
L3: A Linear Language with Locations

Greg Morrisett1, Amal Ahmed1, and Matthew Fluet2

1 Harvard University
{greg,amal}@eecs.harvard.edu

2 Cornell University
fluet@cs.cornell.edu

Abstract. We explore foundational typing support for strong updates
— updating a memory cell to hold values of unrelated types at different
points in time. We present a simple, but expressive type system based
upon standard linear logic, one that also enjoys a simple semantic in-
terpretation for types that is closely related to models for spatial logics.
The typing interpretation is strong enough that, in spite of the fact that
our core calculus supports shared, mutable references and cyclic graphs,
every well-typed program terminates.
We then consider extensions needed to make our calculus expressive
enough to serve as a model for languages with ML-style references, where
the capability to access a reference cell is unrestricted, but strong updates
are disallowed. Our extensions include a thaw primitive for temporarily
re-gaining the capability to perform strong updates on unrestricted ref-
erences.

1 Introduction

The goal of this work is to explore foundational typing support for strong up-
dates. In type systems for imperative languages, a strong update corresponds
to changing the type of a mutable object whenever the contents of the object
is changed. As an example, consider the following code fragment written with
SML syntax:

1. let val r = ref () in

2. r := true;

3. if (!r) then r := 42 else r := 15;

4. !r + 12

5. end

At line 1, we create a ref cell r whose contents are initialized with unit. At line
2, we change the contents so that r holds a bool. Then at line 3, we change
the contents of r again, this time to int. In spite of the fact that at different
program points r holds values of different, incompatible types, there is nothing
in the program that will cause a run-time type error.3 This is because subsequent
reads of the reference are type-compatible with the immediately preceding writes.
3 We assume that values are represented uniformly so that, for instance, unit, booleans,

and integers all take up one word of storage.

Unfortunately, most imperative languages, including SML and Java, do not
support strong updates. For instance, SML rejects the above program because
it requires that reference cells hold values of exactly one type. The reason for
this is that tracking the current type of a reference cell at each program point
is hindered by the potential for aliasing. Consider, the following function:

1. fun f (r1: int ref, r2: int ref): int =

2. (r1 := true;

3. !r2 + 42)

In order to avoid a typing error, this function can only be called in contexts
where r1 and r2 are different ref cells. The reason is that if we passed the same
cell for each formal argument, then the update on line 2 should change not only
the type of r1 but also the type of r2, causing a type error to occur at line 3.

Thus, any type system that supports strong updates needs some control
over aliasing. In addition, it is clear that the hidden side-effects of a function,
such as the change in type to f’s first argument in the example above, must
be reflected in the interface of the function to achieve modular type-checking.
In short, strong updates seem to need a lot of technical machinery to ensure
soundness and reasonable accuracy.

Lately, there have been a number of languages, type systems, and analyses
that have supported some form of strong updates. The Vault language [1, 2]
was designed for coding low-level systems code, such as device drivers. The
ability to track strong updates was crucial for ensuring that driver code respected
certain protocols. Typed Assembly Language [3, 4] used strong updates to track
the types of registers and stack slots. More recently, Foster and Aiken have
presented a flow-sensitive qualifier system for C, called Cqual [5], which uses
strong updates to track security-relevant properties in legacy C code.

Vault, later versions of TAL, and Cqual all based their support for strong
updates and alias control on the Alias Types formalism of Smith, Walker, and
Morrisett [6]. Though Alias Types were proven sound in a syntactic sense,
we lacked an understanding of their semantics. Furthermore, Vault, TAL, and
Cqual added a number of new extensions that were not handled by Alias Types.
For instance, the restrict operator of Cqual is unusual in that it allows a com-
putation to temporarily gain exclusive ownership of a reference cell and perform
strong updates, in spite of the fact that there may be unknown aliases to the
object.

In this paper, we re-examine strong updates from a more foundational stand-
point. In particular, we give an alternative formulation of Alias Types in the form
of a core calculus based on standard linear logic, which yields an extremely clean
semantic interpretation of the types that is directly related to the semantic model
of the logic of Bunched Implications (BI) [7]. We show that our core calculus is
sound and that every well-typed program terminates, in spite of the fact that the
type system supports first-class, shared, mutable references with strong updates.
We then show how the calculus can be extended to support a combination of
ML-style references with uncontrolled aliasing and a restrict-like primitive for
temporarily gaining exclusive ownership over such references to support strong
updates. We do not envision the core calculi presented here to be used by end

programmers. Instead, we intend these calculi to be expressive enough to serve
as a target language for more palatable surface languages. Proofs of theorems,
as well as extended discussion, examples, and related work, can be found in a
companion technical report [8].

2 Core L3

Linear types, which are derived from Girard’s linear logic [9], have proven useful
for modeling imperative programming languages in a functional setting [10, 11].
For instance, the Clean programming language [12] relies upon a form of linearity
(or uniqueness) to ensure equational reasoning in the presence of mutable data
structures (and other effects such as IO). The intuitive understanding is that a
linear object cannot be duplicated, and thus there are no aliases to the object,
so it is safe to perform updates in-place while continuing to reason equationally.

Though a linear interpretation of reference cells supports strong updates, it
is too restrictive for many, if not most, realistic programs. What is needed is
some way to support the controlled duplication of references to mutable objects,
while supporting strong updates. One approach, suggested by Alias Types, is to
separate the typing components of a mutable object into two pieces: a pointer
to the object, which can be freely duplicated, and a capability for accessing the
contents of the object. The type of the capability records the current type of the
contents of the object and must remain linear to ensure the soundness of strong
updates.

In this section, we present a different formulation of Alias Types based on a
relatively standard call-by-value linear lambda calculus; we name our calculus
L3(Linear Language with Locations). In L3, capabilities are explicit and first-
class, which makes it simple to support inductively defined data structures. Fur-
thermore, as in Alias Types, L3 supports multiple pointers to a given mutable
object as well as strong updates. Somewhat surprisingly, the core language re-
tains a simple semantics, which, for instance, allows us to prove that well-typed
programs terminate. Thus, we believe that L3 is an appropriate foundation for
strong updates in the presence of sharing.

2.1 Syntax

The syntax for core L3 is as follows:

Locs η ::= ` | ρ ` ∈ LocConsts ρ ∈ LocVars
Types τ ::= 1 | τ1 ⊗ τ2 | τ1 (τ2 | !τ |Ptr η |Cap η τ | ∀ρ.τ | ∃ρ.τ
Exprs e ::= 〈 〉 | let 〈 〉 = e1 in e2 | 〈e1, e2〉 | let 〈x, y〉 = e1 in e2 |

x |λx. e | e1 e2 | !v | let !x = e1 in e2 | dup e | drop e |
ptr ` | cap ` | new e | free e | swap e1 e2 |
Λρ. e | e [η] | pη, eq | let pρ, xq = e1 in e2

Values v ::= 〈 〉 | 〈v1, v2〉 |x |λx. e | !v | ptr ` | cap ` |Λρ. e | pη, vq

Most of the types, expressions, and values are based on a traditional, call-by-
value, linear lambda calculus. In the following sections, we will explain the bits
that are new or different.

Stores σ ::= {`1 7→ v1, . . . , `n 7→ vn}

(let-bang) (σ, let !x = !v in e) 7−→ (σ, e[v/x]) (dup) (σ, dup !v) 7−→ (σ, 〈!v, !v〉)

(drop) (σ, drop !v) 7−→ (σ, 〈 〉) (new) (σ, new v) 7−→ (σ]{` 7→ v}, p`, 〈cap`, !(ptr`)〉q)

(free) (σ] {` 7→ v}, free p`, 〈cap `, !(ptr `)〉q) 7−→ (σ, p`, vq)

(swap) (σ] {` 7→ v1}, swap (ptr `) 〈cap `, v2〉) 7−→ (σ] {` 7→ v2}, 〈cap `, v1〉)

Fig. 1. Core L3– Selected Operational Semantics

Types The types 1, τ1 ⊗ τ2, τ1 (τ2, and !τ are those found in the lin-
ear lambda calculus. The first three types are linear and must be eliminated
exactly once. The pattern matching expression forms let 〈 〉 = e1 in e2 and
let 〈x, y〉 = e1 in e2 are used to eliminate unit (1) and tensor products (⊗) re-
spectively. As usual, a linear function τ1 (τ2 is eliminated via application. The
“of course” type !τ can be used to relax the linear restriction. A value of type
!τ may be explicitly duplicated (dup e) or dropped (drop e). To put it another
way, weakening and contraction of unrestricted !τ values is explicit, rather than
implicit.

As mentioned earlier, we break a mutable object into two components: point-
ers (Ptr η) to the object’s location and a capability (Cap η τ) for accessing the
contents of the location. The link between these two components is the loca-
tion’s name: either a location constant ` or a location variable ρ. Location con-
stants (e.g., physical memory addresses) are used internally by our operational
semantics, but are not allowed in source programs. Instead, source programs
manipulate location variables, which abstract over location constants. We use
the meta-variable η to range over both location constants and location vari-
ables. Note that location variables ρ may be bound in types and expressions and
alpha-convert, while location constants ` do not.

As noted above, we wish to allow the pointer to a location to be freely
duplicated and discarded, but we must treat the capability as a linear value.
This will be consistent with our semantic interpretation of types, which will
establish that !(Ptr η) is inhabited, while !(Cap η τ) is uninhabited.

Abstraction over locations within types are given by the universal ∀ρ.τ and
existential ∃ρ.τ types. Values of universal type must be instantiated and values
of existential type must be opened.

Expressions and Operational Semantics Figure 1 gives the small-step op-
erational semantics for core L3 as a relation between configurations of the form
(σ, e), eliding some of the more obvious transitions. In the configuration, σ is a
global store that maps locations to closed values; note that a closed value has no
free variables or location variables, but may have arbitrary location constants—
even locations not in the domain of σ. The notation σ1]σ2 denotes the disjoint

union of the stores σ1 and σ2; the operation is undefined when the domains of
σ1 and σ2 are not disjoint. We use evaluation contexts E (not shown) to lift
the primitive rewriting rules to a left-to-right, inner-most to outer-most, call-by-
value interpretation of the language.

Our calculus adopts many familiar terms from the linear lambda calculus.
We already explained the introduction and elimination forms for unit, tensor
products, and functions; their semantics is straightforward.

There are expression forms for both the pointer to a location (ptr `) and the
capability for a location (cap `). However, neither expression form is available in
source programs.

The expressions new e and free e perform the complementary actions of al-
locating and deallocating mutable references in the global store. new e evaluates
e to a value, allocates a fresh (unallocated) location ` storing the value, and re-
turns the pair 〈cap `, !(ptr `)〉 in an existential package that hides the particular
location `. The static semantics will ensure that the type of cap ` “knows” the
type of the value stored at `. free e performs the reverse. It evaluates e to the
pair 〈cap `, !(ptr `)〉, deallocates the location `, and returns the value previously
stored at `. We remark that deallocation can result in dangling pointers to a
location, but that since the (unique) capability for that location is destroyed,
those pointers can never be dereferenced.

The expression swap e1 e2 combines the operations of dereferencing and up-
dating a mutable reference. Using swap instead of dereference and update ensures
that resources are not duplicated [13]. Thus, swap is the appropriate primitive to
ensure the linearity of resources. The first expression evaluates to a pointer ptr`
and the second to a pair 〈cap `, v2〉. The operation then swaps v2 for v1 where
v1 is the value stored at `, and returns 〈cap `, v1〉. Again, the static semantics
will ensure that the type of the input cap ` “knows” the type of v1 and the type
of the output cap ` “knows” the type of v2.

It is easily seen that the cap ` terms have no operational significance; they
could be erased without affecting our ability to evaluate the program.

Finally, there are introduction and elimination forms for universal and exis-
tential location quantification. The expression Λρ. e provides universal abstrac-
tion over a location and is eliminated with an explicit application of the form
e [η]. The expression form pη, eq (read “pack η in e”) has the type ∃ρ.τ when e
has the type τ with η substituted for ρ. The package can be opened with the
expression form let pρ, xq = e1 in e2.

2.2 Static Semantics

The type system for L3 must ensure that critical resources, such as capabilities,
are not duplicated or dropped. Our type system is based on the linear lambda
calculus and is thus relatively simple.

L3 typing judgments have the form ∆;Γ ` e : τ where the contexts ∆ and
Γ are defined as follows:

Location Contexts ∆ ::= • |∆, ρ Value Contexts Γ ::= • |Γ, x:τ

∆; Γ ` e : τ

(Bang)
∆; Γ ` v : τ |Γ | = •

∆; Γ ` !v : !τ

(Let-Bang)
∆; Γ1 ` e1 : !τ1 ∆; Γ2, x:τ1 ` e2 : τ2

∆; Γ1 � Γ2 ` let !x = e1 in e2 : τ2

(Dup)
∆; Γ ` e : !τ

∆; Γ ` dup e : !τ ⊗ !τ
(Drop)

∆; Γ ` e : !τ

∆; Γ ` drop e : 1

(New)
∆; Γ ` e : τ

∆; Γ ` new e : ∃ρ.(Cap ρ τ ⊗ !(Ptr ρ))

(Free)
∆; Γ ` e : ∃ρ.(Cap ρ τ ⊗ !(Ptr ρ))

∆; Γ ` free e : ∃ρ.τ

(Swap)
∆; Γ1 ` e1 : Ptr ρ ∆; Γ2 ` e2 : Cap ρ τ1 ⊗ τ2

∆; Γ1 � Γ2 ` swap e1 e2 : Cap ρ τ2 ⊗ τ1

•� • = •
(Γ1, x:τ) � Γ2 = (Γ1 � Γ2), x:τ (x /∈ dom(Γ2))
Γ1 � (Γ2, x:τ) = (Γ1 � Γ2), x:τ (x /∈ dom(Γ1))

| • | = •
|Γ, x:!τ | = |Γ |
|Γ, x:τ | = |Γ |, x:τ (τ 6= !τ ′)

Fig. 2. Core L3– Selected Static Semantics

Thus, ∆ is used to track the set of location variables in scope, whereas Γ , as
usual, is used to track the set of variables (and their types) in scope. We consider
contexts to be ordered lists of assumptions. There may be at most one occurrence
of a location variable ρ in ∆ and, similarly, at most one occurrence of a variable
x in Γ .

As is usual in a linear setting, our type system relies upon an operator Γ1 �
Γ2 = Γ that splits the assumptions in Γ between the contexts Γ1 and Γ2.
Splitting the context is necessary to ensure that a given resource is used by
at most one sub-expression. Note that � splits all assumptions, even those of
!-type. However, recall that contraction and weakening is supported for !-types
through explicit operations.

Figure 2 presents the typing rules for L3, eliding the normal rules for a lin-
ear lambda calculus. The (Bang) rule uses an auxiliary function | · | on contexts
to extract the linear components. The rule requires that |Γ | is empty. This en-
sures that the value v can be freely duplicated and discarded, without implicitly
duplicating or discarding linear assumptions.

Note that there are no rules for ptr ` or cap `, as these expression forms
are not present in the surface language. Likewise, all of the rules are given in
terms of location variables ρ and not in terms of location constants `. Instead,
the (New), (Free), and (Swap) rules act as introduction and elimination rules

VJ1K = {({}, 〈 〉)}
VJτ1 ⊗ τ2K = {(σ1] σ2, 〈v1, v2〉) | (σ1, v1) ∈ VJτ1K ∧ (σ2, v2) ∈ VJτ2K}
VJτ1 (τ2K = {(σ2, λx. e) | ∀σ1, v1. (σ1, v1) ∈ VJτ1K ∧ σ1] σ2 defined ⇒

(σ1] σ2, e[v1/x]) ∈ CJτ2K}
VJ!τK = {({}, !v) | ({}, v) ∈ VJτK}

VJPtr `K = {({}, ptr `)}
VJCap ` τK = {(σ] {` 7→ v}, cap `) | (σ, v) ∈ VJτK}
VJ∀ρ.τK = {(σ, Λρ. e) | ∀`. (σ, e[`/ρ]) ∈ CJτ [`/ρ]K}
VJ∃ρ.τK = {(σ, p`, vq) | (σ, v) ∈ VJτ [`/ρ]K}

CJτK = {(σs, es) | ∀σr. σs] σr defined ⇒
∃n, σf , vf . (σs] σr, es) 7−→n (σf] σr, vf) ∧ (σf , vf) ∈ VJτK}

SJ•Kδ = {({}, ∅)}
SJΓ, x:τKδ = {(σ] σx, γ[x 7→ vx]) | (σ, γ) ∈ SJΓ Kδ ∧ (σx, vx) ∈ VJδ(τ)K}

J∆; Γ ` e : τK = ∀δ, σ, γ. dom(δ) = dom(∆) ∧ (σ, γ) ∈ SJΓ Kδ ⇒ (σ, γ(δ(e))) ∈ CJδ(τ)K

Fig. 3. Core L3– Semantic Interpretations

for Ptr ρ and Cap ρ τ types. Both (New) and (Free) operate on existentially
quantified capability/pointer pairs, which hides the location constant present in
the operational semantics. Note that (Swap) maintains the linear invariant on
capabilities by consuming a value of type Capρ τ1 and producing a value of type
Cap ρ τ2.

2.3 Examples and Discussion

This core language is expressive enough to approximate the examples given in
Section 1. A linear reference can be viewed as a value of type

LRef τ ≡ ∃ρ.(Cap ρ τ ⊗ !Ptr ρ),

and we can lift the primitive swap to update a reference with

lrswap ≡ λr:LRef τ. λx:τ ′.
let pρ, cpq = r in
let 〈c0, p0〉 = cp in
let 〈p1, p2〉 = dup p0 in

let !p′
2 = p2 in

let 〈c1, y〉 = swap p′
2 〈c0, x〉 in

〈pρ, 〈c1, p1〉q, y〉

cp:Cap ρ τ ⊗ !Ptr ρ
c0:Cap ρ τ, p0:!Ptr ρ
p1:!Ptr ρ, p2:!Ptr ρ
p′

2:Ptr ρ
c1:Cap ρ τ ′, y:τ

However, by keeping Capρτ and !Ptrρ packaged together, we lose any benefits
of making Ptrρ unrestricted. See the technical report [8] for an extended example,
demonstrating the power of treating capabilities and pointers separately.

2.4 Semantic Interpretations

In this section, we give semantic interpretations to types and prove that the
typing rules of Section 2.2 are sound with respect to these interpretations. We

have also sketched a conventional syntactic proof of soundness, but found a
semantic interpretation more satisfying for a few reasons. First, while shared ptr`
values can be used to create cyclic pointer graphs, the linearity of cap ` values
prevents the construction of recursive functions through the standard “back-
patching” technique. (The extension in Section 3 will relax this restriction, giving
rise to a more powerful language.) Hence, our core language has the property that
every well-typed term terminates, just as in the linear lambda calculus without
references [14]. Our semantic proof captures this property in the definition of
the types, whereas a syntactic approach is too weak to show that this property
holds. Second, the semantic approach avoids the need to define typing rules for
various intermediate structures including stores. Rather, stores consistent with a
particular type will be incorporated into the semantic interpretation of the type.
Finally, the semantic interpretation will allow us some extra flexibility when we
consider extensions to the language in the next section.

Figure 3 gives our semantic interpretations of types as values (VJτK), types
as computations (CJτK), contexts as substitutions (SJΓ K), and finally a seman-
tic interpretation of typing judgments. We remark that these definitions are
well-founded since the interpretation of a type is defined in terms of the inter-
pretations of strictly smaller types.

For any closed type τ , we choose its semantic value interpretation VJτK to
be a set (i.e., unary logical relation) of tuples of the form (σ, v), where v is a
closed value and σ a store. We can think of σ as the “exclusive store” of the
value, corresponding to the portion of the store over which the value has exclusive
rights. This exclusivity is conveyed by the linear Cap`τ type, whose interpretation
demands that σ includes ` and maps it to a value of the appropriate type. This
corresponds to the primitive “points-to” relation in BI.

The definition of CJτK combines both termination and type preservation. A
starting store and expression (σs, es) is a member of CJτK if for every disjoint
(rest of the) store σr, a finite number of reductions leads to a final store and
value (σf , vf) that is a member of VJτK and leaves σr unmodified. Notice that
the computation interpretation corresponds to the frame axiom of BI, whereas
the interpretation of linear implication is, as expected, in correspondence with
BI’s magic wand.

The semantic interpretation of a typing judgment J∆;Γ ` e : τK is a logical
formula asserting that for all substitutions δ and γ and all stores σ compati-
ble with ∆ and Γ , (σ, γ(δ(e))) is a member of the interpretation of δ(τ) as a
computation.

Theorem 1 (Core L3 Soundness). If ∆;Γ ` e : τ , then J∆;Γ ` e : τK.

As an immediate corollary, for any well-typed closed expression e of type
τ , we know that evaluating ({}, e) terminates with a configuration (σ, v) in the
value interpretation of τ . Another interesting corollary is that if we run any
closed, well-typed term of base type (e.g., 1), then the resulting store will be
empty. Thus, the expression will be forced to free any locations that it creates
before terminating.

3 Extended L3

Thus far, our language only supports linear capabilities. While this gives us the
ability to do strong updates, and the separation of pointers and capabilities
allows us to build interesting store graphs, we still cannot simulate ML-style
references, which are completely unrestricted. Such references are strictly more
powerful than the linear references considered in the previous sections. Although
an ML-style reference requires the cell to hold values of exactly one type, this
is sufficient for building recursive computations. For example, we can write a
divergent expression as follows:

1. let val r = ref (fn () => ())

2. val g = fn () => (!r) ()

3. in r := g;

4. g ()

5. end

The unrestricted nature of ML-style references is crucial in this example: the
reference r (holding a function of type unit -> unit), is used both in g’s closure
(line 2) and in the assignment at line 3.

In this section, we consider some minimal extensions needed for unrestricted
references. At the same time, we are interested in modeling more recent lan-
guages, such as Cqual, that support regaining (if only temporarily) a unique
capability on an unrestricted reference so as to support strong updates.

One approach to modeling ML-style references is to add a new kind of unre-
stricted capability, with its own version of swap. To ensure soundness, the new
swap would require that the value being swapped in to the location have the
same type as the value currently in the location. This would ensure that the
other capabilities for the location remained consistent with the current world.
That is, unrestricted capabilities must have types that are frozen throughout
their lifetime. An unrestricted, frozen capability could be created from a nor-
mal, linear capability. However, there could be no support for destroying a frozen
location since this would invalidate the other capabilities for that location.

These additions to the language would be relatively straightforward, but we
are also interested in supporting strong updates for unrestricted references. The
extensions described below are inspired by Cqual’s restrict operator in that
they allow an unrestricted, frozen capability to be temporarily “thawed” to a
linear capability. This allows us to perform strong updates on the location.

In fact, these extensions obviate the need for a new swap on frozen capabilities
– only thawed (linear) capabilities permit a swap, regardless of whether the con-
tent’s type changes. Hence, the process of thawing a location demands exclusive
access and the programmer must present evidence that no other frozen capa-
bility for the same location is currently thawed. In our extended language, this
evidence is a value representing a proof that no other thawed location aliases the
location on which we would like to do strong updates. There are many possible
ways to prove such a fact, based on types or regions or some other partitioning
of objects. Here, we do not commit to a particular logic so that the framework
can be used in various settings. Rather, we use our semantic interpretation of

Frozen Stores φ ::= {`1 7→ v1, . . . , `n 7→ vn}

(freeze) (φ, σ]{` 7→ !v}, freeze〈cap`, thwdL〉v′) 7−→ (φ]{` 7→ !v}, σ, 〈!(frzn`), thwdL〉)

(thaw) (φ] {` 7→ !v}, σ, thaw 〈!(frzn `), thwd L〉 v′) 7−→
(φ, σ] {` 7→ !v}, 〈cap `, thwd (L] {`})〉)

(refreeze) (φ, σ] {` 7→ !v}, refreeze 〈cap `, thwd (L] {`})〉) 7−→
(φ] {` 7→ !v}, σ, 〈!(frzn `), thwd L〉)

Fig. 4. Extended L3– Additional Operational Semantics

types to specify a general condition so that admissible rules can be added to the
type system without re-proving soundness.

A thawed location can also be “re-frozen” in our extended language. This
is meant to re-enable access to the location along a different frozen capability.
Note that it would be unsound to freeze a thawed location at a type other than
the original frozen type, because other frozen capabilities expect the location
to hold a value of the original type. Therefore, we provide a separate operation
that requires the original type to be re-established when we re-freeze. Together,
thawing and re-freezing a location correspond to the lexically-scoped restrict
of Cqual. However, we are not limited to the last-in-first-out thawing and re-
freezing imposed by a lexically-scoped discipline, and, indeed, there is no real
requirement that a thawed location ever be re-frozen.

Finally, because frozen capabilities are unrestricted, we will require a frozen
location to hold a value of !-type. This prevents a program from discarding a
linear value by placing the (one and only) reference to the value in a frozen
location and then discarding all capabilities to access the location.

3.1 Changes to Support the Extensions

The syntactic changes to support the extensions described above are as follows:

L ∈ P(LocConsts) Thawed Contexts θ ::= • | θ, η:τ
Types τ ::= . . . |Frzn η τ |Thwd θ |Notin η θ
Exprs e ::= . . . | freeze e1 e2 | thaw e1 e2 | refreeze e | frzn ` | thwd L
Values v ::= . . . | frzn ` | thwd L

The extended language is evaluated in the presence of a frozen store φ, which
contains type-invariant mutable references, and the linear store σ. Figure 4 gives
the small-step operational semantics for extended L3 as a relation between con-
figurations of the form (φ, σ, e), where the two stores are necessarily disjoint. All
of the operational semantics rules of core L3 carry over to the extended language
by passing φ along unmodified. (However, note that (new) must choose a fresh
location not in the domain of either φ or σ.) The static semantics for the ex-
tended language consist of all the rules for the core language and the rules given
in Figure 5.

∆; Γ ` e : τ

(Freeze)
∆; Γ1 ` e1 : Cap ρ !τ ⊗ Thwd θ ∆; Γ2 ` e2 : Notin ρ θ

∆; Γ1 � Γ2 ` freeze e1 e2 : !(Frzn ρ !τ)⊗ Thwd θ

(Thaw)
∆; Γ1 ` e1 : !(Frzn ρ !τ)⊗ Thwd θ ∆; Γ2 ` e2 : Notin ρ θ

∆; Γ1 � Γ2 ` thaw e1 e2 : Cap ρ !τ ⊗ Thwd (θ, ρ:!τ)

(Refreeze)
∆; Γ ` e : Cap ρ !τ ⊗ Thwd (θ, ρ:!τ)

∆; Γ ` refreeze e : !(Frzn ρ !τ)⊗ Thwd θ

Fig. 5. Extended L3– Additional Static Semantics

The type Frznητ is the type of a frozen capability for location η which in turn
holds a value of type τ . The (internal) term frzn ` represents such a capability.
We allow frozen capabilities to occur under the !-constructor, and thus they can
be both duplicated and forgotten.

The type Notinη θ represents a proof that the location η is not in the thawed
context θ. As presented, our language has no terms of this type. Rather, our
intention is that the type should only be inhabited by some value when indeed,
the given location is not in the locations given by θ. For instance, in the next
section, we will make use of a constant voidη, which we could add to the language
as a proof of the trivial fact that for all locations η, Notin η •.

A value of type Thwdθ is called a thaw token and is used to record the current
set of frozen locations that have been thawed, as well as their original types. The
term thwd L is used to represent a thaw token. In a given program, there will
be at most one thaw token value that must be effectively threaded through the
execution. Thus, Thwd θ values must be treated linearly. An initial thaw token
of type Thwd • is made available at the start of a program’s execution.

The thaw operation takes as its first argument a pair of a frozen capability for
a location (!Frznη τ) and the current thaw token (Thwdθ). The second argument
is a proof that the location has not already been thawed (Notinηθ). The operation
returns a linear capability (Cap η τ) and a new thaw token of type Thwd (θ, η:τ).
In thawing a location, the operational semantics transfers the location from
the frozen store to the linear store. This is a technical device that keeps the
current state of a location manifest in the semantics; a real implementation
would maintain a single, global store with all locations.

The refreeze operation takes a linear capability of type Cap η τ and a thaw
token of type Thwd (θ, η:τ) and returns a frozen capability with type !Frzn η τ
and the updated thaw token of type Thwd θ. Note that to re-freeze, the type of
the capability’s contents must match the type associated with the location in
the thaw token.

Finally, a frozen capability of type !Frzn η τ is created with the freeze oper-
ation. The first argument to freeze is a pair of a linear capability for a location
(Cap η τ) and the current thaw token (Thwd θ). The other argument is a value

of type Notin η θ ensuring that the location being frozen is not in the current
thawed set; thawed locations must be re-frozen to match the type of any frozen
aliases. Note that freeze returns the thaw token unchanged.

Both freeze and refreeze have the operational effect of moving a location
from the linear store to the frozen store.

3.2 Examples and Discussion

The extended language is now expressive enough to encode the example given
at the beginning of this section. An ML-style reference can be viewed as a value
of type:

Ref !τ ≡ !∃ρ.(!Frzn ρ !τ ⊗ !Ptr ρ).

Next, we need to give read and write operations on references. We consider a
simple scenario in which a frozen capability is thawed exactly for the duration
of a read or write; hence, we will assume that the thaw token has type Thwd •
at the start of the operation and we will return the thaw token with this type
at the conclusion of the operation. Recall that we take voidη as a constant term
of type Notin η •, which suffices given our assumed type of the thaw token.

read ≡ λr!:Ref !τ. λt0:Thwd • .

let pρ, 〈f!a, l!〉q = r in

let 〈c1, t1〉 = thaw 〈fa, t0〉 voidρ in

let 〈c2, x!〉 = swap l 〈c1, 〈 〉〉 in

let 〈c3, 〈 〉〉 = swap l 〈c2, x〉 in

let 〈f!b, t2〉 = refreeze 〈c3, t1〉 in

〈x, t2〉

write ≡ λr!:Ref !τ. λz!:!τ. λt0:Thwd • .

let pρ, 〈f!a, l!〉q = r in

let 〈c1, t1〉 = thaw 〈fa, t0〉 voidρ in

let 〈c2, x!〉 = swap l 〈c1, z〉 in

let 〈f!b, t2〉 = refreeze 〈c2, t1〉 in

t2

It is easy to see how these operations can be combined to reconstruct the
divergent computation presented at the beginning of this section by “back-
patching” an unrestricted reference.

3.3 Semantic Interpretations

As the extended L3 is strictly more powerful that the core language given previ-
ously, the semantic interpretation given in Section 2.4 will not suffice as a model.
We describe the essential intuitions underlying our semantic interpretation here;
details are given in the technical report [8].

Our model for extended L3 is based on the indexed model of general refer-
ences by Ahmed, Appel, and Virga [15] where the semantic interpretation of a
(closed) type VJτK is a set of triples of the form (k, Ψ, v). Here k is a natural
number (called the approximation index), Ψ is a store typing that maps locations
to (the interpretation of) their designated types, and v is a value. Intuitively,
(k, Ψ, v) ∈ VJτK says that in any computation running for no more than k steps,
v cannot be distinguished from values of type τ . Furthermore, Ψ need only spec-
ify the types of locations to approximation k − 1 — it suffices to know the type
of each store location for k − 1 steps to determine that v has type τ for k steps.
This ensures that the model is well-founded.

For any closed type τ in extended L3, its semantic interpretation VJτK is a
set of tuples of the form (k, Ψ, ζ, σ, v). Here k is the approximation index; Ψ is a
store typing that maps frozen locations (including locations that are currently
thawed) to the semantic interpretations of their frozen types (to approximation
k − 1); v is a value. As for core L3, we consider σ to be the exclusive store of
the value v. The lifted thaw set ζ ∈ P(LocConsts)⊥ denotes either the set of
currently thawed locations (if v has exclusive rights to the thaw token) or ⊥ (if
v has no such rights).

We define VJThwd θK as the set of all tuples of the form (k, Ψ, L, {}, thwd L)
such that the type of every currently thawed location (` ∈ L) in θ is consistent
(to approximation k) with the type of the location in Ψ . This ensures that when
we move a location from the linear store back to the frozen store, we end up
with a frozen store where every location contains the type mandated by Ψ .

In order to track how far “out of synch” the frozen store φ is with respect to
the frozen store typing Ψ , we define the relation φ :k Ψ \ ζ. Informally, this says
that the frozen store φ is well-typed with respect to the store typing Ψ modulo
the current set of thawed locations ζ — that is, the contents of locations in
the frozen store must have the types specified by Ψ , but the contents of thawed
locations do not have to have the types mandated by Ψ .

As for core L3, we have established the following theorem which shows the
soundness of the typing rules with respect to the model.

Theorem 2 (Extended L3 Soundness). If ∆;Γ ` e : τ , then J∆;Γ ` e : τK.

4 Related Work

A number of researchers have noted that linearity and strong updates can be used
to effectively manage memory (c.f. [13, 16–18]). Our work is complementary, in
the sense that it provides a foundational standpoint for expressing such memory
management in the presence of both linear and unrestricted data.

Our core L3 language is most directly influenced by Alias Types [6]. Relative
to that work, the main contributions of our core language are (a) a simplification
of the typing rules by treating capabilities as first-class linear objects, and (b)
a model for the types that makes the connections with models for spatial logics
clear. Of course, the extended version of L3 goes well beyond what Alias Types
provided, with its support for thawing and re-freezing locations. As noted earlier,
these primitives are inspired by the lexically-scoped restrict of Cqual [5],
though they are strictly more powerful.

The work of Boyland et al. [19] considers another application of capabilities
as a means to regulate sharing of mutable state. In their untyped calculus, every
pointer is annotated with a set of capabilities, which are checked at each read
or write through the pointer. Asserting capabilities revokes them from aliasing
pointers, which can stall the abstract machine by removing necessary rights
for future pointer accesses. They leave as an open problem the specification of
policies and type-systems to ensure that execution does not get stuck.

The Vault programming language [1] extended the ideas of the Capability
Calculus [20] and Alias Types to enforce type-state protocols. As far as we are
aware, there is no published type soundness proof of Vault’s type system. Later
work [2] added the adoption and focus constructs. The former takes linear
references to an adoptee and an adopter, returning a non-linear reference to the
adoptee, while the latter construct temporarily linear view of an adopted object,
suitable for accessing linear components. We are confident that it will be possible
to extend L3 to handle these features.

There has been a great deal of work on adapting some notion of linearity to
real programming languages. Examples include ownership types [21], uniqueness
types [12, 22, 23], confinement types [24, 25], and roles [26]. Each of these mech-
anisms is aimed at supporting local reasoning in the presence of aliasing and
updates. Most of these approaches relax the strong requirements of linearity to
make programming more convenient. We believe that L3 could provide a con-
venient foundation for modeling many of these features, because we have made
the distinction between a reference and a capability to use the reference.

A more distantly related body of work is the typing of process calculi [27, 28].
Here, a kind of strong update is allowed in the type of channels, where a single
communication port can be used for sending values of different types. While a
connection with linearity has been established [29], the intuition seems to be
more closely related to type-states than to strong updates. A potentially fruitful
direction for future work would be to investigate both the application of process
types to this work and to extend this work to apply in a concurrent setting.

5 Future Work

A key open issue is what logic to use for proving that it is safe to thaw a given
location. For instance, one could imagine a logic that allows us to conclude two
locations do not alias because their types are incompatible. In Cqual, locations
are placed in different conceptual regions, and the regions are used to abstract
sets of thawed locations.

Another open issue is how to lift the ideas in L3 to a surface level language.
Clearly, explicitly threading linear capabilities and a thaw token through a com-
putation is too painful to contemplate. We are currently working on adapting
ideas from indexed monads and type-and-effects systems to support implicit
threading of these mechanisms.

References

1. DeLine, R., Fähndrich, M.: Enforcing high-level protocols in low-level software.
In: PLDI. (2001)

2. Fähndrich, M., DeLine, R.: Adoption and focus: Practical linear types for imper-
ative programming. In: PLDI. (2002)

3. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. TOPLAS 21 (1999) 528–569

4. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly lan-
guage. JFP 12 (2002) 43–88

5. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local
non-aliasing. In: (PLDI). (2003)

6. Smith, F., Walker, D., Morrisett, G.: Alias types. In: (ESOP). (2000)
7. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.

In: (POPL). (2001)
8. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Tech-

nical Report TR-24-04, Harvard University (2004)
9. Girard, J.Y.: Linear logic. Theoretical Computer Science 50 (1987) 1–102

10. Wadler, P.: Linear types can change the world! In: Programming Concepts and
Methods. (1990)

11. O’Hearn, P.W., Reynolds, J.C.: From Algol to polymorphic linear lambda-calculus.
Journal of the ACM 47 (2000) 167–223

12. Plasmeijer, R., van Eekelen, M. Keep it clean: a unique approach to functional
programming. ACM SIGPLAN Notices 34 (1999) 23–31

13. Baker, H.: Lively linear LISP—look ma, no garbage. ACM SIGPLAN Notices 27
(1992) 89–98

14. Benton, P.N.: Strong normalisation for the linear term calculus. JFP 5 (1995)
65–80

15. Ahmed, A., Appel, A.W., Virga, R.: An indexed model of impredicative poly-
morphism and mutable references. Available at http://www.cs.princeton.edu/
∼appel/papers/impred.pdf (2003)

16. Hofmann, M.: A type system for bouned space and functional in-place update. In:
(ESOP). (2000)

17. Cheney, J., Morrisett, G.: A linearly typed assembly language. Technical Report
2003-1900, Cornell University (2003)

18. Aspinall, D., Compagnoni, A.: Heap bounded assembly language. Journal of
Automated Reasoning 31 (2003) 261–302

19. Boyland, J., Noble, J., Retert, W.: Capabilities for aliasing: A generalization of
uniqueness and read-only. In: (ECOOP). (2001)

20. Walker, D., Crary, K., Morrisett, G.: Typed memory management in a calculus of
capabilities. TOPLAS 24 (2000) 701–771

21. Boyapati, C., Sălcianu, A., Beebee, W., Rinard, M.: Ownership types for safe
region-based memory management in real-time Java. In: (PLDI). (2003)

22. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: (ECOOP).
(2003)

23. Hicks, M., Morrisett, G., Grossman, D., Jim, T.: Experience with safe manual
memory-management in Cyclone. In: (ISMM). (2004)

24. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
In: (OOPSLA). (2001)

25. Vitek, J., Bokowski, B.: Confined types in Java. Software – Practice and Experience
31 (2001) 507–532

26. Kuncak, V., Lam, P., Rinard, M.: Role analysis. In: (POPL). (2002)
27. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. In: (POPL).

(2001)
28. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing

system. In: Proc. Parallel Architectures and Languages Europe. (1994)
29. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the Pi-Calculus. TOPLAS

21 (1999) 914–947

