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Gradually typed languages are designed to support both dynamically typed and statically typed programming

styles while preserving the benefits of each. While existing gradual type soundness theorems for these

languages aim to show that type-based reasoning is preserved when moving from the fully static setting to a

gradual one, these theorems do not imply that correctness of type-based refactorings and optimizations is

preserved. Establishing correctness of program transformations is technically difficult, because it requires

reasoning about program equivalence, and is often neglected in the metatheory of gradual languages.

In this paper, we propose an axiomatic account of program equivalence in a gradual cast calculus, which

we formalize in a logic we call gradual type theory (GTT). Based on Levy’s call-by-push-value, GTT gives

an axiomatic account of both call-by-value and call-by-name gradual languages. Based on our axiomatic

account we prove many theorems that justify optimizations and refactorings in gradually typed languages.

For example, uniqueness principles for gradual type connectives show that if the βη laws hold for a connective,

then casts between that connective must be equivalent to the so-called “lazy” cast semantics. Contrapositively,

this shows that “eager” cast semantics violates the extensionality of function types. As another example, we

show that gradual upcasts are pure functions and, dually, gradual downcasts are strict functions. We show the

consistency and applicability of our axiomatic theory by proving that a contract-based implementation using

the lazy cast semantics gives a logical relations model of our type theory, where equivalence in GTT implies

contextual equivalence of the programs. Since GTT also axiomatizes the dynamic gradual guarantee, our model

also establishes this central theorem of gradual typing. The model is parametrized by the implementation of

the dynamic types, and so gives a family of implementations that validate type-based optimization and the

gradual guarantee.
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1 INTRODUCTION
Gradually typed languages are designed to support a mix of dynamically typed and statically typed

programming styles and preserve the benefits of each. Dynamically typed code can be written

without conforming to a syntactic type discipline, so the programmer can always run their program

interactively with minimal work. On the other hand, statically typed code provides mathematically

sound reasoning principles that justify type-based refactorings, enable compiler optimizations, and

underlie formal software verification. The difficulty is accommodating both of these styles and
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their benefits simultaneously: allowing the dynamic and static code to interact without forcing the

dynamic code to be statically checked or violating the correctness of type-based reasoning.

The linchpin to the design of a gradually typed language is the semantics of runtime type casts.
These are runtime checks that ensure that typed reasoning principles are valid by checking types

of dynamically typed code at the boundary between static and dynamic typing. For instance, when

a statically typed function f : Num → Num is applied to a dynamically typed argument x : ?,

the language runtime must check if x is a number, and otherwise raise a dynamic type error. A

programmer familiar with dynamically typed programming might object that this is overly strong:

for instance if f is just a constant function f = λx : Num.0 then why bother checking if x is a number

since the body of the program does not seem to depend on it? The reason the value is rejected is

because the annotation x : Num should introduce an assumption that that the programmer, compiler

and automated tools can rely on for behavioral reasoning in the body of the function. For instance,

if the variable x is guaranteed to only be instantiated with numbers, then the programmer is free

to replace 0 with x − x or vice-versa. However, if x can be instantiated with a closure, then x − x
will raise a runtime type error while 0 will succeed, violating the programmers intuition about

the correctness of refactorings. We can formalize such relationships by observational equivalence
of programs: the two closures λx : Num.0 and λx : Num.x − x are indistinguishable to any other

program in the language. This is precisely the difference between gradual typing and so-called

optional typing: in an optionally typed language (Hack, TypeScript, Flow), annotations are checked

for consistency but are unreliable to the user, so provide no leverage for reasoning. In a gradually

typed language, type annotations should relieve the programmer of the burden of reasoning about

incorrect inputs, as long as we are willing to accept that the program as a whole may crash, which

is already a possibility in many effectful statically typed languages.

However, the dichotomy between gradual and optional typing is not as firm as one might like.

There have been many different proposed semantics of run-time type checking: “transient” cast

semantics [Vitousek et al. 2017] only checks the head connective of a type (number, function, list,

. . . ), “eager” cast semantics [Herman et al. 2010] checks run-time type information on closures,

whereas “lazy” cast semantics [Findler and Felleisen 2002] will always delay a type-check on a

function until it is called (and there are other possibilities, see e.g. [Siek et al. 2009; Greenberg

2015]). The extent to which these different semantics have been shown to validate type-based

reasoning has been limited to syntactic type soundness and blame soundness theorems. In their

strongest form, these theorems say “If t is a closed program of type A then it diverges, or reduces

to a runtime error blaming dynamically typed code, or reduces to a value that satisfies A to a

certain extent.” However, the theorem at this level of generality is quite weak, and justifies almost

no program equivalences without more information. Saying that a resulting value satisfies type

A might be a strong statement, but in transient semantics constrains only the head connective.

The blame soundness theorem might also be quite strong, but depends on the definition of blame,

which is part of the operational semantics of the language being defined. We argue that these type

soundness theorems are only indirectly expressing the actual desired properties of the gradual

language, which are program equivalences in the typed portion of the code that are not valid in the

dynamically typed portion.

Such program equivalences typically include β-like principles, which arise from computation

steps, as well as η equalities, which express the uniqueness or universality of certain constructions.

The η law of the untyped λ-calculus, which states that any λ-term M ≡ λx .Mx , is restricted in a

typed language to only hold for terms of function typeM : A→ B (λ is the unique/universal way

of making an element of the function type). This famously “fails” to hold in call-by-value languages

in the presence of effects: if M is a program that prints "hello" before returning a function,

then M will print now, whereas λx .Mx will only print when given an argument. But this can be
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accommodated with one further modification: the η law is valid in simple call-by-value languages
1

(e.g. SML) if we have a “value restriction” V ≡ λx .Vx . This illustrates that η/extensionality rules

must be stated for each type connective, and be sensitive to the effects/evaluation order of the

terms involved. For instance, the η principle for the boolean type Bool in call-by-value is that for
any termM with a free variable x : Bool,M is equivalent to a term that performs an if statement

on x :M ≡ if x(M[true/x])(M[false/x]). If we have an if form that is strongly typed (i.e., errors

on non-booleans) then this tells us that it is safe to run an if statement on any input of boolean

type (in CBN, by contrast an if statement forces a thunk and so is not necessarily safe). In addition,

even if our if statement does some kind of coercion, this tells us that the termM only cares about

whether x is “truthy” or “falsy” and so a client is free to change e.g. one truthy value to a different

one without changing behavior. This η principle justifies a number of program optimizations, such

as dead-code and common subexpression elimination, and hoisting an if statement outside of the

body of a function if it is well-scoped (λx .if y M N ≡ if y (λx .M) (λx .N )). Any eager datatype,

one whose elimination form is given by pattern matching such as 0,+, 1,×, list, has a similar η
principle which enables similar reasoning, such as proofs by induction. The η principles for lazy

types in call-by-name support dual behavioral reasoning about lazy functions, records, and streams.

AnAxiomatic Approach to Gradual Typing. In this paper, we systematically study questions

of program equivalence for a class of gradually typed languages by working in an axiomatic theory
of gradual program equivalence, a language and logic we call gradual type theory (GTT). Gradual

type theory is the combination of a language of terms and gradual types with a simple logic for

proving program equivalence and error approximation (equivalence up to one program erroring

when the other does not) results. The logic axiomatizes the equational properties gradual programs

should satisfy, and offers a high-level syntax for proving theorems about many languages at once:

if a language models gradual type theory, then it satisfies all provable equivalences/approximations.

Due to its type-theoretic design, different axioms of program equivalence are easily added or

removed. Gradual type theory can be used both to explore language design questions and to verify

behavioral properties of specific programs, such as correctness of optimizations and refactorings.

To get off the ground, we take two properties of the gradual language for granted. First, we

assume a compositionality property: that any cast fromA to B can be factored through the dynamic

type ?, i.e., the cast ⟨B ⇐ A⟩t is equivalent to first casting up from A to ? and then down to B:
⟨B ⇐ ?⟩⟨?⇐ A⟩t . These casts often have quite different performance characteristics, but should

have the same extensional behavior: of the cast semantics presented in Siek et al. [2009], only the

partially eager detection strategy violates this principle, and this strategy is not common. The second

property we take for granted is that the language satisfies the dynamic gradual guarantee [Siek
et al. 2015a] (“graduality”)—a strong correctness theorem of gradual typing— which constrains

how changing type annotations changes behavior. Graduality says that if we change the types in

a program to be “more precise”—e.g., by changing from the dynamic type to a more precise type

such as integers or functions—the program will either produce the same behavior as the original or

raise a dynamic type error. Conversely, if a program does not error and some types are made “less

precise” then behavior does not change.

We then study what program equivalences are provable in GTT under various assumptions. Our

central application is to study when the β,η equalities are satisfied in a gradually typed language.

We approach this problem by a surprising tack: rather than defining the behavior of dynamic type

casts and then verifying or invalidating the β and η equalities, we assume the language satisfies

1
This does not hold in languages with some intensional feature of functions such as reference equality. We discuss the

applicability of our main results more generally in Section 7.
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β and η equality and then show that certain reductions of casts are in fact program equivalence

theorems deducible from the axioms of GTT.

The cast reductions that we show satisfy all three constraints are those given by the “lazy cast

semantics” [Findler and Felleisen 2002; Siek et al. 2009]. As a contrapositive, any gradually typed

language for which these reductions are not program equivalences is not a model of the axioms of

gradual type theory. This mean the language violates either compositionality, the gradual guarantee,

or one of the β,η axioms—and in practice, it is usually η.
For instance, a transient semantics, where only the top-level connectives are checked, violates η

for strict pairs

x : A1 ×A2 ⊢ (let (x1, x2) = x ; 0) , 0

because the top-level connectives of A1 and A2 are only checked when the pattern match is

introduced. As a concrete counterexample to contextual equivalence, let A1,A2 all be String.
Because only the top-level connective is checked, (0, 1) is a valid value of type String × String,
but pattern matching on the pair ensures that the two components are checked to be strings, so

the left-hand side let (x1, x2) = (0, 1); 0 7→ ℧ (raises a type error). On the right-hand side, with no

pattern, match a value (0) is returned. This means simple program changes that are valid in a typed

language, such as changing a function of two arguments to take a single pair of those arguments,

are invalidated by the transient semantics. In summary, transient semantics is “lazier” than the

types dictate, catching errors only when the term is inspected.

As a subtler example, in call-by-value “eager cast semantics” the βη principles for all of the

eager datatypes (0,+, 1,×, lists, etc.) will be satisfied, but the η principle for the function type→

is violated: there are values V : A→ A′ for which V , λx : A.Vx . For instance, take an arbitrary

function value V : A→ String for some type A, and let V ′ = ⟨A→ ?⇐ A→ String⟩V be the

result of casting it to have a dynamically typed output. Then in eager semantics, the following

programs are not equivalent:

λx : A.V ′x , V ′ : A→ ?

We cannot observe any difference between these two programs by applying them to arguments,

however, they are distinguished from each other by their behavior when cast. Specifically, if
we cast both sides to A → Number, then ⟨A→ Number ⇐ A→ ?⟩(λx : A.V ′x) is a value, but

⟨A→ Number ⇐ A→ ?⟩V ′ reduces to an error because Number is incompatible with String.
However this type error might not correspond to any actual typing violation of the program

involved. For one thing, the resulting function might never be executed. Furthermore, in the

presence of effects, it may be that the original function V : A → String never returns a string

(because it diverges, raises an exception or invokes a continuation), and so that same value casted

to A → Number might be a perfectly valid inhabitant of that type. In summary the “eager” cast

semantics is in fact overly eager: in its effort to find bugs faster than “lazy” semantics it disables

the very type-based reasoning that gradual typing should provide.

While criticisms of transient semantics on the basis of type soundness have been made before

[Greenman and Felleisen 2018], our development shows that the η principles of types are enough

to uniquely determine a cast semantics, and helps clarify the trade-off between eager and lazy

semantics of function casts.

Technical Overview of GTT. The gradual type theory developed in this paper unifies our

previous work on operational (logical relations) reasoning for gradual typing in a call-by-value

setting [New and Ahmed 2018] (which did not consider a proof theory), and on an axiomatic proof

theory for gradual typing [New and Licata 2018] in a call-by-name setting (which considered only

function and product types, and denotational but not operational models).

In this paper, we develop an axiomatic gradual type theory GTT for a unified language that

includes both call-by-value/eager types and call-by-name/lazy types (Sections 2, 3), and show that
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it is sound for contextual equivalence via a logical relations model (Sections 4, 5, 6). Because the

η principles for types play a key role in our approach, it is necessary to work in a setting where

we can have η principles for both eager and lazy types. We use Levy’s Call-by-Push-Value [Levy

2003] (CBPV), which fully and faithfully embeds both call-by-value and call-by-name evaluation

with both eager and lazy datatypes,
2
and underlies much recent work on reasoning about effectful

programs [Bauer and Pretnar 2013; Lindley et al. 2017]. GTT can prove results in and about existing

call-by-value gradually typed languages, and also suggests a design for call-by-name and full

call-by-push-value gradually typed languages.

In the prior work [New and Licata 2018; New andAhmed 2018], gradual type casts are decomposed

into upcasts and downcasts, as suggested above. A type dynamism relation (corresponding to

type precision [Siek et al. 2015a] and naïve subtyping [Wadler and Findler 2009]) controls which

casts exist: a type dynamism A ⊑ A′ induces an upcast from A to A′ and a downcast from A′ to
A. Then, a term dynamism judgement is used for equational/approximational reasoning about

programs. Term dynamism relates two terms whose types are related by type dynamism, and the

upcasts and downcasts are each specified by certain term dynamism judgements holding. This

specification axiomatizes only the properties of casts needed to ensure the graduality theorem,

and not their precise behavior, so cast reductions can be proved from it, rather than stipulated in

advance. The specification defines the casts “uniquely up to equivalence”, which means that any

two implementations satisfying it are behaviorally equivalent.

We generalize this axiomatic approach to call-by-push-value (Section 2), where there are both

eager/value types and lazy/computation types. This is both a subtler question than it might at first

seem, and has a surprisingly nice answer: we find that upcasts are naturally associated with ea-

ger/value types and downcasts with lazy/computation types, and that the modalities relating values

and computations induce the downcasts for eager/value types and upcasts for lazy/computation

types. Moreover, this analysis articulates an important behavioral property of casts that was proved

operationally for call-by-value in [New and Ahmed 2018] but missed for call-by-name in [New and

Licata 2018]: upcasts for eager types and downcasts for lazy types are both “pure” in a suitable sense,

which enables more refactorings and program optimizations. In particular, we show that these

casts can be taken to be (and are essentially forced to be) “complex values” and “complex stacks”

(respectively) in call-by-push-value, which corresponds to a behavioral property of thunkability and

linearity [Munch-Maccagnoni 2014]. We argue in Section 7 that this property is related to blame

soundness. Our gradual type theory naturally has two dynamic types, a dynamic eager/value type

and a dynamic lazy/computation type, where the former can be thought of as a sum of all possible

values, and the latter as a product of all possible behaviors. At the language design level, gradual

type theory can be used to prove that, for a variety of eager/value and lazy/computation types, the

“lazy” semantics of casts is the unique implementation satisfying β,η and graduality (Section 3).

These behavioral equivalences can then be used in reasoning about optimizations, refactorings,

and correctness of specific programs.

Contract-Based Models. To show the consistency of GTT as a theory, and to give a concrete

operational interpretation of its axioms and rules, we provide a concrete model based on an

operational semantics. The model is a contract interpretation of GTT in that the “built-in” casts of

GTT are translated to ordinary functions in a CBPV language that perform the necessary checks.

To keep the proofs high-level, we break the proof into two steps. First (Sections 4, 5), we translate

the axiomatic theory of GTT into an axiomatic theory of CBPV extended with recursive types

and an uncatchable error, implementing casts by CBPV code that does contract checking. Then

(Section 6) we give an operational semantics for the extended CBPV and define a step-indexed

2
The distinction between “lazy” vs “eager” casts above is different than lazy vs. eager datatypes.
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biorthogonal logical relation that interprets the ordering relation on terms as contextual error

approximation, which underlies the definition of graduality as presented in [New and Ahmed 2018].

Combining these theorems gives an implementation of the term language of GTT in which β,η are

observational equivalences and the dynamic gradual guarantee is satisfied.

Due to the uniqueness theorems of GTT, the only part of this translation that is not predetermined

is the definition of the dynamic types themselves and the casts between “ground” types and the

dynamic types. We use CBPV to explore the design space of possible implementations of the

dynamic types, and give one that faithfully distinguishes all types of GTT, and another more

Scheme-like implementation that implements sums and lazy pairs by tag bits. Both can be restricted

to the CBV or CBN subsets of CBPV, but the unrestricted variant is actually more faithful to

Scheme-like dynamically typed programming, because it accounts for variable-argument functions.

Our modular proof architecture allows us to easily prove correctness of β,η and graduality for all

of these interpretations.

Contributions. The main contributions of the paper are as follows.

(1) We present Gradual Type Theory in Section 2, a simple axiomatic theory of gradual typing.

The theory axiomatizes three simple assumptions about a gradual language: compositionality,

graduality, and type-based reasoning in the form of η equivalences.

(2) We prove many theorems in the formal logic of Gradual Type Theory in Section 3. These

include the unique implementation theorems for casts, which show that for each type con-

nective of GTT, the η principle for the type ensures that the casts must implement the lazy

contract semantics. Furthermore, we show that upcasts are always pure functions and dually

that downcasts are always strict functions, as long as the base type casts are pure/strict.

(3) To substantiate that GTT is a reasonable axiomatic theory for gradual typing, we construct

models of GTT in Sections 4, 5 and 6.3. This proceeds in two stages. First (Section 4), we

use call-by-push-value as a typed metalanguage to construct several models of GTT using

different recursive types to implement the dynamic types of GTT and interpret the casts as

embedding-projection pairs. This extends standard translations of dynamic typing into static

typing using type tags: the dynamic value type is constructed as a recursive sum of basic

value types, but dually the dynamic computation type is constructed as a recursive product
of basic computation types. This dynamic computation type naturally models stack-based

implementations of variable-arity functions as used in the Scheme language.

(4) We then give an operational model of the term dynamism ordering as contextual error

approximation in Sections 5 and 6.3. To construct this model, we extend previous work on

logical relations for error approximation from call-by-value to call-by-push-value [New and

Ahmed 2018], simplifying the presentation in the process.

Extended version: An extended version of the paper, which includes the omitted cases of

definitions, lemmas, and proofs is available in New et al. [2018].

2 AXIOMATIC GRADUAL TYPE THEORY
In this section we introduce the syntax of Gradual Type Theory, an extension of Call-by-push-

value [Levy 2003] to support the constructions of gradual typing. First we introduce call-by-push-

value and then describe in turn the gradual typing features: dynamic types, casts, and the dynamism

orderings on types and terms.

2.1 Background: Call-by-Push-Value
GTT is an extension of CBPV, so we first present CBPV as the unshaded rules in Figure 1. CBPV

makes a distinction between value types A and computation types B, where value types classify
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A ::= ? | UB | 0 | A1 +A2 | 1 | A1 ×A2 B ::= ¿ | FA | ⊤ | B
1
& B

2
| A→ B

V ::=

⟨A′ ↢ A⟩V | x | abort V

| inl V | inr V
| case V {x1.V1 | x2.V2}
| () | split V to ().V ′

| (V1,V2) | split V to (x,y).V ′

| thunk M

M, S ::=

⟨B ↞ B′⟩M | • | ℧B

| abort V | case V {x1.M1 | x2.M2}

| split V to ().M | split V to (x,y).M
| force V | ret V | bind x ← M ;N
| λx : A.M | MV
| {} | {π 7→ M1 | π

′ 7→ M2}

| πM | π ′M
Γ ::= · | Γ, x : A ∆ ::= · | • : B

Φ ::= · | Φ, x ⊑ x ′ : A ⊑ A′ Ψ ::= · | • ⊑ • : B ⊑ B′

Γ ⊢ V : A and Γ | ∆ ⊢ M : B

UpCast

Γ ⊢ V : A A ⊑ A′

Γ ⊢ ⟨A′ ↢ A⟩V : A′

DnCast

Γ | ∆ ⊢ M : B′ B ⊑ B′

Γ | ∆ ⊢ ⟨B ↞ B′⟩M : B

Var

Γ, x : A, Γ′ ⊢ x : A

Hole

Γ | • : B ⊢ • : B

Err

Γ | · ⊢ ℧B : B

1I

Γ ⊢ () : 1

1E

Γ ⊢ V : 1 Γ | ∆ ⊢ E : T

Γ | ∆ ⊢ split V to ().E : T

×I
Γ ⊢ V1 : A1 Γ ⊢ V2 : A2

Γ ⊢ (V1,V2) : A1 ×A2

×E
Γ ⊢ V : A1 ×A2

Γ, x : A1,y : A2 | ∆ ⊢ E : T

Γ | ∆ ⊢ split V to (x,y).E : T

U I

Γ | · ⊢ M : B

Γ ⊢ thunk M : UB

UE

Γ ⊢ V : UB

Γ | · ⊢ force V : B

F I
Γ ⊢ V : A

Γ | · ⊢ ret V : FA

FE
Γ | ∆ ⊢ M : FA Γ, x : A | · ⊢ N : B

Γ | ∆ ⊢ bind x ← M ;N : B

→I

Γ, x : A | ∆ ⊢ M : B

Γ | ∆ ⊢ λx : A.M : A→ B

→E

Γ | ∆ ⊢ M : A→ B Γ ⊢ V : A

Γ | ∆ ⊢ MV : B

Fig. 1. GTT Syntax and Term Typing (+ and & typing rules in extended version)

values Γ ⊢ V : A and computation types classify computations Γ ⊢ M : B. Effects are computations:

for example, we might have an error computation ℧B : B of every computation type, or printing

print V ;M : B if V : string andM : B, which prints V and then behaves asM .

Value types and complex values. The value types include eager products 1 and A1 × A2 and

sums 0 and A1 +A2, which behave as in a call-by-value/eager language (e.g. a pair is only a value

when its components are). The notion of value V is more permissive than one might expect, and

expressions Γ ⊢ V : A are sometimes called complex values to emphasize this point: complex

values include not only closed runtime values, but also open values that have free value variables

(e.g. x : A1, x2 : A2 ⊢ (x1, x2) : A1 × A2), and expressions that pattern-match on values (e.g.

p : A1 × A2 ⊢ split p to (x1, x2).(x2, x1) : A2 × A1). Thus, the complex values x : A ⊢ V : A′

are a syntactic class of “pure functions” from A to A′ (though there is no pure function type
internalizing this judgement), which can be treated like values by a compiler because they have no

effects (e.g. they can be dead-code-eliminated, common-subexpression-eliminated, and so on). For

each pattern-matching construct (e.g. case analysis on a sum, splitting a pair), we have both an

elimination rule whose branches are values (e.g. split p to (x1, x2).V ) and one whose branches

are computations (e.g. split p to (x1, x2).M). To abbreviate the typing rules for both in Figure 1,
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we use the following convention: we write E ::= V | M for either a complex value or a computation,

and T ::= A | B for either a value type A or a computation type B, and a judgement Γ | ∆ ⊢ E : T
for either Γ ⊢ V : A or Γ | ∆ ⊢ M : B (this is a bit of an abuse of notation because ∆ is not

present in the former). Complex values can be translated away without loss of expressiveness by

moving all pattern-matching into computations (see Section 5), at the expense of using a behavioral

condition of thunkability [Munch-Maccagnoni 2014] to capture the properties complex values have

(for example, an analogue of let x = V ; let x ′ = V ′;M ≡ let x ′ = V ′; let x = V ;M — complex

values can be reordered, while arbitrary computations cannot).

Shifts. A key notion in CBPV is the shift types FA and UB, which mediate between value and

computation types: FA is the computation type of potentially effectful programs that return a value

of type A, whileUB is the value type of thunked computations of type B. The introduction rule for

FA is returning a value of type A (ret V), while the elimination rule is sequencing a computation

M : FA with a computation x : A ⊢ N : B to produce a computation of a B (bind x ← M ;N ).

While any closed complex value V is equivalent to an actual value, a computation of type FA
might perform effects (e.g. printing) before returning a value, or might error or non-terminate and

not return a value at all. The introduction and elimination rules for U are written thunk M and

force V , and say that computations of type B are bijective with values of typeUB. As an example

of the action of the shifts, 1 is the trivial value type, so F1 is the type of computations that can

perform effects with the possibility of terminating successfully by returning (), and UF1 is the
value type where such computations are delayed values.

Computation types. The computation type constructors in CBPV include lazy unit/products

⊤ and B
1
& B

2
, which behave as in a call-by-name/lazy language (e.g. a component of a lazy

pair is evaluated only when it is projected). Functions A → B have a value type as input and

a computation type as a result. The equational theory of effects in CBPV computations may be

surprising to those familiar only with call-by-value, because at higher computation types effects

have a call-by-name-like equational theory. For example, at computation type A→ B, we have an
equality print c; λx .M = λx .print c;M . Intuitively, the reason is that A→ B is not treated as an

observable type (one where computations are run): the states of the operational semantics are only

those computations of type FA for some value type A. Thus, “running” a function computation

means supplying it with an argument, and applying both of the above to an argument V is defined

to result in print c;M[V /x]. This does not imply that the corresponding equations holds for the

call-by-value function type, which we discuss below.

Complex stacks. Just as the complex values V are a syntactic class terms that have no effects,

CBPV includes a judgement for “stacks” S , a syntactic class of terms that reflect all effects of their
input. A stack Γ | • : B ⊢ S : B′ can be thought of as a linear/strict function from B to B′, whichmust
use its input hole • exactly once at the head redex position. Consequently, effects can be hoisted out

of stacks, because we know the stack will run them exactly once and first. For example, there will be

contextual equivalences S[℧/•] = ℧ and S[print V ;M] = print V ; S[M/•]. Just as complex values

include pattern-matching, complex stacks include pattern-matching on values and introduction

forms for the stack’s output type. For example, • : B
1
& B

2
⊢ {π 7→ π ′• | π ′ 7→ π•} : B

2
& B

1
is a

complex stack, even though it mentions • more than once, because running it requires choosing a

projection to get to an observable of type FA, so each time it is run it uses • exactly once. In the

equational theory of CBPV, F and U are adjoint, in the sense that stacks • : FA ⊢ S : B are bijective

with values x : A ⊢ V : UB, as both are bijective with computations x : A ⊢ M : B.
To compress the presentation in Figure 1, we use a typing judgement Γ | ∆ ⊢ M : B with a “stoup”,

a typing context ∆ that is either empty or contains exactly one assumption • : B, so Γ | · ⊢ M : B
is a computation, while Γ | • : B ⊢ M : B′ is a stack. The (omitted) typing rules for ⊤ and & treat

the stoup additively (it is arbitrary in the conclusion and the same in all premises); for a function
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application to be a stack, the stack input must occur in the function position. The elimination form

forUB, force V , is the prototypical non-stack computation (∆ is required to be empty), because

forcing a thunk does not use the stack’s input.

Embedding call-by-value and call-by-name. To translate call-by-value (CBV) into CBPV, a judge-

ment x1 : A1, . . . , xn : An ⊢ e : A is interpreted as a computation x1 : A
v
1
, . . . , xn : Av

n ⊢ e
v
: FAv

,

where call-by-value products and sums are interpreted as × and +, and the call-by-value function

type A → A′ as U (Av → FA′v ). Thus, a call-by-value term e : A → A′, which should mean an

effectful computation of a function value, is translated to a computation ev : FU (Av → FA′v ). Here,
the comonad FU offers an opportunity to perform effects before returning a function value—so un-

der translation the CBV terms print c; λx .e and λx .print c; e will not be contextually equivalent.

To translate call-by-name (CBN) to CBPV, a judgement x1 : B
1
, . . . , xm : Bm ⊢ e : B is translated to

x1 : UB1

n, . . . , xm : UBm
n ⊢ en : Bn , representing the fact that call-by-name terms are passed thun-

ked arguments. Product types are translated to ⊤ and ×, while a CBN function B → B′ is translated
toUBn → B′n with a thunked argument. Sums B1 + B2 are translated to F (UB1

n +UB2

n), making

the “lifting” in lazy sums explicit. Call-by-push-value subsumes call-by-value and call-by-name in

that these embeddings are full and faithful: two CBV or CBN programs are equivalent if and only if

their embeddings into CBPV are equivalent, and every CBPV program with a CBV or CBN type

can be back-translated.

Extensionality/η Principles. The main advantage of CBPV for our purposes is that it accounts

for the η/extensionality principles of both eager/value and lazy/computation types, because value

types have η principles relating them to the value assumptions in the context Γ, while computation

types have η principles relating them to the result type of a computation B. For example, the η
principle for sums says that any complex value or computation x : A1 +A2 ⊢ E : T is equivalent

to case x{x1.E[inl x1/x] | x2.E[inr x2/x]}, i.e. a case on a value can be moved to any point in a

program (where all variables are in scope) in an optimization. Given this, the above translations of

CBV and CBN into CBPV explain why η for sums holds in CBV but not CBN: in CBV, x : A1 +A2 ⊢

E : T is translated to a term with x : A1 + A2 free, but in CBN, x : B1 + B2 ⊢ E : T is translated

to a term with x : UF (UB
1
+UB

2
) free, and the type UF (UB

1
+UB

2
) of monadic computations

that return a sum does not satisfy the η principle for sums in CBPV. Dually, the η principle for

functions in CBPV is that any computationM : A→ B is equal to λx .M x . A CBN term e : B → B′

is translated to a CBPV computation of type UB → B′, to which CBPV function extensionality

applies, while a CBV term e : A→ A′ is translated to a computation of type FU (A→ FA′), which
does not satisfy the η rule for functions. We discuss a formal statement of these η principles with

term dynamism below.

2.2 The Dynamic Type(s)
Next, we discuss the additions that make CBPV into our gradual type theory GTT. A dynamic

type plays a key role in gradual typing, and since GTT has two different kinds of types, we have

a new question of whether the dynamic type should be a value type, or a computation type, or

whether we should have both a dynamic value type and a dynamic computation type. Our modular,

type-theoretic presentation of gradual typing allows us to easily explore these options, though we

find that having both a dynamic value ? and a dynamic computation type ¿ gives the most natural

implementation (see Section 4.2). Thus, we add both ? and ¿ to the grammar of types in Figure 1.

We do not give introduction and elimination rules for the dynamic types, because we would like

constructions in GTT to imply results for many different possible implementations of them. Instead,

the terms for the dynamic types will arise from type dynamism and casts.
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A ⊑ A′ and B ⊑ B′

VTyRefl

A ⊑ A

VTyTrans

A ⊑ A′ A′ ⊑ A′′

A ⊑ A′′

CTyRefl

B ⊑ B′

CTyTrans

B ⊑ B′ B′ ⊑ B′′

B ⊑ B′′

VTyTop

A ⊑ ?

UMon

B ⊑ B′

UB ⊑ UB′

+Mon

A1 ⊑ A′
1

A2 ⊑ A′
2

A1 +A2 ⊑ A′
1
+A′

2

×Mon

A1 ⊑ A′
1

A2 ⊑ A′
2

A1 ×A2 ⊑ A′
1
×A′

2

CTyTop

B ⊑ ¿

FMon

A ⊑ A′

FA ⊑ FA′

&Mon

B
1
⊑ B′

1
B
2
⊑ B′

2

B
1
& B

2
⊑ B′

1
& B′

2

→Mon

A ⊑ A′ B ⊑ B′

A→ B ⊑ A′ → B′

Fig. 2. GTT Type Dynamism

2.3 Type Dynamism
The type dynamism relation of gradual type theory is written A ⊑ A′ and read as “A is less dynamic

than A′”; intuitively, this means that A′ supports more behaviors than A. Our previous work [New

and Ahmed 2018; New and Licata 2018] analyzes this as the existence of an upcast from A to

A′ and a downcast from A′ to A which form an embedding-projection pair (ep pair) for term
error approximation (an ordering where runtime errors are minimal): the upcast followed by the

downcast is a no-op, while the downcast followed by the upcast might error more than the original

term, because it imposes a run-time type check. Syntactically, type dynamism is defined (1) to be

reflexive and transitive (a preorder), (2) where every type constructor is monotone in all positions,

and (3) where the dynamic type is greatest in the type dynamism ordering. This last condition, the
dynamic type is the most dynamic type, implies the existence of an upcast ⟨?↢ A⟩ and a downcast

⟨A ↞ ?⟩ for every type A: any type can be embedded into it and projected from it. However, this

by design does not characterize ? uniquely—instead, it is open-ended exactly which types exist (so

that we can always add more), and some properties of the casts are undetermined; we exploit this

freedom in Section 4.2.

This extends in a straightforward way to CBPV’s distinction between value and computation

types in Figure 2: there is a type dynamism relation for value types A ⊑ A′ and for computation

types B ⊑ B′, which (1) each are preorders (VTyRefl, VTyTrans, CTyRefl, CTyTrans), (2) every

type constructor is monotone (+Mon, ×Mon, &Mon ,→Mon) where the shifts F and U switch

which relation is being considered (UMon, FMon), and (3) the dynamic types ? and ¿ are the

most dynamic value and computation types respectively (VTyTop, CTyTop). For example, we have

U (A→ FA′) ⊑ U (?→ F?), which is the analogue of A→ A′ ⊑ ?→ ? in call-by-value: because→

preserves embedding-retraction pairs, it is monotone, not contravariant, in the domain [New and

Ahmed 2018; New and Licata 2018].

2.4 Casts
It is not immediately obvious how to add type casts to CPBV, because CBPV exposes finer judge-

mental distinctions than previous work considered. However, we can arrive at a first proposal by

considering how previous work would be embedded into CBPV. In the previous work on both

CBV and CBN [New and Ahmed 2018; New and Licata 2018] every type dynamism judgement

A ⊑ A′ induces both an upcast from A to A′ and a downcast from A′ to A. Because CBV types are

associated to CBPV value types and CBN types are associated to CBPV computation types, this

suggests that each value type dynamism A ⊑ A′ should induce an upcast and a downcast, and
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each computation type dynamism B ⊑ B′ should also induce an upcast and a downcast. In CBV,

a cast from A to A′ typically can be represented by a CBV function A→ A′, whose analogue in
CBPV is U (A → FA′), and values of this type are bijective with computations x : A ⊢ M : FA′,
and further with stacks • : FA ⊢ S : FA′. This suggests that a value type dynamism A ⊑ A′ should
induce an embedding-projection pair of stacks • : FA ⊢ Su : FA′ and • : FA′ ⊢ Sd : FA, which allow

both the upcast and downcast to a priori be effectful computations. Dually, a CBN cast typically

can be represented by a CBN function of type B → B′, whose CBPV analogue is a computation

of type UB → B′, which is equivalent with a computation x : UB ⊢ M : B′, and with a value

x : UB ⊢ V : UB′. This suggests that a computation type dynamism B ⊑ B′ should induce an

embedding-projection pair of values x : UB ⊢ Vu : UB′ and x : UB′ ⊢ Vd : UB, where both the

upcast and the downcast again may a priori be (co)effectful, in the sense that they may not reflect

all effects of their input.

However, this analysis ignores an important property of CBV casts in practice: upcasts always
terminate without performing any effects, and in some systems upcasts are even defined to be

values, while only the downcasts are effectful (introduce errors). For example, for many types A,
the upcast from A to ? is an injection into a sum/recursive type, which is a value constructor.

Our previous work on a logical relation for call-by-value gradual typing [New and Ahmed 2018]

proved that all upcasts were pure in this sense as a consequence of the embedding-projection pair

properties (but their proof depended on the only effects being divergence and type error). In GTT,

we can make this property explicit in the syntax of the casts, by making the upcast ⟨A′ ↢ A⟩
induced by a value type dynamism A ⊑ A′ itself a complex value, rather than computation. On the

other hand, many downcasts between value types are implemented as a case-analysis looking for a

specific tag and erroring otherwise, and so are not complex values.

We can also make a dual observation about CBN casts. The downcast arising from B ⊑ B′ has a
stronger property than being a computation x : UB′ ⊢ M : B as suggested above: it can be taken to

be a stack • : B′ ⊢ ⟨B ↞ B′⟩• : B, because a downcasted computation evaluates the computation

it is “wrapping” exactly once. One intuitive justification for this point of view, which we make

precise in Section 4, is to think of the dynamic computation type ¿ as a recursive product of all
possible behaviors that a computation might have, and the downcast as a recursive type unrolling

and product projection, which is a stack. From this point of view, an upcast can introduce errors,

because the upcast of an object supporting some “methods” to one with all possible methods will

error dynamically on the unimplemented ones.

These observations are expressed in the (shaded) UpCast and DnCasts rules for casts in Figure 1:

the upcast for a value type dynamism is a complex value, while the downcast for a computation

type dynamism is a stack (if its argument is). Indeed, this description of casts is simpler than the

intuition we began the section with: rather than putting in both upcasts and downcasts for all value

and computation type dynamisms, it suffices to put in only upcasts for value type dynamisms and

downcasts for computation type dynamisms, because of monotonicity of type dynamism forU /F
types. The downcast for a value type dynamism A ⊑ A′, as a stack • : FA′ ⊢ ⟨FA ↞ FA′⟩• : FA as

described above, is obtained from FA ⊑ FA′ as computation types. The upcast for a computation

type dynamism B ⊑ B′ as a value x : UB ⊢ ⟨UB′ ↢ UB⟩x : UB′ is obtained from UB ⊑ UB′

as value types. Moreover, we will show below that the value upcast ⟨A′ ↢ A⟩ induces a stack
• : FA ⊢ . . . : FA′ that behaves like an upcast, and dually for the downcast, so this formulation

implies the original formulation above.

We justify this design in two ways in the remainder of the paper. In Section 4, we show how to

implement casts by a contract translation to CBPV where upcasts are complex values and downcasts

are complex stacks. However, one goal of GTT is to be able to prove things about many gradually

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 15. Publication date: January 2019.



15:12 Max S. New, Daniel R. Licata, and Amal Ahmed

Φ ⊢ V ⊑ V ′ : A ⊑ A′ and Φ | Ψ ⊢ M ⊑ M ′ : B ⊑ B′

TmDynRefl

Γ ⊑ Γ | ∆ ⊑ ∆ ⊢ E ⊑ E : T ⊑ T

TmDynVar

Φ, x ⊑ x ′ : A ⊑ A′,Φ′ ⊢ x ⊑ x ′ : A ⊑ A′

TmDynTrans

Γ ⊑ Γ′ | ∆ ⊑ ∆′ ⊢ E ⊑ E ′ : T ⊑ T ′

Γ′ ⊑ Γ′′ | ∆′ ⊑ ∆′′ ⊢ E ′ ⊑ E ′′ : T ′ ⊑ T ′′

Γ ⊑ Γ′′ | ∆ ⊑ ∆′′ ⊢ E ⊑ E ′′ : T ⊑ T ′′

TmDynValSubst

Φ ⊢ V ⊑ V ′ : A ⊑ A′

Φ, x ⊑ x ′ : A ⊑ A′,Φ′ | Ψ ⊢ E ⊑ E ′ : T ⊑ T ′

Φ | Ψ ⊢ E[V /x] ⊑ E ′[V ′/x ′] : T ⊑ T ′

TmDynHole

Φ | • ⊑ • : B ⊑ B′ ⊢ • ⊑ • : B ⊑ B′

TmDynStkSubst

Φ | Ψ ⊢ M1 ⊑ M ′
1
: B

1
⊑ B′

1

Φ | • ⊑ • : B
1
⊑ B′

1
⊢ M2 ⊑ M ′

2
: B

2
⊑ B′

2

Φ | Ψ ⊢ M2[M1/•] ⊑ M ′
2
[M ′

1
/•] : B

2
⊑ B′

2

×ICong
Φ ⊢ V1 ⊑ V

′
1
: A1 ⊑ A′

1

Φ ⊢ V2 ⊑ V
′
2
: A2 ⊑ A′

2

Φ ⊢ (V1,V2) ⊑ (V
′
1
,V ′

2
) : A1 ×A2 ⊑ A′

1
×A′

2

→ICong

Φ, x ⊑ x ′ : A ⊑ A′ | Ψ ⊢ M ⊑ M ′ : B ⊑ B′

Φ | Ψ ⊢ λx : A.M ⊑ λx ′ : A′.M ′ : A→ B ⊑ A′ → B′

×ECong
Φ ⊢ V ⊑ V ′ : A1 ×A2 ⊑ A′

1
×A′

2

Φ, x ⊑ x ′ : A1 ⊑ A′
1
,y ⊑ y′ : A2 ⊑ A′

2
| Ψ ⊢ E ⊑ E ′ : T ⊑ T ′

Φ | Ψ ⊢ split V to (x,y).E ⊑ split V ′ to (x ′,y′).E ′ : T ⊑ T ′

→ECong

Φ | Ψ ⊢ M ⊑ M ′ : A→ B ⊑ A′ → B′

Φ ⊢ V ⊑ V ′ : A ⊑ A′

Φ | Ψ ⊢ MV ⊑ M ′V ′ : B ⊑ B′

F ICong
Φ ⊢ V ⊑ V ′ : A ⊑ A′

Φ | · ⊢ ret V ⊑ ret V ′ : FA ⊑ FA′

FECong
Φ | Ψ ⊢ M ⊑ M ′ : FA ⊑ FA′

Φ, x ⊑ x ′ : A ⊑ A′ | · ⊢ N ⊑ N ′ : B ⊑ B′

Φ | Ψ ⊢ bind x ← M ;N ⊑ bind x ′ ← M ′;N ′ : B ⊑ B′

Fig. 3. GTT Term Dynamism (Structural and CongruenceRules) (Rules forU , 1,+, 0,&,⊤ in extended version)

typed languages at once, by giving different models, so one might wonder whether this design rules

out useful models of gradual typing where casts can have more general effects. In Theorem 3.10,

we show instead that our design choice is forced for all casts, as long as the casts between ground

types and the dynamic types are values/stacks.

2.5 Term Dynamism: Judgements and Structural Rules
The final piece of GTT is the term dynamism relation, a syntactic judgement that is used for reasoning

about the behavioral properties of terms in GTT. To a first approximation, term dynamism can be

thought of as syntactic rules for reasoning about contextual approximation relative to errors (not

divergence), where E ⊑ E ′ means that either E errors or E and E ′ have the same result. However, a

key idea in GTT is to consider a heterogeneous term dynamism judgement E ⊑ E ′ : T ⊑ T ′ between
terms E : T and E ′ : T ′ where T ⊑ T ′—i.e. relating two terms at two different types, where the

type on the right is more dynamic than the type on the right. This judgement structure allows

simple axioms characterizing the behavior of casts [New and Licata 2018] and axiomatizes the

graduality property [Siek et al. 2015a]. Here, we break this judgement up into value dynamism

V ⊑ V ′ : A ⊑ A′ and computation dynamismM ⊑ M ′ : B ⊑ B′. To support reasoning about open

terms, the full form of the judgements are
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• Γ ⊑ Γ′ ⊢ V ⊑ V ′ : A ⊑ A′ where Γ ⊢ V : A and Γ′ ⊢ V ′ : A′ and Γ ⊑ Γ′ and A ⊑ A′.
• Γ ⊑ Γ′ | ∆ ⊑ ∆′ ⊢ M ⊑ M ′ : B ⊑ B′ where Γ | ∆ ⊢ M : B and Γ′ | ∆′ ⊢ M ′ : B′.

where Γ ⊑ Γ′ is the pointwise lifting of value type dynamism, and ∆ ⊑ ∆′ is the optional lifting of

computation type dynamism. We write Φ : Γ ⊑ Γ′ and Ψ : ∆ ⊑ ∆′ as syntax for “zipped” pairs of
contexts that are pointwise related by type dynamism, x1 ⊑ x ′

1
: A1 ⊑ A′

1
, . . . , xn ⊑ x ′n : An ⊑ A′n ,

which correctly suggests that one can substitute related terms for related variables.Wewill implicitly

zip/unzip pairs of contexts, and sometimes write e.g. Γ ⊑ Γ to mean x ⊑ x : A ⊑ A for all x : A in Γ.
The main point of our rules for term dynamism is that there are no type-specific axioms in the

definition beyond the βη-axioms that the type satisfies in a non-gradual language. Thus, adding a

new type to gradual type theory does not require any a priori consideration of its gradual behavior

in the language definition; instead, this is deduced as a theorem in the type theory. The basic

structural rules of term dynamism in Figure 3 say that it is reflexive and transitive (TmDynRefl,

TmDynTrans), that assumptions can be used and substituted for (TmDynVar, TmDynValSubst,

TmDynHole, TmDynStkSubst), and that every term constructor is monotone (the Cong rules).

We will often abbreviate a “homogeneous” term dynamism (where the type or context dynamism

is given by reflexivity) by writing e.g. Γ ⊢ V ⊑ V ′ : A ⊑ A′ for Γ ⊑ Γ ⊢ V ⊑ V ′ : A ⊑ A′, or
Φ ⊢ V ⊑ V ′ : A for Φ ⊢ V ⊑ V ′ : A ⊑ A, and similarly for computations. The entirely homogeneous

judgements Γ ⊢ V ⊑ V ′ : A and Γ | ∆ ⊢ M ⊑ M ′ : B can be thought of as a syntax for contextual

error approximation (as we prove below). We write V ⊒⊑ V ′ (“equidynamism”) to mean term

dynamism relations in both directions (which requires that the types are also equidynamic Γ ⊒⊑ Γ′

and A ⊑ A′), which is a syntactic judgement for contextual equivalence.

2.6 Term Dynamism: Axioms
Finally, we assert some term dynamism axioms that describe the behavior of programs. The cast

universal properties at the top of Figure 4, following New and Licata [2018], say that the defining

property of an upcast fromA toA′ is that it is the least dynamic term of typeA′ that is more dynamic

that x , a “least upper bound”. That is, ⟨A′ ↢ A⟩x is a term of type A′ that is more dynamic that x
(the “bound” rule), and for any other term x ′ of type A′ that is more dynamic than x , ⟨A′ ↢ A⟩x is

less dynamic than x ′ (the “best” rule). Dually, the downcast ⟨B ↞ B′⟩• is the most dynamic term of

type B that is less dynamic than •, a “greatest lower bound”. These defining properties are entirely

independent of the types involved in the casts, and do not change as we add or remove types from

the system.

We will show that these defining properties already imply that the shift of the upcast ⟨A′ ↢ A⟩
forms a Galois connection/adjunction with the downcast ⟨FA ↞ FA′⟩, and dually for computation

types (see Theorem 3.3). They do not automatically form a Galois insertion/coreflection/embedding-

projection pair, but we can add this by the retract axioms in Figure 4. Together with other theorems

of GTT, these axioms imply that any upcast followed by its corresponding downcast is the identity

(see Theorem 3.4). This specification of casts leaves some behavior undefined: for example, we

cannot prove in the theory that ⟨F1 + 1 ↞ F?⟩⟨?↢ 1⟩ reduces to an error. We choose this design

because there are valid models in which it is not an error, for instance if the unique value of 1 is

represented as the boolean true. In Section 4.2, we show additional axioms that fully characterize

the behavior of the dynamic type.

The type universal properties in the middle of the figure, which are taken directly from CBPV,

assert the βη rules for each type as (homogeneous) term equidynamisms—these should be under-

stood as having, as implicit premises, the typing conditions that make both sides type check, in

equidynamic contexts.

The final axioms assert properties of the run-time error term ℧: it is the least dynamic term

(has the fewest behaviors) of every computation type, and all complex stacks are strict in errors,
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Cast Universal Properties

Bound Best

Up x : A ⊢ x ⊑ ⟨A′ ↢ A⟩x : A ⊑ A′ x ⊑ x ′ : A ⊑ A′ ⊢ ⟨A′ ↢ A⟩x ⊑ x ′ : A′

Down • : B′ ⊢ ⟨B ↞ B′⟩• ⊑ • : B ⊑ B′ • ⊑ • : B ⊑ B′ ⊢ • ⊑ ⟨B ↞ B′⟩• : B

Retract Axiom

x : A ⊢ ⟨FA ↞ F ?⟩(ret (⟨?↢ A⟩x)) ⊑ ret x : FA
x : UB ⊢ ⟨B ↞ ¿⟩(force (⟨U ¿

↢ UB⟩x)) ⊑ force x : B

Type Universal Properties

Type β η

+

case inl V {x1.E1 | . . .} ⊒⊑ E1[V /x1]
case inr V {. . . | x2.E2} ⊒⊑ E2[V /x2]

E ⊒⊑ case x{x1.E[inl x1/x] | x2.E[inr x2/x]}
where x : A1 +A2 ⊢ E : T

U force thunk M ⊒⊑ M x : UB ⊢ x ⊒⊑ thunk force x : UB

F bind x ← ret V ;M ⊒⊑ M[V /x] • : FA ⊢ M ⊒⊑ bind x ← •;M[ret x/•] : B

→ (λx : A.M)V ⊒⊑ M[V /x] • : A→ B ⊢ • ⊒⊑ λx : A. • x : A→ B

&

π {π 7→ M | π ′ 7→ M ′} ⊒⊑ M
π ′{π 7→ M | π ′ 7→ M ′} ⊒⊑ M ′

• : B
1
& B

2
⊢ • ⊒⊑ {π 7→ π• | π ′ 7→ π ′•} : B

1
& B

2

Error Properties

ErrBot

Γ′ | · ⊢ M ′ : B′

Γ ⊑ Γ′ | · ⊢ ℧ ⊑ M ′ : B ⊑ B′

StkStrict

Γ | x : B ⊢ S : B′

Γ | · ⊢ S[℧B ] ⊑ ℧B′ : B
′

Fig. 4. GTT Term Dynamism Axioms (0,×,1,⊤ in extended version)

because stacks force their evaluation position. We state the first axiom in a heterogeneous way,

which includes congruence Γ ⊑ Γ′ ⊢ ℧B ⊑ ℧B′ : B ⊑ B′.

3 THEOREMS IN GRADUAL TYPE THEORY
In this section, we show that the axiomatics of gradual type theory determine most properties

of casts, which shows that these behaviors of casts are forced in any implementation of gradual

typing satisfying graduality and β,η. For proofs, see the extended version of the paper.

3.1 Type-generic Properties of Casts
The universal property axioms for upcasts and downcasts in Figure 4 define them uniquely up to

equidynamism (⊒⊑): anything with the same property is behaviorally equivalent to a cast.

Theorem 3.1 (Specification for Casts is a Universal Property).

(1) If A ⊑ A′ and x : A ⊢ V : A′ is a complex value such that x : A ⊢ x ⊑ V : A ⊑ A′ and
x ⊑ x ′ : A ⊑ A′ ⊢ V ⊑ x ′ : A′ then x : A ⊢ V ⊒⊑ ⟨A′ ↢ A⟩x : A′.

(2) If B ⊑ B′ and •′ : B′ ⊢ S : B is a complex stack such that •′ : B′ ⊢ S ⊑ •′ : B ⊑ B′ and
• ⊑ •′ : B ⊑ B′ ⊢ • ⊑ S : B then •′ : B′ ⊢ S ⊒⊑ ⟨B ↞ B′⟩•′ : B

Casts satisfy an identity and composition law:

Theorem 3.2 (Casts (de)composition). For any A ⊑ A′ ⊑ A′′ and B ⊑ B′ ⊑ B′′:
(1) x : A ⊢ ⟨A↢ A⟩x ⊒⊑ x : A
(2) x : A ⊢ ⟨A′′ ↢ A⟩x ⊒⊑ ⟨A′′ ↢ A′⟩⟨A′ ↢ A⟩x : A′′

(3) • : B ⊢ ⟨B ↞ B⟩• ⊒⊑ • : B
(4) • : B′′ ⊢ ⟨B ↞ B′′⟩• ⊒⊑ ⟨B ↞ B′⟩(⟨B′ ↞ B′′⟩•) : B ⊑ B
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In particular, this composition property implies that the casts into and out of the dynamic type are

coherent, for example if A ⊑ A′ then ⟨?↢ A⟩x ⊒⊑ ⟨?↢ A′⟩⟨A′ ↢ A⟩x .
The following theorem says essentially that x ⊑ ⟨T ↞ T ′⟩⟨T ′ ↢ T ⟩x (upcast then downcast

might error less but but otherwise does not change the behavior) and ⟨T ′ ↢ T ⟩⟨T ↞ T ′⟩x ⊑ x
(downcast then upcast might error more but otherwise does not change the behavior). However,

since a value type dynamism A ⊑ A′ induces a value upcast x : A ⊢ ⟨A′ ↢ A⟩x : A′ but a stack
downcast • : FA′ ⊢ ⟨FA ↞ FA′⟩• : FA (and dually for computations), the statement of the theorem

wraps one cast with the constructors forU and F types (functoriality of F/U ).

Theorem 3.3 (Casts are a Galois Connection).

(1) •′ : FA′ ⊢ bind x ← ⟨FA ↞ FA′⟩•′; ret (⟨A′ ↢ A⟩x) ⊑ •′ : FA′

(2) • : FA ⊢ • ⊑ bind x ← •; ⟨FA ↞ FA′⟩(ret (⟨A′ ↢ A⟩x)) : FA
(3) x : UB′ ⊢ ⟨UB′ ↢ UB⟩(thunk (⟨B ↞ B′⟩force x)) ⊑ x : UB′

(4) x : UB ⊢ x ⊑ thunk (⟨B ↞ B′⟩(force (⟨UB′ ↢ UB⟩x))) : UB

The retract property says roughly that x ⊒⊑ ⟨T ′ ↞ T ⟩⟨T ′ ↢ T ⟩x (upcast then downcast does

not change the behavior), strengthening the ⊑ of Theorem 3.3. In Figure 4, we asserted the retract

axiom for casts with the dynamic type. This and the composition property implies the retraction

property for general casts:

Theorem 3.4 (Retract Property for General Casts).

(1) • : FA ⊢ bind x ← •; ⟨FA ↞ FA′⟩(ret (⟨A′ ↢ A⟩x)) ⊒⊑ • : FA
(2) x : UB ⊢ thunk (⟨B ↞ B′⟩(force (⟨UB′ ↢ UB⟩x))) ⊒⊑ x : UB

3.2 Unique Implementations of Casts
Together, the universal property for casts and the η principles for each type imply that the casts

must behave as in lazy cast semantics:

Theorem 3.5 (Cast Uniqe Implementation Theorem for +,×,→,&). The casts’ behavior is
uniquely determined as follows: (See the extended version for +, &.)

⟨A′
1
×A′

2

↢ A1 ×A2⟩p ⊒⊑ split p to (x1, x2).(⟨A
′
1

↢ A1⟩x1, ⟨A
′
2

↢ A2⟩x2)

⟨F (A′
1
×A′

2
) ↞ F (A1 ×A2)⟩• ⊒⊑ bind p′ ← •; split p′ to (x ′

1
, x ′

2
).

bind x1 ← ⟨FA1 ↞ FA′
1
⟩ret x ′

1
;

bind x2 ← ⟨FA2 ↞ FA′
2
⟩ret x ′

2
; ret (x1, x2)

⟨A→ B ↞ A′ → B′⟩• ⊒⊑ λx .⟨B ↞ B′⟩(• (⟨A′ ↢ A⟩x))

⟨U (A′ → B′)↢ U (A→ B)⟩ f ⊒⊑ thunk (λx ′. bind x ← ⟨FA ↞ FA′⟩(ret x ′);
force (⟨UB′ ↢ UB⟩(thunk (force (f )x))))

In the case for an eager product ×, we can actually also show that reversing the order and

running ⟨FA2 ↞ FA′
2
⟩ret x ′

2
and then ⟨FA1 ↞ FA′

1
⟩ret x ′

1
is also an implementation of this cast,

and therefore equal to the above. Intuitively, this is sensible because the only effect a downcast

introduces is a run-time error, and if either downcast errors, both possible implementations will.

In GTT, we assert the existence of value upcasts and computation downcasts for derivable type

dynamism relations. While we do not assert the existence of all value downcasts and computation
upcasts, we can define the universal property that identifies a term as such:

Definition 3.6 (Stack upcasts/value downcasts).
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(1) If B ⊑ B′, a stack upcast from B to B′ is a stack • : B ⊢ ⟨⟨B′ ↢ B⟩⟩• : B′ that sat-
isfies the computation dynamism rules of an upcast • : B ⊢ • ⊑ ⟨⟨B′ ↢ B⟩⟩• : B ⊑ B′ and
• ⊑ •′ : B ⊑ B′ ⊢ ⟨⟨B′ ↢ B⟩⟩• ⊑ •′ : B′.

(2) If A ⊑ A′, a value downcast from A′ to A is a complex value x : A′ ⊢ ⟨⟨A ↞ A′⟩⟩x : A
that satisfies the value dynamism rules of a downcast x : A′ ⊢ ⟨⟨A ↞ A′⟩⟩x ⊑ x : A ⊑ A′ and
x ⊑ x ′ : A ⊑ A′ ⊢ x ⊑ ⟨⟨A ↞ A′⟩⟩x ′ : A.

Some value downcasts and computation upcasts do exist, leading to a characterization of the

casts for the monadUFA and comonad FUB of F ⊣ U :

Theorem 3.7 (Cast Uniqe Implementation Theorem forUF , FU ). Let A ⊑ A′ and B ⊑ B′.
(1) • : FA ⊢ bind x : A← •; ret (⟨A′ ↢ A⟩x) : FA′ is a stack upcast.
(2) If ⟨⟨B′ ↢ B⟩⟩ is a stack upcast, then

x : UB ⊢ ⟨UB′ ↢ UB⟩x ⊒⊑ thunk (⟨⟨B′ ↢ B⟩⟩(force x)) : UB′

(3) x : UB′ ⊢ thunk (⟨B ↞ B′⟩(force x)) : UB is a value downcast.
(4) If ⟨⟨A ↞ A′⟩⟩ is a value downcast, then
• : FA′ ⊢ ⟨FA ↞ FA′⟩• ⊒⊑ bind x ′ : A′← •; ret (⟨A ↞ A′⟩x)

(5)

x : UFA ⊢ ⟨UFA′ ↢ UFA⟩x ⊒⊑ thunk (bind x : A← force x ; ret (⟨A′ ↢ A⟩x))
• : FUB′ ⊢ ⟨FUB ↞ FUB′⟩• ⊒⊑ bind x ′ : UB′← •; ret (thunk (⟨B ↞ B′⟩(force x)))

Recall that for value types A1 and A2, the CBV function type isU (A1 → FA2). As a corollary of

Theorems 3.5 and 3.7, we have

Corollary 3.8 (Cast Uniqe Implementation for CBV Functions).

⟨U (A′
1
→ FA′

2
)↢ U (A1 → FA2)⟩ f ⊒⊑ thunk (λx ′. bind x ← ⟨FA1 ↞ FA′

1
⟩(ret x ′);

bind y ← (force (f )x);
ret (⟨A′

2

↢ A2⟩y))
⟨FU (A1 → FA2) ↞ FU (A′

1
→ FA′

2
)⟩• ⊒⊑ bind f ← •;

ret λx .⟨FA2 ↞ FA′
2
⟩(force (f ) (⟨A′

1

↢ A1⟩x))

These are equivalent to the CBPV translations of the standard CBV wrapping implementations;

for example, the CBV upcast term λx ′.let x = ⟨A1 ↞ A′
1
⟩x ′; ⟨A′

2

↢ A2⟩(f x
′) has its evaluation

order made explicit, and the fact that its upcast is a (complex) value exposed. In the downcast, the

GTT term is free to let-bind (⟨A′
1

↢ A1⟩x) to avoid duplicating it, but because it is a (complex)

value, it can also be substituted directly, which might expose reductions that can be optimized.

3.3 Upcasts are Values, Downcasts are Stacks
Since GTT is an axiomatic theory, we can consider different fragments than the one presented

in Section 2. Here, we use this flexibility to show that taking upcasts to be complex values and

downcasts to be complex stacks is forced if this property holds for casts between ground types and

?/¿. For this section, we define a ground type3 to be generated by the following grammar:

G ::= 1 | ? × ? | 0 | ? + ? | U ¿ G ::= ?→ ¿ | ⊤ | ¿ & ¿ | F?

Let GTTG be the fragment of GTT where the only primitive casts are those between ground

types and the dynamic types, i.e. the cast terms are restricted to the substitution closures of

x : G ⊢ ⟨?↢ G⟩x : ? • : F? ⊢ ⟨FG ↞ F?⟩• : F? • : ¿ ⊢ ⟨G ↞ ¿⟩• : ¿ x : UG ⊢ ⟨U ¿
↢ UG⟩x : U ¿

Lemma 3.9 (Casts are Admissible). In GTTG it is admissible that

3
In gradual typing, “ground” is used to mean a one-level unrolling of a dynamic type, not first-order data.
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(1) for allA ⊑ A′ there is a complex value ⟨⟨A′ ↢ A⟩⟩ satisfying the universal property of an upcast
and a complex stack ⟨⟨FA ↞ FA′⟩⟩ satisfying the universal property of a downcast

(2) for all B ⊑ B′ there is a complex stack ⟨⟨B ↞ B′⟩⟩ satisfying the universal property of a downcast
and a complex value ⟨⟨UB′ ↢ UB⟩⟩ satisfying the universal property of an upcast.

Proof. To streamline the exposition above, we stated Theorems 3.2, Theorem 3.5 Theorem 3.7 as

showing that the “definitions” of each cast are equidynamic with the cast that is a priori postulated

to exist (e.g. ⟨A′′ ↢ A⟩ ⊒⊑ ⟨A′′ ↢ A′⟩⟨A′ ↢ A⟩). However, the proofs show directly that the

right-hand sides have the desired universal property—i.e. the stipulation that some cast with the

correct universal property exists is not used in the proof that the implementation has the desired

universal property. Moreover, the proofs given do not rely on any axioms of GTT besides the

universal properties of the “smaller” casts used in the definition and the βη rules for the relevant

types. So these proofs can be used as the inductive steps here, in GTTG . In the extended version we

define an alternative type dynamism relation where casts into dynamic types are factored through

ground types, and use that to drive the induction here. □

As discussed in Section 2.4, rather than an upcast being a complex value x : A ⊢ ⟨A′ ↢ A⟩x : A′,
an a priori more general type would be a stack • : FA ⊢ ⟨FA′ ↢ FA⟩• : FA′, which allows the

upcast to perform effects; dually, an a priori more general type for a downcast • : B′ ⊢ ⟨B ↞ B′⟩• : B
would be a value x : UB′ ⊢ ⟨UB ↞ UB′⟩x : UB, which allows the downcast to ignore its argument.

The following shows that in GTTG , if we postulate such stack upcasts/value downcasts as originally

suggested in Section 2.4, then in fact these casts must be equal to the action ofU /F on some value

upcasts/stack downcasts, so the potential for (co)effectfulness affords no additional flexibility.

Theorem 3.10 (Upcasts are Necessarily Values, Downcasts are Necessarily Stacks). Sup-
pose we extend GTTG with the following postulated stack upcasts and value downcasts (in the sense of
Definition 3.6): For every type precision A ⊑ A′, there is a stack upcast • : FA ⊢ ⟨FA′ ↢ FA⟩• : FA′,
and for every B ⊑ B′, there is a complex value downcast x : UB′ ⊢ ⟨UB ↞ UB′⟩x : UB.
Then there exists a value upcast ⟨⟨A′ ↢ A⟩⟩ and a stack downcast ⟨⟨B ↞ B′⟩⟩ such that

• : FA ⊢ ⟨FA′ ↢ FA⟩• ⊒⊑ (bind x : A← •; ret (⟨⟨A′ ↢ A⟩⟩x))
x : UB′ ⊢ ⟨UB ↞ UB′⟩x ⊒⊑ (thunk (⟨⟨B ↞ B′⟩⟩(force x)))

Proof. Lemma 3.9 constructs ⟨⟨A′ ↢ A⟩⟩ and ⟨⟨B ↞ B′⟩⟩, so the proof of Theorem 3.7 (which

really works for any ⟨⟨A′ ↢ A⟩⟩ and ⟨⟨B ↞ B′⟩⟩ with the correct universal properties, not only the

postulated casts) implies that the right-hand sides of the above equations are stack upcasts and

value downcasts of the appropriate type. Since stack upcasts/value downcasts are unique by an

argument analogous to Theorem 3.1, the postulated casts must be equal to these. □

4 CONTRACT MODELS OF GTT
To show the soundness of our theory, and demonstrate its relationship to operational definitions of

observational equivalence and the gradual guarantee, we developmodels of GTT using observational

error approximation of a non-gradual CBPV.We call this the contract translation because it translates
the built-in casts of the gradual language into ordinary terms implemented in a non-gradual

language. While contracts are typically implemented in a dynamically typed language, our target

is typed, retaining type information similarly to manifest contracts [Greenberg et al. 2010]. We

give implementations of the dynamic value type in the usual way as a recursive sum of basic value

types, i.e., using type tags, and we give implementations of the dynamic computation type as the

dual: a recursive product of basic computation types.

Writing ⟦M⟧ for any of the contract translations, the remaining sections of the paper establish:
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Theorem 4.1 (Eqi-dynamism implies Observational Eqivalence). If Γ ⊢ M1 ⊒⊑ M2 : B,
then for any closing GTT context C : (Γ ⊢ B) ⇒ (· ⊢ F (1 + 1)), ⟦C[M1]⟧ and ⟦C[M2]⟧ have the same
behavior: both diverge, both run to an error, or both run to true or both run to false.

Theorem 4.2 (Graduality). If Γ1 ⊑ Γ2 ⊢ M1 ⊑ M2 : B1 ⊑ B2, then for any GTT context
C : (Γ1 ⊢ B1) ⇒ (· ⊢ F (1 + 1)), and any valid interpretation of the dynamic types, either

(1) ⟦C[M1]⟧ ⇓ ℧, or
(2) ⟦C[M1]⟧ ⇑ and ⟦C[⟨B1 ↞ B2⟩M2[⟨Γ2 ↢ Γ1⟩Γ1]]⟧ ⇑, or
(3) ⟦C[M1]⟧ ⇓ ret V , ⟦C[⟨B1 ↞ B2⟩M2[⟨Γ2 ↢ Γ1⟩Γ1]]⟧ ⇓ ret V , and V = true or V = false.

As a consequence we will also get consistency of our logic of dynamism:

Corollary 4.3 (Consistency ). · ⊢ ret true ⊑ ret false : F (1 + 1) is not provable in GTT.

We break down this proof into 3 major steps.

(1) (This section) We translate GTT into a statically typed CBPV* language where the casts of

GTT are translated to “contracts” in GTT: i.e., CBPV terms that implement the runtime type

checking. We translate the term dynamism of GTT to an inequational theory for CBPV. Our

translation is parameterized by the implementation of the dynamic types, and we demonstrate

two valid implementations, one more direct and one more Scheme-like.

(2) (Section 5) Next, we eliminate all uses of complex values and stacks from the CBPV language.

We translate the complex values and stacks to terms with a proof that they are “pure” (thunk-

able or linear [Munch-Maccagnoni 2014]). This part has little to do with GTT specifically,

except that it shows the behavioral property that corresponds to upcasts being complex

values and downcasts being complex stacks.

(3) (Section 6.3) Finally, with complex values and stacks eliminated, we give a standard oper-

ational semantics for CBPV and define a logical relation that is sound and complete with

respect to observational error approximation. Using the logical relation, we show that the

inequational theory of CBPV is sound for observational error approximation.

By composing these, we get a model of GTT where equidynamism is sound for observational

equivalence and an operational semantics that satisfies the graduality theorem.

4.1 Call-by-push-value
Next, we define the call-by-push-value language CBPV* that will be the target for our contract

translations of GTT. CBPV* is the axiomatic version of call-by-push-value with complex values

and stacks, while CBPV (Section 5) will designate the operational version of call-by-push-value

with only operational values and stacks. CBPV* is almost a subset of GTT obtained as follows: We

remove the casts and the dynamic types ?, ¿ (the shaded pieces) from the syntax and typing rules

in Figure 1. There is no type dynamism, and the inequational theory of CBPV* is the homogeneous

fragment of term dynamism in Figure 3 (judgements Γ ⊢ E ⊑ E ′ : T where Γ ⊢ E, E ′ : T , with
all the same rules in that figure thus restricted). The inequational axioms are the Type Universal

Properties (βη rules) and Error Properties (with ErrBot made homogeneous) from Figure 4. To

implement the casts and dynamic types, we add general recursive value types (µX .A, the fixed
point of X val type ⊢ A val type) and corecursive computation types (νY .B, the fixed point of

Y comp type ⊢ B comp type). The recursive type µX .A is a value type with constructor roll,
whose eliminator is pattern matching, whereas the corecursive type νY .B is a computation type

defined by its eliminator (unroll), with an introduction form that we also write as roll. We extend

the inequational theory with monotonicity of each term constructor of the recursive types, and

with their βη rules. The rules for recursive types are in the extended version.
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4.2 Interpreting the Dynamic Types
As shown in Theorems 3.2, 3.5, 3.7, almost all of the contract translation is uniquely determined

already. However, the interpretation of the dynamic types and the casts between the dynamic

types and ground typesG andG are not determined (they were still postulated in Lemma 3.9). For

this reason, our translation is parameterized by an interpretation of the dynamic types and the

ground casts. By Theorems 3.3, 3.4, we know that these must be embedding-projection pairs (ep
pairs), which we now define in CBPV*.

Definition 4.4 (Value and Computation Embedding-Projection Pairs).
(1) A value ep pair from A to A′ consists of an embedding value x : A ⊢ Ve : A′ and projection

stack • : FA′ ⊢ Sp : FA, satisfying the retraction and projection properties:

x : A ⊢ ret x ⊒⊑ Sp [ret Ve ] : FA • : FA′ ⊢ bind x ← Sp ; ret Ve ⊑ • : FA
′

(2) A computation ep pair from B to B′ consists of an embedding value z : UB ⊢ Ve : UB′ and a

projection stack • : B′ ⊢ Sp : B satisfying retraction and projection properties:

z : UB ⊢ force z ⊒⊑ Sp [force Ve ] : B w : UB′ ⊢ Ve [thunk Sp [force w]] ⊑ w : UB′

Using this, and using the notion of ground type from Section 3.3 with 0 and ⊤ removed, we define

Definition 4.5 (Dynamic Type Interpretation). A ?, ¿ interpretation ρ consists of (1) a CBPV value

type ρ(?), (2) a CBPV computation type ρ(¿), (3) for each value ground type G, a value ep pair

(x .ρe (G), ρp (G)) from ⟦G⟧ρ to ρ(?), and (4) for each computation ground type G, a computation

ep pair (z.ρe (G), ρp (G)) from ⟦G⟧ρ to ρ(¿). We write ⟦G⟧ρ and ⟦G⟧ρ for the interpretation of a

ground type, replacing ? with ρ(?), ¿ with ρ(¿), and compositionally otherwise.

Next, we show several possible interpretations of the dynamic type that will all give, by construc-

tion, implementations that satisfy the gradual guarantee. Our interpretations of the value dynamic

type are not surprising. They are the usual construction of the dynamic type using type tags: i.e.,

a recursive sum of basic value types. On the other hand, our interpretations of the computation

dynamic type are less familiar. In duality with the interpretation of ?, we interpret ¿ as a recursive

product of basic computation types. This interpretation has some analogues in previous work

on the duality of computation [Girard 2001; Zeilberger 2009], but the most direct interpretation

(definition 4.8) does not correspond to any known work on dynamic/gradual typing. Then we

show that a particular choice of which computation types is basic and which are derived produces

an interpretation of the dynamic computation type as a type of variable-arity functions whose

arguments are passed on the stack, producing a model similar to Scheme without accounting for

control effects (definition 4.9).

4.2.1 Natural Dynamic Type Interpretation. Our first dynamic type interpretation is to make the

value and computation dynamic types sums and products of the ground value and computation

types, respectively. This forms a model of GTT for the following reasons. For the value dynamic

type ?, we need a value embedding (the upcast) from each ground value typeG with a corresponding

projection. The easiest way to do this would be if for each G, we could rewrite ? as a sum of the

values that fit G and those that don’t: ? � G + ?−G because of the following lemma.

Lemma 4.6 (Sum Injections are Value Embeddings). For anyA,A′, there are value ep pairs from
A and A′ to A +A′ where the embeddings are inl and inr .

Proof. Define the embedding of A to just be x .inl x and the projection to be bind y ←
•; case y{inl x .ret x | inr .℧}. □

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 15. Publication date: January 2019.



15:20 Max S. New, Daniel R. Licata, and Amal Ahmed

This shows why the type tag interpretation works: it makes the dynamic type in some sense the

minimal type with injections from each G: the sum of all value ground types ? � ΣGG.
The dynamic computation type ¿ can be naturally defined by a dual construction, by the following

dual argument. First, we want a computation ep pair fromG to ¿ for each ground computation type

G. Specifically, this means we want a stack from ¿ to G (the downcast) with an embedding. The

easiest way to get this is if, for each ground computation typeG , ¿ is equivalent to a lazy product of

G and “the other behaviors”, i.e., ¿ � G & ¿
−G

. Then the embedding on π performs the embedded

computation, but on π ′ raises a type error. The following lemma, dual to lemma 4.6 shows this

forms a computation ep pair:

Lemma 4.7 (Lazy Product Projections are Computation Projections). For any B,B′, there
are computation ep pairs from B and B′ to B & B′ where the projections are π and π ′.

Proof. Define the projection for B to be π . Define the embedding by z.{π 7→ force z | π ′ 7→ ℧}.
Similarly define the projection for B′. □

From this, we see that the easiest way to construct an interpretation of the dynamic computation

type is to make it a lazy product of all the ground types G: ¿ � &G G. Using recursive types, we

can easily make this a definition of the interpretations:

Definition 4.8 (Natural Dynamic Type Interpretation). The following defines a dynamic type

interpretation. We define the types to satisfy the isomorphisms

? � 1 + (? × ?) + (? + ?) +U ¿ ¿ � (¿ & ¿) & (?→ ¿) & F?

with the ep pairs defined as in Lemma 4.6 and 4.7.

This dynamic type interpretation is a natural fit for CBPV because the introduction forms for ?

are exactly the introduction forms for all of the value types (unit, pairing,inl, inr, force), while
elimination forms are all of the elimination forms for computation types (π , π ′, application and

binding); such “bityped” languages are related to Girard [2001]; Zeilberger [2009]. In the extended

version, we give an extension of GTT axiomatizing this implementation of the dynamic types.

4.2.2 Scheme-like Dynamic Type Interpretation. The above dynamic type interpretation does

not correspond to any dynamically typed language used in practice, in part because it includes

explicit cases for the “additives”, the sum type + and lazy product type &. Normally, these are not

included in this way, but rather sums are encoded by making each case use a fresh constructor

(using nominal techniques like opaque structs in Racket) and then making the sum the union of

the constructors, as argued in Siek and Tobin-Hochstadt [2016]. We leave modeling this nominal

structure to future work, but in minimalist languages, such as simple dialects of Scheme and Lisp,

sum types are often encoded structurally rather than nominally by using some fixed sum type

of symbols, also called atoms. Then a value of a sum type is modeled by a pair of a symbol (to

indicate the case) and a payload with the actual value. We can model this by using the canonical

isomorphisms

? + ? � ((1 + 1) × ?) ¿ & ¿ � (1 + 1) → ¿

and representing sums as pairs, and lazy products as functions.

With this in mind, we remove the cases for sums and lazy pairs from the natural dynamic types,

and include some atomic type as a case of ?—for simplicity we will just use booleans. We also do

not need a case for 1, because we can identify it with one of the booleans, say true. This leads to
the following definition:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 15. Publication date: January 2019.



Gradual Type Theory 15:21

1 ⊑ B A +A ⊒⊑ B ×A B & B ⊒⊑ B→ B

Γ | ∆ ⊢ M→ : ?→ ¿ Γ | ∆ ⊢ MF : F?

Γ | ∆ ⊢ {(→) 7→ M→ | F 7→ MF } : ¿
¿I

Γ | ∆ ⊢ V : ? Γ, xB : B | ∆ ⊢ EB : T Γ, xU : U ¿ | ∆ ⊢ EU : T Γ, x× : ? × ? | ∆ ⊢ E× : T

Γ | ∆ ⊢ tycase V {xB.EB | xU .EU | x×.E×} : T
?E

Fig. 5. Scheme-like Extension to GTT

Definition 4.9 (Scheme-like Dynamic Type Interpretation). We can define a dynamic type interpre-

tation with the following type isomorphisms:

? � (1 + 1) +U ¿ + (? × ?) ¿ � (?→ ¿) & F?

Proof. The details of constructing the two mutually recursive types from our recursive type

mechanism are in the extended version. The ep pairs for ×,U , F ,→ are clear. To define the rest,

first note that there is an ep pair from 1 + 1 to ? by Lemma 4.6. Next, we can define 1 to be the ep

pair to 1 + 1 defined by the left case and Lemma 4.6, composed with this. The ep pair for ? + ? is

defined by composing the isomorphism (which is always an ep pair) (? + ?) � ((1 + 1) × ?) with the

ep pair for 1 + 1 using the action of product types on ep pairs (proven as part of Theorem 4.11):

(?+ ?) � ((1+ 1) × ?) ◁ (?× ?) ◁ ? (where we write A ◁A′ to mean there is an ep pair from A to A′).
Similarly, for ¿ & ¿, we use action of the function type on ep pairs (also proven as part of Theorem

4.11): ¿ & ¿ � ((1 + 1) → ¿) ◁ (?→ ¿) ◁ ¿ □

Intuitively, the above definition of ? says that it is a binary tree whose leaves are either booleans

or closures—a simple type of S-expressions. On the other hand, the above definition of ¿ models

a variable-arity function (as in Scheme), which is called with any number of dynamically typed

value arguments ? and returns a dynamically typed result F?. To see why a ¿ can be called with any

number of arguments, observe that its infinite unrolling is F? & (?→ F?) & (?→ ?→ F?) & . . ..
This type is isomorphic to a function that takes a list of ? as input ((µX .1 + (? × X )) → F?), but
operationally ¿ is a more faithful model of Scheme implementations, because all of the arguments

are passed individually on the stack, not as a heap-allocated single list argument. These two are

distinguished in Scheme and the “dot args” notation witnesses the isomorphism.

Based on this dynamic type interpretation we can make a “Scheme-like” extension to GTT in

Figure 5. First, we add a boolean type B with true, false and if-then-else. Next, we add in the

elimination form for ? and the introduction form for ¿. The elimination form for ? is a typed

version of Scheme’smatchmacro. The introduction form for ¿ is a typed, CBPV version of Scheme’s

case-lambda construct. Finally, we add type dynamism rules expressing the representations of 1,

A +A, and A ×A in terms of booleans that were explicit in the ep pairs used in Definition 4.9. In

the extended version of the paper, we include the appropriate term dynamism axioms, which are

straightforward syntactifications of the properties of the dynamic type interpretation, and prove a

unique implementation theorem for the new casts.

4.3 Contract Translation
Having defined the data parameterizing the translation, we now consider the translation of GTT

into CBPV* itself. For the remainder of the paper, we assume that we have a fixed dynamic type

interpretation ρ, and all proofs and definitions work for any interpretation.

The main idea of the translation is an extension of the dynamic type interpretation to an

interpretation of all casts in GTT (Figure 6) as contracts in CBPV*, following the definitions in
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x : ⟦A⟧ ⊢ ⟦⟨A′ ↢ A⟩⟧ : ⟦A′⟧ • : ⟦B′⟧ ⊢ ⟦⟨B ↞ B′⟩⟧ : ⟦B⟧

x : ⟦?⟧ ⊢ ⟦⟨?↢ ?⟩⟧ = x
• : F? ⊢ ⟦⟨F? ↞ F?⟩⟧ = •

x : ⟦G⟧ ⊢ ⟦⟨?↢ G⟩⟧ = ρup (G)
• : F? ⊢ ⟦⟨FG ↞ F?⟩⟧ = ρdn (G)
x : ⟦A⟧ ⊢ ⟦⟨?↢ A⟩⟧ = ⟦⟨?↢ ⌊A⌋⟩⟧[⟦⟨⌊A⌋ ↢ A⟩⟧/x]
• : F? ⊢ ⟦⟨A ↞ ?⟩⟧ = ⟦⟨A ↞ ⌊A⌋⟩⟧[⟦⟨⌊A⌋ ↞ ?⟩⟧]

x : ⟦A1⟧ × ⟦A2⟧ ⊢ ⟦⟨A′
1
×A′

2

↢ A1 ×A2⟩⟧ = split x to (x1, x2).
(⟦⟨A′

1

↢ A1⟩⟧[x1], ⟦⟨A′
2

↢ A2⟩⟧[x2])
• ⊢ ⟦⟨F (A1 ×A2) ↞ F (A′

1
×A′

2
)⟩⟧ = bind x ′ ← •; split x ′ to (x ′

1
, x ′

2
).

bind x1 ← ⟦⟨FA1 ↞ FA′
1
⟩⟧ret x ′

1
;

bind x2 ← ⟦⟨FA2 ↞ FA′
2
⟩⟧ret x ′

2
; ret (x1, x2)

x : UF⟦A⟧ ⊢ ⟦⟨UFA′ ↢ UFA⟩⟧ = thunk (bind y ← force x ; ret ⟦⟨A′ ↢ A⟩⟧[y/x])

Fig. 6. Cast to Contract Translation (selected cases)

Lemma 3.9. To verify the totality and coherence of this definition, we define (in the extended

version) a normalized version of the type dynamism rules from Figure 2, which is interderivable

but has at most one derivation ofT ⊑ T ′ for a givenT andT ′. The main idea is to restrict reflexivity

to base types, and restrict transitivity to A ⊑ ⌊A⌋ ⊑ ?, where ⌊A⌋ is the ground type with the same

outer connective as A. Next, we extend the translation of casts to a translation of all terms by

congruence, since all terms in GTT besides casts are in CBPV*. This satisfies:

Lemma 4.10 (Contract Translation Type Preservation). If Γ | ∆ ⊢ E : T in GTT, then
⟦Γ⟧ | ⟦∆⟧ ⊢ ⟦E⟧ : ⟦T⟧ in CBPV*.

We have now given an interpretation of the types, terms, and type dynamism proofs of GTT in

CBPV*. To complete this to form a model of GTT, we need to give an interpretation of the term
dynamism proofs, which is established by the following “axiomatic graduality” theorem. GTT has

heterogeneous term dynamism rules indexed by type dynamism, but CBPV* has only homogeneous
inequalities between terms, i.e., if E ⊑ E ′, then E, E ′ have the same context and types. Since every

type dynamism judgement has an associated contract, we can translate a heterogeneous term

dynamism to a homogeneous inequality up to contract. Our next overall goal is to prove

Theorem 4.11 (Axiomatic Graduality). For any dynamic type interpretation,
Φ : Γ ⊑ Γ′ Ψ : ∆ ⊑ ∆′ Φ | Ψ ⊢ M ⊑ M ′ : B ⊑ B′

⟦Γ⟧ | ⟦∆′⟧ ⊢ ⟦M⟧[⟦Ψ⟧] ⊑ ⟦⟨B ↞ B′⟩⟧[⟦M ′⟧[⟦Φ⟧]] : ⟦B⟧
Φ : Γ ⊑ Γ′ Φ ⊢ V ⊑ V ′ : A ⊑ A′

⟦Γ⟧ ⊢ ⟦⟨A′ ↢ A⟩⟧[⟦V ⟧] ⊑ ⟦V ′⟧[⟦Φ⟧] : ⟦A′⟧
where we define ⟦Φ⟧ to upcast each variable, and ⟦∆⟧ to downcast • if it is nonempty, and if ∆ = ·,
thenM[⟦∆⟧] = M .

The full proof can be found in the extended version, and uses a sequence of lemmas. The first

lemma shows that the translations of casts in Figure 6 do form ep pairs in the sense of Definition 4.4.

One of the biggest advantages of using an explicit syntax for complex values and complex stacks is

that the “shifted” casts (the downcast between F types for A ⊑ A′ and the upcast betweenU types

for B ⊑ B′) are the only effectful terms, and this lemma is the only place where we need to reason

about their definitions explicitly—afterwards, we can simply use the fact that they are ep pairs with

the “pure” value upcasts and stack downcasts, which compose much more nicely than effectful

terms. This is justified by two additional lemmas, which show that a projection is determined by its

embedding and vice versa, and that embedding-projections satisfy an adjunction/Galois connection
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property. The final lemmas show that, according to Figure 6, ⟦⟨A′ ↢ A⟩⟧ is equivalent to the

identity and ⟦⟨A′′ ↢ A′⟩⟧⟦⟨A′ ↢ A⟩⟧ is ⟦⟨A′′ ↢ A⟩⟧, and similarly for downcasts. All of these

properties are theorems in GTT (Section 3), and in the extended version it takes quite a bit of work

to prove them true under translation, which illustrates that the axiomatic theory of GTT encodes a

lot of information with relatively few rules.

As a corollary, we have the following conservativity result, which says that the homogeneous

term dynamisms in GTT are sound and complete for inequalities in CBPV*.

Corollary 4.12 (Conservativity). If Γ | ∆ ⊢ E, E ′ : T are two terms of the same type in the
intersection of GTT and CBPV*, then Γ | ∆ ⊢ E ⊑ E ′ : T is provable in GTT iff it is provable in CBPV*.

Proof. The reverse direction holds because CBPV* is a syntactic subset of GTT. The forward

direction holds by axiomatic graduality and the fact that identity casts are identities. □

5 COMPLEX VALUE/STACK ELIMINATION
Next, to bridge the gap between the semantic notion of complex value and stack with the more rigid

operational notion, we perform a complexity-elimination pass. This translates a computation with

complex values in it to an equivalent computation without complex values: i.e., all pattern matches

take place in computations, rather than in values, and translates a term dynamism derivation

that uses complex stacks to one that uses only “simple” stacks without pattern-matching and

computation introduction forms. This translation clarifies the behavioral meaning of complex

values and stacks, following Munch-Maccagnoni [2014]; Führmann [1999], and therefore of upcasts

and downcasts.

Levy [2003] translates CBPV* to CBPV, but not does not prove the inequality preservation that

we require here, so we give an alternative translation for which this property is easy to verify (see

the extended version for full details). We translate both complex values and complex stacks to fully

general computations, so that computation pattern-matching can replace the pattern-matching

in complex values/stacks. More formally, we translate a CBPV* complex value V : A to a CBPV

computationV † : FA that in CBPV* is equivalent to ret V . Similarly, we translate a CBPV* complex

stack S with hole • : B to a CBPV computation S† with a free variable z : UB such that in CBPV*,

S† ⊒⊑ S[force z]. ComputationsM : B are translated to computationsM† with the same type.

Finally, we need to show that the translation preserves inequalities (E† ⊑ E ′† if E ⊑ E ′), but
because complex values and stacks satisfy more equations than arbitrary computations in the types

of their translations do, we need to isolate the special “purity” property that their translations have.

We show that complex values are translated to computations that satisfy thunkability [Munch-

Maccagnoni 2014], which intuitively means M should have no observable effects, and so can be

freely duplicated or discarded like a value. In the inequational theory of CBPV, this is defined by

saying that running M to a value and then duplicating its value is the same as running M every

time we need its value:

Γ ⊢ ret (thunk M) ⊒⊑ bind x ← M ; ret (thunk (ret x)) : FU FA

Dually, we show that complex stacks are translated to computations that satisfy (semantic) linear-
ity [Munch-Maccagnoni 2014], where intuitively a computationM with a free variable x : UB is

linear in x ifM behaves as if when it is forced, the first thing it does is forces x , and that is the only

time it uses x . This is described in the CBPV inequational theory as follows:

Γ, z : UFUB ⊢ bind x ← force z;M ⊒⊑ M[thunk (bind x ← (force z); force x)]

Composing this with the translation fromGTT to CBPV* shows thatGTT value upcasts are thunkable
and computation downcasts are linear, which justifies a number of program transformations.
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6 OPERATIONAL MODEL OF GTT
In this section, we establish amodel of our CBPV inequational theory using a notion of observational

approximation based on the CBPV operational semantics. By composition with the axiomatic

graduality theorem, this establishes the operational graduality theorem, i.e., a theorem analogous

to the dynamic gradual guarantee [Siek et al. 2015a].

6.1 Call-by-push-value operational semantics
We use a small-step operational semantics for CBPV with the following rules (excerpt):

S[℧] 7→0 ℧

S[split (V1,V2) to (x1, x2).M] 7→
0 S[M[V1/x1,V2/x2]]

S[unroll rollA V to roll x .M] 7→1 S[M[V /x]]
S[force thunk M] 7→0 S[M]

S[bind x ← ret V ;M] 7→0 S[M[V /x]]
S[(λx : A.M)V ] 7→0 S[M[V /x]]

S[unroll rollB M] 7→1 S[M]

M �⇒0 M

M1 7→
i M2 M2 �⇒

j M3

M1 �⇒
i+j M3

This is morally the same as in Levy [2003], but we present stacks in a manner similar to Hieb-

Felleisen style evaluation contexts. We also make the step relation count unrollings of a recursive

or corecursive type, for the step-indexed logical relation later. The operational semantics is only

defined for terms of type · ⊢ M : F (1 + 1), which we take as the type of whole programs.

It is easy to see that the operational semantics is deterministic and progress and type preservation

theorems hold, which allows us to define the “final result” of a computation as follows:

Corollary 6.1 (Possible Results of Computation). For any · ⊢ M : F2, eitherM ⇑ orM ⇓ ℧
orM ⇓ ret true orM ⇓ ret false.

Definition 6.2 (Results). The possible results of a computation are Ω,℧, ret true and ret false.
We denote a result by R, and define a function result which takes a program · ⊢ M : F2, and returns
its end-behavior, i.e., result(M) = Ω ifM ⇑ and otherwiseM ⇓ result(M).

6.2 Observational Equivalence and Approximation
Next, we define observational equivalence and approximation in CBPV. Define a context C to be a

term/value/stack with a single [·] as some subterm/value/stack, and define a typing C : (Γ ⊢ B) ⇒
(Γ′ ⊢ B′) to hold when for any Γ ⊢ M : B, Γ′ ⊢ C[M] : B′ (and similarly for values/stacks). Using

contexts, we can lift any relation on results to relations on open terms, values and stacks.

Definition 6.3 (Contextual Lifting). Given any relation ∼ ⊆ Result
2
, we can define its observational

lift ∼ctx to be the typed relation defined by

Γ | ∆ ⊨ E ∼ctx E ′ ∈ T = ∀C : (Γ | ∆ ⊢ T ) ⇒ (· ⊢ F2). result(C[E]) ∼ result(C[E ′])

The contextual lifting ∼ctx is a preorder or equivalence relation whenever the original relation ∼

is, and all ∼’s we use will be at least preorders, so we write ⊴ instead of ∼ for a relation on results.

Three important relations arise as liftings: Equality of results lifts to observational equivalence (=ctx).

The preorder generated by ℧ ⊑ R (i.e. the other three results are unrelated maximal elements) lifts

to the notion of error approximation used in New and Ahmed [2018] to prove the graduality property

(⊑ctx). The preorder generated by Ω ⪯ R lifts to the standard notion of divergence approximation
(⪯ctx).

The goal of this section is to prove that a symmetric equality E ⊒⊑ E ′ in CBPV (i.e. E ⊑ E ′

and E ′ ⊑ E) implies contextual equivalence E =ctx E ′ and that inequality in CBPV E ⊑ E ′ implies

error approximation E ⊑ctx E ′, proving graduality of the operational model.Because we have
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V1 ⊴
log

0,i V2 = ⊥

(V1,V
′
1
) ⊴

log

A×A′,i (V2,V
′
2
) = V1 ⊴

log

A,i V2 ∧V
′
1
⊴
log

A′,i V
′
2

rollµX .A V1 ⊴
log

µX .A,i rollµX .A V2 = i = 0 ∨V1 ⊴
log

A[µX .A/X ],i−1 V2

V1 ⊴
log

U B,i V2 = ∀j ≤ i, S1 ⊴
log

B, j S2. S1[force V1] ⊴
j
result(S2[force V2])

S1[•V1] ⊴
log

A→B,i S1[•V2] = V1 ⊴
log

A,i V2 ∧ S1 ⊴
log

B,i S2

S1[unroll •] ⊴
log

νY .B,i S2[unroll •] = i = 0 ∨ S1 ⊴
log

B[νY .B/Y ],i−1 S2

S1 ⊴
log

FA,i S2 = ∀j ≤ i,V1 ⊴
log

A, j V2. S1[ret V1] ⊴
j
result(S2[ret V2])

Fig. 7. Logical Relation from a Preorder ⊴ (selected cases)

non-well-founded µ/ν types, we use a step-indexed logical relation to prove properties about the

contextual lifting of certain preorders ⊴ on results. In step-indexing, the infinitary relation given

by ⊴ctx is related to the set of all of its finitary approximations ⊴i , which “time out” after observing

i steps of evaluation and declare that the terms are related. A preorder ⊴ is only recoverable from

its finite approximations if Ω is a least element, Ω ⊴ R, because a diverging term will cause a time

out for any finite index. We call a preorder with Ω ⊴ R a divergence preorder. But this presents a
problem, because neither of our intended relations (= and ⊑) is a divergence preorder; rather both

have Ω as a maximal element. For observational equivalence, because contextual equivalence is

symmetric divergence approximation (M =ctx N iff M ⪯ctx N and N ⪯ctx M), we can use a step-

indexed logical relation to characterize ⪯, and then obtain results about observational equivalence

from that [Ahmed 2006]. A similar move works for error approximation [New and Ahmed 2018],

but since R ⊑ R′ is not symmetric, it is decomposed as the conjunction of two orderings: error

approximation up to divergence on the left ⪯⊑ (the preorder where ℧ and Ω are both minimal:

℧ ⪯⊑ R and Ω ⪯⊑ R) and error approximation up to divergence on the right ⊑⪰ (the diamond

preorder where ℧ is minimal and Ω is maximal, with true/false in between). Then ⪯⊑ and the

opposite of ⊑⪰ (written ⪯⊒) are divergence preorders, so we can use a step-indexed logical relation

to characterize them. Overall, because = is symmetric ⊑, and ⊑ is the conjunction of ⪯⊑ and ⊑⪰,

and contextual lifting commutes with conjunction and opposites, it will suffice to develop logical

relations for divergence preorders.

6.3 CBPV Step Indexed Logical Relation
We use a logical relation to prove results about E ⊴ctx E ′ where ⊴ is a divergence preorder.

The “finitization” of a divergence preorder is a relation between programs and results: a program
approximates a result R at index i if it reduces to R in < i steps or it “times out” by reducing at least

i times.

Definition 6.4 (Finitized Preorder). Given a divergence preorder ⊴, we define the finitization of ⊴
to be, for each natural number i , a relation between programs and results defined by

M ⊴i R = (∃M ′. M �⇒i M ′) ∨ (∃(j < i).∃RM . M �⇒
j RM ∧ RM ⊴ R)

The (closed) logical preorder (for closed values/stacks) is in Figure 7. For every i and value type

A, we define a relation ⊴
log

A,i between two closed values of type A, and for every i and B, we define

a relation for two “closed” stacks B ⊢ F2 outputting the observation type F2—the definition is by

mutual lexicographic induction on i andA/B. Two values or stacks are related if they have the same

structure, where for µ,ν we decrement i and succeed if i = 0. The shifts F/U take the orthogonal of
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the relation: the set of all stacks/values that when composed with those values/stacks are related

by ⊴j≤i ; the quantifier over j ≤ i is needed to make the relation downward closed.

The logical preorder for open terms is defined as usual by quantifying over all related closing

substitutions, but also over all stacks to the observation type F (1 + 1):

Definition 6.5 (Logical Preorder). For a divergence preorder ⊴, its step-indexed logical preorder is

for terms (open stack, value cases are defined in the extended version): Γ ⊨ M1 ⊴
log

i M2 ∈ B iff for

every γ1 ⊴
log

Γ,i γ2 and S1 ⊴
log

B,i S2, S1[M1[γ1]] ⊴
i
result(S2[M2[γ2]]).

Next, we show the fundamental theorem:

Theorem 6.6 (Logical Preorder is a Congruence). For any divergence preorder, the logical
preorder E ⊴logi E ′ is closed under applying any value/term/stack constructors to both sides.

This in particular implies that the relation is reflexive (Γ ⊨ M ⊴
log

i M ∈ B for all well-typedM),so

we have the following strengthening of the progress-and-preservation type soundness theorem:

because ⊴i only counts unrolling steps, terms that never use µ or ν types (for example) are

guaranteed to terminate.

Corollary 6.7 (Unary LR). For every program · ⊢ M : F2 and i ∈ N,M ⊴i result(M)

Using reflexivity, we prove that the indexed relation between terms and results recovers the

original preorder in the limit as i → ω. We write ⊴ω to mean the relation holds for every i , i.e.,
⊴ω=

⋂
i ∈N ⊴

i
.

Corollary 6.8 (Limit Lemma). For any divergence preorder ⊴, result(M) ⊴ R iffM ⊴ω R.

Corollary 6.9 (Logical implies Contextual). If Γ ⊨ E ⊴logω E ′ ∈ B then Γ ⊨ E ⊴ctx E ′ ∈ B.

Proof. LetC be a closing context. By congruence,C[M] ⊴
log

ω C[N ], so using empty environment

and stack,C[M] ⊴ω result(C[N ]) and by the limit lemma, we have result(C[M]) ⊴ result(C[N ]). □

This establishes that our logical relation can prove graduality, so it only remains to show that

our inequational theory implies our logical relation. Having already validated the congruence rules

and reflexivity, we validate the remaining rules of transitivity, error, substitution, and βη for each

type constructor. Other than the ℧ ⊑ M rule, all of these hold for any divergence preorder.

For transitivity, with the unary model and limiting lemmas in hand, we can prove that all of our

logical relations (open and closed) are transitive in the limit. To do this, we first prove the following

kind of “quantitative” transitivity lemma, and then transitivity in the limit is a consequence.

Lemma 6.10 (Logical Relation isQuantitatively Transitive).

If V1 ⊴
log
A,i V2 and V2 ⊴

log
A,ω V3, then V1 ⊴

log
A,i V3, and analogously for stacks.

Corollary 6.11 (Logical Relation is Transitive in the Limit). ⊴
log
ω is transitive.

For errors, the strictness axioms hold for any ⊴, but the axiom that℧ is a least element is specific

to the definitions of ⪯⊑, ⊑⪰

Lemma 6.12 (Error Rules). For any divergence preorder ⊴ and appropriately typed S,M ,

S[℧] ⊴
log
ω ℧ ℧ ⊴

log
ω S[℧] ℧ ⪯⊑

log
ω M M ⪯⊒

log
ω ℧

The lemmas we have proved cover all of the inequality rules of CBPV, so applying them with ⊴
chosen to be ⪯⊑ and ⪯⊒ gives
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Lemma 6.13 (⪯⊑ and⊑⪰ areModels of CBPV). If Γ | ∆ ⊢ E ⊑ E ′ : B then Γ | ∆ ⊨ E ⪯⊑ω E ′ ∈ B
and Γ | ∆ ⊨ E ′ ⪯⊒ω E ∈ B.

Because logical implies contextual equivalence, we can conclude with the main theorem:

Theorem 6.14 (Contextual Approximation/Eqivalence Model CBPV).

If Γ | ∆ ⊢ E ⊑ E ′ : T then Γ | ∆ ⊨ E ⊑ctx E ′ ∈ T ; if Γ | ∆ ⊢ E ⊒⊑ E ′ : T then Γ | ∆ ⊨ E =ctx E ′ ∈ T .

7 DISCUSSION AND RELATEDWORK
In this paper, we have given a logic for reasoning about gradual programs in a mixed call-by-

value/call-by-name language, shown that the axioms uniquely determine almost all of the contract

translation implementing runtime casts, and shown that the axiomatics is sound for contextual

equivalence/approximation in an operational model. In immediate future work, we believe it is

straightforward to add inductive/coinductive types and obtain similar unique cast implementation

theorems (e.g. ⟨list(A′) ↢ list(A)⟩ ⊒⊑ map⟨A′ ↢ A⟩). Additionally, since more efficient cast

implementations such as optimized cast calculi (the lazy variant in Herman et al. [2010]) and

threesome casts [Siek and Wadler 2010], are equivalent to the lazy contract semantics, they should

also be models of GTT, and if so we could use GTT to reason about program transformations and

optimizations in them.

The cast uniqueness principles given in theorem 3.5 are theorems in the formal logic of Gradual

Type Theory, and so there is a question of to what languages the theorem applies. The theorem

applies to any model of gradual type theory, such as the models we have constructed using call-

by-push-value given in Sections 4, 5, 6. We conjecture that simple call-by-value and call-by-name

gradual languages are also models of GTT, by extending the translation of call-by-push-value into

call-by-value and call-by-name in the appendix of Levy’s monograph [Levy 2003]. In order for the

theorem to apply, the language must validate an appropriate version of the η principles for the

types. So for example, a call-by-value language that has reference equality of functions does not
validate even the value-restricted η law for functions, and so the case for functions does not apply.

It is a well-known issue that in the presence of pointer equality of functions, the lazy semantics of

function casts is not compatible with the graduality property, and our uniqueness theorem provides

a different perspective on this phenomenon [Findler et al. 2004; Strickland et al. 2012; Siek et al.

2015a]. However, we note that the cases of the uniqueness theorem for each type connective are

completely modular: they rely only on the specification of casts and the β,η principles for the

particular connective, and not on the presence of any other types, even the dynamic types. So even

if a call-by-value language may have reference equality functions, if it has the η principle for strict

pairs, then the pair cast must be that of Theorem 3.5.

Next, we consider the applicability to non-eager languages. Analogous to call-by-value, our

uniqueness principle should apply to simple call-by-name gradual languages, where full η equality

for functions is satisfied, butη equality for booleans and strict pairs requires a “stack restriction” dual
to the value restriction for call-by-value function η. We are not aware of any call-by-name gradual

languages, but there is considerable work on contracts for non-eager languages, especially Haskell

[Hinze et al. 2006; Xu et al. 2009]. However, we note that Haskell is not a call-by-name language in

our sense for two reasons. First, Haskell uses call-by-need evaluation where results of computations

are memoized. However, when only considering Haskell’s effects (error and divergence), this

difference is not observable so this is not the main obstacle. The bigger difference between Haskell

and call-by-name is that Haskell supports a seq operation that enables the programmer to force

evaluation of a term to a value. This means Haskell violates the function η principle because Ω will

cause divergence under seq, whereas λx .Ωwill not. This is a crucial feature of Haskell and is a major

source of differences between implementations of lazy contracts, as noted in Degen et al. [2012].
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We can understand this difference by using a different translation into call-by-push-value: what

Levy calls the “lazy paradigm”, as opposed to call-by-name [Levy 2003]. Simply put, connectives

are interpreted as in call-by-value, but with the addition of extra thunksUF , so for instance the lazy
function type A→ B is interpreted as UFU (UFA→ FB) and the extra UFU here is what causes

the failure of the call-by-name η principle. With this embedding and the uniqueness theorem, GTT

produces a definition for lazy casts, and the definition matches the work of Xu et al. [2009] when

restricting to non-dependent contracts.

Greenman and Felleisen [2018] gives a spectrum of differing syntactic type soundness theorems

for different semantics of gradual typing. Our work here is complementary, showing that certain

program equivalences can only be achieved by certain cast semantics.

Degen et al. [2012] give an analysis of different cast semantics for contracts in lazy languages,

specifically based on Haskell, i.e., call-by-need with seq. They propose two properties “meaning

preservation” and “completeness” that they show are incompatible and identify which contract

semantics for a lazy language satisfy which of the properties. The meaning preservation property

is closely related to graduality: it says that evaluating a term with a contract either produces blame

or has the same observable effect as running the term without the contract. Meaning preservation

rules out overly strict contract systems that force (possibly diverging) thunks that wouldn’t be

forced in a non-contracted term. Completeness, on the other hand, requires that when a contract

is attached to a value that it is deeply checked. The two properties are incompatible because, for

instance, a pair of a diverging term and a value can’t be deeply checked without causing the entire

program to diverge. Using Levy’s embedding of the lazy paradigm into call-by-push-value their

incompatibility theorem should be a consequence of our main theorem in the following sense.

We showed that any contract semantics departing from the implementation in Theorem 3.5 must

violate η or graduality. Their completeness property is inherently eager, and so must be different

from the semantics GTT would provide, so either the restricted η or graduality fails. However, since

they are defining contracts within the language, they satisfy the restricted η principle provided by

the language, and so it must be graduality, and therefore meaning preservation that fails.

Henglein’s work on dynamic typing also uses an axiomatic semantics of casts, but axiomatizes

behavior of casts at each type directly whereas we give a uniform definition of all casts and derive

implementations for each type [Henglein 1994]. Because of this, the theorems proven in that paper

are more closely related to our model construction in Section 4. More specifically, many of the

properties of casts needed to prove Theorem 4.11 have direct analogues in Henglein’s work, such

as the coherence theorems. We have not included these lemmas in the paper because they are quite

similar to lemmas proven in New and Ahmed [2018]; see there for a more detailed comparison, and

the extended version of this paper for full proof details [New et al. 2018]. Finally, we note that our

assumption of compositionality, i.e., that all casts can be decomposed into an upcast followed by a

downcast, is based on Henglein’s analysis, where it was proven to hold in his coercion calculus.

In this work we have applied a method of “gradualizing” axiomatic type theories by adding

in dynamism orderings and adding dynamic types, casts and errors by axioms related to the

dynamism orderings. This is similar in spirit to two recent frameworks for designing gradual

languages: Abstracting Gradual Typing (AGT) [Garcia et al. 2016] and the Gradualizer [Cimini

and Siek 2016, 2017]. All of these approaches start with a typed language and construct a related

gradual language. A major difference between our approach and those is that our work is based

on axiomatic semantics and so we take into account the equality principles of the typed language,

whereas Gradualizer is based on the typing and operational semantics and AGT is based on the

type safety proof of the typed language. Furthermore, our approach produces not just a single

language, but also an axiomatization of the structure of gradual typing and so we can prove results

about many languages by proving theorems in GTT. The downside to this is that our approach
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doesn’t directly provide an operational semantics for the gradual language, whereas for AGT this

is a semi-mechanical process and for Gradualizer, completely automated. Finally, we note that

AGT produces the “eager” semantics for function types, and it is not clear how to modify the AGT

methodology to reproduce the lazy semantics that GTT provides. More generally, both AGT and

the Gradualizer are known to produce violations of parametricity when applied to polymorphic

languages, with the explanation being that the parametricity property is in no way encoded in

the input to the systems: the operational semantics and the type safety proof. In future work, we

plan to apply our axiomatic approach to gradualizing polymorphism and state by starting with

the rich relational logics and models of program equivalence for these features [Plotkin and Abadi

1993; Dunphy 2002; Matthews and Ahmed 2008; Neis et al. 2009; Ahmed et al. 2009], which may

lend insight into existing proposals [Siek et al. 2015b; Ahmed et al. 2017; Igarashi et al. 2017a; Siek

and Taha 2006]— for example, whether the “monotonic” [Siek et al. 2015b] and “proxied” [Siek and

Taha 2006] semantics of references support relational reasoning principles of local state.

We do not give a treatment of runtime blame reporting, but we argue that the observation that up-

casts are thunkable and downcasts are linear is directly related to blame soundness [Tobin-Hochstadt

and Felleisen 2006; Wadler and Findler 2009] in that if an upcast were not thunkable, it should raise
positive blame and if a downcast were not linear, it should raise negative blame. First, consider a

potentially effectful stack upcast of the form ⟨FA′ ↢ FA⟩. If it is not thunkable, then in our logical

relation this would mean there is a valueV : A such that ⟨FA′ ↢ FA⟩(ret V ) performs some effect.

Since the only observable effects for casts are dynamic type errors, ⟨FA′ ↢ FA⟩(ret V ) 7→ ℧, and
we must decide whether the positive party or negative party is at fault. However, since this is call-

by-value evaluation, this error happens unconditionally on the continuation, so the continuation

never had a chance to behave in such a way as to prevent blame, and so we must blame the positive

party. Dually, consider a value downcast of the form ⟨UB ↞ UB′⟩. If it is not linear, that would
mean it forces its UB′ input either never or more than once. Since downcasts should refine their

inputs, it is not possible for the downcast to use the argument twice, since e.g. printing twice does

not refine printing once. So if the cast is not linear, that means it fails without ever forcing its input,

in which case it knows nothing about the positive party and so must blame the negative party. In

future work, we plan to investigate extensions of GTT with more than one ℧ with different blame

labels, and an axiomatic account of a blame-aware observational equivalence.

Gradual session types [Igarashi et al. 2017b] share some similarities to GTT, in that there are two

sorts of types (values and sessions) with a dynamic value type and a dynamic session type. However,

their language is not polarized in the same way as CBPV, so there is not likely an analogue between

our upcasts always being between value types and downcasts always being between computation

types. Instead, we might reconstruct this in a polarized session type language [Pfenning and Griffith

2015].

We also plan to explore using GTT’s specification of casts in a dependently typed setting, building

on work using Galois connections for casts between dependent types [Dagand et al. 2018], and

work on effectful dependent types based a CBPV-like judgement structure [Ahman et al. 2016].
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