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—— Abstract

When implementing large software systems, programmers should be able to implement each
part of the system using the programming language best suited to the task at hand. But cur-
rent multi-language systems are difficult for programmers to reason about because components
interact only after compilation to a lower-level target. The source-level contexts that program-
mers use to reason about their components no longer match the reality of the contexts that
their components are running in. The additional contexts impact the notion of equivalence that
justifies behavior-preserving modifications of code, whether programmer refactorings or compiler
optimizations.

We advocate that language designers provide programmers with the means to reason about
inputs from “other” languages, but in a way that remains close to the semantics of their language.
Linking types are a well-specified minimal extension of the source language that allow program-
mers to optionally annotate where in their programs they can link with components that would
not be expressible in their unadulterated source language, giving them fine-grained control over
the contexts that they must reason about and the equivalences that arise.
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1 Introduction

When building large-scale software systems, programmers should be able to use the best
language for each part of the system. Using the “best language” means the language that
makes it is easiest for a programmer to reason about the behavior of that part of the system.
That might be Rust for a high-performance component, a terminating domain-specific
language for a protocol parser, or a general-purpose scripting language for UI code. But it’s
a myth that programmers can reason in a single language when dealing with multi-language
software. Even if a high-assurance component is written in Coq, the programmer must reason
about extraction, compilation, and any linking that happens at the machine-level. An ML
component in a multi-language system has contexts that may include features that don’t
exist in ML. This is a problem, because as programmers evolve complex systems, much time
is spent refactoring—that is, making changes to components that should result in equivalent
behavior. Programmers reason about that equivalence by thinking about possible program
contexts within which the original and refactored components could be run, though usually
they only think about contexts from their own language. But if we have linked with another
language, somehow the additional contexts from that language also need to be taken into
account. The formal property of contextual equivalence is therefore central to programmer
reasoning. Unfortunately, progammers cannot rely upon contextual equivalence of their
own language. Instead, since languages interact after having been compiled to a common
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target, in effect the contextual equivalence that programmers must rely upon is that of the
compilation target, which may have little to do with their source language.

Ideally, we would like programmers to be able to reason using source-language contextual
equivalence, even in the presence of target-level linking. A fully abstract compiler enables
exactly this reasoning: it guarantees that if two components are contextually equivalent
at the source their compiled versions are contextually equivalent at the target. However,
this guarantee comes at a steep cost: a fully abstract compiler must disallow linking with
components whose behavior is inexpressible in the compiler’s source language. But often
that extra behavior is exactly why the programmer is linking with a component written in
another “more expressive” language—for instance, linking a high-level language with a C
runtime or non-concurrent language with a thread implementation.

There are two ways in which a programming language A can be more expressive than
another language B, where, following Felleisen [10], we assume both languages have been
translated to a common substrate (for us, compiled to a common target), such that A
contexts can be wrapped around B program fragments:

1. A has features unavailable in B that can be used to create contexts that can distinguish
components that are contextually equivalent in B. We call this “positive” expressivity,
since the (larger) set of A contexts have more power to distinguish. For instance, A may
have references or first-class control while B does not.

2. A has rich type-system features unavailable in B that can be used to rule out contexts
that, at less precise types, were able to distinguish inequivalent B components. We call
this “negative” expressivity, since type restrictions on A contexts result in a (smaller) set
of well-typed A contexts that have less power to distinguish. For instance, A may have
linear types or polymorphism while B does not.

The greater expressivity of programming languages explored by Felleisen [10] is what we
call “positive” expressivity. As far as we are aware, the notion of “negative” expressivity
has not appeared in the literature. (If this paper is accepted, we will include examples and
further discussion of “negative” expressivity and its consequences.)

Linking with code from more expressive languages affects not just programmer reasoning,
but also the notion of equivalence used by compiler writers to justify correct optimizations.
While there has been a lot of recent work on verified compilers, most assume no linking
(e.g., [17, 18, 20, 27, 29, 15]), or linking only with code compiled from the same source
language [3, 4, 13, 21, 14]. One exception to this is Compositional Compcert [28], which
nonetheless only allows linking with components that satisfy CompCert’s memory model. The
other exception is the multi-language approach to verified compilers in Perconti-Ahmed [26],
which allows linking with arbitrary target code that may be compiled from another source
language R. This approach, which embedded both the source S and target 7 into a single
multi-language ST, meant that compiler optimizations could be justified in terms of ST
contextual equivalence. However, as a tool for programmer reasoning, this comes at a
significant cost, as the programmer needs to understand the full S7 language and the
compiler for R. Moreover, the design of the multi-language fixes what linking should and
should not be permitted, a decision that affects the notion of contextual equivalence used to
reason about every component written in the source language.

We do not believe that compiler writers should get to decide what linking is allowed.
Compiler writers are forced to either ignore linking or make such arbitrary decisions because
our source-language specifications are incomplete with respect to linking. We argue that,
instead, this should be a part of the language specification and exposed to the programmer
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so that she can make fine-grained decisions about linking, which leads to fine-grained control
over what contexts she must consider when reasoning about a particular component. Every
compiler should then be fully abstract, which means it preserves the equivalences chosen by
the programmer.

We advocate extending source-language specifications with linking types, which minimally
enrich source-language types and allow programmers to optionally annotate where in their
programs they can link with components that wouldn’t be expressible in their unadulterated
source language. As a specification mechanism, types are familiar, and naturally allow us
to change equivalences locally. They fulfill our desire to allow the programmer fine-grained
control, as they appear on individual terms of the language. A linking-types extension will also
often introduce new terms (and operational semantics) intended solely for reasoning about
the additional contexts introduced through linking. These new terms are a representative
abstraction of potentially complex new behavior from another language that the programmer
wants to link with. (This is analogous to how Gu et al. [11] lift potentially complex behavior
in a lower abstraction layer into a simpler representation in a higher layer.) Now if the
programmer reasons about contexts including those terms, she will have considered the
behavior of all contexts that her component may be linked with after compilation.

We envision that language designers will provide many different linking-types extensions
for their source languages. Programmers can then opt to use zero or more of these extensions,
depending on their linking needs.

2 Linking Types, Formally

To formally present the basic idea of linking types, we consider a setting with two simple
source languages—see Figure 1 (top)—and show how to design linking types that mediate
different interactions between them. Our source languages are A, the simply typed lambda
calculus with integer base types, and A**f, which extends \ with ML-like mutable references.
We want type-preserving, fully abstract compilers from these source languages to a common
target language. That target should have a rich enough type system so that the compiler’s
type translation can ensure full abstraction by using types to rule out linking with target
contexts whose behavior is inexpressible in the source. Here we illustrate the idea with a fairly
high-level target language A\Z2f—see Figure 1 (bottom)—that includes mutable references
and exceptions and has a modal type system that can distinguish pure computations from
those that either use references or raise exceptions.! We include exceptions in the target
as a representative of the extra control flow often present in low-level targets (e.g., direct
jumps). A target computation E? 7 may access the heap while computing a value of type
7 or raising an exception of type 7.x. In contrast, a computation E§ 7 may not access the
heap, and cannot raise exceptions as the exception type is the void (uninhabited) type 0.
Consider the scenario where the programmer writes code in A and wants to link with code
written in A\**f. Assume this linking happens after both A and A\**f have been compiled using
fully abstract compilers to AZ2Z. Below, consider the programs e; and e, which are equivalent
in A. The A compiler, since it is fully abstract, would have to disallow linking with the context
cr*f  since the latter can distinguish e; from e, in the target. More generally, in order to
rule out this class of equivalence-disrupting contexts the fully abstract compiler would have
to prevent linking with code that has externally visible effects.? This can be accomplished

1 We use a modal type system here, but any type-and-effect system would suffice.
2 For simplicity, the type system we show here doesn’t support effect masking, so we rule out linking with
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Figure 1 )\ and \**" syntax (top), ALi. syntax and selected static semantics (bottom).

by a type-directed compiler that sends all \ arrows 73 — 75 to pure computations 7{ — E§ 75,
where 7/ and 7 are the translations of types 73 and 75. This would rule out linking with
contexts with heap effects as in our C**f example.

o1 = Af.£() L ) Cf = letx =refOin .
e = £();£() Y Clea] M Cer] » letg()=x:=lx+1;!xin[]g
el U1 C™[es] I 2
Unfortunately, the above type translation would even rule out linking with a simple
library that implements a counter using a reference cell. When a programmer wants to
link with such a library, she is willing to lose some equivalences, at least in the particular
places where the counter library is used. To enable such linking, we will now present a
linking-types extension for A that includes both an extended language \* and functions ™
and «~ that relate types of A and \*. The \" type system includes reference types and
tracks heap effects. We need to track heap effects to be able to reason about the interaction
between the pure A code and impure code that it will be linked with. This extension is shown
on the left in Figure 2. The parts of \* that extend \ are typeset in red, whereas terms
that originated in \ are green. A" types 7 include base types unit and int, reference types
ref 7, and a computation type R 7, analogous to the target computation type EZ_ 7, but
without tracking exception effects. A" terms e include terms from )\, as well as terms for
allocating, reading, and updating references. Note that these additional terms are intended

all effectful code. More realistic target languages, e.g., based on Koka [16], would support linking with
code without externally visible effects.
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Figure 2 Linking-types extension of A and \*f.

only for reasoning, so that programmers can understand the kind of behavior that they are
linking with; they should not show up in code written by the programmer. If we allowed
programmers to use these terms in their code, we would be changing the programming
language itself, whereas linking types should only allow a programmer to change equivalences
of their existing language. Our focus is linking, not general language extension. The last
part of the linking-types extension is the pair of functions T, for embedding A types in \*,
and x~ for projecting \* types to \ types. We will discuss the properties that x* and x~
must satisfy below.

Also shown in Figure 2 is a linking types extension of A\*f that allows \**f to distinguish
program fragments that are free of heap effects and can then safely be passed to linked A
code. This results in essentially the same extended language \"; the only changes are the

arrow and reference cases of x* and x~ and in terms that should be written by programmers.

We can now develop fully abstract compilers from A\* and A\*®**—rather than A and
At —to \2°f using the following type translation to ensure full abstraction:

{unit) = unit {int) = int {ref ) = ref () {m1 — R ) = {(m1 ) —E; (12))
Properties of Linking Types For any source language Asyc, an extended language AL,
paired with x* and ™ is a linking-types extension if the following properties hold:

Asrc terms are a subset of AL, terms.

K

Asre type T embeds into a A%, type by £t (7).
AL type T projects to a Mg type by £ (77).

For any Ag;c type 7, = (k7 (7)) = 7.

k1 preserves and reflects equivalence: Ve, e,. e %ﬁfﬂc ey T < e; A ey k(7).
Ve,7.e: 7 = e:k (7) when e only contains A\, terms. -

A compiler for A%, should be fully abstract, but it need only compile terms from Agye.

We now consider how these properties play out in the context of the linking-types
extensions above. In Figure 3, we present three programs, A, B, and C, valid in both A\ and
ATt At the type (int — int) — int, all three programs are equivalent in )\, which we
illustrate by putting A, B, C in a single equivalence box. In A, all functions terminate, which
means that calling the argument f zero, one, or two times before discarding the result is
equivalent. However, in A\*®%, A, B, and C are all in different equivalence classes, since f may

increment a counter, which means a context could detect the number of times it was called.
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programA Af :int — int.1
programB Af:int — int.£0; 1
programC Af:int — int.£0;£0;1

(int — RC%int) (int — RC%int) (int — R®int) (int — R®int)
> R%int > R®int > R%int > R®int T1 T2

71 T2

Figure 3 Equivalence classes when giving different linking types to programs.

The top of the diagram shows equivalence classes for A" /\™*%. Here we can see how
equivalences can be changed by annotating these functions with different linking types. Note
that equivalence is only defined at a given type, so we only consider when all three functions
have been given the same linking type.

At the type (int — R°int) — R°int these programs are all equivalent since this linking
type requires that £ be pure. At the type (int — R°int) — R°®int all three programs are in
different equivalence classes, because the linking type allows f to be impure, which could be
used by a context to distinguish the programs. At the type (int — R°int) — R°®int all three
programs are again equivalent. While the type allows the body to be impure, since the argu-
ment f is pure, no difference can be detected. The last linking type (int — R®int) — R°int
is a type that can only be assigned to the program A, because if the argument f is impure
but the result is pure the program could not have called f.

We can see here that xT is the “default” embedding, which has the important property
that it preserves equivalence classes from the original language. Notice that ~T for \ and
ATt both do this, but send the respective source (int — int) — int to different types.

Linking Types for Advanced Languages For space reasons, we have elided discussion of

four additional applications of linking types, which we briefly describe below. (If this paper is

accepted, we will include a more detailed exposition with linking types extensions for A\**%.)
Linearity in libraries: By extending ML-like languages with linking types, we can use
libraries implemented in a language like Rust without violating its affine invariants.
Terminating protocol parsers: For certain tasks, every program should terminate. But
while an HTTP protocol parser should always terminate, the server where it lives better
not. Linking types can allow terminating and nonterminating languages to interact.
Surfacing cost of computation: By introducing linking types for computational cost (e.g.,
space, time) we can facilitate linking with cost-aware languages (e.g., [5, 12, 7]) which are
useful when proving security properties, though difficult for general-purpose programming.
This application of linking types would allow side channels to be incorporated into the
definition of observational equivalence, an issue discussed by D’Silva et al. [9].
Gradual typing: We can add linking types to an un(i)typed language to facilitate sound
linking with a statically typed language.
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3 Bringing Linking Types to Your Language

To understand linking types and the way they interact with real-world languages, we consider
an example of how a language designer would incorporate them and discuss their usefulness
and viability (& la Cardelli [6]).

Day 1: Fully abstract compiler As a first step, the language designer implements and
proves fully abstract a type-directed compiler for her language A. She targets a typed
low-level intermediate language £, using an appropriate type translation to guarantee that
equivalences are preserved. Linking should occur in £, which means the subsequent passes
need not be fully-abstract.

Discussion e Full abstraction is a key part of linking types, as it is required to preserve the
equivalences that programmers rely upon for reasoning. e The representative terms added to
the linking-types-extended language are used in the proof of full abstraction, which essentially

requires showing that target contexts can be back-translated to equivalent source contexts.

e While we use static types in our target to ensure full abstraction— and gain tooling benefits

from it (explored in Day 3)—we can also use dynamic checks when appropriate (e.g. [23, 8]).

e We are currently designing a language like £, which we expect to be similar to a much
more richly typed version of LLVM, such that types could be erased and existing LLVM
code-generation infrastructure could be used (as discussed by Ahmed at SNAPL’15 [1]).

Day 2: Linking with more expressive code A programmers are happy using the above
compiler since they can reason in terms of A semantics, even when using libraries directly
implemented in £ or compiled from other languages. But, soon the language designer’s users
ask to link their code with a B language library with features in £ but not in A, something
that the fully abstract compiler currently prevents.

The compiler writer introduces a linking-types extension to capture the inexpressible
features for her A programmers. She implements a type checker for the fully elaborated
linking types and extends her fully abstract compiler to handle the extended A" types.
Discussion e While the linking types will in general be a new type system, no impact is
seen on type inference, because linking types are never inferred: first the program will have
source types inferred, and then all source types will be lifted to the linking types, using
the programmer-specified annotations where present and the default x* embedding where
annotations are absent.

Day 3: When can components in two languages be linked? Happily able to link with
other languages, the A programmer uses the tooling associated with the A and B compilers
to determine when a B component can be used at a linking point. The tool uses the compiler
to translate the B component’s type 75 to an L type 7¢ and then attempts to back-translate
7, to an A type by inverting the A compiler’s type translation. Should this succeed, the
component can be used at the type 74. This functionality allows the programmer to easily
work on components in both A and B at once while getting cross-language type errors if the
interfaces do not match.

Discussion e This functionality depends critically on the type-directed nature of our compilers
and the presence of types in the low-level intermediate language £, whose types become the
medium through which we can provide useful static feedback to the programmer. e While
linking these components together relies upon shared calling conventions, this is true of any
linking. Currently, cross-language linking often relies upon C calling conventions.

Day 4: Backwards compatibility for programmers At the same time, another programmer

continues to use A, unaware of the A" extension, since linking types are optional annotations.
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At lunch, she learns about linking types and realizes that the C language she uses could
benefit from the £ linking ecosystem. She asks the compiler writer for a C-to-£ compiler.

Discussion e Linking types are entirely opt-in—a programmer can use a language that has
been extended with them and benefit from the compiler tool-chain without knowing anything
about them. Only when she wants to link with code that could violate her source-level
reasoning does she need to deal with linking types. e FFIs are usually considered “advanced
material” in language documentation primarily due to the difficulty of using them safely.
Since linking types enable safe cross-language linking, we hope that linking-type FFIs will
not be considered an advanced topic in language documentation.

Day 5: Backwards compatibility for language designers Never a dull day for the compiler
writer: she starts implementing a fully abstract compiler from C to £, but realizes that £
is not rich enough to capture the properties needed. She extends £ to L£*, and proves fully
abstract the translation from £ to £*. Since full abstraction proofs compose, this means
that she immediately has a fully abstract compiler from A" to £*. She then implements
a fully abstract compiler from C to £*. Programmers can then link A" components and
C components provided that the former do not use C features that cannot be expressed in
A”. Luckily for the compiler writer, the proofs mean that the behavior of A", even in the
presence of linking, was fully specified before and remains so. Hence, A and A" programmers
need not even know about the change from £ to £*.

Discussion e While implementing fully abstract compilers is nontrivial, the linking-types
strategy permits a gradual evolution, not requiring redundant re-implementation and re-proof
whenever changes to the language are made. e More generally, the proofs of full abstraction
mean that the compiler and the target are irrelevant for programmers—behavior is entirely
specified at the level of the (possibly extended by linking types) source.

4 Research Plan and Challenges

We are currently studying the use of linking types to facilitate building multi-language
programs that may consist of components from the following: an idealized ML (essentially
System F with references); a simple linear language; a language with first-class control;
and a terminating language. We plan to develop a richly typed target based on Levy’s
call-by-push-value (CBPV) [19] that can support fully abstract compilation from our linking-
types-extended languages. Zdancewic (personal communication on Vellvin2) has recently
demonstrated a machine equivalence between a variant of CBPV and an LLVM-like SSA-based
IR so this provides a path from our current intended target to a richly typed LLVM.

Realizing such a multi-language programming platform involves a number of challenges.
First, implementing fully abstract compilers is nontrivial, though there has been significant
recent progress by both our group and others that we expect to draw upon [2, 8, 22, 23].
Second, low-level languages such as LLVM and assembly are typically non-compositional
which makes it hard to support high-level compositional reasoning. In recent work, we
have designed a compositional typed assembly language that we think offers a blueprint for
designing other low-level typed IRs [24, 25]. Finally, we have only begun investigating how to
combine different linking-types extensions. The linking-types extensions we are considering
are based on type-and-effect systems, so we believe we can create a lattice of these extensions
analogous to an effect lattice.
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