, C.: Twelf – a meta-logic framework for deductive sys-
tems. In: Proc. Conference on Automated Deduction. (1999) 202–206

11. Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In: Proc.
Theorem Proving in Higher Order Logics. (2003) 120–135 LNCS 2758.

12. Chen, C., Xi, H.: Combining programming with theorem proving. In: Proc. Inter-
national Conference on Functional Programming. (2005) 66–77

13. Sheard, T., Pasalic, E.: Meta-programming with built-in type equality (ex-
tended abstract). In: International Workshop on Logical Frameworks and Meta-
Languages. (2004)

14. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements.
In: Proc. International Conference on Functional Programming. (2003) 213–225

15. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P.:
Programming with regions in the ML Kit (for version 4). Technical report, IT
University of Copenhagen (2002)

16. Aiken, A., Fähndrich, M., Levien, R.: Better static memory management: Im-
proving region-based analysis of higher-order languages. In: Proc. Programming
Language Design and Implementation. (1995) 174–185

17. Henglein, F., Makholm, H., Niss, H.: A direct approach to control-flow sensitive
region-based memory management. In: Proc. Principles and Practice of Declarative
Programming. (2001) 175–186

18. Walker, D., Crary, K., Morrisett, G.: Typed memory management in a calculus of
capabilities. ACM Transactions on Programming Languages and Systems 24(4)
(2000) 701–771

19. Walker, D., Watkins, K.: On regions and linear types. In: Proc. International
Conference on Functional Programming. (2001) 181–192

20. Wang, D., Appel, A.: Type-preserving garbage collectors. In: Proc. Principles of
Programming Languages. (2001) 166–178

21. Monnier, S., Saha, B., Shao, Z.: Principled scavenging. In: Proc. Programming
Language Design and Implementation. (2001) 81–91

22. Hawblitzel, C., Wei, E., Huang, H., Krupski, E., Wittie, L.: Low-level linear mem-
ory management. In: Proc. SPACE Workshop. (2004)

23. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
In: Proc. Programming Language Design and Implementation. (2001) 59–69

24. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear types for impera-
tive programming. In: Proc. Programming Language Design and Implementation.
(2002) 13–24

25. Morrisett, G., Ahmed, A., Fluet, M.: L3: A linear language with locations. In:
Proc. Typed Lambda Calculi and Applications. (2005) 293–307

26. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Tech-
nical Report TR-24-04, Harvard University (2004)

21

