
Imperative Self-Adjusting Computation

Umut A. Acar ∗ Amal Ahmed Matthias Blume
Toyota Technological Institute at Chicago

{umut,amal,blume}@tti-c.org

Abstract
Self-adjusting computation enables writing programs that can au-
tomatically and efficiently respond to changes to their data (e.g.,
inputs). The idea behind the approach is to store all data that can
change over time in modifiable references and to let computations
construct traces that can drive change propagation. After changes
have occurred, change propagation updates the result of the com-
putation by re-evaluating only those expressions that depend on the
changed data. Previous approaches to self-adjusting computation
require that modifiable references be written at most once during
execution—this makes the model applicable only in a purely func-
tional setting.

In this paper, we present techniques for imperative self-adjusting
computation where modifiable references can be written multiple
times. We define a language SAIL (Self-Adjusting Imperative Lan-
guage) and prove consistency, i.e., that change propagation and
from-scratch execution are observationally equivalent. Since SAIL
programs are imperative, they can create cyclic data structures. To
prove equivalence in the presence of cycles in the store, we formu-
late and use an untyped, step-indexed logical relation, where step
indices are used to ensure well-foundedness. We show that SAIL
accepts an asymptotically efficient implementation by presenting
algorithms and data structures for its implementation. When the
number of operations (reads and writes) per modifiable is bounded
by a constant, we show that change propagation becomes as ef-
ficient as in the non-imperative case. The general case incurs a
slowdown that is logarithmic in the maximum number of such op-
erations. We describe a prototype implementation of SAIL as a
Standard ML library.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.1 [Programming Languages]: Formal Def-
initions and Theory; D.3.3 [Programming Languages]: Language
Constructs and Features; F.2.0 [Analysis of Algorithms and Prob-
lem Complexity]: General; F.3.2 [Semantics of Programming Lan-
guages]: Operational Semantics

General Terms Languages, Design, Algorithms

Keywords Self-adjusting computation, incremental computation,
step-indexed logical relations, imperative programming, change
propagation, memoization, mutable state

∗Acar is supported by a gift from Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

1. Introduction
Self-adjusting computation concerns the problem of updating the
output of a computation while its input undergoes small changes
over time. Recent work showed that a combination of dynamic de-
pendence graphs (Acar et al. 2006c) and a particular form of mem-
oization (Acar et al. 2003) can be combined to update computation
orders of magnitudes faster than re-computing from scratch (Acar
et al. 2006b). The approach has been applied to a number of prob-
lems including invariant checking (Shankar and Bodik 2007), com-
putational geometry and motion simulation (Acar et al. 2006d), and
statistical inference on graphical models (Acar et al. 2007c).

In self-adjusting computation, the programmer stores all data
that can change over time in modifiable references or modifiables
for short. Modifiables are write-once references: programs can read
a modifiable as many times as desired but must write it exactly
once. After a self-adjusting program is executed, the programmer
can change the contents of modifiables and update the computa-
tion by performing change propagation. For efficient change prop-
agation, as a program executes, an underlying system records the
operations on modifiables in a trace and memoizes the function
calls. Change propagation uses the trace, which is represented by a
dynamic dependence graph, to identify the reads of changed mod-
ifiables and re-evaluates them. When re-evaluating a read, change-
propagation re-uses previous computations via memoization.

By requiring that modifiables be written exactly once at the time
of their creation, the approach ensures that self-adjusting programs
are purely functional; this enables 1) inspecting the values of mod-
ifiables at any time in the past, 2) re-using computations via mem-
oization. Since change propagation critically relies on these two
properties, it was not known if self-adjusting computation could be
made to work in an imperative setting. Although purely functional
programming is fully general (i.e., Turing complete), it can be
asymptotically slower than imperative models of computation (Pip-
penger 1997). Also, for some applications (e.g., graphs), imperative
programming can be more natural.

In this paper, we generalize self-adjusting computation to
support imperative programming by allowing modifiables to be
written multiple times. We describe an untyped language, called
SAIL (Self-Adjusting Imperative Language), that is similar to a
higher-order language with mutable references. As in a conven-
tional imperative language, a write operation simply updates the
specified modifiable. A read operation takes the modifiable being
read and the expression (the body of the scoped read) that uses the
contents of the modifiable. To guarantee that all dependencies are
tracked, SAIL ensures that values that depend on the contents of
modifiables are themselves communicated via modifiables by re-
quiring that read operations return a fixed (unit) value. Compared to
a purely functional language for self-adjusting computation, SAIL
is somewhat simpler because it does not have to enforce the write-
once requirement on modifiables. In particular, purely functional
languages for self-adjusting computation make a modal distinc-

tion between stable and changeable computations, e.g., Acar et al.
(2006c), which is not necessary in SAIL.

We describe a Standard ML library for SAIL that allows the
programmer to transform ordinary imperative programs into self-
adjusting programs (Section 2). The transformation requires re-
placing the references in the input with modifiables and annotating
the code with SAIL primitives. As an example, we consider depth-
first-search and topological sorting on graphs. The resulting self-
adjusting programs are algorithmically identical to the standard ap-
proach to DFS and topological sort, but via change propagation
they can respond to changes faster than a from-scratch execution
when the input is changed.

We formalize the operational semantics of SAIL and its change
propagation semantics (Section 3). In the operational semantics,
evaluating an expression returns a value and a trace that records
the operations on modifiables. The semantics models memoization
by using non-determinism: a memoized expression can either be
evaluated to a value (a memo miss) or its trace and result can be
re-used by applying change propagation to the trace of a previous
evaluation (a memo hit).

We prove that the semantics of SAIL is consistent, i.e., that
any two evaluations of the same expressions are observationally
(or contextually) equivalent (Section 4). Since SAIL programs are
imperative, it is possible to construct cycles in the store. This
makes reasoning about equivalence challenging. In fact, in our
prior work (Acar et al. 2007b), we proved consistency for purely
functional self-adjusting computation by taking critical advantage
of the absence of cycles. More specifically, we defined the notion
of equivalence by using lifting operations that eliminated the store
by substituting the contents of locations directly into expressions;
lifting cannot even be defined in the presence of cycles.

Reasoning about equivalence of programs in the presence of
mutable state has long been recognized as a difficult problem. The
problem has been studied extensively starting with ALGOL-like
languages which have local updatable variables but no first-class
references (O’Hearn and Tennent 1995; Sieber 1993; Pitts 1996).
The problem gets significantly harder in the presence of first class
references and dynamic allocation (Pitts and Stark 1993; Stark
1994; Benton and Leperchey 2005) and harder still in the presence
of cyclic stores. We know of only two recent results for proving
equivalence of programs with first-class mutable references and
cyclic stores, a proof method based on bisimulation (Koutavas and
Wand 2006) and another on (denotational) logical relations (Bohr
and Birkedal 2006) (neither of which is immediately applicable to
proving the consistency of SAIL).

We prove consistency for imperative self-adjusting programs
using syntactic logical relations, that is, logical relations based
on the operational semantics of the language (not on denotational
models). We use logical relations that are indexed not by types
(since SAIL is untyped), but by a natural number that, intuitively,
records the number of steps available for future evaluation (Appel
and McAllester 2001; Ahmed 2006). The stratification provided by
the step indices is essential for modeling the recursive functions
(available via encoding fix) and cyclic stores present in the lan-
guage.

We show that SAIL accepts an asymptotically efficient imple-
mentation by describing data structures for supporting its primi-
tives and by giving a change propagation algorithm (Section 5). For
each modifiable we keep all of its different contents, or versions,
over time. The write operations create the versions. For example,
writing the values values 0 and then 5 into the same modifiable
m creates two versions of m. This versioning technique, which is
inspired by previous work on persistent data structures (Driscoll
et al. 1989), enables keeping track of the relationship between read
operations and the values that they depend on. We keep the ver-

signature SELF ADJUSTING =
sig

eqtype ’a mod

val mod: (’a * ’a -> bool) -> ’a mod
val read: ’a mod * (’a -> unit) -> unit
val write: ’a mod -> ’a -> unit
val hashMod:’a mod -> int
val memo: unit -> (int list) -> (unit -> ’a) -> ’a

val init: unit -> unit
val deref: ’a mod -> ’a
val change: ’a mod * ’a -> unit
val propagate: unit -> unit

end

Figure 1. Signature of the library.

sions of a modifiable in a version-set and its readers in a reader-
set. We represent these sets as searchable time-ordered sets that
support various operations such as find, insert, and delete, all in
time logarithmic in the size of the set. Using these data structures,
we describe a change-propagation algorithm that implements the
trace-based change propagation of the SAIL semantics efficiently.
In particular, for computations that write to each modifiable a con-
stant number of times and read each location a constant number of
times, we show that change propagation is asymptotically as effi-
cient as in the non-imperative case. When the number of writes is
not bounded by a constant, then change propagation incurs a log-
arithmic overhead in the maximum number of writes and reads to
any modifiable.

2. Programming with Mutable Modifiables
We give an overview of our framework based on our ML library
and a self-adjusting version of depth-first search on graphs.

2.1 The ML library
Figure 1 shows the signature of our library. The library defines the
equality type for modifiables ’a mod and provides functions to cre-
ate (mod), read (read), write (write), and hash (hashMod) modi-
fiables. For memoization, the library provides the memo function.
We define a self-adjusting program as a Standard ML program that
uses these functions. In addition, the library provides meta func-
tions for initializing the library (init), inspecting and changing
modifiable references (deref, change) and propagating changes
(propagate). Meta functions cannot be used by a self-adjusting
program.

A modifiable reference is created by the mod function that takes
a conservative equality test on the contents of the modifiable and re-
turns an uninitialized modifiable. A conservative equality function
returns false when the values are different but may return true or
false when the values are the same. This equality function is used
to stop unnecessary change propagation by detecting that a write
or change operation does not change the contents of a modifiable.
For each modifiable allocated, the mod function generates a unique
integer tag, which is returned by the hashMod function. The hashes
are used when memoizing function calls. A read takes the modi-
fiable to be read and a reader function, applies the contents of the
modifiable to the reader, and returns unit. By making read oper-
ations return unit, the library ensures that no variables other than
those bound by the readers can depend on the contents of modi-
fiables. This forces readers to communicate by writing to modifi-
able references and makes it possible to track all dependencies by
recording the operations on modifiables.

The memo function creates a memo table and returns a memo-
ized function associated with that memo table. A memoized func-
tion takes a list of arguments and the function body, looks up the
memo table based on the arguments, and computes and stores the
result in the memo table if the result is not already found in it. To

1 datatype node =
2 empty
3 | node of int * bool ref * node ref * node ref

4 fun depthFirstSearch f root =
5 let
6
7 fun dfs rn =
8 case !rn of
9 empty => f (NONE,NONE)
10 | node (id,rv,rn1,rn2) =>
11
12 if !rv then
13 let
14 val () = rf := true
15 val res1 = dfs rn1
16 val res2 = dfs rn2
17 in
18
19 f (SOME id, SOME(res1, res2))
20 end
21 else
22 NONE
23 in
24 dfs root
25 end

1 datatype node =
2 empty
3 | node of int * bool mod * node mod * node mod

4 fun depthFirstSearch eq f root =
5 let
6 val mfun = memo ()
7 fun dfs rn = let val rres = mod eq in read rn (fn n =>
8 case n of
9 empty => write rres (f(NONE,NONE))
10 | node (id,rv,rn1,rn2) =>
11 mfun [id, #rv, #rn1, #rn2, #rres] (fn () =>
12 read rv (fn v => if v then
13 let
14 val () = write rf true
15 val rres1 = dfs rn1
16 val rres2 = dfs rn2
17 in
18 read rres1 (fn res1 => read rres2 (fn res2 =>
19 write rres (f(SOME id, SOME(res1, res2)))))
20 end))
21 else
22 write rres NONE) end
23 in
24 dfs root
25 end

Figure 2. The code for ordinary (left) and self-adjusting (right) depth-first search programs.

facilitate efficient memo lookups, memoized functions must hash
their arguments to integers uniquely. This can be achieved by using
standard boxing or tagging techniques.

Our library does not provide mechanisms for statically or dy-
namically ensuring the correctness of self-adjusting programs, i.e.,
for ensuring that change propagation updates computations cor-
rectly. We instead expect the programmer to adhere to certain
correct-usage requirements. In particular, correct-usage requires
that all the free variables of a memoized function be listed as an ar-
gument to the memoized function and be hashed, and that a mem-
oized function be used to memoize only one function. It may be
possible to enforce these requirements but this may require a sig-
nificant burden on the programmer (Acar et al. 2006a).

2.2 Writing Self-Adjusting Programs
As an example of how modifiables can be used, Figure 2 shows
the complete code for a depth-first-search (DFS) function on a
graph with ordinary references (left) and with modifiable refer-
ences (right). A graph is defined to be either empty or a node con-
sisting of an integer identifier, a boolean visited flag, and two point-
ers to its neighbors. In the non-self-adjusting code, the neighbor
pointers and the visited flag are placed in ordinary references; in
the self-adjusting code, these are placed in modifiable references.

The static depthFirstSearch function takes a visitor func-
tion f and the root of a graph as its arguments and performs a
depth-first-search (dfs) starting at the root by visiting each node
that has not been previously visited. The dfs function visits a node
by allocating a modifiable that will hold the result and reading the
node pointed to by its argument. If the node is empty, then the visi-
tor is applied with arguments that indicate that the node is empty. If
the node is not empty, then the visited flag is read. If the flag is set to
true, then the node was visited before and the function writes NONE
to its result. If the flag is false (the node was not visited before),
then the flag is first set to true, the neighboring nodes are visited re-
cursively, the results of the neighbors along with the identity of the
visited node are passed to the visitor (f) to compute the result, and
the result is written. Since during a DFS, the visited flag starts with
value false and is later set to true, the DFS requires updateable
modifiables.

We transform the static code into self-adjusting code by first
replacing all the references in the input (the graph) with modifi-

1/16

2/7

3/4

5/6 8/15

9/14

10/11 12/13

A

B

D

C

E

G

H

F

1/16

2/13

3/10

11/12 14/15

4/9

5/6 7/8

A

B

D

C

E

G

H

F

Figure 3. A graph before and after insertion of the edge (H,C).

ables. We then replace dereference operations with read opera-
tions. Since the contents of modifiables are accessible only locally
within the body of the read, when inserting a read operation, we
identify the part of the code that becomes the body of the read. In
our example, we insert a read for accessing the visitor flag (line 12).
Since read operations can only return unit, we need to allocate a
modifiable for the result to be written (line 7). To allocate the result
modifiable, we use an equality function on the result type provided
as an argument to the depthFirstSearch function. We finish the
transformation by memoizing the dfs function. This requires cre-
ating a memo function (line 11) and applying it to the recursive
branch of the case statement; since the base case performs con-
stant work, it does not benefit from memoization. For brevity, in
the code, we use # for hashMod.

One application of DFS is topological sort, which requires find-
ing an ordering of nodes where every edge goes from a smaller to a
larger node. As an example, consider the graphs in Figure 3, where
each node is tagged with the first and the last time they were visited
by the DFS algorithm. For node A these are 1 and 16, respectively.
The topological sort of a graph can be determined by sorting the
nodes according to their last-visit time, e.g., Cormen et al. (1990).
In Figure 3, the left graph is sorted as A,B,C,D,E,F,G,H and the
right graph is sorted as A,B,F,G,H,C,D,E. We can compute the

structure SAIL: SELF ADJUSTING = ...
structure Graph =
struct

fun fromFile s = ...
fun node i = ...
fun newEdgeFrom (i) = ...
fun DFSVisitSort = ...

end

fun test (s,i,j) =
let

val = SAIL.init ()
val (root,graph,n) = Graph.fromFile s
val r = depthFirstSearch Graph.DFSVisitSort (root)

val nr = Graph.newEdgeFrom (i)
val () = SAIL.change nr (Graph.node j)
val () = SAIL.propagate ();

in
r

end

Figure 4. Example of changing input and change propagation.

topological sort of a graph by using the depthFirstSearch func-
tion (Figure 2). To do this, we first define the result type and its
equality function, in this case a list consisting of the identifiers of
the nodes in topologically sorted order. Since modifiable references
accept equality, we can use ML’s “equals” operator for comparing
modifiables as follows.
datatype ’a list = nil | cons ’a * (’a list) mod
fun eqList (a,b) =
case (a,b) of
(nil,nil) => true

| (ha::ta,hb::tb) =>ha=hb andalso ta=tb
| => false

We then write a visitor function that concatenates its argument lists
(if any), and then inserts the node being visited at the head of
the resulting list. This ordering corresponds to the topological sort
ordering because a node is added to the beginning of the ordering
after all of its out-edges are traversed. We can sort a graph with
depthFirstSearch by passing the eqList function on lists and
the visitor function.

2.3 Propagation
In self-adjusting computation, after the programmer executes a pro-
gram, she can change the input to the program and update the out-
put by performing change propagation. The programmer can repeat
this change-and-propagate process with different input changes
as many times as desired. Figure 4 shows an example that uses
depthFirstSearch to perform a topological sort. The example
assumes an implementation of a library, SAIL, that supplies prim-
itives for self-adjusting computation and a Graph library that sup-
plies functions for constructing graphs from a file, finding a node,
making an edge starting at a particular node, etc.

The test function first constructs a graph from a file and
then computes its topological sort using depthFirstSearch. The
DFSVisitSort function from the Graph library, whose code we
omit, is a typical visitor that can be used with depthFirstSearch
as described above. After the initial run is complete, the test func-
tion inserts a new edge from node i to node j as specified by its
arguments. To insert the new edge, the function first gets a modifi-
able for inserting the edge at i and then changes the modifiable to
point to node j. The function then performs change-propagation to
update the result. For example, after sorting the graph in Figure 3,
we can insert the edge from H to C and update the topological-sort
by performing change propagation.

2.4 Performance
We show that the self-adjusting version of the standard DFS algo-
rithm responds to changes efficiently. For the proof, we introduce

Values v ::= () | n | x | l | λx. e | (v1, v2) | inl v | inr v
Prim Ops o ::= + | − | = | < | . . .
Exprs e ::= v | o (v1, . . . , vn) | v1 v2 |

mod v | read v as x in e | write v1 ← v2 |
memo e | let x= e1 in e2 | fst v | snd v |
case v of inl x1 ⇒ e1 | inr x2 ⇒ e2

Figure 5. Syntax

some terminology. Let G be an ordered graph, i.e., a graph where
the out-edges are totally ordered. Consider performing a DFS onG
such that the out-edges of each node are visited in the order spec-
ified by their total order. Let T be the DFS-tree of the traversal,
i.e., the tree that consists of the edges (u, v) whose destinations
v are not visited during the time that the edge is traversed. Con-
sider now a graph G′ that is obtained from G by inserting/deleting
an edge. Consider performing DFS on G′ and let T ′ be its DFS-
tree. We define the affected nodes as the nodes of T (or G) whose
paths to the root are different in T and T ′. Figure 3 shows two
example graphs G and G′, where G′ is obtained from G by insert-
ing the edge (H,C). The DFS-trees of these graphs consist of the
thick edges. The affected nodes are C, D, and E, because these are
the only nodes that are accessible through the newly inserted edge
(H,C) from the root A.

Based on these definitions, we prove that DFS takes time pro-
portional to the number of affected nodes. Since the total time will
depend on the visitor (f) that determines the result of the DFS, we
first show a bound disregarding visitor computations. We then con-
sider a particular instantiation of the visitor for performing topolog-
ical sort and show that the same bound holds for this application as
well. For the proofs, which will be given in Section 5.5 after the
change-propagation algorithm has been described, we assume that
each node has constant out-degree.

Theorem 2.1 (DFS Response Time). Disregarding the opera-
tions performed by the visitor, the depthFirstSearch program
responds to changes in time O(m), where m is the number of af-
fected nodes after an insertion/deletion.

Our bound for topological sort is the same as that for DFS, i.e.,
we only pay for those nodes that are affected.

Theorem 2.2 (Topological Sort). Change propagation updates
the topological sort of a graph in O(m) time where m is the
number of affected nodes.

2.5 Implementation
We present techniques for implementing the library efficiently in
Section 5. A prototype implementation of the library is available
on the web page of the first author.

3. The Language
In this section, we present our Self-Adjusting Imperative Language
SAIL. Since our consistency proof does not depend on type safety,
we leave our language untyped. For simplicity, we assume all
expressions to be in A-normal form (Felleisen and Hieb 1992).
Unlike in our previous work where it was necessary to enforce a
write-once policy for modifiable references, we do not distinguish
between stable and changeable computations. This simplifies the
syntax of SAIL considerably. Modifiable references now behave
much like ordinary ML-style references: they are initialized at
creation time and can be updated arbitrarily often by the program.

3.1 Values and expressions
The syntax of the language is shown in Figure 5. Value forms v
include unit (), variables x, integers n, locations l, λ-abstractions

λx. e, pairs of values (v1, v2), and injections inl v and inr v into
a sum.

Expressions e that are not themselves values v can be applica-
tions of primitive operations o (v1, . . . , vn) (where o is something
like +,−, or<), function applications v1 v2, allocation and initial-
ization of modifiable references (mod v), scoped read-operations
read v as x in e that bind the value stored at the location given
by v to variable x and execute e in the scope of x, write-operations
write v1 ← v2 that store v2 into the location given by v1, let-
bindings letx=e1ine2, projections from pairs (fstv and sndv),
and case analysis on sums (casevofinlx1 ⇒ e1 | inrx2 ⇒ e2).
The form memo e marks an expression that is subject to memoiza-
tion: evaluation of e may take advantage of an earlier evaluation of
the same expression, possibly using change propagation to account
for changes to the store.

3.2 Traces
Change propagation requires access to the “history” of an evalua-
tion. A history is represented by a trace, and every evaluation judg-
ment specifies an output trace. The syntax of traces is as follows:
T ::= ε | let T1 T2 | mod l← v | read l→x=v.e T | write l← v

Traces can be empty (ε), combine two sub-traces obtained by
evaluating the two sub-terms of a let-form (let T1 T2), or record
the allocation of a new modifiable reference l that was initialized
to v (mod l ← v). A trace of the form read l→x=v.e T indicates
that reading l produced a value v that was bound to x for the
evaluation of e which produced the sub-trace T . Finally, the trace
write l ← v records that an existing location l’s contents have
been updated to contain the new value v. The only difference
between the traces write l ← v and mod l ← v is that the former
is not counted as an allocation: alloc(write l ← v) = ∅ while
alloc(mod l ← v) = {l}. In general, alloc(T) denotes the set
of locations that appear in mod l ← v within the trace T (formal
definition elided).

3.3 Stores
As mentioned in Section 1, the actual implementation of the store
maintains multiple time-stamped versions of the contents of each
cell. In our formal semantics, the version-tracking store is present
implicitly in the trace: to look up the current version of the contents
of l at a given point of the execution, one can simply walk the global
trace backwards up to the most recent write operation on l.

Formalizing this idea, while possible, would require the seman-
tics to pass around a representation of a global trace representing
execution from the very beginning up to the current program point.
Moreover, such a trace would need more internal structure to be
able to support change propagation.

The alternative formalization that we use here takes advantage
of the following observation: at any given point in time we only
need the current view of the global version-keeping store. We refer
to this view as “the store” because it simply maps locations to
values. Thus, instead of representing the version store explicitly,
our semantics keeps track of the changes to the current view of the
version store by manipulating ordinary stores.

3.4 Operational Semantics
The operational semantics consists of rules for deriving evaluation
judgments of the form σ, e ⇓k v, σ′, T , which should be read as:
“In store σ, expression e evaluates in k steps to value v, resulting
in store σ′. The computation is described by trace T .” Step counts
are irrelevant to the evaluation itself, but we will use them later in
the logical relation we formulate for reasoning about consistency.
The rules for deriving evaluation judgments are shown in Figure 6.

The rule for memo has a premise of the form σ, T yk σ′, T ′.
This is a change propagation judgment and should be read as:

σ, v ⇓0 v, σ, ε
(value)

v = app(o, (v1, . . . , vn))

σ, o (v1, . . . , vn) ⇓1 v, σ, ε
(primop)

v1 = λx. e σ, e[v2/x] ⇓k v3, σ
′, T1

σ, v1 v2 ⇓k+1 v3, σ
′, T1

(apply)

σ, e1 ⇓k1 v1, σ1, T1

σ1, e2[v1/x] ⇓k2 v2, σ2, T2 alloc(T1) ∩ alloc(T2) = ∅
σ, let x= e1 in e2 ⇓k1+k2+1 v2, σ2, let T1 T2

(let)

σ, mod v ⇓1 l, σ[l← v], mod l← v
(mod)

σ, e[σ(l)/x] ⇓k (), σ′, T

σ, read l as x in e ⇓k+1 (), σ′, read l→x=σ(l).e T
(read)

σ, write l← v ⇓1 (), σ[l← v], write l← v
(write)

σ0, e ⇓k0 v, σ′0, T0 σ, T0 yk σ′, T

σ, memo e ⇓k0+k v, σ′, T
(memo)

σ, fst (v1, v2) ⇓1 v1, σ, ε
(fst)

σ, snd (v1, v2) ⇓1 v2, σ, ε
(snd)

σ, e1[v/x1] ⇓k v′, σ′, T

σ, case inl v of inl x1 ⇒ e1 | inr x2 ⇒ e2 ⇓k+1 v′, σ′, T
(case/inl)

σ, e2[v/x2] ⇓k v′, σ′, T

σ, case inr v of inl x1 ⇒ e1 | inr x2 ⇒ e2 ⇓k+1 v′, σ′, T
(case/inr)

Figure 6. Evaluation Rules

“The computation described by T is adjusted in k steps to a new
computation described by T ′ and a corresponding new store σ′.”
The rules for deriving change propagation judgments are shown in
Figure 7. Memoization is modeled (Figure 6) by starting at some
“previous” evaluation of e (in some other store σ0) that is now
adjusted to the current store σ.

Evaluation rules. Values and primitive operations, which are
considered pure, add nothing to the trace (rules value, primop).
Application evaluates the body of the function after substituting
the argument for the formal parameter. The resulting trace is the
one produced while evaluating the body (rule apply). A let-
expression is evaluated by running the two sub-terms in sequence,
substituting the result of the first for the bound variable in the sec-
ond. The trace is the concatenation (using the let-constructor for
traces) of the two sub-traces (rule let). Evaluating mod v picks
a location l, stores v at l, and returns l. This action (including l
and v) is recorded in the trace (rule mod). A read-expression
substitutes the value stored at location to be read for the bound
variable in the body. Evaluating the resulting body must return the
unit value (). The read-operation—including location, bound vari-
able, value read, and body—is recorded in the trace (rule read). A
write-operation modifies the store by associating the location to
be written with the new value. The result of a write is unit. Both
value and location are recorded in the trace (rule write).

Evaluation of a memo-expression is non-deterministic. When
evaluating an expression memoe in a store σ, we can either reuse an
evaluation of e in some arbitrary (“previous”) store σ0—not neces-
sarily the same as the current store σ—provided that the evaluation
can be adjusted to the current store via change propagation, or we
can evaluate e from scratch in the current store σ. The correspond-

σ, ε y0 σ, ε
(empty)

σ, mod l← v y0 σ[l← v], mod l← v
(mod)

σ, write l← v y0 σ[l← v], write l← v
(write)

σ, T1 yk1 σ′, T ′1
σ′, T2 yk2 σ′′, T ′2 alloc(T ′1) ∩ alloc(T ′2) = ∅

σ, let T1 T2 yk1+k2 σ′′, let T ′1 T
′
2

(let)

σ(l) = v σ, T yk σ′, T ′

σ, read l→x=v.e T yk σ′, read l→x=v.e T
′ (read/no ch.)

σ(l) 6= v σ, e[σ(l)/x] ⇓k (), σ′, T ′

σ, read l→x=v.e T yk+1 σ′, read l→x=σ(l).e T
′ (read/ch.)

Figure 7. Change Propagation Rules

ing evaluation rules, memo/hit and memo/miss respectively,
may be written as follows:

σ0, e ⇓ v, σ′0, T0 σ, T0 y σ′, T

σ, memo e ⇓ v, σ′, T
(memo/hit)

σ, e ⇓ v, σ′, T

σ, memo e ⇓ v, σ′, T
(memo/miss)

Our evaluation rule for memo (Figure 6) does not distinguish be-
tween memo hits and memo misses. The high degree of freedom in
the choice of σ0 makes a memo miss a special case of a memo hit:
in the memo-rule, to simulate a memo miss we pick σ0 = σ. If
evaluation of e in σ produces a trace T , then change propagation
of trace T in store σ does nothing (i.e., yields the same σ and T).
Hence, picking σ0 = σ captures the essence of the memo miss—
evaluation proceeds directly in the current store σ, not some other
“previous” store σ0.

The rules fst and snd are the standard projection rules. Pro-
jections are pure and, therefore, add nothing to the trace. Similarly,
rules case/inl and case/inr are the standard elimination rules
for sums. In each case, the trace records whatever happened in the
branch that was taken. The case analysis itself is pure and does not
need to be recorded.

The step counts in each of the evaluation rules are entirely
straightforward—we simply count each operational step as we
would in a small-step operational semantics. The one exception
is the memo rule: notice that according to the rule, memo v would
evaluate to v in zero steps (since evaluation of v in σ0 and change
propagation of the resulting empty trace would both take zero
steps). Intuitively, this reflects a completely arbitrary decision on
our part to treat memo as a coercion (i.e., a zero-step operation)
rather than as an actual operational step. Treating memo as a one-
step operation would work just as well, though our proofs would
have to be adjusted accordingly.

Change-propagation rules. Rule empty is the base case and
deals with the empty trace. The mod- and write-rules re-execute
their respective write operations to the store. There are two possible
scenarios that make this necessary: (1) there may have been a
write operation that altered the contents of the location after it
was originally created or written, or (2) in the rule for memo, the
“original” store σ0 was so different from σ that the location in
question has a different value (or does not even exist) in σ. The

σ : η L def
=

L = η ∪
Sl∈L FL(σ(l)) ∧ dom(σ) ⊇ L ∧

∀L† ⊆ L.
η ⊆ L† ∧ (∀l ∈ L†. FL(σ(l)) ⊆ L†) =⇒ L = L†

Figure 8. Store Reachability Relation

let-rule simply performs change propagation on each of the sub-
traces. The remaining two rules are those for read—one for the
case that there is no change, the other for the case that there is a
change. When the value at the location being read is still the same
as the one recorded in the trace, then change propagation simply
presses on (rule read/noch.). If the value is not the same, then
the old sub-trace is thrown away and the body of the read is re-
evaluated with the new value substituted for the bound variable
(rule read/ch.).

Notice that as long as there is no change, the rules for change-
propagation do not increment the step count, because unchanged
computations have already been accounted for by the memo eval-
uation rule.

Discussion. Our rules are given in a non-deterministic, declar-
ative style. For example, the mod-rule does not place any special
requirements on the location being allocated, i.e., the location could
already exist in the store. For correctness, however, we insist that
all locations allocated during the course of the entire program run
be pairwise distinct. (This is enforced by side conditions on our
let-rules.) Furthermore, allocated locations must not be reachable
from the initial expression (see Section 3.5).

As in our previous work (Acar et al. 2007b), the ability for mod
to allocate an existing (garbage-) location during change propa-
gation is crucial, since otherwise change propagation would not
be able to retain any previous allocations. The ability to allocate
an existing garbage location during ordinary evaluation is not as
important, but disallowing the possibility (e.g., by adding a side-
condition of l 6∈ dom(σ) to the premise of the evaluation rule for
mod) would have two undesirable effects: it would weaken our re-
sult by reducing the number of possible evaluations, and it would
make our formal framework for reasoning about program equiva-
lence more complicated.

Evaluating a read-form returns the unit value. Therefore, the
only way for the body of the read-form to communicate to the rest
of the program is by writing into other modifiable references, or
even possibly the same reference that it read. This convention guar-
antees stability of values and justifies the rule for memo where we
return the value computed during an arbitrary “earlier” evaluation
in some other store σ0. The value so computed cannot actually de-
pend on the contents of σ0. It can, of course, be a location pointing
to values that do depend on σ0, but those will be adjusted during
change propagation.

3.5 Reachability and Valid Evaluations
Consistency holds only for so-called valid evaluations. Informally,
an evaluation is valid if it does not allocate locations reachable
from the initial expression e. Our technique for identifying the
locations reachable from an expression is based on the technique
used by Ahmed et al. (2005) in their work on substructural state.
Let FL(e) be the free locations of e, i.e., those locations that are
subexpressions of e. The locations FL(e) are said to be directly
accessible from e. The store reachability relation σ : η L
(Figure 8) allows us to identify the set of locations L reachable in
a store σ from a set of “root” locations η. The relation σ : η L
requires that the reachable set L include the root locations η as well
as all locations directly accessible from each l ∈ L. It also ensures
that all reachable locations are in σ. Furthermore, it requires that L

be minimal—that is, it ensures that the set L does not contain any
locations not reachable from the roots.

Thus, L is the set of locations reachable from an expression
e in a store σ iff σ : FL(e) L. We define valid evaluations
σ, e ⇓kok v, σ′, T as follows.

Definition 3.1 (Valid Evaluation).

σ, e ⇓kok v, σ
′, T

def
= σ, e ⇓k v, σ′, T ∧
∃L. σ : FL(e) L ∧ L ∩ alloc(T) = ∅

4. Consistency via Logical Relations
In this section, we prove that the semantics of SAIL is consis-
tent—i.e., that the non-determinism in the operational semantics
is harmless—by showing that any two valid evaluations of the
same program in the same store yield observationally (contextu-
ally) equivalent results.

4.1 Contextual Equivalence
A context C is an expression with a hole in it. We write C : (Γ) to
denote that C is a closed context (i.e. FV (C) = ∅) that provides
bindings for variables in the set Γ. Thus, if FV (e) ⊆ Γ, then C[e]
is a closed term. We write σ : η as shorthand for: ∃L. σ : η L.
We say e1 contextually approximates e2 if, given an arbitrary C
that provides bindings for the free variables of both terms, running
C[e1] in a store σ (that contains all the appropriate roots) returns n,
then (1) there exists an evaluation for C[e2] in σ, and (2) all such
evaluations also return n.

Definition 4.1 (Contextual Equivalence).
Let Γ = FV (e1) ∪ FV (e2).

Γ ` e1 ≺ctx e2
def
= ∀C : (Γ). ∀σ, η, n.

η = FL(C) ∪ FL(e1) ∪ FL(e2) ∧ σ : η ∧
σ,C[e1] ⇓ok n,−,− =⇒
(∃v. σ, C[e2] ⇓ok v,−,−) ∧
(∀v. σ, C[e2] ⇓ok v,−,− =⇒ n = v)

Γ ` e1 ≈ctx e2
def
= Γ ` e1 ≺ctx e2 ∧ Γ ` e2 ≺ctx e1

4.2 Proving Consistency
Having defined contextual equivalence, we can be more precise
about what we mean by consistency: if e is a closed program, we
wish to show that ∅ ` e ≈ctx e, which means that if we run C[e]
(whereC is an arbitrary context) twice in the same store σ, then we
get the same result value n.

It is difficult to prove ∅ ` e ≈ctx e directly due to the quan-
tification over all contexts in the definition of ≈ctx . Instead we use
the standard approach of using a logical relation in order to prove
contextual equivalence—that is, we will show that any term e is
logically related to itself (Theorem 4.5), and that the latter implies
that e is contextually equivalent to itself (Theorem 4.6).

Logical relations specify relations on terms, typically via struc-
tural induction on the syntax of types. (Since SAIL is untyped, we
will define a logical relation via induction on (available) steps as
discussed below.) Thus, for instance, logically related functions
take logically related arguments to related results, while logically
related pairs consist of components that are related pairwise. Two
expressions are logically related if either they both diverge, or they
both terminate and yield related values. For any logical relation,
one must first prove the so-called Fundamental Property of the log-
ical relation (also called the Basic Lemma) which says that any
(well-typed) term is related to itself. If the logical relation is in-
tended to be used for contextual equivalence, the next step is to
show that if two terms are logically related, then they are contex-
tually equivalent, which typically follows from the Fundamental
Property. Since our logical relation is intended to be used to prove

consistency, we will show that any term e that is logically related to
itself—by the Fundamental Property of our logical relation, this is
true of every e—is contextually equivalent to itself (i.e., e ≈ctx e).

The two sources of non-determinism in SAIL are allocation and
memoization. Since they differ in nature, we deal with them us-
ing different techniques. The non-determinism caused by allocation
only concerns the identity of locations. We handle this by maintain-
ing a bijection between the locations allocated in different runs of
the same program. We use the meta-variable S to denote sets of
location pairs. We define the following abbreviations:

S1 ≡ { l1 | (l1, l2) ∈ S } S2 ≡ { l2 | (l1, l2) ∈ S }

We define the set of location bijections as follows:

bij (S)
def
= ∀l ∈ S1. ∃!l2 ∈ S2. (l1, l2) ∈ S ∧

∀l ∈ S2. ∃!l1 ∈ S1. (l1, l2) ∈ S
LocBij = { S ∈ 2Locs×Locs | bij (S) }

When both runs execute a mod v, we extend the bijection with
the pair of locations (l1, l2) returned by mod v. Notice that it will
always be possible to prove that the result is a bijection because
valid evaluations cannot reuse reachable locations.

If we start with identical programs (modulo the location bijec-
tion), then they will execute in lock-step until they encounter a
memo, at which point the derivation trees for the evaluation judg-
ments can differ dramatically. There is no way of relating the two
executions directly. Fortunately, this is not necessary, since they
need to be related only after change propagation has brought them
back into sync. A key insight is that at such sync points it is al-
ways possible to establish a bijection between those locations that
are reachable from each of the two running programs. To show
that change propagation does, in fact, bring the two executions into
sync, we prove that each memo hit can be replaced by a regular
evaluation (Section 4.7).

Our logical relation for consistency of SAIL is based on the
step-indexed logical relations for purely functional languages by
Appel and McAllester (2001) and Ahmed (2006). In those models,
the relational interpretation VJτK of a (closed) type τ is a set of
triples of the form (k, v1, v2) where k is a natural number (called
the approximation index or step index) and v1 and v2 are closed
values. Intuitively, (k, v1, v2) ∈ VJτK says that in any computation
running for no more than k steps, v1 approximates (or “looks like”)
v2. Informally, we say that v1 and v2 are related for k steps.

A novel aspect of the logical relation that we present below is
that it is untyped—that is, it is indexed only by step counts, unlike
logical relations in the literature which are always indexed by types
(or in the case of prior step-indexed logical relations—e.g., Appel
and McAllester (2001); Ahmed et al. (2005); Ahmed (2006)—by
both types and step counts).

Another novelty is the way in which our model tracks related-
ness of the stores of the two computations. The intuition is to start
at those variables of each program that point into the respective
stores (i.e., the roots of a tracing garbage collector), and construct
graphs of the reachable memory cells by following pointers. Then
the two program stores are related for k steps if (1) these graphs
are isomorphic, and (2) the contents of related locations (i.e., bi-
jectively related vertices of the graphs) are related for k − 1 steps.
(Since reading a location consumes a step, k − 1 suffices here.)

4.3 Related Values
The value relation V specifies when two values are related. V is a
set of tuples of the form (k, ψ, v1, v2), where k is the step index,
v1 and v2 are closed values, and ψ ∈ LocBij is a local store
description. A set of “beliefs” ψ is a bijection on the locations
directly accessible from v1 and v2 (i.e., FL(v1), FL(v2)). We refer
to the locations in ψ1 and ψ2 as the roots of v1 and v2, respectively.

V = { (k, {}, (), ()) } ∪
{ (k, {}, n, n) } ∪
{ (k, {(l1, l2)}, l1, l2) } ∪
{ (k, ψc, λx. e1, λx. e2) |
∀j < k. ∀ψa, v1, v2.

(j, ψa, v1, v2) ∈ V ∧ (ψc � ψa) defined =⇒
(j, ψc � ψa, e1[v1/x], e2[v2/x]) ∈ C } ∪

{ (k, ψ � ψ′, (v1, v′1), (v2, v′2)) |
(k, ψ, v1, v2) ∈ V ∧ (k, ψ′, v′1, v

′
2) ∈ V } ∪

{ (k, ψ, inl v1, inl v2) | (k, ψ, v1, v2) ∈ V } ∪
{ (k, ψ, inr v1, inr v2) | (k, ψ, v1, v2) ∈ V }

C = { (k, ψs, e1, e2) |
∀j < k. ∀σ1, σ2, ψr,S, v1, σ′1, T1.

σ1, σ2 :k (ψs � ψr) S ∧
σ1, e1 ⇓j v1, σ′1, T1 ∧
S1 ∩ alloc(T1) = ∅ =⇒
(∀v2, σ′2, T2.

σ2, e2 ⇓ v2, σ′2, T2 ∧
S2 ∩ alloc(T2) = ∅ =⇒
∃ψf ,Sf . (k − j, ψf , v1, v2) ∈ V ∧

σ′1, σ
′
2 :k−j (ψf � ψr) Sf ∧

S1
f ⊆ S

1 ∪ alloc(T1) ∧
S2
f ⊆ S

2 ∪ alloc(T2)) }

GJ∅K = { (k, {}, ∅, ∅) }
GJΓ, xK = { (k, ψΓ � ψx, γ1[x 7→ v1], γ2[x 7→ v2]) |

(k, ψΓ, γ1, γ2) ∈ GJΓK ∧
(k, ψx, v1, v2) ∈ V }

Γ ` e1 4 e2
def
= ∀k ≥ 0. ∀ψΓ, γ1, γ2.

(k, ψΓ, γ1, γ2) ∈ GJΓK =⇒
(k, ψΓ, γ1(e1), γ2(e2)) ∈ C

Γ ` e1 ≈ e2
def
= Γ ` e1 4 e2 ∧ Γ ` e2 4 e1

(where Γ = FV (e1) ∪ FV (e2))

Figure 9. Logical Relation

ψ1 � ψ2
def
=

ψ1 ∪ ψ2 if (ψ1 ∪ ψ2) ∈ LocBij

undefined otherwise

Figure 10. Join Local Store Descriptions

The definition of the value relation V is given in Figure 9. The
value () is related to itself for any number of steps. Clearly, no
locations appear as subexpressions of (); hence, the definition dem-
ands an empty local store description {}. Similarly, integers n1 and
n2 are related under the empty store description if they are equal.

Two locations l1 and l2 are related if the local store description
says that they are related. Furthermore, from the values l1 and l2,
the only locations that are directly accessible are, respectively, the
locations l1 and l2 themselves. Hence, the local store description
must be {(l1, l2)}.

The pairs (v1, v
′
1) and (v2, v

′
2) are related for k steps if there ex-

ist local store descriptionsψ andψ′ such that the components of the
pairs are related (i.e., (k, ψ, v1, v2) ∈ V and (k, ψ′, v′1, v

′
2) ∈ V)

and if ψ and ψ′ can be combined into a single set of beliefs (written
ψ � ψ′, see Figure 10). Informally, two local store descriptions ψ
and ψ′ can be combined only if they are compatible; that is, if the
beliefs in ψ do not contradict the beliefs in ψ′, or more precisely, if
the union of the two bijections is also a bijection.

The left (right) injections into a sum inl v1 and inl v2 (inr v1
and inr v2) with local store description ψ are related for k steps
if v1 and v2 are related for k steps with the same local store
description (i.e., (k, ψ, v1, v2) ∈ V).

σ1, σ2 :k ψ S
def
= S ∈ LocBij ∧
∃Fψ : S → LocBij .

S = ψ �
J(l1,l2)∈S Fψ(l1, l2) ∧

dom(σ1) ⊇ S1 ∧ dom(σ2) ⊇ S2 ∧
∀(l1, l2) ∈ S. ∀j < k.

(j, Fψ(l1, l2), σ1(l1), σ2(l2)) ∈ V

Figure 11. Related Stores

Since functions are suspended computations, their relatedness is
defined in terms of the relatedness of computations (Section 4.5).
Two functions λx. e1 and λx. e2 with local store description ψc—
where ψc describes at least the sets of locations directly accessible
from the closures of the respective functions—are related for k
steps if, at some point in the future, when there are j < k steps
left to execute, and there are related arguments v1 and v2 such
that (j, ψa, v1, v2) ∈ V , and the beliefs ψc and ψa are compatible,
then e1[v1/x] and e2[v2/x] are related as computations for j steps.
Note that j must be strictly smaller than k. The latter requirement
is essential for ensuring that the logical relation is well-founded
(despite the fact that it is not indexed by types). Intuitively, j < k
suffices because beta-reduction consumes a step.

Notice that the step-indexed technique of defining a logical re-
lation yields not only a specification of the relation, but also guar-
antees the existence of the relation by making its well-foundedness
explicit.

A crucial property of the relation V is that it is closed under
decreasing step index—intuitively, if v1 “looks like” v2 for upto k
steps, then they should look alike for fewer steps.

Lemma 4.2 (Downward Closed).
If (k, ψ, v1, v2) ∈ V and j ≤ k, then (j, ψ, v1, v2) ∈ V .

4.4 Related Stores
The store satisfaction relation σ1, σ2 :k ψ S (see Figure 11)
says that the stores σ1 and σ2 are related (to approximation k) at
the local store description ψ and the “global” store description S
(where S ∈ LocBij). We motivate the definition of σ1, σ2 :k ψ
S by analogy with a tracing garbage collector. Here ψ correspond
to (beliefs about) the portions of the stores directly accessible from
a pair of values (or multiple pairs of values, when ψ corresponds
to �-ed store descriptions). Hence, informally ψ corresponds to
the (two sets of) root locations. Meanwhile, S corresponds to the
set of reachable (root and non-root) locations in the two stores that
would be discovered by the garbage collector.1 In the definition
of σ1, σ2 :k ψ S, the function Fψ maps each location pair
(l1, l2) ∈ S to a local store description. It is our intention that,
for each pair of locations (l1, l2), Fψ(l1, l2) is an appropriate local
store description for the values σ1(l1) and σ2(l2). Hence, we can
consider (Fψ(l1, l2))

1 as the set of child locations traced from the
contents of l1 in store σ1 (and similarly for (Fψ(l1, l2))

2 and the
contents of l2 in σ2).

Having chosen Fψ , we must ensure that the choice is consistent
with S, which should in turn be consistent with the stores σ1

and σ2. The “global” store description S combines the local store
descriptions of the roots with the local store descriptions of the
contents of every pair of related reachable locations; the implicit
requirement that S is defined ensures that the local beliefs of the
roots and all the (pairs of) store contents are all compatible. The
clauses dom(σ1) ⊇ S1 and dom(σ2) ⊇ S2 require that all
of the reachable locations are actually in the two stores. Finally,
(j, Fψ(l1, l2), σ1(l1), σ2(l2)) ∈ V ensures that the contents of

1 To be precise, our definition requires only that S include the set of reach-
able locations.

locations l1 and l2 (in stores σ1 and σ2, respectively) with the local
store description assigned by Fψ are related (for j < k steps).

Note that we do not require that S be the minimal set of loca-
tions reachable from the roots ψ. Such a requirement can be added
but, as we will explain, is not necessary.

4.5 Related Computations
The computation relation C (see Figure 9) specifies when two
closed terms e1 and e2 (with beliefs ψ, again corresponding to
at least the locations appearing as subexpressions of e1 and e2)
are related for k steps. Informally, C says that if e1 evaluates to
a value v1 in less than k steps and the evaluation is valid, then
given any valid evaluation of e2 to some value v2, it must be that
v1 and v2 are related (with beliefs ψf). More precisely, we pick
two starting stores σ1 and σ2 and a global store description S
such that σ1, σ2 :k (ψs � ψr) S, where ψr is the set of
beliefs about the two stores held by the rest of the computation,
i.e., the respective continuations. If a valid evaluation of (σ1, e1)
(where locations allocated during evaluation are disjoint from those
initially reachable in S1) results in (v1, σ

′
1, T1) in j < k steps, then

given any valid evaluation σ2, e2 ⇓ v2, σ′2, T2 (which may take any
number of steps), the following conditions should hold:

1. There must exist a set of beliefs ψf such that the values v1 and
v2 are related for the remaining (k − j) number of steps.

2. The following two sets of beliefs must be compatible: ψf (what
v1 and v2 believe) and ψr (what the continuations believe—
note that these beliefs remain unchanged).

3. There must exist a set of beliefs Sf about locations reachable
from the new roots (ψf � ψr) such that the final stores σ′1 and
σ′2 satisfy the combined set of local beliefs (ψf � ψr) and the
global beliefs Sf for the remaining k − j steps.

4. The set of reachable locations in σ′1 (and σ′2), given by S1
f (and

S2
f), must be a subset of the locations reachable before evaluat-

ing e1 (respectively e2)—given by S1 (respectively S2)—and
the locations allocated during this evaluation.

As noted earlier, the global store description S is not required to
be the minimal set of locations reachable from the roots (ψs�ψr), it
only needs to include that set. This suffices because S1

f and S2
f only

need to be subsets of S1 and S2 and the locations allocated during
evaluation (alloc(T1) and alloc(T2)). Thus, even though we may
pick larger-than-necessary sets at the beginning of the evaluation,
we can add to them in a minimal way as the two evaluations
progress.

4.6 Related Substitutions and Open Terms
Let Γ = FV (e1) ∪ FV (e2). We write Γ ` e1 4 e2 (pronounced
“e1 approximates e2”) to mean that for all k ≥ 0, if γ1 and γ2

(mapping variables in Γ to closed values) are related substitutions
with beliefs ψΓ (which is the combined local store description for
the values in the range of γ1 and γ2), then γ1(e1) and γ2(e2), with
root beliefs ψΓ, are related as computations for k steps. We write
Γ ` e1 ≈ e2 when e1 approximates e2 and vice versa, meaning
that e1 and e2 are observationally equivalent.

4.7 Memo Elimination
We wish to prove Γ ` e ≈ e from which consistency—the property
that any two valid evaluations of a closed term e in the same store
yield observationally equivalent results—follows as a corollary.
The proof of Γ ` e ≈ e proceeds by induction on the structure
of e (see Theorem 4.5). Unfortunately, in the case of memo e, we
cannot directly appeal to the induction hypothesis. To see why,
consider the special case of the closed term memo e. We must show

VM = { (k, ()) } ∪ { (k, n) } ∪ { (k, l) } ∪
{ (k, λx. e) | ∀j < k. ∀v. (j, v) ∈ VM =⇒

(j, e[v/x]) ∈ CM } ∪
{ (k, (v, v′)) | (k, v) ∈ VM ∧ (k, v′) ∈ VM } ∪
{ (k, inl v) | (k, v) ∈ VM } ∪
{ (k, inr v) | (k, v) ∈ VM }

CM = { (k, e) | ∀j < k. ∀σ0, σ′0, σ, σ
′, v, T, T ′, j1, j2.

σ0, e ⇓j1 v, σ′0, T ∧ σ, T yj2 σ′, T ′ ∧
j = j1 + j2 =⇒
σ, e ⇓≤j v, σ′, T ′ ∧ (k − j, v) ∈ VM }

GMJ∅K = { (k, ∅) }
GMJΓ, xK = { (k, γ[x 7→ v]) | (k, γ) ∈ GMJΓK ∧ (k, v) ∈ VM }

Γ ` e def
= ∀k ≥ 0. ∀γ. (k, γ) ∈ GMJΓK =⇒ (k, γ(e)) ∈ CM

Figure 12. Logical Predicate for Memo Elimination

(k, {}, memo e, memo e) ∈ C. Suppose (1) σ1, σ2 :k {} � ψr S,
(2) σ1, memo e ⇓j v1, σ′1, T1, and (3) S1 ∩ alloc(T1) = ∅, where
j < k. By the induction hypothesis we have ∅ ` e ≈ e and
hence (k, {}, e, e) ∈ C. In order to proceed, we must instantiate
the latter with two related stores (σ1 and σ2 are the only two stores
we know of that are related) and provide a valid evaluation of e in
the first store (i.e., we need σ, e ⇓<k −,−, T where T is such that
S1 ∩ alloc(T) = ∅). From (2), by the operational semantics, we
have σ01, e ⇓j1 v1, σ′01, T01 and σ1, T01 yj2 σ′1, T1, where j =
j1 + j2. But we know nothing about the store σ01 in which e was
evaluated. What we need is a derivation for σ1, e ⇓≤j v1, σ′1, T1.
That is, we must show that evaluation in some store σ01 followed
by change propagation yields the same results as a from-scratch run
in the store σ1.

To prove that each memo hit can be replaced by a regular
evaluation (Lemma 4.4), we define a logical predicate (i.e., a unary
logical relation) for memo elimination. Figure 12 defines VM and
CM as sets of pairs (k, v) and (k, e) respectively, where k is the
step index, v is a closed value, and e is a closed term. Essentially,
(k, e) ∈ CM means that e has the memo-elimination property (i.e.,
if σ0, e ⇓j1 v, σ′0, T and σ, T yj2 σ′, T ′, then σ, e ⇓≤j1+j2

v, σ′, T ′), and if the combined evaluation plus change propagation
consumed j = j1 + j2 steps, then v has the memo-elimination
property for the remaining k − j steps.

Clearly, all values v have the memo-elimination property: since
v is already a value, it evaluates to itself in zero steps, producing
the empty trace, which means that change propagation takes zero
steps and leaves both store and trace unchanged. Since a function is
a suspended computation, we must require that its body also have
the memo-elimination property for one fewer step (see Figure 12).

Lemma 4.3 (Fundamental Property of Logical Predicate for
Memo Elim). If Γ=FV (e), then Γ ` e.

Proof sketch: By induction on the step index k and nested induc-
tion on the structure of e. All cases are straightforward. The only
interesting case is that of read/no ch. where we read a value v out
of the store and then have to use the outer induction hypothesis to
show that v has the memo-elim property for a strictly fewer number
of steps before we can plug v into the body of the read, appealing
to the inner induction hypothesis to complete the proof. 2

Corollary 4.4 (Memo Elimination). Let e be a closed term,
possibly with free locations. If σ0, e ⇓j1 v, σ′0, T and σ, T yj2

σ′, T ′, then σ, e ⇓≤j1+j2 v, σ′, T ′.

4.8 Consistency
For lack of space we have omitted proof details here. Detailed
proofs of all lemmas can be found in our extended technical re-
port (Acar et al. 2007a).

Theorem 4.5 (Fundamental Property of Logical Relation for
Consistency). If Γ=FV (e), then Γ ` e ≈ e.
Proof sketch: By induction on the structure of e. As explained
above (Section 4.7), in the memo case we use Lemma 4.4 before
we can appeal to the induction hypothesis. Other interesting cases
include mod, where the valid evaluation requirement (that the eval-
uation not allocate locations reachable from the initial expression)
is critical in order to extend the bijection on locations; write, where
the fact that the locations l1 and l2 being written to are reachable
from the initial expression guarantees that (l1, l2) is already in the
bijection; and read, where we need to know that the values be-
ing read are related, which we can conclude from the fact that the
locations being read are reachable and related, together with the
fact that related locations have related contents which follows from
store relatedness. 2

Theorem 4.6 (Consistency). If Γ=FV (e), then Γ ` e ≈ctx e.

Let us write ⇓k∅ instead of ⇓k for evaluation judgments that have
at least one derivation where every use of the memo rule picks
σ0 = σ. Such a derivation describes an evaluation without memo
hits, i.e., that of an ordinary imperative program. Since memo
elimination (Lemma 4.4) can be applied repeatedly until no more
memo-hits remain, we obtain the following result, which can be
seen as a statement of correctness since it relates the self-adjusting
semantics to an ordinary non-adjusting semantics:

Lemma 4.7 (Complete Memo Elimination). Let e be a closed
term, possibly with free locations. If σ, e ⇓k v, σ′, T , then σ, e ⇓≤k∅
v, σ′, T ′.

5. Implementation
We describe data structures and algorithms for implementing SAIL.

5.1 Data Structures
We use order-maintenance, searchable ordered-sets, and standard
priority-queue data structures.

Order Maintenance (Time Stamps). An order-maintenance data
structure maintains a set of time-stamps while supporting all of the
following operations in constant time: insert a newly created time-
stamp after another, delete a time stamp, and compare two time
stamps (Dietz and Sleator 1987).

Searchable Time-Ordered Sets. A time-ordered set data structure
that supports the following operations.

• new: return an empty set.
• build S: allocate and return a data structure containing all the

elements in the set S.
• insert (x, t): insert the element x into the set at time t.
• delete (x, t): delete the element x with time t from the set.
• find (t): return the earliest element (if any) in the set at time t

or later.
• prev (t): return the element (if any) in the set preceding t.

If a data structure contains no more than one element with
a given time-stamp, then we can support all operations except
for build in logarithmic time (in the size of the set) by using a
balanced binary search tree keyed by the time-stamps. If the size of
the set is bounded by a constant, then we can support all operations

X A @ 0.0

2.0--2.5

C@ 8.0

3.0--3.5

4.0--4.5

8.0--8.5

8.5--9.0

0.0 8.0

CA

X A @ 0.0

2.0--2.5

B @4.0 C@ 8.0

3.0--3.5

4.0--4.5 8.0--8.5

8.5--9.0

0.0 4.0 8.0

CA B

Figure 13. A modifiable, its writes and reads before (top) and after
performing a write (bottom).

in constant time by using a simple representation that keeps all
elements in a list.

5.2 The Primitives
To support the self-adjusting computation primitives we maintain a
global time line and a global priority queue. The time line is an in-
stance of an order-maintenance data structure with current-time
pointing to the “current time” of the computation. During the ini-
tial run, the current-time is always the last time stamp, but during
change propagation it can be any time in the past. During evalua-
tion and change propagation, we advance the time by inserting a
new time stamp t immediately after current-time and setting the
current time to t. In addition to the current-time, we also main-
tain a time stamp called end-of-memo for memoization purposes.
For change propagation, we maintain a global priority queue that
contains the affected readers prioritized by their start time (we de-
fine readers more precisely below).

Modifiable References. We represent a modifiable reference as
a triple consisting of a version-set, a reader-set, and an equality
function. The version-set and the reader-set are both instances
of searchable, time-ordered sets. The version set contains all the
different contents of the modifiable over time—that is, it contains
pairs (v, t) consisting of a value v and a time stamp t. The reader
set of a modifiable l contains all the read operations whose source
is l. More precisely, the reader set contains readers, each of which
is a triple (ts, te, f) consisting of a start time ts, end time te, and a
function f corresponding to the body of the read operation.

Based on this representation, the operations on modifiable ref-
erences can be performed as follows.

mod eq: Create an empty version-set and an empty reader-set.
Return a pointer to the triple consisting of the equality function
eq, the version-set, and the reader-set. Since pointers in ML are
equality types, so are modifiables—they can be compared by
using ML’ s “equal” operator.

read l f : Identify the version (v, tv) of the modifiable being read
l that comes immediately before current-time by performing
a combination of find and prev operations on the version set.
Advance time to a new time stamp ts. Apply the body of the
read f to v. When f returns, advance time again to a new time-
stamp te. Insert the reader r consisting of the body and the time
interval (ts, te) into the reader set of the modifiable being read.

write l v: Advance time to a new tw. Create a new version with
the value v being written at time tw. Insert it into the modifiable
l being written. Since creating a new version for l can change
the value that further reads of l may access, it can affect the
readers whose start time comes after tw but before the next
version. To identify the affected readers, we check first that
the value v being written is different than that of the previous
version by using the equality test of l; if not, then no readers are
affected. Otherwise, we find the readers that come at or after tw
by repeatedly performing find operations on the reader set of l;
we stop when we find a reader that comes after the next version.
We then delete these readers from the reader set and insert them
into the priority queue of affected readers. Note that during the
initial run, all writes take place at the most recent time. Thus,
there are no affected readers.

deref l: Identify the version (v, t) of the dereferenced modifiable
l at the current-time by using a find operation and return v.

change l v: Identify the earliest version (v′, t) of the changed
modifiable l (at the beginning of time) by using a find oper-
ation, change the value of this version to v. If v is equal to v′,
then the change does not affect the readers of l. Otherwise, in-
serts all the readers of the initial version into the priority queue.
The readers can be found by finding the next version (if any)
and inserting all the readers between the two versions.

Figure 13 illustrates a particular representation of modifiables
assuming that time stamps are real numbers and time-ordered sets
are represented as sorted lists. The modifiable x points to a version
list (versions are drawn as squares) consisting of versions at the
specified write; the versions are sorted with respect to their times.
Each version points to a reader list (readers are drawn as diamonds)
whose start and end times are specified. The readers stored in the
reader list of a version are the ones that read that version; they
are sorted with respect to their start times. Thus, all the readers
take place between the time of the version and the time of the next
version. For example, in the top figure, all readers of version A take
place between times 0.0 and 8.0; the readers of version C take
place after 8.0. The bottom figure illustrates how the reads may
be arranged if we create a new version B at time 4.0. When this
happens the reader that starts at time 4.0 will become affected and
will be inserted into the priority queue.

Memoization and Change Propagation. Figure 14 shows the
pseudo code for memoization and change propagation. These oper-
ations are based on an undo function for rolling back the effects of
a computation between two time stamps.

The undo function takes a start and an end time-stamp, ts and
te respectively, and undoes the computation between ts and te by
deleting all the versions, readers, memo entries, and time stamps
between ts and te. For each time stamp t between ts and te, it
checks if there is a version, reader, or memo entry at t. To delete
a reader starting at t, we drop it from both its reader set and the
queue (if it was inserted into the priority queue). To delete a memo

undo (ts, te) =
for each t. ts < t < te do

if there is a version v = (vt, t) then
t′ ← time of successor(v)
delete version v from its version-set
R ← {r | (t1, t2, f) is a reader ∧ t < t1 < t′}
for each r ∈ R do

delete r from its reader set
if there is a reader r = (t, ,) then

delete r from its readers-set and from Q
if there is a memo entry m = (t, ,) then

delete m from its table
delete t from time-stamps

memo () =
let

table ← new memo table
fun mfun key f =

case (find (table, key, now)) of
NONE =>
t1 ← advance-time ()
v ← f ()
t2 ← advance-time ()
insert (v, t1, t2) into table
return v

SOME (v, t1, t2) =>
undo (current-time,t1)
propagate (t2)
return v

in
mfun

end

propagate (t) =
while Q 6= ∅ do

(ts, te, f)← checkMin (Q)
if ts < t then

deleteMin (Q)
current-time ← ts
tmp ← end-of-memo
end-of-memo ← te
f ()
undo (current-time, te)
end-of-memo ← tmp

else
return

Figure 14. Pseudo code for undo, memo, and propagate.

entry that starts at t, we remove it from the memo table. Deleting a
version is more complicated because it can affect the reads that
come after it by changing the value that they read. To delete a
version (v, t) of a modifiable l at time t, we first identify the time
t′ of the earliest version of l that comes after it. (If none exists, then
t′ will be t∞.) We then find all readers between t and t′ and insert
them into the priority queue; Since they may now read a different
value than they did before, these reads are affected by the deletion
of the version.

To create memoized functions, the library provides a memo
primitive. A memoized function has access to a memo table for
storing and re-using results. Each call takes the list of the argu-
ments of the client function (key) and the client function itself.
Before executing the client function, a memo lookup is performed.
If no result is found, then a start time stamp ts is created, the client
is run, an end time stamp te is created, and the result along with in-
terval (ts, te) is stored in the memo table. If a result is found, then
computations between the current time and the start of the memo-
ized computation are undone, a change-propagation is performed
on the computation being re-used, and the result is returned. A
memo lookup succeeds if and only if there is a result in the memo
table whose key is the same key as that of the current call and
whose time interval is nested within the current time interval de-
fined by the current-time and end-of-memo. This lookup rule
is critical to correctness. Informally, it ensures that side-effects are
incorporated into the current computation accurately. (In the for-

mal semantics, it corresponds to the integration of the trace of the
re-used computation into the current trace.)

Undoing the computation between current-time and the start
of the memoized computation serves some critical purposes: (1)
it ensures that all versions read by the memoized computation are
updated, and (2), it ensures that all computations that contain this
computation are deleted and, thus, cannot be re-used.

The change propagation algorithm takes a queue of affected
readers (set up by change operations) and processes them until
the queue becomes empty. The queue is prioritized with respect
to start time so that readers are processed in correct chronological
order. To process a reader, we set current-time to the start
time of the reader ts, remember the end-of-memo in a temporary
variable, and run the body of the reader. After the body returns, we
undo the computation between the current time and te and restore
end-of-memo.

5.3 Relationship to the Semantics
A direct implementation of the semantics of SAIL (Section 3) is not
efficient because change propagation relies on a complete traversal
of the trace 1) to find the affected readers, and 2) to find the
version of a modifiable at a given time during the computation and
update all versions correctly. To find the versions and the affected
readers quickly, the implementation maintains the version-set and
the readers-set of each modifiable in a searchable time-ordered set
data structure. By using these data structures and the undo function,
the implementation avoids a complete traversal of the trace during
change propagation.

The semantics of SAIL does not specify how to find memoized
computations for re-use. In our implementation, we remember the
results and the time frames of memoized computations in a memo
table and re-use them when possible. For a memoized computation
to be re-usable, we require its time-frame to fall within the interval
defined by current-time and end-of-memo. This ensures that
when a memoized computation is re-used, the write operations per-
formed by the computation are available in the current store. When
we re-use a memoized computation, we delete the computations
between the current-time and the beginning of the memoized
computation. This guarantees that any computation is re-used at
most once (by deleting all other computations that may contain it)
and updates the versions of modifiables.

The semantics of SAIL uses term equality to determine whether
a reader is affected or not. Since in ML we do not have access to
such equality checks, we rely on user-provided equality tests. Since
modifiables are equality types, the user can use ML’s “equals”
operator for comparing them.

5.4 Asymptotic Complexity
We analyze the asymptotic complexity of self-adjusting computa-
tion primitives. For the analysis, we distinguish between an initial-
run, i.e., a from-scratch run of a self-adjusting program, and change
propagation. Due to space constraints, we omit the proofs of these
theorems and make them available separately (Acar et al. 2007a).

Theorem 5.1 (Overhead). All self-adjusting computation primi-
tives can be supported in expected constant time during the initial
run, assuming that all memo functions have unique sets of keys.
The expectation is taken over internal randomization used for rep-
resenting memo tables.

For the analysis of change propagation, we define several per-
formance measures. Consider running the change-propagation al-
gorithm, and let A denote the set of all affected readers, i.e., the
readers that are inserted into the priority queue. Some of the af-
fected readers are re-evaluated and the others are deleted; we refer
to the set of re-evaluated readers asAe and the set of deleted readers

as Ad. For a re-evaluated reader r ∈ Ae, let |r| be its re-evaluation
time complexity assuming that all self-adjusting primitives take
constant time. Note that a re-evaluated r may re-use part of a pre-
vious computation via memoization and, therefore, take less time
than a from-scratch re-execution. Let nt denote the number of time
stamps deleted during change propagation. Let nq be the maximum
size of the priority queue at any time during the algorithm. Let nrw
denote the maximum number of readers and versions (writes) that
each modifiable may have.

Theorem 5.2 (Change Propagation). Change propagation takes

O

|A| lognq + |A| lognrw + nt lognrw +

X
r∈Ae

|r| lognrw

!
time.

For a special class of computations, where there is a constant
bound on the number of times each modifiable is read and written,
i.e., nrw = O(1), we have the following corollary.

Corollary 5.3 (Change Propagation with Constant Reads &
Writes). In the presence of a constant bound on the number of
reads and writes per modifiable, change propagation takes

O

|A| lognq +

X
r∈Ae

|r|

!
.

amortized time where the amortization is over a sequence of change
propagations.

5.5 Complexity of Depth First Search
We prove the theorems from Section 2 for DFS and topological-
sorting. Both theorems use the fact that the DFS algorithm shown
in Figure 2 reads from and writes to each modifiable at most once,
if the visitor function does the the same. Since initializing a graph
requires writing to each modifiable at most once, an application that
constructs a graph and then performs a DFS with a single-read and
single-write visitor reads from each modifiable once and writes to
each modifiable at most twice.

Theorem 5.4 (DFS). Disregarding read operations performed
by the visitor function and the reads of the values returned by
the visitor function, the depthFirstSearch program responds to
changes in time O(m), where m is the number of affected nodes
after an insertion/deletion.

Proof. Let G be a graph and T be its DFS-tree. Let G′ be a graph
obtained from G by inserting an edge (u, v) into G. The first
read affected by this change will be the read of the edge (u, v)
performed when visiting u. There are a few cases to consider. If
v has been visited, then v will not be visited again and change
propagation will complete. If v has not been visited, then it will
be visited now and the algorithm will start exploring out from v by
traversing its out-edges. Since all of these out-edge traversals will
be writing their results into newly allocated destinations, none of
these visits will cause a memo match. Since each visited node now
has a different path to the root of the DFS tree that passes through
the new edge (u, v), each node visited during this exploration
process is affected. Since each visit takes constant time, this will
require a total of O(m) time. After the algorithm completes the
exploration of the affected nodes, it will return to v and then to
u. From this point on, there will be no other executed reads and
change propagation will complete. Since the only read that is ever
inserted into the queue is the one that corresponds to the edge
(u, v), the queue size will not exceed one. By Theorem 5.2, the
total time for change propagation is O(m). The case for deletions
is symmetric.

We show that the same bound holds for topological sort, which
is an application of DFS. For computing the topological sort of a
graph with DFS, we use a visitor function that takes as arguments
the topological sorts of the subgraph originating at each neighbor of
a node u, concatenates them and adds u to the head of the resulting
list and returns that list. These operations can be performed in
constant time by writing to the tails of the lists involved. Since a
modifiable ceases to be at a tail position after a concatenation with
a non-empty list, each modifiable in the output list is written at
most once by the visitor function. Including the initialization, the
total number of writes to each modifiable is bounded by two.

Theorem 5.5 (Topological Sort). Change propagation updates
the topological sort of a graph in O(m) time where m is the
number of affected nodes.

Proof. Consider change propagation after inserting an edge (u, v).
Since the visitor function takes constant time, the traversal of the
affected nodes takes O(m) time. After the traversal of the affected
nodes completes, depthFirstSearch will return a result list that
starts with the node u. Since this list is equal to the list that is
returned in the previous execution based on the equality tests on
modifiable lists (Section 2), it will cause no more reads to be re-
executed, and change propagation completes.

6. Related Work
The problem of enabling computations to respond to changes auto-
matically has been studied extensively. Most of the early work took
place under the title of incremental computation. Here we review
the previously proposed techniques that are based on dependence
graphs and memoization and refer the reader to the bibliography
of Ramalingam and Reps (1993) for other approaches such as those
based on partial evaluation, e.g., Field and Teitelbaum (1990); Sun-
daresh and Hudak (1991).

Dependence-graph techniques record the dependences between
data in a computation, so that a change-propagation algorithm can
update the computation when the input is changed. Demers, Reps,
and Teitelbaum (1981) and Reps (1982) introduced the idea of
static dependence graphs and presented a change-propagation al-
gorithm for them. The main limitation of static dependence graphs
is that they do not permit the change-propagation algorithm to up-
date the dependence structure. This significantly restricts the types
of computations to which static-dependence graphs can be applied.
For example, the INC language (Yellin and Strom 1991), which
uses static dependence graphs for incremental updates, does not
permit recursion. To address this limitation, Acar, Blelloch, and
Harper (2006c) proposed dynamic dependence graphs (or DDGs),
presented language-techniques for constructing DDGs as programs
execute, and showed that change-propagation can update the de-
pendence structure as well as the output of the computation effi-
ciently. The approach makes it possible to transform purely func-
tional programs into self-adjusting programs that can respond to
changes to its data automatically. Carlsson (2002) gave an imple-
mentation of the approach in the Haskell language. Further research
on DDGs showed that, in some cases, they can support incremen-
tal updates as efficiently as special-purpose algorithms (Acar et al.
2006c, 2004).

Another approach to incremental computation is based on mem-
oization, where we remember function calls and reuse them when
possible (Bellman 1957; McCarthy 1963; Michie 1968). Pugh
(1988) and Pugh and Teitelbaum (1989) were the first to apply
memoization (also called function caching) to incremental com-
putation. One motivation behind their work was the lack of a
general-purpose technique for incremental computation—static-
dependence-graph techniques that existed then applied only to

certain computations (Pugh 1988). Since Pugh and Teitelbaum’s
work, other researchers investigated applications of various kinds
of memoization to incremental computation (Abadi et al. 1996; Liu
et al. 1998; Heydon et al. 2000; Acar et al. 2003).

Until recently dependence-graph based techniques and memo-
ization were treated as two independent approaches to incremental
computation. Recent work (Acar et al. 2006b) showed that there is,
in fact, an interesting duality between DDGs and memoization in
the way that they provide for result re-use and presented techniques
for combining them. Other work (Acar et al. 2007b) presented a se-
mantics for the combination and proved that change propagation is
consistent with respect to a standard purely functional semantics.
The work on this paper builds on these findings. Initial experimen-
tal results based on the combination of DDGs and memoization
show the combination to be effective in practice for a reasonably
broad range of applications (Acar et al. 2006b).

Self-adjusting computation based on DDGs and memoization
has recently been applied to other problems. Shankar and Bodik
(2007) gave an implementation of the approach in the Java lan-
guage that targets invariant checking. They show that the approach
is effective in speeding up run-time invariant checks significantly
compared to non-incremental approaches. Other applications of
self-adjusting computation include motion simulation (Acar et al.
2006d), hardware-software codesign (Santambrogio et al. 2007),
and machine learning (Acar et al. 2007c).

7. Conclusions
Self-adjusting computation has been shown to be effective for a
reasonably broad range of applications where computation data
changes slowly over time. Previously proposed techniques for self-
adjusting computation, however, were applicable only in a purely
functional setting. In this paper, we introduce an imperative pro-
gramming model for self-adjusting computation by allowing mod-
ifiable references to be written multiple times.

We develop a set of primitives for imperative self-adjusting
computation and provide implementation techniques for support-
ing these primitives. The key idea is to maintain different versions
that modifiables take over time and keep track of dependences be-
tween versions and their readers. We prove that the approach can
be implemented efficiently (essentially with the same efficiency as
in the purely functional case) when the number of reads and writes
of the modifiables is constant. In the general case, the implementa-
tion incurs a logarithmic-time overhead in the number of reads and
writes per modifiable. As an example, we consider the depth-first
search (DFS) problem on graphs and show that it can be expressed
naturally. We show that change propagation requires time propor-
tional to the number of nodes whose paths to the root of the DFS
tree changes after insertion/deletion of an edge.

Since imperative self-adjusting programs can write to memory
without any restrictions, they can create cyclic data structures mak-
ing it difficult to prove consistency, i.e., that the proposed tech-
niques respond to changes correctly. To prove consistency, we for-
mulate a syntactic logical relation and show that any two evalu-
ations of an expression e.g., a from-scratch evaluation or change
propagation, are contextually equivalent. An interesting property
of the logical relation is that it is untyped and is indexed only by
the number of steps available for future evaluation. To handle the
unobservable effects of non-deterministic memory allocation, our
logical relations carry location bijections that pair corresponding
locations in the two evaluations.

Remaining challenges include giving an improved implementa-
tion and a practical evaluation of the proposed approach, reducing
the annotation requirements by simplifying the primitives or devel-
oping an automatic transformation from static/ordinary into self-
adjusting programs that can track dependences selectively.

References
Martin Abadi, Butler W. Lampson, and Jean-Jacques Levy. Analysis and

caching of dependencies. In Proceedings of the International Confer-
ence on Functional Programming (ICFP), pages 83–91, 1996.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization.
In Proceedings of the 30th Annual ACM Symposium on Principles of
Programming Languages (POPL), 2003.

Umut A. Acar, Guy E. Blelloch, Robert Harper, Jorge L. Vittes, and Mav-
erick Woo. Dynamizing static algorithms with applications to dynamic
trees and history independence. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2004.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat
Tangwongsan. A library for self-adjusting computation. Electronic
Notes in Theoretical Computer Science, 148(2), 2006a. Also in Pro-
ceedings of the ACM-SIGPLAN Workshop on ML. 2005.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan.
An experimental analysis of self-adjusting computation. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2006b.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional
programming. ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(6):990–1034, 2006c.

Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Jorge L. Vittes.
Kinetic algorithms via self-adjusting computation. In Proceedings of
the 14th Annual European Symposium on Algorithms (ESA), pages 636–
647, September 2006d.

Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-
adjusting computation. Technical Report TR-2007-17, Department of
Computer Science, University of Chicago, November 2007a.

Umut A. Acar, Matthias Blume, and Jacob Donham. A consistent seman-
tics of self-adjusting computation. In Proceedings of the 16th Annual
European Symposium on Programming (ESOP), 2007b.

Umut A. Acar, Alexander Ihler, Ramgopal Mettu, and Özgür Sümer. Adap-
tive bayesian inference. In Neural Information Systems (NIPS), 2007c.

Amal Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In Proceedings of the 15th Annual European Sympo-
sium on Programming (ESOP), pages 69–83, 2006.

Amal Ahmed, Matthew Fluet, and Greg Morrisett. A step-indexed model
of substructural state. In Proceedings of the 10th ACM SIGPLAN
International Conference on Functional programming (ICFP), pages
78–91, 2005.

Andrew W. Appel and David McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 23(5):657–683, Septem-
ber 2001.

Richard Bellman. Dynamic Programming. Princeton University Press,
1957.

Nick Benton and Benjamin Leperchey. Relational reasoning in a nominal
semantics for storage. In Proceedings of the 7th International Confer-
ence on Typed Lambda Calculi and Applications (TLCA), pages 86–101,
2005.

Nina Bohr and Lars Birkedal. Relational reasoning for recursive types and
references. In Proceedings of the 4th Asian Symposium on Programming
Languages and Systems (APLAS), 2006.

Magnus Carlsson. Monads for incremental computing. In Proceedings
of the 7th ACM SIGPLAN International Conference on Functional pro-
gramming (ICFP), pages 26–35. ACM Press, 2002.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. MIT Press/McGraw-Hill, 1990.

Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental evaluation
of attribute grammars with application to syntax directed editors. In
Proceedings of the 8th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 105–116, 1981.

P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th ACM Symposium on Theory of Computing
(STOC), pages 365–372, 1987.

James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. Journal of Computer and System
Sciences, 38(1):86–124, February 1989.

Matthias Felleisen and Robert Hieb. A revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
103(2):235–271, 1992.

J. Field and T. Teitelbaum. Incremental reduction in the lambda calculus.
In Proceedings of the ACM ’90 Conference on LISP and Functional
Programming, pages 307–322, June 1990.

Allan Heydon, Roy Levin, and Yuan Yu. Caching function calls using pre-
cise dependencies. In Proceedings of the 2000 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI),
pages 311–320, 2000.

Vasileios Koutavas and Mitchell Wand. Small bisimulations for reason-
ing about higher-order imperative programs. In Proceedings of the
33rd Annual ACM Symposium on Principles of Programming Languages
(POPL), 2006.

Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Static caching for in-
cremental computation. ACM Transactions on Programming Languages
and Systems, 20(3):546–585, 1998.

John McCarthy. A Basis for a Mathematical Theory of Computation.
In P. Braffort and D. Hirschberg, editors, Computer Programming and
Formal Systems, pages 33–70. North-Holland, Amsterdam, 1963.

D. Michie. ’Memo’ functions and machine learning. Nature, 218:19–22,
1968.

Peter W. O’Hearn and Robert D. Tennent. Parametricity and local variables.
Journal of the ACM, 42(3):658–709, May 1995.

Nicholas Pippenger. Pure versus impure lisp. ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(2):223–238, 1997.

Andrew M. Pitts. Reasoning about local variables with operationally-based
logical relations. In Proceedings of the IEEE Symposium on Logic in
Computer Science (LICS), 1996.

Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or: What’s new? In
Mathematical Foundations of Computer Science, volume 711 of LNCS,
pages 122–141. Springer-Verlag, 1993.

William Pugh. Incremental computation via function caching. PhD thesis,
Department of Computer Science, Cornell University, August 1988.

William Pugh and Tim Teitelbaum. Incremental computation via function
caching. In Proceedings of the 16th Annual ACM Symposium on Princi-
ples of Programming Languages (POPL), pages 315–328, 1989.

G. Ramalingam and T. Reps. A categorized bibliography on incremental
computation. In Proceedings of the 20th Annual ACM Symposium on
Principles of Programming Languages (POPL), pages 502–510, 1993.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-
directed editors. In Proceedings of the 9th Annual Symposium on Prin-
ciples of Programming Languages (POPL), pages 169–176, 1982.

Marco D Santambrogio, Vincenzo Rana, Seda Ogrenci Memik, Umut A.
Acar, and Donatella Sciuto. A novel soc design methodolofy for com-
bined adaptive software descripton and reconfigurable hardware. In
IEEE/ACM International Conference on Computer Aided Design (IC-
CAD), 2007.

Ajeet Shankar and Rastislav Bodik. Ditto: Automatic incrementalization
of data structure invariant checks (in Java). In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming language Design and
Implementation (PLDI), 2007.

Kurt Sieber. New steps towards full abstraction for local variables. In ACM
SIGPLAN Workshop on State in Programming Languages, 1993.

Ian D. B. Stark. Names and Higher-Order Functions. Ph. D. dissertation,
University of Cambridge, Cambridge, England, December 1994.

R. S. Sundaresh and Paul Hudak. Incremental compilation via partial
evaluation. In Conference Record of the 18th Annual ACM Symposium
on Principles of Programming Languages (POPL), pages 1–13, 1991.

D. M. Yellin and R. E. Strom. INC: A language for incremental computa-
tions. ACM Transactions on Programming Languages and Systems, 13
(2):211–236, April 1991.

