
46

Graduality and Parametricity:
Together Again for the First Time

MAX S. NEW, Northeastern University, USA

DUSTIN JAMNER, Northeastern University, USA

AMAL AHMED, Northeastern University, USA

Parametric polymorphism and gradual typing have proven to be a difficult combination, with no language

yet produced that satisfies the fundamental theorems of each: parametricity and graduality. Notably, Toro,

Labrada, and Tanter (POPL 2019) conjecture that for any gradual extension of System F that uses dynamic

type generation, graduality and parametricity are “simply incompatible”. However, we argue that it is not

graduality and parametricity that are incompatible per se, but instead that combining the syntax of System F

with dynamic type generation as in previous work necessitates type-directed computation, which we show

has been a common source of graduality and parametricity violations in previous work.

We then show that by modifying the syntax of universal and existential types to make the type name

generation explicit, we remove the need for type-directed computation, and get a language that satisfies both

graduality and parametricity theorems. The language has a simple runtime semantics, which can be explained

by translation to a statically typed language where the dynamic type is interpreted as a dynamically extensible

sum type. Far from being in conflict, we show that the parametricity theorem follows as a direct corollary of a

relational interpretation of the graduality property.

Additional Key Words and Phrases: gradual typing, graduality, polymorphism, parametricity, logical relation

1 INTRODUCTION
Gradually typed languages support freely mixing statically typed and dynamically code within

a single language and enable a transition from dynamic to static typing [Siek and Taha 2006;

Tobin-Hochstadt and Felleisen 2006, 2008]. They allow for stable, typed libraries to be used by

ephemeral dynamically typed scripts with no manual programming overhead, streamlining a

commonplace pattern in systems software. Furthermore, when some of these dynamically typed

scripts inevitably become feature-rich software, static types can be gradually added to help with

optimization, refactoring, type-based IDEs and documentation.

Gradually typed languages in the tradition of Siek and Taha [2006] are based on the presence of

a dynamic type, written ?, which is the type of dynamically typed code and is treated specially by

the type checker. For instance, if 𝑓 is a statically typed function with type I→ B—where I and B
represent integer and boolean types, respectively—and 𝑥 is a dynamically typed input, then the

application 𝑓 𝑥 is allowed by the static type checker because it is “plausible” that 𝑥 will actually

satisfy the type I at runtime. But note here that since 𝑓 has type I → B, it was written with

the expectation that it should only be applied to integers and may, for instance, use arithmetic

operations on its argument. In a sound gradually typed language, this type information should be

Authors’ addresses:Max S. New, Khoury College of Computer Sciences, Northeastern University, USA,maxnew@ccs.neu.edu;

Dustin Jamner, Khoury College of Computer Sciences, Northeastern University, USA, jamner.d@husky.neu.edu; Amal

Ahmed, Khoury College of Computer Sciences, Northeastern University, USA, amal@ccs.neu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART46

https://doi.org/10.1145/3371114

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

https://doi.org/10.1145/3371114

46:2 Max S. New, Dustin Jamner, and Amal Ahmed

reliable: the programmer and compiler should be able to refactor or optimize the function 𝑓 based on

its type, which says it will only be used on values of type I. In order to ensure that this expectation is

met at runtime, the application 𝑓 𝑥 is elaborated to a core language called a cast calculus where a cast
is inserted and the application becomes 𝑓 (⟨I⇐ ?⟩𝑥). If at runtime 𝑥 is a value that is incompatible

with the type I, such as a function value, then the cast will error and signal that the input failed

to meet the function’s type. While this means that the gradual language admits runtime errors, it

ensures the soundness of the type for programmer reasoning and compiler optimization.

When designing the semantics of a gradual language, we must consider not just how programs

run, but how their behavior changes throughout the development process. Specifically, a gradual

language should ensure a smooth transition from dynamic to static typing, which is formalized

in two properties called the static and dynamic gradual guarantee [Siek et al. 2015]. The static

gradual guarantee states that making types more precise in a program makes it less likely that

the program type-checks. Our focus in this paper is on the dynamic gradual guarantee, also called

graduality [New andAhmed 2018]. The graduality theorem provides a formalization for the intuition

that making types more precise should not impact the partial correctness of the program itself.

Specifically, it says that if the types in a program are made more precise, then either the more

precise program errors, or exhibits the same behavior as before. This means that a programmer

can add types to a portion of their program and know that the program as a whole still operates

the same way, unless a new dynamic error is raised, in which case there is a flaw either in the code

or in the new annotation that was introduced.

Languages can fail to satisfy the graduality theorem for a variety of reasons but a common

culprit is type-directed computation. Whenever a form in a gradual language has behavior that is

defined by inspection of the type of an argument, rather than by its behavior, there is a potential for
a graduality violation, because the computation must be ensured to be monotone in the type. For

instance, the Grace language supports a construct the designers call “structural type tests”. That

is, it includes a form 𝑀 is 𝐴 that checks if𝑀 has type 𝐴 at runtime. Boyland [2014] show that

care must be taken in designing the semantics of this construct if 𝐴 is allowed to be an arbitrary

type. For instance, it might seem reasonable to say that (𝜆𝑥 : ?.𝑥) is I → I should run to false

because the function has type ?→ ?. However, if we increase the precision of the types by changing

the annotation, we get (𝜆𝑥 : I.𝑥) is I → I which should clearly evaluate to true, violating the

graduality principle. In such a system, we can’t think of types as just properties whose precision

can be tuned up or down: we also need to understand how changing the type might influence our

use of type tests at runtime.

Gradual typing researchers have designed languages that support reasoning principles enabled

by a variety of advanced static features—such as objects [Siek and Taha 2007; Takikawa et al.

2012], refinement types [Lehmann and Tanter 2017], union and intersection types [Castagna

and Lanvin 2017], typestates [Wolff et al. 2011], effect tracking [Bañados Schwerter et al. 2014],

subtyping [Garcia et al. 2016], ownership [Sergey and Clarke 2012], session types [Igarashi et al.

2017b], and secure information flow [Disney and Flanagan 2011; Fennell and Thiemann 2013; Toro

et al. 2018]. As these typing features become more complicated, the behavior of casts can become

sophisticated as well, and the graduality principle is a way of ensuring that these sophisticated

mechanisms stay within programmer expectations.

1.1 Polymorphism and Runtime Sealing
Parametric polymorphism, in the form of universal and existential types, allows for abstraction

over types within a program. Universal types, written ∀𝑋 .𝐴, allow for the definition of functions

that can be used at many different types. Dually, existential types provide a simple model of a

module system. A value of type ∃𝑋 .𝐴 can be thought of as a module that exports a newly defined

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:3

type 𝑋 and then a value 𝐴 that may include 𝑋 that gives the interface to the type. Languages with

parametric polymorphism provide very strong reasoning principles regarding data abstraction,

formalized by the relational parametricity theorem [Reynolds 1983].

The relational parametricity theorem captures the idea that an abstract type is truly opaque to its

users: for instance, a consumer of a value of existential type ∃𝑋 .𝐴 can only interact with 𝑋 values

using the capabilities provided by the interface type 𝐴. This allows programmers to use existential

types to model abstract data types [Mitchell and Plotkin 1985]. For instance, the existential type

∃𝑋 .𝑋 × (𝑋 → 𝑋) × (𝑋 → I) represents the type of an abstract functional counter. The𝑋 represents

the state, the first component of the tuple is the initial state, the second component is an increment

function, and the final component reads out an observable integer value from the state. One obvious

example implementation would use I for 𝑋 , 0 as the initial state, addition by 1 as the increment,

and the identity function as the read-out. In a language with proper data abstraction, we should be

able to guarantee that with this implementation, the read-out function should only ever produce

positive numbers, because even though the type I allows for negative numbers, the interface only

enables the construction of positive numbers. This pattern of reasoning naturally generalizes to

sophisticated data structure invariants such as balanced trees, sorted lists, etc.

Polymorphic languages can fail to satisfy the parametricity theorem for a variety of reasons but

one common culprit is type-directed computation on abstract types. For instance in Java, values of

a generic type 𝑇 can be cast to an arbitrary object type. If the type 𝑇 happens to be instantiated

with the same type as the cast, then all information about the value will be revealed, and data

abstraction is entirely lost. The problem is that the behavior of this runtime type-cast is directed by

the type of the input: at runtime the input must carry some information indicating its type so that

this cast can be performed. A similar problem arises when naïvely combining gradual typing with

polymorphism, as we will see in §2.

While parametric polymorphism ensures data abstraction by means of a static type discipline,

dynamic sealing provides a means of ensuring data abstraction even in a dynamically typed language.

To protect abstract data from exposure, a fresh “key” is generated and implementation code must

“seal” any abstract values before sending them to untrusted parties, “unsealing” them when they

are passed into the exposed interface. For instance, we can ensure data abstraction for an untyped

abstract functional counter by generating a fresh key 𝜎 , and producing a tuple where the first

component is a 0 sealed with 𝜎 , and the increment and read-out function unseal their inputs and

the increment function seals its output appropriately. If this is the only way the seal 𝜎 is used in

the program, then the abstraction is ensured. While the programmer receives less support from the

static type checker, this runtime sealing mechanism gives much of the same abstraction benefits.

One ongoing research area has been to satisfactorily combine the static typing discipline of

parametric polymorphism with the runtime mechanism of dynamic sealing in a gradually typed

language [Ahmed et al. 2011, 2017; Igarashi et al. 2017a; Ina and Igarashi 2011; Toro et al. 2019; Xie

et al. 2018]. However, no such language design so far proposed has satisfied both of the desired

fundamental theorems: graduality for gradual typing and relational parametricity for parametric

polymorphism. Recent work by Toro et al. [2019] claims to prove that graduality and parametricity

are inherently incompatible, which backed by analogous difficulties for secure information flow

[Toro et al. 2018] has led to the impression that the graduality property is incompatible with

parametric reasoning. This would be the wrong conclusion to draw, for the following two reasons.

First, the claimed proof has a narrow applicability. It is based on the definition of their logical

relation, which we show in §2.3 does not capture a standard notion of parametricity. Second, and

more significantly, we should be careful not to conclude that graduality and parametricity are

incompatible properties, and that language designs must choose one. In this paper, we reframe the

problem: both are desirable, and should be demanded of any gradual or parametric language. The

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:4 Max S. New, Dustin Jamner, and Amal Ahmed

failure of graduality and parametricity in previous work can be interpreted not as an indictment

of these properties, but rather points us to reconsider the combination of System F’s syntax with

runtime semantics based on dynamic sealing. In this paper, we will show that graduality and

parametricity are not in conflict per se, by showing that by modifying System F’s syntax to make

the sealing visible, both properties are achieved. Far from being in opposition to each other, both

graduality and parametricity can be proven using a single logical relation theorem (§6).

1.2 Overview
We summarize the contributions of this work as follows

• We identify type-directed computation as the common cause of graduality and parametricity

violations in previous work on gradual polymorphism.

• We show that certain polymorphic programs in Toro et al. [2019]’s language GSF exhibit

non-parametric behavior.

• We present a new surface language PolyG
𝜈
that supports a novel form of universal and

existential types where the creation of fresh types is exposed in a controlled way. The

semantics of PolyG
𝜈
is similar to previous gradual parametric languages, but the explicit

type creation and sealing eliminates the need for type-directed computation.

• We elaborate PolyG
𝜈
into an explicit cast calculus PolyC

𝜈
. We then give a translation from

PolyC
𝜈
into a typed target language, CBPVOSum, essentially call-by-push-value with poly-

morphism and an extensible sum type.

• We develop a novel logical relation that proves both graduality and parametricity for PolyG
𝜈
.

Thus, we show that parametricity and graduality are compatible, and we strengthen the

connection alluded to by New and Ahmed [2018] that graduality and parametricity are

analogous properties.

Complete typing rules, definitions, and proofs are in the technical appendix [New et al. 2020].

2 GRADUALITY AND PARAMETRICITY, FRIENDS OR ENEMIES?
Next, we review the issues in constructing a polymorphic gradual language that satisfies parametric-

ity and graduality that have arisen in previous work. We see in each case that the common obstacle

to parametricity and graduality is the presence of type-directed computation. This motivates our

own language design, which obviates the need for type-directed computation by making dynamic

sealing explicit in code.

2.1 “Naïve” Attempt
Before considering any dynamic sealing mechanisms, let’s see why the most obvious combination

of polymorphism with gradual typing produces a language that does not maintain data abstraction.

Consider a polymorphic function of type ∀𝑋 .𝑋 → B. In a language satisfying relational parametric-

ity, we know that the function must treat its input as having abstract type𝑋 and so this input cannot

have any influence on what value is returned. However, in a gradually typed language, any value

can be cast using type ascriptions, such as in the function Λ𝑋 .𝜆𝑥 : 𝑋 .(𝑥 :: ?) :: B. Here :: represents
a type ascription. In a gradually typed language, a term𝑀 of type 𝐴 can be ascribed a type 𝐵 if it

is “plausible” that an 𝐴 is a 𝐵. This is typically formalized using a type consistency relation ∼ or
more generally consistent subtyping relation

<∼, but in either case, it is always plausible that an 𝐴

is a ? and vice-versa, so in effect a value of any type can be cast to any other by taking a detour

through the dynamic type. These ascriptions would then be elaborated to casts producing the term

Λ𝑋 .𝜆𝑥 : 𝑋 .⟨B⇐ ?⟩⟨?⇐ 𝑋 ⟩𝑥 If this function is applied to any value that is not compatible with

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:5

B, then the function will error, but if passed a boolean, the natural substitution-based semantics

would result in the value being completely revealed:

(Λ𝑋 .𝜆𝑥 : 𝑋 .⟨B⇐ ?⟩⟨?⇐ 𝑋 ⟩𝑥) [B]true ↦→∗ ⟨B⇐ ?⟩⟨?⇐ B⟩true ↦→∗ true
The root-cause of this parametricity violation is that we allow casts like ⟨?⇐ 𝑋 ⟩ whose behavior
depends on how 𝑋 is instantiated. To construct a gradual language with strong data abstraction we

must somehow avoid the dependency of ⟨?⇐ 𝑋 ⟩ on 𝑋 . One option, is to ban casts like ⟨?⇐ 𝑋 ⟩
altogether. Syntactically, this means changing the notion of plausibility to say that ascribing a

term of type 𝑋 with the dynamic type ? is not allowed. This is possible using the system presented

by Igarashi et al. [2017a] if you only allow Λs that use the “static” label. This is compatible with

parametricity and graduality, but is somewhat against the spirit of gradual typing, where typically

all programs could be written as dynamically typed programs, and dynamically typed functions can

be used on values of any type. An alternative is to use dynamic sealing to allow casts like ⟨?⇐ 𝑋 ⟩,
but ensure that their behavior does not depend on how 𝑋 is instantiated.

2.2 Type-directed Sealing
In sealing-based gradual parametric languages like 𝜆𝐵[Ahmed et al. 2011, 2017], we ensure that

casts of abstract type do not depend on their instantiation by adding a layer of indirection. Instead

of the usual 𝛽 rule for polymorphic functions

(Λ𝑋 .𝑀) [𝐴] ↦→ 𝑀 [𝐴/𝑋],
in 𝜆𝐵, we dynamically generate a fresh type 𝛼 and pass that in for 𝑋 . This first of all means the

runtime state must include a store of fresh types, written Σ. When reducing a type application, we

generate a fresh type 𝛼 and instantiate the function with this new type

Σ; (Λ𝑋 .𝑀) [𝐴] ↦→ Σ, 𝛼 := 𝐴;𝑀 [𝛼/𝑋]
In this case, we interpret 𝛼 as being a new tag on the dynamic type that tags values of type 𝐴 but

is different from all previously used tags. The casts involving 𝛼 are treated like a new base type,

incompatible with all existing types. However, if we look at the resulting term, it is not well-typed:

if the polymorphic function has type ∀𝑋 .𝐵, then𝑀 [𝛼/𝑋] has type 𝐵 [𝛼/𝑋], but the context of this
term expects it to be of type 𝐵 [𝐴/𝑋]. To paper over this difference, 𝜆𝐵 wraps the substitution with

a type-directed coercion, distinct from casts, that mediates between the two types:

Σ; (Λ𝑋 .𝑀) [𝐴] ↦→ Σ, 𝛼 := 𝐴;𝑀 [𝛼/𝑋] : 𝐵 [𝛼/𝑋] +𝛼==⇒ 𝐵 [𝐴/𝑋]

This type-directed coercion𝑀 [𝛼/𝑋] : 𝐵 [𝛼/𝑋] +𝛼==⇒ 𝐵 [𝐴/𝑋] is the part of the system that performs

the actual sealing and unsealing, and is defined by recursion on the type 𝐵. The +𝛼 indicates that

we are unsealing values in positive positions and sealing at negative positions. For instance if

𝐵 = 𝑋 × B, and 𝑋 = B, then on a pair (seal𝛼true, false) the coercion will unseal the sealed

boolean on the left and leave the boolean on the right alone. If 𝐵 is of function type, the definition

will involve the dual coercion using −𝛼 , which seals at positive positions. So for instance applying

the polymorphic identity function will reduce as follows

Σ; (Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥) [B]true ↦→ Σ, 𝛼 := B; (𝜆𝑥 : 𝛼.𝑥 : 𝛼 → 𝛼
+𝛼
==⇒ B→ B)true

↦→ Σ, 𝛼 := B; (𝜆𝑥 : 𝛼.𝑥) (true : 𝑋
−𝛼
==⇒ 𝛼) : 𝛼 +𝛼==⇒ 𝑋 ↦→ Σ, 𝛼 := B; (𝜆𝑥 : 𝛼.𝑥) (seal𝛼true) : 𝛼

+𝛼
==⇒ 𝑋

↦→ Σ, 𝛼 := B; seal𝛼true : 𝛼
+𝛼
==⇒ 𝑋 ↦→ true

While this achieves the goal of maintaining data abstraction, it unfortunately violates graduality,

as first pointed out by Igarashi et al. [2017a]. The reason is that the coercion is a type-directed

computation, this time directed by the type ∀𝑋 .𝐵 of the polymorphic function, whose behavior

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:6 Max S. New, Dustin Jamner, and Amal Ahmed

observably differs at type𝑋 from its behavior at type ?. Specifically, a coercion𝑀 : 𝑋
−𝛼
==⇒ 𝛼 results in

sealing the result of𝑀 , whereas if𝑋 is replaced by dynamic, then𝑀 : ?

−𝛼
==⇒ 𝛼 is an identity function.

An explicit counter-example is given by modifying the identity function to include an explicit

annotation. The term 𝑀1 = (Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥 :: 𝑋) [B]true reduces by generating a seal 𝛼 , sealing

the input true with 𝛼 , then unsealing it, finally producing true. On the other hand, if the type of

the input were dynamic rather than 𝑋 , we would get a term 𝑀2 = (Λ𝑋 .𝜆𝑥 : ?.(𝑥 :: 𝑋)) [B]true.
In this case, the input is not sealed by the implementation, and the ascription of 𝑋 results in a

failed cast since B is incompatible with 𝛼 . The only difference between the two terms is a type

annotation, meaning that 𝑀1 ⊑ 𝑀2 in the term precision ordering (𝑀1 is more precise than 𝑀2),

and so the graduality theorem states that if𝑀1 does not error, it should behave the same as𝑀2, but

in this case 𝑀2 errors while 𝑀1 does not. The problem here is that the type of the polymorphic

function determines whether to seal or unseal the inputs and outputs, but graduality says that the

behavior of the dynamic type must align with both abstract types 𝑋 (indicating sealing/unsealing)

and concrete types like B (indicating no sealing/unsealing). These demands are contradictory since

dynamic code would have to simultaneously be opaque until unsealing and available to interact

with. So we see that the attempt to remove the type-directed casts which break parametricity by

using dynamic sealing led to the need for a type-directed coercion which breaks graduality.

2.3 To Seal, or not to Seal
The language GSF was introduced by Toro et al. [2019] to address several criticisms of the type

system and semantics of 𝜆𝐵. We agree with the criticisms of the type system and so we will focus

on the semantic differences. GSF by design has the same violation of graduality as 𝜆𝐵, but has

different behavior when using casts.

One motivating example for GSF is what happens when casting the polymorphic identity function

to have a dynamically typed output: (((Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥) :: ∀𝑋 .𝑋 → ?) [I]1) + 2. In 𝜆𝐵, the input 1 is

sealed as dictated by the type, but the dynamically typed output is not unsealed when it is returned

from the function, resulting in an error when we try to add it. Ahmed et al. [2011] argue that it

should be a free theorem that the behavior of a function of type ∀𝑋 .𝑋 → ? should be independent

of its argument: it always errors, diverges or it always returns the same dynamic value, based on

the intuition that the dynamic type ? does not syntactically contain the free variable 𝑋 , and that

this free theorem holds in System F. This reasoning is suspect since at runtime, the dynamic type

does include a case for the freshly allocated type 𝑋 , so intuitively we should consider ? to include

𝑋 (and any other abstract types in scope).

Toro et al. [2019] argue on the other hand that intuitively the identity function was written

with the intention of having a sealed input that is returned and then unsealed, and so casting

the program to be more dynamic should result in the same behavior and so the program should

succeed. The function application runs to the equivalent of ⟨?⇐ I⟩1 which is then cast to I and
added to 2, resulting in the number 3. The mechanism for achieving this semantics is a system of

runtime evidence, based on the Abstracting Gradual Typing (AGT) framework [Garcia et al. 2016].

An intuition for the behavior is that the sealing is still type-directed, but rather than being directed

by the static type of the function being instantiated, it is based on the most precise type that the

function has had. So here because the function was originally of type ∀𝑋 .𝑋 → 𝑋 , the sealing

behavior is given by that type.

However, while we agree that the analysis in Ahmed et al. [2011] is incomplete, the behavior in

GSF is inherently non-parametric, because the polymorphic program produces values with different
dynamic type tags based on what the input type is. As a user of this function, we should be able

to replace the instantiating type I with B and give any boolean input and get related behavior at

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:7

the type ?, but in the program (((Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥) :: ∀𝑋 .𝑋 → ?) [B]true) + 2 the function application

reduces to ⟨?⇐ B⟩true which errors when cast to I. Intuitively, this behavior is not parametric

because the first program places an I tag on its input, and the second places a B tag on its input.

The non-parametricity is clearer if we look at a program of type ∀𝑋 .? → B and consider the

following function, a constant function with abstract input type cast to have dynamic input:

const = (Λ𝑋 .𝜆𝑥 : 𝑋 .true) :: ∀𝑋 .?→ B

𝑋 now has no effect on static typing, so both const[I]3 and const[B] are well-typed. However,
since the sealing behavior is actually determined by the type ∀𝑋 .𝑋 → B, the program will try to

seal its input after downcasting it to whatever type 𝑋 is instantiated at. So the first program casts

⟨I⇐ ?⟩⟨?⇐ I⟩3, which succeeds and returns true, while the second program performs the cast

⟨B ⇐ ?⟩⟨? ⇐ I⟩3 which fails. In effect, we have implemented a polymorphic function that for

any type 𝑋 , is a recognizer of dynamically typed values for that type, returning true if the input
matches 𝑋 and erroring otherwise. Any implementation of this behavior would clearly require

passing of some syntactic representation of types at runtime.

Formally, the GSF language does not satisfy the following defining principle of relational para-
metricity, as found in standard axiomatizations of parametricity such as Dunphy [2002]; Ma and

Reynolds [1991]; Plotkin and Abadi [1993]. In a parametric language, the user of a term 𝑀 of a

polymorphic function type ∀𝑋 .𝐴→ 𝐵 should be guaranteed that𝑀 will behave uniformly when

instantiated multiple times. Specifically, a programmer should be able to instantiate𝑀 with two

different types 𝐵1, 𝐵2 and choose any relation 𝑅 ∈ 𝑅𝑒𝑙 [𝐵1, 𝐵2] (where the notion of relation depends

on the type of effects present), and be ensured that if they supply related inputs to the functions, they

will get related outputs. Formally, for a Kripke-style relation, the following principle should hold:

𝑀 : ∀𝑋 .𝐴→ 𝐵 𝑅 ∈ Rel[𝐵1, 𝐵2] (𝑤,𝑉1,𝑉2) ∈ VJ𝐴K𝜌 [𝑋 ↦→ 𝑅]
(𝑤,𝑀 [𝐵1]𝑉1, 𝑀 [𝐵2]𝑉2) ∈ EJ𝐵K𝜌 [𝑋 ↦→ 𝑅]

Here𝑤 is a “world” that gives the invariants in the store and 𝜌 is the relational interpretation of free

variables.VJ·K and EJ·K are value and expression relations formalizing an approximation ordering

on values and expressions respectively, and 𝑋 ↦→ 𝑅 means that the relational interpretation of 𝑋 is

given by 𝑅.

Toro et al. [2019] use an unusual logical relation for their language based on a similar relation in

Ahmed et al. [2017], so there is no direct analogue of the relational mapping 𝑋 ↦→ 𝑅. Instead, the

application extends the world with the association of 𝛼 to 𝑅 and the interpretation sends 𝑋 to 𝛼 .

However, we can show that this parametricity principle is violated by any 𝜌 we pick for the term

const above, using the definition of EJ·K given in [Toro et al. 2019]
1
. Instantiating the lemma would

give us that (𝑤, const[I]3, const[B]3) ∈ EJBK𝜌 since (𝑤, 3, 3) ∈ VJ?K𝜌 for any 𝜌 . The definition

of EJBK𝜌 then says (again for any 𝜌) that it should be the case that since const[I]3 runs to a value,

it should also be the case that const[B]3 runs to a value as well, but in actuality it errors, and so

this parametricity principle must be false.

How can the above parametricity principle be false when Toro et al. [2019] prove a parametricity

theorem for GSF? We have not found a flaw in their proof, but rather a mismatch between their

theorem statement and the expected meaning of parametricity. The definition ofVJ∀𝑋 .𝐴K in Toro

et al. [2019] is not the usual interpretation, but rather is an adaptation of a non-standard definition

used in Ahmed et al. [2017]. Neither of their definitions imply the above principle, so we argue

that neither paper provides a satisfying proof of parametricity. With GSF, we see that the above

behavior violates some expected parametric reasoning, using the definition ofVJ?K given in Toro

1
they use slightly different notation, but we use notation that matches the logical relation we present later

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:8 Max S. New, Dustin Jamner, and Amal Ahmed

et al. [2019]. With 𝜆𝐵, we know of no counterexample to the above principle, and we conjecture

that it would satisfy a more standard formulation of parametricity.

It is worth noting that the presence of effects—such as nontermination, mutable state, control

effects—requires different formulations of the logical relation that defines parametricity. However,

those logical relations capture parametricity in that they always formalize uniformity of behavior
across different type instantiations. For instance, for a language that supports nontermination,

the logical relation for parametricity ensures that two different instantiations have the same

termination behavior: either both diverge, or they both terminate with related values. Because of

this, the presence of effects usually leads to weaker free theorems—in pure System F all inhabitants

of ∀𝑋 .𝑋 → 𝑋 are equivalent to the identity function, but in System F with non-termination,

every inhabitant is either the identity or always errors. Though the free theorems are weaker,

parametricity still ensures uniformity of behavior. As our counterexample above (const[I]3 vs.

const[B]3) illustrates, GSF is non-parametric since it does not ensure uniform behavior. However,

since the difference in behavior was between error and termination, it is possible that GSF satisfies a

property that could be called “partial parametricity” (or parametricity modulo errors) that weakens

the notion of uniformity of behavior: either one side errors or we get related behaviors. However,

it is not clear to us how to formulate the logical relation for the dynamic type to prove this. We

show how this weakened reasoning in the presence of ? compares to reasoning in our language

PolyG
𝜈
in §6.4.

Our counter-example crucially uses the dynamic type, and we conjecture that when the dynamic

type does not appear under a quantifier, that the usual parametric reasoning should hold in GSF.

This would mean that in GSF once polymorphic functions become “fully static”, they support

parametric reasoning, but we argue that it should be the goal of gradual typing to support type-

based reasoning even in the presence of dynamic typing, since migration from dynamic to static is

a gradual process, possibly taking a long time or never being fully completed.

2.4 Resolution: Explicit Sealing
Summarizing the above examples, we see that

(1) The naïve semantics leads to type-directed casts at abstract types, violating parametricity.

(2) 𝜆𝐵’s type-directed sealing violates graduality because of the ambiguity of whether or not the

dynamic type indicates sealing/unsealing or not.

(3) GSF’s variant of type-directed sealing based on the most precise type violates graduality and

parametricity because the polymorphic function gets to determine which dynamically typed

values are sealed (i.e. abstract) and which are not.

We see that in each case, the use of a type-directed computational step leads to a violation of

graduality or parametricity. The GSF semantics makes the type-directed sealing of 𝜆𝐵 more flexible

by using the runtime evidence attached to the polymorphic function rather than the type at the

instantiation point, but unfortunately this makes it impossible for the continuation to reason about

which dynamically typed values it passes will be treated as abstract or concrete. This analysis

motivates our own language design PolyG
𝜈
, where

(1) We depart from the syntax of System F.

(2) Sealing/unsealing of values is explicit and programmable, rather than implicit and type-

directed.

(3) The party that instantiates an abstract type is the party that determines which values are

sealed and unsealed. For existential types, this is the package (i.e., the module) and dually for

universal types it is the continuation of the instantiation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:9

The dynamic semantics of PolyG
𝜈
are similar to 𝜆𝐵 without the type-directed coercions, removing

the obstacle to proving the graduality theorem. By allowing user-programmable sealing and

unsealing, more complicated forms of sealing and unsealing are possible: for instance, we can seal

every prime number element of a list, which would require a very rich type system to express

using type-directed sealing! We conjecture that the language is strictly more expressive than 𝜆𝐵

in the sense of Felleisen [1990]: 𝜆𝐵 should be translatable into PolyG
𝜈
in a way that simulates its

operational semantics. Because the sealing is performed by the instantiating party rather than the

abstracting party, the expressivity of PolyG
𝜈
is incomparable to GSF.

3 PolyG𝜈 : A GRADUAL LANGUAGEWITH POLYMORPHISM AND SEALING
Next, we present a our gradual language, PolyG

𝜈
, that supports a variant of existential and universal

quantification while satisfying parametricity and graduality. The language has some unusual

features, so we start with an extended example to illustrate what programs look like, and then in

§ 3.2 introduce the formal syntax and typing rules.

3.1 PolyG𝜈 Informally
Let’s consider an example of existential types, since they are simpler than universal types in PolyG

𝜈
.

In a typed, non-gradual language, we can define an abstract “flipper” type, FLIP = ∃𝑋 .𝑋 × (𝑋 →
𝑋) × (𝑋 → B). The first element is the initial state, the second is a “toggle” function and the last

element reads out the value as a concrete boolean.

Then we could create an instance of this abstract flipper using booleans as the carrier type

𝑋 and negation as the toggle function pack(B, (true, (NOT, ID))) as FLIP. Note that we must

explicitly mark the existential package with a type annotation, because otherwise we wouldn’t

be able to tell which occurrences of B should be hidden and which should be exposed. With

different type annotations, the same package could be given types ∃𝑋 .B × (B→ B) × (B→ B) or
∃𝑋 .𝑋 × (𝑋 → 𝑋) × (𝑋 → 𝑋).

The PolyG
𝜈
language existential type works differently in a few ways. We write ∃𝜈 rather than ∃

to emphasize that we are only quantifying over fresh types, and not arbitrary types. The equivalent

of the above existential package would be written as

pack𝜈 (𝑋 � B, (seal𝑋 true, ((𝜆𝑥 : 𝑋 .seal𝑋 (NOT(unseal𝑋𝑥))), (𝜆𝑥 : 𝑋 .unseal𝑋𝑥))) : FLIP

The first thing to notice is that rather than just providing a type B to instantiate the existential, we

write a declaration 𝑋 � B. The 𝑋 here is a binding position and the body of the package is typed

under the assumption that 𝑋 � B. Then, rather than substituting B for 𝑋 when typing the body of

the package, the type checker checks that the body has type 𝑋 × ((𝑋 → 𝑋) × (𝑋 → B)) under the
assumption that 𝑋 � B:

𝑋 � B ⊢ (seal𝑋 true, ((𝜆𝑥 : 𝑋 .seal𝑋 (NOT(unseal𝑋𝑥))), (𝜆𝑥 : 𝑋 .unseal𝑋𝑥))) : 𝑋 × ((𝑋 → 𝑋) × (𝑋 → B))

Crucially, 𝑋 � B is a weaker assumption than 𝑋 = B. In particular, there are no implicit casts
from 𝑋 to B or vice-versa, but the programmer can explicitly “seal” B values to be 𝑋 using the

form seal𝑋𝑀 , which is only well-typed under the assumption that 𝑋 � 𝐴 for some 𝐴 consistent

with B. We also get a corresponding unseal form unseal𝑋𝑀 , and the runtime semantics in § 4.4

defines these to be a bijection. At runtime, 𝑋 will be a freshly generated type with its own tag on

the dynamic type. An interesting side-effect of making the difference between 𝑋 and B explicit in

the term is that existential packages do not require type annotations to resolve any ambiguities.

For instance, unlike in the typed case, the gradual package above could not be ascribed the type

∃𝜈𝑋 .B × ((B→ B) × (B→ B)) because the functions explicitly take 𝑋 values, and not B values.

The corresponding elimination form for ∃𝜈 is a standard unpack: unpack (𝑋, 𝑥) = 𝑀 ;𝑁 , where

the continuation for the unpack is typed with just 𝑋 and 𝑥 added to the context, it doesn’t know

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:10 Max S. New, Dustin Jamner, and Amal Ahmed

that 𝑋 � 𝐴 for any particular 𝐴. We call this ordinary type variable assumption an abstract type
variable, whereas the new assumption 𝑋 � 𝐴 is a known type variable which acts more like a type
definition than an abstract type. At runtime, when an existential is unpacked, a fresh type 𝑋 is

created that is isomorphic to 𝐴 but whose behavior with respect to casts is different.

While explicit sealing and unsealing might seem burdensome to the programmer, note that this

is directly analogous to a common pattern in Haskell, where modules are used in combination with

newtype to create a datatype that at runtime is represented in the same way as an existing type, but

for type-checking purposes is considered distinct.We give an analogous Haskell module as follows:

module Flipper(State, start, toggle, toBool) where
newtype State = Seal { unseal :: Bool }
start :: State
start = Seal True
inc :: State -> State
inc s = Seal (not (unseal s)
toBool :: State -> Bool
toBool = unseal

Then a different module that imports Flipper is analogous to an unpack, as its only interface to

the State type is through the functions provided.

We also add universal quantification to the language, using the duality between universals and

existentials as a guide. Again we write the type differently, as ∀𝜈𝑋 .𝐴. In an ordinary polymorphic

language, we would write the type of the identity function as ∀𝑋 .𝑋 → 𝑋 and implement it using

a Λ form: Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥 . The elimination form passes in a type for 𝑋 . For instance applying the

identity function to a boolean would be written as ID [B] true. And a free theorem tells us that

this term must either diverge, error, or return true.
The introduction form Λ is dual to the unpack form, and correspondingly looks the same as the

ordinary Λ, for example in the identity function ID𝜈 = Λ𝜈𝑋 .𝜆𝑥 : 𝑋 .𝑥 : ∀𝜈𝑋 .𝑋 → 𝑋 . The body of the

Λ𝜈
is typed with an abstract type variable 𝑋 in scope. The elimination form of type application is

dual to the pack form, and so similarly introduces a known type variable assumption. Instantiating

the identity function as above would be written as unseal𝑋 (ID𝜈 {𝑋 � B}(seal𝑋true)) : B. which
introduces a known type variable 𝑋 � B into the context. Rather than the resulting type being

B → B, it is 𝑋 → 𝑋 with the assumption 𝑋 � B. Then the argument to the function must be

explicitly sealed as an 𝑋 to be passed to the function. The output of the function is also of type 𝑋

and so must be explicitly unsealed to get a boolean out. However, there is something quite unusual

about this term: the 𝑋 � B binding site is not binding 𝑋 in a subterm of the application, but rather

into the context: the argument is sealed, and the continuation is performing an unseal! These

bindings in ∀𝜈 instantiations follow this “inside-out” structure and complicate the typing rules:

every term in the language “exports” known type variable bindings that go outwards in addition to

the other typing assumptions coming inwards from the context. While unusual, they are intuitively

justified by the duality with existentials: we can think of the continuation for an instantiation of a

∀𝜈 as being analogous to the body of the existential package.

To get an understanding of how PolyG
𝜈
compares to 𝜆𝐵 and GSF and why it avoids their violation

of graduality, let’s consider how we might write the examples from the previous section. In PolyG
𝜈
,

if we apply a function of type ∀𝑋 .𝑋 → 𝑋 , we have to mark explicitly that the input is sealed, and

furthermore if we want to use the output as a boolean, we must unseal the output:
unseal𝑋 ((Λ𝑋 .𝜆𝑥 : 𝑋 .𝑥 :: 𝑋){𝑋 � B}(seal𝑋 true)) ↦→∗ true

Then if we change the type of the input from 𝑋 to ? the explicit sealing and unsealing remain,

so even though the input is dynamically typed it will still be a sealed boolean, and the program

exhibits the same behavior:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:11

types 𝐴 ::= ? | 𝑋 | B | 𝐴 ×𝐴 | 𝐴→ 𝐴 | ∃𝜈𝑋 .𝐴 | ∀𝜈𝑋 .𝐴

Ground types 𝐺 ::= 𝑋 | B | ? × ? | ?→ ? | ∃𝜈𝑋 .? | ∀𝜈𝑋 .?

terms 𝑀 ::= 𝑥 | 𝑀 :: 𝐴 | seal𝑋𝑀 | unseal𝑋𝑀 | is(𝐺)? 𝑀 | true | false
| if 𝑀 then 𝑀 else 𝑀 | (𝑀,𝑀) | let (𝑥, 𝑥) = 𝑀 ;𝑀

| 𝑀 𝑀 | 𝜆𝑥 : 𝐴.𝑀 | pack𝜈 (𝑋 � 𝐴,𝑀) | unpack (𝑋, 𝑥) = 𝑀 ;𝑁

| Λ𝜈𝑋 .𝑀 | 𝑀{𝑋 � 𝐴} | let 𝑥 = 𝑀 ;𝑀

environment Γ ::= · | Γ, 𝑥 : 𝐴 | Γ, 𝑋 | Γ, 𝑋 � 𝐴

Fig. 1. PolyG𝜈 Syntax

unseal𝑋 ((Λ𝑋 .𝜆𝑥 : ?.𝑥 :: 𝑋){𝑋 � B}(seal𝑋 true)) ↦→∗ true

If we remove the seal of the input, then the cast to 𝑋 in the function will fail, giving us the behavior

of 𝜆𝐵/GSF:

unseal𝑋 ((Λ𝑋 .𝜆𝑥 : ?.𝑥 :: 𝑋){𝑋 � B}true) ↦→∗ ℧
but crucially this involved changing the term, not just the type, so the graduality theorem does not

tell us that the programs should have related behavior.

Next, let’s consider the parametricity violation from GSF. When we instantiate the constant

function, we need to decide if the argument is sealed or not. We get the behavior of GSF when we

instantiate with I and seal the input 3:

const{𝑋 � I}seal𝑋 3 ↦→∗ true
However, if we try to write the analogous program with B: instead of I const{𝑋 � B}seal𝑋 3 then
the program is not well typed because 𝑋 � B and 3 has type I which is not compatible. We can

replicate the outcome of the GSF program by not sealing the 3:

const{𝑋 � B}3 ↦→∗ ℧

But this is not a parametricity violation because the 3 here will be embedded at the dynamic type

with the I tag, whereas above the 3 was tagged with the 𝑋 tag, which is not related.

3.2 PolyG𝜈 Formal Syntax and Semantics
Figure 1 presents the syntax of the surface language types, terms and environments. Most of the

language is a typical gradual functional language, using ? as the dynamic type, and including type

ascription𝑀 :: 𝐴. The unusual aspects of the language are the seal𝑋𝑀 and unseal𝑋𝑀 forms and

the “fresh” existential ∃𝜈𝑋 .𝐴 and universal ∀𝜈𝑋 .𝐴. Note also the non-standard environments Γ,
which include ordinary typing assumptions 𝑥 : 𝐴, abstract type variable assumptions 𝑋 and known

type variable assumptions 𝑋 � 𝐴. For simplicity, we assume freshness of all type variable bindings,

i.e. when we write Γ, 𝑋 or Γ, 𝑋 � 𝐴 that 𝑋 does not occur in Γ.
The typing rules are presented in Figure 2. On a first pass, we suggest ignoring all shaded parts of

the rules, which only concern the inside-out scoping needed for the ∀𝜈𝑋 .𝐴 forms and would not be

necessary if this type was removed. We follow the usual formulation of gradual surface languages

in the style of [Siek and Taha 2006]: type checking is strict when checking compatibility of different

connectives, but lax when the dynamic type is involved. The first𝑀 :: 𝐵 form is type-ascription,

which is well formed when the types are consistent with each other, written 𝐴 ∼ 𝐵. We define this

in the standard way in as being the least congruence relation including equality and rules making ?

consistent with every type.

We include variable and let-binding rules, which are standard other than the shaded parts. Next,

we include sealing seal𝑋𝑀 and unsealing unseal𝑋𝑀 forms. The sealing and unsealing forms are

valid when the assumption 𝑋 � 𝐴 is in the environment and give the programmer access to an

explicit bijection between the types 𝑋 and 𝐴. It is crucial for graduality to hold that this bijection is

explicit and not implicit, because the behavior of casts involving 𝑋 and 𝐴 are very different. To

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:12 Max S. New, Dustin Jamner, and Amal Ahmed

Γ ⊢ 𝑀 : 𝐴; Γ𝑜 𝐴 ∼ 𝐵

Γ ⊢ (𝑀 :: 𝐵) : 𝐵; Γ𝑜

𝑥 : 𝐴 ∈ Γ
Γ ⊢ 𝑥 : 𝐴; ·

Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Γ, Γ𝑀 , 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵; Γ𝑁

Γ ⊢ let 𝑥 = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ ⊢ 𝑀 : 𝐵; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜 𝐵 ∼ 𝐴

Γ ⊢ seal𝑋𝑀 : 𝑋 ; Γ𝑜

Γ ⊢ 𝑀 : 𝐵; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜 𝐵 ∼ 𝑋

Γ ⊢ unseal𝑋𝑀 : 𝐴; Γ𝑜

Γ ⊢ 𝑀 : 𝐴; Γ𝑜 Γ, Γ𝑜 ⊢ 𝐺

Γ ⊢ is(𝐺)? 𝑀 : B; Γ𝑜
Γ ⊢ true : B; · Γ ⊢ false : B; ·

Γ ⊢ 𝑀 : 𝐴; Γ𝑀 𝐴 ∼ B
Γ, Γ𝑀 ⊢ 𝑁𝑡 : 𝐵𝑡 ; Γ𝑡 Γ, Γ𝑀 ⊢ 𝑁𝑓 : 𝐵𝑓 ; Γ𝑓

Γ ⊢ if 𝑀 then 𝑁𝑡 else 𝑁𝑓 : 𝐵𝑡 ⊓ 𝐵𝑓 ; Γ𝑀 , Γ𝑡 ∩ Γ𝑓

Γ ⊢ 𝑀1 : 𝐴1; Γ1 Γ, Γ1 ⊢ 𝑀2 : 𝐴2; Γ2

Γ ⊢ (𝑀1, 𝑀2) : 𝐴1 ×𝐴2; Γ1, Γ2

Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Γ, Γ𝑀 , 𝑥 : 𝜋1 (𝐴), 𝑦 : 𝜋2 (𝐴) ⊢ 𝑁 : 𝐵; Γ𝑁

Γ ⊢ let (𝑥,𝑦) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵; Γ𝑜

Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 : 𝐴→ 𝐵; ·
Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Γ, Γ𝑀 ⊢ 𝑁 : 𝐵; Γ𝑁 dom(𝐴) ∼ 𝐵

Γ ⊢ 𝑀 𝑁 : cod(𝐴); Γ𝑀 , Γ𝑁

Γ, 𝑋 � 𝐴 ⊢ 𝑀 : 𝐵; Γ𝑜

Γ ⊢ pack𝜈 (𝑋 � 𝐴,𝑀) : ∃𝜈𝑋 .𝐵; ·

Γ ⊢ 𝑀 : 𝐴; Γ𝑀

Γ, Γ𝑀 , 𝑋, 𝑥 : un∃𝜈 (𝐴) ⊢ 𝑁 : 𝐵; Γ𝑁 Γ, Γ𝑀 , Γ𝑁 |𝑋 ⊢ 𝐵

Γ ⊢ unpack (𝑋, 𝑥) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁 |𝑋

Γ, 𝑋 ⊢ 𝑀 : 𝐴; Γ𝑜

Γ ⊢ Λ𝜈𝑋 .𝑀 : ∀𝜈𝑋 .𝐴; ·
Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Γ, Γ𝑀 ⊢ 𝐵

Γ ⊢ 𝑀{𝑋 � 𝐵} : un∀𝜈 (𝐴); Γ𝑀 , 𝑋 � 𝐵

? ∼ 𝐴 𝐴 ∼ ? B ∼ B 𝑋 ∼ 𝑋

𝐴𝑖 ∼ 𝐵𝑖 𝐴𝑜 ∼ 𝐵𝑜

𝐴𝑖 → 𝐴𝑜 ∼ 𝐵𝑖 → 𝐵𝑜

𝐴1 ∼ 𝐵1 𝐴2 ∼ 𝐵2

𝐴1 ×𝐴2 ∼ 𝐵1 × 𝐵2
𝐴 ∼ 𝐵

∃𝜈𝑋 .𝐴 ∼ ∃𝜈𝑋 .𝐵

𝐴 ∼ 𝐵

∀𝜈𝑋 .𝐴 ∼ ∀𝜈𝑋 .𝐵

dom(𝐴→ 𝐵) = 𝐴

dom(?) = ?

cod(𝐴→ 𝐵) = 𝐵

cod(?) = ?

𝜋𝑖 (𝐴1 ×𝐴2) = 𝐴𝑖

𝜋𝑖 (?) = ?

un∀𝜈 (∀𝜈𝑋 .𝐴) = 𝐴

un∀𝜈 (?) = ?

un∃𝜈 (∃𝜈𝑋 .𝐴) = 𝐴

un∃𝜈 (?) = ?

·|Γ′ = ·
(𝑋 � 𝐴, Γ) |Γ′ = 𝑋 � 𝐴, (Γ |Γ′) (FV(𝐴) ∩ Γ′ = ∅)
(𝑋 � 𝐴, Γ) |Γ′ = Γ |Γ′,𝑋 (FV(𝐴) ∩ Γ′ ≠ ∅)

Fig. 2. PolyG𝜈 Type System

show that it has no adverse effect on the calculus, we also include a form is(𝐺)? 𝑀 that checks at

runtime whether 𝑀 returns a value that is compatible with the ground type 𝐺 . 𝑀 can have any

type in this case because it is always a safe operation, but the result is either trivially true or false
unless𝑀 has type ?.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:13

Next, we have booleans, whose values are true and false, and whose elimination form is an

if-statement. The if-statement checks that the scrutinee has a type compatible with B, and as in

previous work uses gradual meet 𝐵𝑡 ⊓ 𝐵𝑓 for the output type [Garcia and Cimini 2015]. Gradual

meet is only partially defined, since this ensures that if the two sides have different (non-?) head

connectives then type checking errors, in keeping with the philosophy of strict checking when

precise types are used.

Next, we have pairs and functions, which are fairly standard. We use pattern-matching as the

elimination form for pairs. To reduce the number of rules, we present the elimination forms in the

style of Garcia and Cimini [2015], using partial functions 𝜋𝑖 , dom, cod and later un∀𝜈 , un∃𝜈 to extract
the subformula from a type “up to ?”. For the correct type this extracts the actual subformula, but for

? is defined to be ? and for other connectives is undefined.We define these at the bottom of the figure,

where uncovered cases are undefined. Next, we have existentials, which are as described in §3.1.

Finally, we consider the shaded components of the judgment. The full form of the judgment is

Γ ⊢ 𝑀 : 𝐴; Γ𝑜 where Γ𝑜 is the list of bindings that are generated by𝑀 and exported outward. Note that

the type𝐴 of𝑀 can use variables in Γ𝑜 as well as variables in Γ. Also, while we write these as Γ𝑜 , Γ𝑀 ,

etc., they only contain sequences of known type variables, and never any abstract type variables

or typing assumptions 𝑥 : 𝐴. These bindings are generated in the ∀𝜈 elimination rule, where the

instantiation𝑀{𝑋 � 𝐵} adds 𝑋 � 𝐵 to the output context. Rules that produce delayed thunks—the

function, existential and universal introduction rules—have bodies that generate bindings, but these

are not exported because these bindings will only be generated at the point where the thunk is

forced to evaluate. The rest of the rules work similarly to an effect system: for instance in the

function application rule 𝑀 𝑁 the bindings generated in𝑀 are bound in 𝑁 , and the application

produces all of the bindings they generate, and similarly for product introduction. In the unpack

form, care must be taken to make sure that the 𝑋 from the unpack is not leaked in the output

Γ𝑁 , in addition to making sure the output type 𝐵 does not mention 𝑋 . Any known type variables

that mention 𝑋 are removed from the output context, using the restriction form ΓΓ′ defined at the

bottom of Figure 2. Finally, in the if form, each branch might export different known type variables,

so the if statement as a whole only exports the intersection of the two branches, since these are the

only ones guaranteed to be generated.

4 PolyC𝜈 : CAST CALCULUS
As is standard in gradual languages, rather than giving the surface language an operational semantics

directly, we define a cast calculus that makes explicit the casts that perform the dynamic type

checking in gradual programs. We present the cast calculus syntax in Figure 3. The cast calculus

syntax is almost the same as the surface syntax, though the typing is quite different. First, the type

ascription form is removed, and several forms are added to replace it. Based on the analysis in

[New and Ahmed 2018], we add two cast forms: an upcast ⟨𝐴⊑⟩

↢

𝑀 and a downcast ⟨𝐴⊑⟩ ↞ 𝑀 ,

whereas most prior work includes a single cast form ⟨𝐴 ⇐ 𝐵⟩. The 𝐴⊑ used in the upcast and

downcast forms here is a proof that 𝐴𝑙 ⊑ 𝐴𝑟 for some types 𝐴𝑙 , 𝐴𝑟 , i.e., that 𝐴𝑙 is a more precise

(less dynamic) type than 𝐴𝑟 . This type precision definition is key to formalizing the graduality

property, but previous work has shown that it is useful for formalizing the semantics of casts as

well. We emphasize the structure of these proofs because the central semantic constructions of

this work: the operational semantics of casts, the translation of casts into functions and finally our

graduality logical relation are all naturally defined by recursion on these derivations.

4.1 PolyC𝜈 Type Precision
We present the definition of type precision in Figure 4. The judgment Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 is read as

“using the variables in Γ”, 𝐴⊑ proves that 𝐴𝑙 is more precise/less dynamic than 𝐴𝑟 . If you ignore the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:14 Max S. New, Dustin Jamner, and Amal Ahmed

type names 𝛼 ::= 𝜎 | 𝑋
types 𝐴, 𝐵 + ::= 𝜎

ground types 𝐺 ::= 𝛼 | B | ? × ? | ?→ ? | ∃𝜈𝑋 .? | ∀𝜈𝑋 .?

precision derivations 𝐴⊑, 𝐵⊑ ::= ? | tag𝐺 (𝐴⊑) | 𝛼 | B | 𝐴⊑ ×𝐴⊑ | 𝐴⊑ → 𝐵⊑

| ∃𝜈𝑋 .𝐴⊑ | ∀𝜈𝑋 .𝐴⊑

values 𝑉 ::= seal𝛼𝑉 | true | false | 𝑥 | (𝑉 ,𝑉) | 𝜆(𝑥 : 𝐴) .𝑀
| Λ𝜈𝑋 .𝑀 | inj𝐺 𝑉 | ⟨𝐴⊑

1
→ 𝐴⊑

2
⟩

↢
𝑀 | ⟨𝐴⊑

1
→ 𝐴⊑

2
⟩ ↞ 𝑀

| ⟨∀𝜈𝑋 .𝐴⊑⟩

↢

𝑀 | ⟨∀𝜈𝑋 .𝐴⊑⟩ ↞ 𝑀 | pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕], 𝑀)
expressions 𝑀, 𝑁 − ::= (𝑀 :: 𝐴)

+ ::= ℧ | ⟨𝐴⊑⟩

↢

𝑀 | ⟨𝐴⊑⟩ ↞ 𝑀 | hide 𝑋 � 𝐴;𝑀 | inj𝐺 𝑀

| pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕, ...], 𝑀) | seal𝜎𝑀 | unseal𝜎𝑀
Evaluation Context 𝐸 ::= [] | (𝐸,𝑀) | (𝑉 , 𝐸) | 𝐸 [𝐴] | 𝐸 𝑀 | 𝑉 𝐸 | inj𝐺 𝐸

| if 𝐸 then 𝑀 else 𝑀 | let (𝑥,𝑦) = 𝐸;𝑀 | ⟨𝐴⊑⟩

↢

𝐸

| unpack (𝑋, 𝑥) = 𝐸;𝑀 | seal𝛼𝐸 | unseal𝛼𝐸 | ⟨𝐴⊑⟩ ↞ 𝐸

Fig. 3. PolyC𝜈 Syntax

Γ ⊢ 𝐴⊑ : 𝐴 ⊑ 𝐺
Γ ⊢ tag𝐺 (𝐴⊑) : 𝐴 ⊑ ?

Γ ⊢ ? : ? ⊑ ? Γ ⊢ B : B ⊑ B
𝑋 ∈ Γ

Γ ⊢ 𝑋 : 𝑋 ⊑ 𝑋

Γ ⊢ 𝐴⊑
1
: 𝐴𝑙1 ⊑ 𝐴𝑟1 Γ ⊢ 𝐴⊑

2
: 𝐴𝑙2 ⊑ 𝐴𝑟2

Γ ⊢ 𝐴⊑
1
×𝐴⊑

2
: 𝐴𝑙1 ×𝐴𝑙2 ⊑ 𝐴𝑟1 ×𝐴𝑟2

Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 Γ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ ⊢ 𝐴⊑ → 𝐵⊑ : 𝐴𝑙 → 𝐵𝑙 ⊑ 𝐴𝑟 → 𝐵𝑟

Γ, 𝑋 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ ⊢ ∃𝜈𝑋 .𝐴⊑ : ∃𝜈𝑋 .𝐴𝑙 ⊑ ∃𝜈𝑋 .𝐴𝑟

Γ, 𝑋 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ ⊢ ∀𝜈𝑋 .𝐴⊑ : ∀𝜈𝑋 .𝐴𝑙 ⊑ ∀𝜈𝑋 .𝐴𝑟

Fig. 4. PolyC𝜈 Type Precision

precision derivations, our definition of type precision is a simple extension of the usual notion: type

variables are only related to the dynamic type and themselves, and similarly for ∀ and ∃. Since we
have quantifiers and type variables, we include a context Γ of known and abstract type variables.

Crucially, even under the assumption that 𝑋 � 𝐴, 𝑋 and 𝐴 are unrelated precision-wise unless 𝐴

is ?. As before, 𝑋 ∈ Γ ranges over both known and abstract type variables. It is easy to see that

precision reflexive and transitive, and that ? is the greatest element. Finally, ? is the least precise

type, meaning for any type 𝐴 there is a derivation that 𝐴 ⊑ ?. The precision notation is a natural

extension of the syntax of types: with base types ?,B serving as the proof of reflexivity at the type

and constructors ×,→, etc. serving as syntax for congruence proofs. It is important to note that

while we give a syntax for derivations, there is at most one derivation 𝐴⊑ that proves any given

𝐴𝑙 ⊑ 𝐴𝑟 . We prove these and several more lemmas about type precision in the appendix [New et al.

2020].

4.2 PolyC𝜈 Type System
The static type system for the cast calculus is given Figure 5. The cast calculus type system differs

from the surface language in that all type checking is strict and precise. This manifests in two

ways. First, the dynamic type is not considered implicitly compatible with other types. Instead,

in the translation from PolyG
𝜈
to PolyC

𝜈
, we insert casts wherever consistency is used in the

judgment. Second, in the if rule, the branches must have the same type, and an upcast is inserted

in the translation to make the two align. Finally, the outward scoping of known type variables is

handled more explicitly. We add a new form hide 𝑋 � 𝐴;𝑀 that delimits the scope of 𝑋 � 𝐴 from

going further outward, enforced by the side condition that Γ, Γ𝑀 ⊢ Γ′𝑀 . Then in rules that include

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:15

𝑥 : 𝐴 ∈ Γ
Γ ⊢ 𝑥 : 𝐴; ·

Γ ⊢ 𝑀 : 𝐴𝑙 ; Γ𝑀 Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ ⊢ ⟨𝐴⊑⟩

↢

𝑀 : 𝐴𝑟 ; Γ𝑀

Γ ⊢ 𝑀 : 𝐴𝑟 ; Γ𝑀 Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ ⊢ ⟨𝐴⊑⟩ ↞ 𝑀 : 𝐴𝑙 ; Γ𝑀

Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Γ, Γ𝑀 , 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵; Γ𝑁

Γ ⊢ let 𝑥 = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ ⊢ 𝑀 : 𝐴; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜
Γ ⊢ seal𝑋𝑀 : 𝑋 ; Γ𝑜

Γ ⊢ 𝑀 : 𝑋 ; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜
Γ ⊢ unseal𝑋𝑀 : 𝐴; Γ𝑜

Γ ⊢ 𝑀 : ?; Γ𝑜 Γ ⊢ 𝐺
Γ ⊢ is(𝐺)? 𝑀 : B; Γ𝑜

Γ ⊢ true : B; · Γ ⊢ false : B; ·

Γ ⊢ 𝑀 : B; Γ𝑀 Γ, Γ𝑀 ⊢ 𝑁𝑡 : 𝐵; Γ𝑁 Γ, Γ𝑀 ⊢ 𝑁𝑓 : 𝐵; Γ𝑁

Γ ⊢ if 𝑀 then 𝑁𝑡 else 𝑁𝑓 : 𝐵; Γ𝑀 , Γ𝑁

Γ ⊢ 𝑀1 : 𝐴1; Γ1 Γ, Γ1 ⊢ 𝑀2 : 𝐴2; Γ2

Γ ⊢ (𝑀1, 𝑀2) : 𝐴1 ×𝐴2; Γ1, Γ2

Γ ⊢ 𝑀 : 𝐴1 ×𝐴2; Γ𝑀 Γ, Γ𝑀 , 𝑥 : 𝐴1, 𝑦 : 𝐴2 ⊢ 𝑁 : 𝐵; Γ𝑁

Γ ⊢ let (𝑥,𝑦) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵; ·
Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 : 𝐴→ 𝐵; ·

Γ ⊢ 𝑀 : 𝐴→ 𝐵; Γ𝑀 Γ, Γ𝑀 ⊢ 𝑁 : 𝐴; Γ𝑁

Γ ⊢ 𝑀 𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ, 𝑋 � 𝐴 ⊢ 𝑀 : 𝐵; ·
Γ ⊢ pack𝜈 (𝑋 � 𝐴,𝑀) : ∃𝜈𝑋 .𝐵; ·

Γ ⊢ 𝑀 : ∃𝜈𝑋 .𝐴; Γ𝑀 Γ, Γ𝑀 , 𝑋, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵; Γ𝑁 Γ, Γ𝑀 ⊢ Γ𝑁 Γ, Γ𝑀 , Γ𝑁 ⊢ 𝐵
Γ ⊢ unpack (𝑋, 𝑥) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Γ, 𝑋 ⊢ 𝑀 : 𝐴; ·
Γ ⊢ Λ𝜈𝑋 .𝑀 : ∀𝜈𝑋 .𝐴; ·

Γ ⊢ 𝑀 : ∀𝜈𝑋 .𝐴; Γ𝑀 Γ, Γ𝑀 ⊢ 𝐵
Γ ⊢ 𝑀{𝑋 � 𝐵} : 𝐴; Γ𝑀 , 𝑋 � 𝐵

Γ ⊢ 𝑀 : Γ𝑀 , 𝑋 � 𝐴, Γ′𝑀 Γ, Γ𝑀 ⊢ Γ′𝑀
Γ ⊢ hide 𝑋 � 𝐴;𝑀 ; Γ𝑀 , Γ′𝑀

Fig. 5. PolyC𝜈 Typing

delayed computations, i.e., values of function, existential and universal type, whereas in the surface

language the delayed term could produce any names, now in PolyC
𝜈
, they must all be manually

hidden. Similarly in the branches of an if statement, the two sides must have the same generated

names, and hides must be used in the elaboration to make them align.

4.3 Elaboration from PolyG𝜈 to PolyC𝜈

We define the elaboration of PolyG
𝜈
into the cast calculus PolyC

𝜈
in Figure 6. Following [New

and Ahmed 2018], an ascription is interpreted as a cast up to ? followed by a cast down to the

ascribed type. Most of the elaboration is standard, with elimination forms being directly translated

to the corresponding PolyC
𝜈
form if the head connective is correct, and inserting a downcast if the

elimination position has type ?. We formalize this using the metafunction 𝐺

{

𝑀 defined towards

the bottom of the figure. For the if case, in PolyC
𝜈
the two branches of the if have to have the same

output type and export the same names, so we downcast each branch, but also we hide any names

not generated by both sides, using the metafunction hide Γ ⊆ Γ′;𝑀 , defined at the bottom of the

figure, which hides all names present in Γ′ that are not in Γ. Finally, in the values that are thunks

(pack, 𝜆 and Λ), the bodies of the thunks must not generate names in PolyC
𝜈
, so we hide names

there as well.

4.4 PolyC𝜈 Dynamic Semantics
The dynamic semantics of PolyC

𝜈
, presented in Figure 7, extends traditional cast semantics with

appropriate rules for our name-generating universals and existentials. The runtime state is a pair

of a term 𝑀 and a case store Σ. A case store Σ represents the set of cases allocated so far in the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:16 Max S. New, Dustin Jamner, and Amal Ahmed

(𝑀 :: 𝐵)+ = ⟨𝐵?⊑⟩ ↞ ⟨𝐴?⊑⟩

↢

𝑀+ (where𝑀 : 𝐴, 𝐴?⊑ : 𝐴 ⊑ ?, 𝐵?⊑ : 𝐵 ⊑ ?)

𝑥+ = 𝑥

(let 𝑥 = 𝑀 ;𝑁)+ = let 𝑥 = 𝑀+;𝑁 +

(seal𝑋𝑀)+ = seal𝑋 (𝑀 :: 𝐴)+ (where 𝑋 � 𝐴)

(unseal𝑋𝑀)+ = unseal𝑋 (𝑋

{

𝑀)
(is(𝐺)? 𝑀)+ = is(𝐺)? (⟨𝐴?⊑⟩

↢

𝑀) (where𝑀 : 𝐴, 𝐴?⊑ : 𝐴 ⊑ ?)

𝑏+ = 𝑏 (𝑏 ∈ {true, false})
(if 𝑀 then 𝑁𝑡 else 𝑁𝑓)+ = if B

{

𝑀 then (⟨𝐵⊑𝑡 ⟩ ↞ hide Γ𝑡 ⊆ Γ𝑡 ∩ Γ𝑓 ;𝑁
+
𝑡)

else (⟨𝐵⊑
𝑓
⟩ ↞ hide Γ𝑓 ⊆ Γ𝑡 ∩ Γ𝑓 ;𝑁

+
𝑓
)

(where Γ ⊢ if 𝑀 then 𝑁𝑡 else 𝑁𝑓 : 𝐵𝑡 ⊓ 𝐵𝑓 ; Γ𝑀 , Γ𝑡 ∩ Γ𝑓)

(and 𝐵⊑𝑡 : 𝐵𝑡 ⊓ 𝐵𝑓 ⊑ 𝐵𝑡 , 𝐵
⊑
𝑓
: 𝐵𝑡 ⊓ 𝐵𝑓 ⊑ 𝐵𝑓)

(𝑀1, 𝑀2)+ = (𝑀+1 , 𝑀
+
2
)

(let (𝑥,𝑦) = 𝑀 ;𝑁)+ = let (𝑥,𝑦) = ? × ?

{

𝑀 ;𝑁 +

(𝜆𝑥 : 𝐴.𝑀)+ = 𝜆𝑥 : 𝐴.hide Γ𝑜 ⊆ Γ𝑜 ;𝑀
+

(where Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵; Γ𝑜)

(𝑀 𝑁)+ = (?→ ?

{

𝑀) (𝑁 :: dom(𝐴))+ (where𝑀 : 𝐴)

(pack𝜈 (𝑋 � 𝐴,𝑀))+ = pack𝜈 (𝑋 � 𝐴, hide Γ𝑜 ⊆ Γ𝑜 ;𝑀
+) (where𝑀 : 𝐵; Γ𝑜)

(unpack (𝑋, 𝑥) = 𝑀 ;𝑁)+ = unpack (𝑋, 𝑥) = ∃𝜈𝑋 .?

{

𝑀 ; hide Γ𝑁 |𝑋 ⊆ Γ𝑁 ;𝑁 +

Λ𝜈𝑋 .𝑀+ = Λ𝜈𝑋 .hide Γ𝑜 ⊆ Γ𝑜 ;𝑀
+

(where𝑀 : 𝐴; Γ𝑜)

𝑀{𝑋 � 𝐵}+ = (∀𝜈𝑋 .?

{

𝑀){𝑋 � 𝐵}
𝐺

{

𝑀 = ⟨tag𝐺 (𝐺)⟩ ↞ 𝑀+ (when𝑀 : ?)

𝐺

{

𝑀 = 𝑀+ (otherwise)

hide Γ𝑠 ⊆ (Γ𝑏 , 𝑋 � 𝐴);𝑀 = hide Γ𝑠 ⊆ Γ𝑏 ; hide 𝑋 � 𝐴;𝑀 (𝑋 ∉ Γ𝑠)

hide (Γ𝑠 , 𝑋 � 𝐴) ⊆ (Γ𝑏 , 𝑋 � 𝐴);𝑀 = hide Γ𝑠 ⊆ Γ𝑏 ;𝑀

hide · ⊆ ·;𝑀 = 𝑀

Fig. 6. Elaborating PolyG𝜈 to PolyC
𝜈

program. Formally, a store Σ is just a pair of a number Σ.𝑛 and a function Σ.𝑓 : [𝑛] → Ty where Ty

is the set of all types and [𝑛] = {𝑚 ∈ N | 𝑚 < 𝑛} is from some prefix of natural numbers to types.

All rules take configurations Σ ⊲𝑀 to configurations Σ′ ⊲𝑀 ′. When the step does not change the

store, we write𝑀 ↦→ 𝑀 ′ for brevity.
The first rule states that all non-trivial evaluation contexts propagate errors. Next, unsealing

a seal gets out the underlying value, and is(𝐺)? 𝑉 literally checks if the tag of 𝑉 is 𝐺 . The hide

form generates a fresh seal 𝜎 : 𝐴 and substitutes it into the continuation. The pack form steps to an

intermediate state used for building up a stack of casts that will be used again in the existential cast

rule. The unpack rule generates a fresh seal for the 𝑋 � 𝐴 and then applies all of the accumulated

casts to the body of the pack. Here we use ↕ to indicate one of

↢

and ↞. For ∀𝜈 instantiation, we do
not need to generate the seal, because it must have already been generated by a hide form further

up the term, so the rule is just a substitution. As is typical for a cast calculus, the remaining types

have ordinary call-by-value 𝛽 reduction and so we elide them.

The remaining rules give the behavior of casts. Other than the use of type precision derivations,

the behavior of our casts is mostly standard: identity casts for B, 𝜎 and ? are just the identity, and

the product cast proceeds structurally. Function casts are values, and when applied to a value, the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:17

𝐸 [℧] ↦→ ℧ where 𝐸 ≠ []
𝐸 [unseal𝜎 (seal𝜎𝑉)] ↦→ 𝐸 [𝑉]
𝐸 [is(𝐺)? (inj𝐺 𝑉)] ↦→ 𝐸 [true]
𝐸 [is(𝐺)? (inj𝐻 𝑉)] ↦→ 𝐸 [false] where 𝐺 ≠ 𝐻

Σ ⊲ 𝐸 [hide 𝑋 � 𝐴;𝑀] ↦→ Σ, 𝜎 : 𝐴 ⊲ 𝐸 [𝑀 [𝜎/𝑋]]

Σ ⊲ 𝐸

[
unpack (𝑋, 𝑥) = pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕], 𝑀);
𝑁

]
↦→ Σ, 𝜎 : 𝐴′ ⊲ 𝐸

[
let 𝑥 = ⟨𝐴⊑ [𝜎/𝑋]⟩↕𝑀 [𝜎/𝑋];
𝑁 [𝜎/𝑋]

]
𝐸 [pack𝜈 (𝑋 � 𝐴,𝑀)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴′, [], 𝑀)]
𝐸 [(Λ𝜈𝑋 .𝑀){𝜎 � 𝐴}] ↦→ 𝐸 [𝑀 [𝜎/𝑋]]
𝐸 [⟨𝐴⊑⟩↕ 𝑉] ↦→ 𝐸 [𝑉] where 𝐴⊑ ∈ {B, 𝜎, ?}
𝐸 [⟨𝐴⊑

1
×𝐴⊑

2
⟩↕ (𝑉1,𝑉2)] ↦→ 𝐸 [(⟨𝐴⊑

1
⟩↕ 𝑉1, ⟨𝐴⊑

2
⟩↕ 𝑉2)]

𝐸 [(⟨𝐴⊑
1
→ 𝐴⊑

2
⟩↕ 𝑉1) 𝑉2] ↦→ 𝐸 [⟨𝐴⊑

2
⟩↕ (𝑉1 ⟨𝐴⊑

1
⟩↕− 𝑉2)]

𝐸 [⟨∃𝜈𝑋 .𝐴⊑⟩↕ pack𝜈 (𝑋 � 𝐴′, [𝐴′⊑ ↕′, ...], 𝑀)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕, 𝐴′⊑ ↕′, ...], 𝑀)]
𝐸 [(⟨∀𝜈𝑋 .𝐴⊑⟩↕ 𝑉){𝜎 � 𝐴}] ↦→ 𝐸 [⟨𝐴⊑ [𝜎/𝑋]⟩↕ (𝑉 {𝜎 � 𝐴})]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉] ↦→ 𝐸 [inj𝐺 ⟨𝐴⊑⟩

↢

𝑉]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐺 𝑉] ↦→ 𝐸 [⟨𝐴⊑⟩ ↞ 𝑉]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐻 𝑉] ↦→ ℧ where 𝐻 ≠ 𝐺

Fig. 7. PolyC𝜈 Operational Semantics (fragment)

cast is performed on the output and the oppositely oriented case on the input. We use ↕− to indicate
the opposite arrow, so

↢ −
= ↞ and ↞

−
=

↢

to cut down the number of rules. Next, the ∀𝜈 casts are

also values that reduce when the instantiating type is supplied. As with existentials, the freshly

generated type 𝜎 is substituted for 𝑋 in the precision derivation guiding the cast. Finally, the upcast

case for tag𝐺 (𝐴⊑) simply injects the result of upcasting with 𝐴⊑ into the dynamic type using the

tag 𝐺 . For the downcast case, the opposite is done if the input has the right tag, and otherwise a

dynamic type error is raised.

In the appendix, we extend the typing to runtime terms which are typed with respect to a

case-store and prove a standard type safety theorem for the language that terms either take a step

or are values or errors [New et al. 2020].

5 TYPED INTERPRETATION OF THE CAST CALCULUS
In the previous section we developed a cast calculus with an operational semantics defining the

behavior of the name generation and gradual type casts. However, this ad hoc design addition of

new type connectives and inside-out scoping of ∀𝜈 -instantiations make the cast calculus less than

ideal for proving meta-theoretic properties of the system.

Instead of directly proving metatheoretic properties of the cast calculus, we give a contract
translation of the cast calculus into a statically typed core language, translating the gradual type

casts to ordinary terms in the typed language that raise errors. The key benefit of the typed

language is that it does not have built-in notions of fresh existential and universal quantification.

Instead, the type translation decomposes these features into the combination of ordinary existential

and universal quantification combined with a somewhat well-studied programming feature: a

dynamically extensible “open” sum type we call OSum. Finally, it gives a static type interpretation

of the dynamic type: rather than being a finitary sum of a few statically fixed cases, the dynamic

type is implemented as the open sum type which includes those types allocated at runtime.

5.1 Typed Metalanguage
We present the syntax of our typed language CBPVOSum in Figure 8, an extension of Levy’s Call-by-

push-value calculus [Levy 2003], whichwe use as a convenientmetalanguage to extendwith features

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:18 Max S. New, Dustin Jamner, and Amal Ahmed

value types 𝐴 ::= 𝑋 | Case 𝐴 | OSum | 𝐴 ×𝐴 | B | ∃𝑋 .𝐴 | 𝑈𝐵

computation types 𝐵 ::= 𝐴→ 𝐵 | ∀𝑋 .𝐵 | 𝐹𝐴
values 𝑉 ::= 𝜎 | inj𝑉 𝑉 | pack(𝐴,𝑉) as ∃𝑋 .𝐴 | 𝑥 | (𝑉 ,𝑉)

| true | false | thunk 𝑀

computations 𝑀 ::= ℧ | force 𝑉 | ret 𝑉 | 𝑥 ← 𝑀 ;𝑁 | 𝑀 𝑉 | 𝜆𝑥 : 𝐴.𝑀

| newcase𝐴 𝑥 ;𝑀 | match 𝑉 with 𝑉 {inj 𝑥 .𝑀 | 𝑁 }
| unpack (𝑋, 𝑥) = 𝑉 ;𝑀 | let (𝑥, 𝑥) = 𝑉 ;𝑀 | Λ𝑋 .𝑀 | 𝑀 [𝐴]
| if 𝑉 then 𝑀 else 𝑀

stacks 𝑆 ::= • | 𝑆 𝑉 | 𝑆 [𝐴] | 𝑥 ← 𝑆 ;𝑀

value typing context Γ ::= · | Γ, 𝑥 : 𝐴

type variable context Δ ::= · | Δ, 𝑋

Fig. 8. CBPVOSumSyntax

of interest. Call-by-push-value (CBPV) is a typed calculus with highly explicit evaluation order,

providing similar benefits to continuation-passing style and A-normal form [Sabry and Felleisen

1992]. The main distinguishing features of CBPV are that values 𝑉 and effectful computations

𝑀 are distinct syntactic categories, with distinct types: value types 𝐴 and computation types 𝐵.

The two “shift” types𝑈 and 𝐹 mediate between the two worlds. A value of type𝑈𝐵 is a first-class

“thUnk” of a computation of type 𝐵 that can be forced, behaving as a 𝐵. A computation of type 𝐹𝐴

is a computation that can perform effects and return a value of type 𝐴, and whose elimination form

is a monad-like bind. Notably while sums and (strict) tuples are value types, function types 𝐴→ 𝐵

are computations since a function interacts with its environment by receiving an argument. We

include existentials as value type and universals as computation types, that in each case quantify

over value types because we are using it as the target of a translation from a call-by-value language.

We furthermore extend CBPV with two new value types: OSum and Case 𝐴, which add an open

sum type similar to the extensible exception types in ML, but with an expression-oriented interface

more suitable to a core calculus. The open sum type OSum is initially empty, but can have new

cases allocated at runtime. A value of Case 𝐴 is a first class representative of a case of OSum. The

introduction form inj𝑉𝑐 𝑉 for OSum uses a case 𝑉𝑐 : Case 𝐴 to inject a value 𝑉 : 𝐴 into OSum.

The elimination form match 𝑉𝑜 with 𝑉𝑐 {inj 𝑥 .𝑀 | 𝑁 } for OSum is to use a 𝑉𝑐 : Case 𝐴 to do a

pattern match on a value𝑉𝑜 : OSum. Since OSum is an open sum type, it is unknown what cases𝑉𝑜
might use, so the pattern-match has two branches: the one inj 𝑥 .𝑀 binds the underlying value to

𝑥 : 𝐴 and proceeds as𝑀 and the other is a catch-all case 𝑁 in case 𝑉𝑜 was not constructed using

𝑉𝑐 . Finally, there is a form newcase𝐴 𝑥 ;𝑀 that allocates a fresh Case 𝐴, binds it to 𝑥 and proceeds

as𝑀 . In addition to the similarity to ML exception types, they are also similar to the dynamically

typed sealing mechanism introduced in Sumii and Pierce [2004].

5.2 Static and Dynamic Semantics
We show a fragment of the typing rules for CBPVOSum in Figure 9. There are two judgments

corresponding to the two syntactic categories of terms: Δ; Γ ⊢ 𝑉 : 𝐴 for typing a value and

Δ; Γ ⊢ 𝑀 : 𝐴 for typing a computation. Δ is the environment of type variables and Γ is the

environment for term variables. Unlike in PolyG
𝜈
and PolyC

𝜈
, these are completely standard, and

there is no concept of a known type variable.

First, an error ℧ is a computation and can be given any type. Variables are standard and the

OSum/Case forms are as described above. Existentials are a value form and are standard as in

CBPV using ordinary substitution in the pack form. In all of the value type elimination rules, the

discriminee is restricted to be a value. A computation𝑀 : 𝐵 can be thunked to form a value thunk 𝑀 :

𝑈𝐵, which can be forced to run as a computation. Like the existentials, the universal quantification

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:19

Δ; Γ ⊢ ℧ : 𝐵 Δ; Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Δ; Γ ⊢ 𝑉𝑐 : Case 𝐴 Δ; Γ ⊢ 𝑉 : 𝐴

Δ; Γ ⊢ inj𝑉𝑐 𝑉 : OSum

Δ; Γ ⊢ 𝑉 : OSum Δ; Γ ⊢ 𝑉𝑐 : Case 𝐴 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 Δ; Γ ⊢ 𝑁 : 𝐵

Δ; Γ ⊢ match 𝑉 with 𝑉𝑐 {inj 𝑥 .𝑀 | 𝑁 } : 𝐵

Δ ⊢ 𝐴 Δ; Γ, 𝑥 : Case 𝐴 ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ newcase𝐴 𝑥 ;𝑀 : 𝐵

Δ; Γ ⊢ 𝑉 : 𝐴[𝐴′/𝑋]
Δ; Γ ⊢ pack(𝐴′,𝑉) as ∃𝑋 .𝐴 : ∃𝑋 .𝐴

Δ; Γ ⊢ 𝑉 : ∃𝑋 .𝐴 Δ ⊢ 𝐵 Δ, 𝑋 ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ unpack (𝑋, 𝑥) = 𝑉 ;𝑀 : 𝐵

Δ; Γ ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ thunk 𝑀 : 𝑈𝐵

Δ; Γ ⊢ 𝑉 : 𝑈𝐵

Δ; Γ ⊢ force 𝑉 : 𝐵

Δ, 𝑋 ; Γ ⊢ 𝑀 : 𝐵

Δ; Γ ⊢ Λ𝑋 .𝑀 : ∀𝑋 .𝐵

Δ; Γ ⊢ 𝑀 : ∀𝑋 .𝐵 Δ ⊢ 𝐴
Δ; Γ ⊢ 𝑀 [𝐴] : 𝐵 [𝐴/𝑋]

Δ; Γ ⊢ 𝑉 : 𝐴

Δ; Γ ⊢ ret 𝑉 : 𝐹𝐴

Δ; Γ ⊢ 𝑀 : 𝐹𝐴 Δ; Γ ⊢ 𝑁 : 𝐵

Δ; Γ ⊢ 𝑥 ← 𝑀 ;𝑁 : 𝐵

Fig. 9. CBPVOSum Type System (fragment)

𝑆 [℧] ↦→0 ℧

Σ ⊲ 𝑆 [newcase𝐴 𝑥 ;𝑀] ↦→0 Σ, 𝜎 : 𝐴 ⊲ 𝑆 [𝑀 [𝜎/𝑥]]
𝑆 [match inj𝜎 𝑉 with 𝜎{inj 𝑥 .𝑀 | 𝑁 }] ↦→1 𝑆 [𝑀 [𝑉 /𝑥]]

𝑆 [match inj𝜎1 𝑉 with 𝜎2{inj 𝑥 .𝑀 | 𝑁 }] ↦→1 𝑆 [𝑁] (where 𝜎1 ≠ 𝜎2)

𝑆 [force (thunk 𝑀)] ↦→0 𝑆 [𝑀]
𝑆 [unpack (𝑋, 𝑥) = pack(𝐴,𝑉);𝑀] ↦→0 𝑆 [𝑀 [𝐴/𝑋,𝑉 /𝑥]]

𝑆 [(Λ𝑋 .𝑀) [𝐴]] ↦→0 𝑆 [𝑀 [𝐴/𝑋]]
𝑆 [𝑥 ← ret 𝑉 ;𝑁] ↦→0 𝑆 [𝑁 [𝑉 /𝑥]]

Fig. 10. CBPVOSum Operational Semantics (fragment)

type is standard, using substitution in the elimination form. Finally, the introduction form for 𝐹𝐴

returns a value 𝑉 : 𝐴, and the elimination form is a bind, similar to a monadic semantics of effects,

except that the continuation can have any computation type 𝐵, rather than restricted to 𝐹𝐴.

A representative fragment of the operational semantics is given in Figure 10, the full semantics

are in the appendix [New et al. 2020]. 𝑆 represents a stack, the CBPV analogue of an evaluation

context, defined in Figure 8. Here Σ is like the Σ in PolyC
𝜈
, but maps to value types. The semantics

is standard, other than the fact that we assign a count to each step of either 0 or 1. The only steps

that count for 1 are those that introduce non-termination to the language, which is used later as a

technical device in our logical relation in §6.

5.3 Translation
Next, we present the “contract translation” of PolyC

𝜈
into CBPVOSum. This translation can be

thought of as an alternate semantics to the operational semantics for PolyC
𝜈
, but with a tight

correspondence given in §5.4. Since CBPVOSum is a typed language that uses ordinary features like

functions, quantification and an open sum type, this gives a simple explanation of the semantics of

PolyC
𝜈
in terms of fairly standard language features.

In the left side of Figure 11, we present the type translation from PolyC
𝜈
to CBPVOSum. Since

PolyC
𝜈
is a call-by-value language, types are translated to CBPVOSum value types. Booleans and

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:20 Max S. New, Dustin Jamner, and Amal Ahmed

JΣ; Γ ⊢ ?K = OSum

JΣ; Γ ⊢ 𝑋 K = 𝑋 (where 𝑋 ∈ Γ)
JΣ; Γ ⊢ 𝑋 K = J𝐴K (where 𝑋 � 𝐴 ∈ Γ)
JΣ; Γ ⊢ 𝜎K = J𝐴K (where 𝜎 : 𝐴 ∈ Σ)
JΣ; Γ ⊢ BK = B

JΣ; Γ ⊢ 𝐴→ 𝐵K = 𝑈 (JΣ; Γ ⊢ 𝐴K→ 𝐹JΣ; Γ ⊢ 𝐵K)
JΣ; Γ ⊢ 𝐴1 ×𝐴2K = JΣ; Γ ⊢ 𝐴1K × JΣ; Γ ⊢ 𝐴2K

JΣ; Γ ⊢ ∃𝜈𝑋 .𝐴K = ∃𝑋 .𝑈 (Case 𝑋 → 𝐹JΣ; Γ, 𝑋 ⊢ 𝐴K)
JΣ; Γ ⊢ ∀𝜈𝑋 .𝐴K = 𝑈 (∀𝑋 .Case 𝑋 → 𝐹JΣ; Γ, 𝑋 ⊢ 𝐴K)

JΣ ⊢ ·K = ·; ·
JΣ ⊢ Γ, 𝑥 : 𝐴K = Δ′; Γ′, 𝑥 : JΣ; Γ ⊢ 𝐴K

(where JΣ ⊢ ΓK = Δ′; Γ′)

JΣ ⊢ Γ, 𝑋 K = Δ′, 𝑋 ; Γ′, 𝑐𝑋 : Case 𝑋

(where JΣ ⊢ ΓK = Δ′; Γ′)

JΣ ⊢ Γ, 𝑋 � 𝐴K = Δ′; Γ′, 𝑐𝑋 : Case JΣ; Γ ⊢ 𝐴K
(where JΣ ⊢ ΓK = Δ′; Γ′)

Fig. 11. PolyC𝜈 type and environment translation

pairs are translated directly, and the function type is given the standard CBPV translation for

call-by-value functions, 𝑈 (J𝐴K → 𝐹J𝐵K): a call-by-value function is a thunked computation of

a function that takes an J𝐴K as input and may return a J𝐵K as output. The dynamic type ? is

interpreted as the open sum type. The meaning of a type variable depends on the context: if it

is an abstract type variable, it is translated to a type variable, but if it is a known type variable

𝑋 � 𝐴, it is translated to J𝐴K! That is, at runtime, values of a known type variable 𝑋 are just values

of the type isomorphic to 𝑋 , and as we will see later, sealing and unsealing are no-ops. Similarly,

a runtime type tag 𝜎 is translated to the type that the corresponding case maps to. These are

inductively well-defined because Σ stays constant in the type translation and Γ only adds abstract

type variables.

The final two cases are the most revealing. First the fresh universal quantifier, ∀𝜈𝑋 .𝐴, translates

to not just a thunk of a universally quantified computation, but also takes in a Case 𝑋 as input. The

body of a Λ will then use that Case 𝑋 in order to interpret casts involving 𝑋 . This is precisely why

parametricity is more complex for our source language: if it were translated to just𝑈 (∀𝑋 .𝐹J𝐴K),
then parametricity would follow directly by parametricity for CBPVOSum, but the Case 𝑋 represents

additional information that the function is being passed that potentially provides information about

the type 𝑋 . It is only because code translated from PolyC
𝜈
always generates a fresh case that this

extra input is benign. The fresh existential ∃𝜈𝑋 .𝐴 is translated to a real existential of a thunk that

expects a Case 𝑋 and returns a J𝐴K. Note that while the quantification is the dual of the ∀𝜈 case,
both of them receive a Case 𝑋 from the environment, which is freshly generated.

Next, while PolyG
𝜈
and PolyC

𝜈
have a single environment Γ that includes type variables and

term variables, in CBPVOSum, these are separated into a type variable environment Δ and a term

variable environment Γ. For this reason in the right side of Figure11 we define the translation of an

environment Γ to be a pair of environments in CBPVOSum. The term variable 𝑥 : 𝐴 is just translated

to a variable 𝑥 : J𝐴K, but the type variables are more interesting. An abstract type variable 𝑋 is

translated to a pair of a type variable 𝑋 but also an associated term variable 𝑐𝑋 : Case 𝑋 , which

represents the case of the dynamic type that will be instantiated with a freshly generated case. On

the other hand, since known type variables 𝑋 � 𝐴 are translated to J𝐴K, we do not extend Δ with a

new variable, but still produce a variable 𝑐𝑋 : J𝐴K as with an unknown type variable. Finally, the

empty context · is translated to a pair of empty contexts.

To translate a whole program, written JΣ; · ⊢ 𝑀K𝑝 , we insert a preamble that generates the cases

of the open sum type for each ground type. In Figure 12, we show our whole-program translation

which inserts a preamble to generate a case of the OSum type for each ground type. This allows

us to assume the existence of these cases in the rest of the translation. These can be conveniently

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:21

J𝑀K𝑝 = newcaseJBK 𝑐
Bool

;

newcaseJ?→?K 𝑐Fun;

newcaseJ?×?K 𝑐Times;

newcaseJ∃𝜈𝑋 .?K 𝑐Ex;

newcaseJ∀𝜈𝑋 .?K 𝑐
All

;

J𝑀K

case(B) = 𝑐
Bool

case(𝐴→ 𝐵) = 𝑐Fun
case(𝐴 × 𝐵) = 𝑐Times

case(∃𝜈𝑋 .𝐴) = 𝑐Ex
case(∀𝜈𝑋 .𝐴) = 𝑐

All

case(𝑋) = 𝑐𝑋
case(𝜎) = 𝜎

Γ𝑝 = Bool � B, Fun � ?→ ?,Times � ? × ?, Ex � ∃𝜈𝑋 .?,All � ∀𝜈𝑋 .?

Fig. 12. Ground type tag management

J𝑥K = ret 𝑥

Jlet 𝑥 = 𝑀 ;𝑁 K = 𝑥 ← J𝑀K; J𝑁 K
J℧𝐴K = ℧
Jseal𝑋𝑀K = J𝑀K
Junseal𝑋𝑀K = J𝑀K
Jinj𝐺 𝑀K = 𝑟 ← J𝑀K; ret inj

case(𝐺) 𝑟
Jis(𝐺)? 𝑀K = 𝑟 ← J𝑀K; match 𝑟 with case(𝐺){inj 𝑦.ret true | ret false}
Jhide 𝑋 � 𝐴;𝑀K = newcaseJ𝐴K 𝑐𝑋 ; J𝑀K
J⟨𝐴⊑⟩↕ 𝑀K = J𝐴⊑K↕ [J𝑀K]
J𝜆(𝑥 : 𝐴) .𝑀K = ret thunk 𝜆(𝑥 : J𝐴K).J𝑀K
J𝑀 𝑁 K = 𝑓 ← J𝑀K;𝑎 ← J𝑁 K; (force 𝑓) 𝑎
Jpack𝜈 (𝑋 � 𝐴,𝑀)K = ret pack(𝐴, thunk (𝜆𝑐𝑋 : Case 𝐴.J𝑀K))
Junpack (𝑋, 𝑥) = 𝑀 ;𝑁 K = 𝑟 ← J𝑀K; unpack (𝑋, 𝑓) = 𝑟 ; newcase𝑋 𝑐𝑋 ;𝑥 ← (force 𝑓) 𝑐𝑋 ; J𝑁 K
JΛ𝜈𝑋 .𝑀K = ret (thunk (Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).J𝑀K))
J𝑀{𝑋 � 𝐴}K = 𝑓 ← J𝑀K; (force 𝑓) [𝐴] 𝑐𝑋

J𝐺K↕ = • (when 𝐺 = ?, 𝛼, or B)
Jtag𝐺 (𝐴⊑)K

↢

= 𝑟 ← J𝐴⊑K

↢

[•]; ret inj
case(𝐺) 𝑟

Jtag𝐺 (𝐴⊑)K ↞ = 𝑥 ← •; match 𝑥 with case(𝐺){inj 𝑦.J𝐴⊑K ↞ [ret 𝑦] | ℧}
J𝐴⊑

1
×𝐴⊑

2
K↕ = 𝑥 ← •; let (𝑥1, 𝑥2) = 𝑥 ;𝑥 ′

1
← J𝐴⊑

1
K↕ [ret 𝑥1];𝑥 ′

2
← J𝐴⊑

2
K↕ [ret 𝑥2]; ret (𝑥 ′

1
, 𝑥 ′

2
)

J𝐴⊑
1
→ 𝐴⊑

2
K↕ = 𝑥 ← •; ret thunk (𝜆𝑦 : 𝐴′.𝑎 ← J𝐴⊑

1
K↕− [ret 𝑦]; J𝐴⊑

2
K↕ [force 𝑥 𝑎])

where 𝐴⊑
1
: 𝐴

1𝑙 ⊑ 𝐴1𝑟 and if ↕=↢ , 𝐴′ = 𝐴1𝑟 , else 𝐴
′ = 𝐴

1𝑙

J∀𝜈𝑋 .𝐴⊑K↕ = 𝑥 ← •; ret thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .J𝐴⊑K↕ [force 𝑥 [𝑋] 𝑐𝑋])
J∃𝜈𝑋 .𝐴⊑K↕ = 𝑥 ← •; unpack (𝑌, 𝑓) = 𝑥 ; ret pack(𝑌, thunk (𝜆𝑐𝑋 : Case 𝑌 .J𝐴⊑K↕ [(force 𝑓) 𝑐𝑋]))

Fig. 13. PolyC𝜈 term translation (fragment)

modeled as a sequence of “global” definitions of some known type variables, which we write as

Γ𝑝 . We also define a function case(·) from types to their corresponding case value, which is a case

variable for all types except those generated at runtime 𝜎 .

Next, we consider the term translation, which is defined with the below type preservation

Theorem 5.1 inmind. First, all PolyC
𝜈
terms of type𝐴 are translated to CBPVOSum computations, with

type 𝐹J𝐴K, which is standard for translating CBV to CBPV. Also, note that the output environment

of fresh type names in a term is just translated as an extension to the input environment, the

difference is irrelevant in the translated code, because the names themselves are actually generated

in the translation of the hide form. Finally, we include the preamble context Γ𝑝 to the front of the

terms to account for the fact that all terms can use the cases generated in the preamble.

Theorem 5.1. If Γ1 ⊢ 𝑀 : 𝐴, Γ2 then Δ; Γ ⊢ J𝑀K : 𝐹JΣ; Γ1, Γ2 ⊢ 𝐴K where JΓ𝑝 , Γ1, Γ2K = Δ; Γ.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:22 Max S. New, Dustin Jamner, and Amal Ahmed

We showmost of the term translation in Figure 13. To reduce the context clutter in the translations,

we elide the contexts Σ, Γ in the definition of the semantics. While they are technically needed

to translate type annotations, they do not affect the operational semantics and so can be safely

ignored. We put the bool, pair, and our pack-cast intermediate form cases in the appendix [New

et al. 2020].

Variables translate to a return of the variable, let is translated bind, and errors are translated

to errors. Since the type translation maps known type variables to their bound types, the target

language seal and unseal disappear in the translation. Injection into the dynamic type translates

to injection into the open sum type and ground type checks in PolyC
𝜈
are implemented using

pattern matching on OSum in CBPVOSum. Next, the hide form is translated to a newcase form.

Next, we cover the cases involving thunks. As a warmup, the functions follow the usual CBV

translation into CBPV: a CBV 𝜆 is translated to a thunk of a CBPV 𝜆, and the application translation

makes the evaluation order explicit and forces the function with an input. We translate existential

packages in the cast calculus to CBPVOSum packages containing functions from a case of the open

sum type to the body of the package. In PolyC
𝜈
we delay execution of pack bodies, so the translation

inserts a thunk to make the order of execution explicit. Since pack bodies translate to functions,
the translation of an unpack must provide a case of the open sum type to the package it unwraps.

Type abstractions (Λ𝜈), like packs, wrap their bodies in functions that, on instantiation, expect a

case of the open sum type matching the instantiating type. Since hide generates the requisite type

name, it translates to a newcase. A type application then simply plugs its given type and the tag

associated with its type variable into the supplied type abstraction.

Next, we define the implementation of casts as “contracts”, i.e., ordinary functions in the

CBPVOSum. Reflexive casts at atomic types, ?, 𝛼 , and B, translate away. Structural casts at composite

types, pair types, function types, universals, and existentials, push casts for their sub-parts into

terms of each type. Function and product casts are entirely standard, noting that we use 𝑟 (𝐴⊑) = 𝐴𝑟 .

Universal casts delay until type application and then cast the output. Existential casts push their

subcasts into whatever package they are given.

5.4 Simulation
In §6, we establish graduality and parametricity theorems for PolyG

𝜈
/PolyC

𝜈
by analysis of the

semantics of terms translated into CBPVOSum. But since we take the operational semantics of

PolyC
𝜈
as definitional, we need to bridge the gap between the operational semantics in CBPVOSum

and PolyC
𝜈
by proving the following adequacy theorem that says that the final behavior of terms

in PolyC
𝜈
is the same as the behavior of their translations:

Theorem 5.2 (Adeqacy). If · ⊢ 𝑀 : 𝐴; ·, then𝑀 ⇑ if and only if J𝑀K𝑝 ⇑ and𝑀 ⇓ 𝑉 if and only if
J𝑀K𝑝 ⇓ 𝑉 ′ and𝑀 ⇓ ℧ if and only if J𝑀K𝑝 ⇓ ℧.

The proof of the theorem follows by a forward simulation argument given in the appendix,

adapting a similar CBPV simulation given by Levy [2003], and proves that the 𝑉 and 𝑉 ′ in the

adequacy proof are in the simulation relation [New et al. 2020].

6 GRADUALITY AND PARAMETRICITY
In this section we prove the central metatheoretic results of the paper: that our surface language

satisfies both graduality and parametricity theorems. Each of these is considered a technical

challenge to prove: parametricity is typically proven by a logical relation and graduality is proven

either by a simulation argument [Siek et al. 2015] or a logical relation [New and Ahmed 2018; New

et al. 2019], so in the worst case this would require two highly technical developments. However,

we show that this is not necessary: the logical relations proof for graduality is general enough that

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:23

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ (𝑀𝑙 :: 𝐵𝑙) ⊑ (𝑀𝑟 :: 𝐵𝑟) : 𝐵⊑; Γ⊑′
Γ⊑, 𝑋 ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑; Γ⊑𝑜

Γ⊑ ⊢ Λ𝜈𝑋 .𝑀𝑙 ⊑ Λ𝜈𝑋 .𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑; Γ⊑
𝑀

Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝑀𝑙 {𝑋 � 𝐵𝑙 } ⊑ 𝑀𝑟 {𝑋 � 𝐵𝑟 } : un∀𝜈 (𝐴⊑); Γ⊑𝑀 , 𝑋 � 𝐵⊑

Fig. 14. PolyG𝜈 Term Precision (fragment)

the parametricity theorem is a corollary of the reflexivity of the logical relation. This substantiates

the analogy between parametricity and graduality originally proposed in [New and Ahmed 2018].

The key to sharing this work is that we give a novel relational interpretation of type precision

derivations. That is, our logical relation is indexed not by types, but by type precision derivations.

For any derivation 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 , we define a relation VJ𝐴⊑K between values of 𝐴𝑙 and 𝐴𝑟 . By

taking the reflexivity case 𝐴 : 𝐴 ⊑ 𝐴, we recover the parametricity logical relation. Previous logical

relations proofs of graduality defined a logical relation indexed by types, and used casts to define a

second relation based on type precision judgments, but the direct relational approach simplifies the

proofs and immediately applies to parametricity as well.

6.1 Term Precision
To state the graduality theorem, we begin by formalizing the syntactic term precision relation. The

intuition behind a precision relation𝑀 ⊑ 𝑀 ′ is that𝑀 ′ is a (somewhat) dynamically typed term

and we have changed some of its type annotations to be more precise, producing𝑀 . This is one of

the main intended use cases for a gradual language: hardening the types of programs over time.

Restated in a less directed way, a term𝑀 is (syntactically) more precise than𝑀 ′ when the types

and annotations in𝑀 are more precise than𝑀 ′ and otherwise the terms have the same structure.

We formalize this as a judgment Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′, where Γ⊑, Γ⊑′ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 is a type

precision derivation and Γ⊑ : Γ𝑙 ⊑ Γ𝑟 and Γ⊑′ : Γ′
𝑙
⊑ Γ′𝑟 are precision contexts and Γ𝑙 ⊢ 𝑀𝑙 : 𝐴𝑙 ; Γ

′
𝑙

and Γ𝑟 ⊢ 𝑀𝑟 : 𝐴𝑟 ; Γ
′
𝑟 . A precision context Γ⊑ is like a precision derivation between two contexts:

everywhere a type would be in an ordinary context, a precision derivation is used instead.

We show term precision rules for annotations and ∀𝜈 introduction and elimination for the

surface language in Figure 14, with full rules in the appendix [New et al. 2020]. The rules are

all completely structural: just check that the two terms have the same term constructor and

all of the corresponding arguments of the rule are ⊑. As exhibited by the ∀𝜈 elimination rule,

the metafunctions dom, cod, un∀𝜈 , un∃𝜈 are extended in the obvious way to work on precision

derivations. We define a similar notion of term precision for PolyC
𝜈
. Again we show the rules for

casts and ∀𝜈 in Figure 15, the full definition is in the appendix [New et al. 2020]. The main difference

is that, following [New et al. 2019], we include four rules involving casts: two for downcasts and

two for upcasts. We can summarize all four by saying that if𝑀𝑙 ⊑ 𝑀𝑟 , then adding a cast to either

𝑀𝑙 or𝑀𝑟 still maintains that the left side is more precise than the right, as long as the type on the

left is more precise than the right. Semantically, these are the most important term precision rules,

as they bridge the worlds of type and term precision.

Then the key lemma is that the elaboration process from PolyG
𝜈
to PolyC

𝜈
preserves term

precision. The proof, presented in the appendix, follows by induction on term precision proofs

[New et al. 2020].

Lemma 6.1. If Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′ in the surface language, then Γ⊑ ⊢ 𝑀+

𝑙
⊑ 𝑀+𝑟 : 𝐴⊑; Γ⊑′

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:24 Max S. New, Dustin Jamner, and Amal Ahmed

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶

Γ⊑ ⊢ ⟨𝐴𝐵⊑ ⟩

↢

𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶

Γ⊑ ⊢ ⟨𝐴𝐵⊑ ⟩ ↞ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐵⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑ ⟩

↢

𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑ ⟩ ↞ 𝑀𝑟 : 𝐴𝐵⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑ ; Γ⊑′ Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝑀𝑙 {𝑋 � 𝐵𝑙 } ⊑ 𝑀𝑟 {𝑋 � 𝐵𝑟 } : 𝐴⊑ ; Γ⊑′, 𝑋 � 𝐵⊑
Γ⊑, 𝑋 ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑ ; ·

Γ⊑ ⊢ Λ𝜈𝑋 .𝑀𝑙 ⊑ Λ𝜈𝑋 .𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑ ; ·

Fig. 15. PolyC𝜈 Term Precision (fragment)

6.2 Graduality Theorem
The graduality theorem states that if a term𝑀 is syntactically more precise than a term𝑀 ′, then𝑀

semantically refines the behavior of𝑀 ′: it may error, but otherwise it has the same behavior as𝑀 ′:
if it diverges so does𝑀 ′ and if it terminates at 𝑉 ,𝑀 ′ terminates with some 𝑉 ′ as well. If we think
of𝑀 as the result of hardening the types of𝑀 ′, then this shows that hardening types semantically

only increases the burden of runtime type checking and doesn’t otherwise interfere with program

behavior. We call this operational graduality, as we will consider some related notions later.

Theorem 6.2 (Operational Graduality). If · ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑; ·, then either 𝑀+
𝑙
⇓ ℧ or both

terms diverge𝑀+
𝑙
, 𝑀+𝑟 ⇑ or both terms terminate successfully𝑀+

𝑙
⇓ 𝑉𝑙 and𝑀+𝑟 ⇓ 𝑉𝑟 .

6.3 Logical Relation
The basic idea of the logical relations proof to proving graduality is to interpret a term precision

judgment Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑𝑜 in a relational manner. That is, to every type precision derivation

𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 , we associate a relationVJ𝐴⊑K between closed values of types 𝐴𝑙 and 𝐴𝑟 . Then we

define a semantic version of the term precision judgment Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑𝑜 which says that

given inputs satisfying the relations in Γ⊑, Γ⊑𝑜 , then either𝑀𝑙 will error, both sides diverge, or𝑀𝑙

and𝑀𝑟 will terminate with values in the relationVJ𝐴⊑K. We define this relation over CBPVOSum

translations of PolyC
𝜈
terms, rather than PolyC

𝜈
terms because the operational semantics is simpler.

More precisely, we use the now well established technique of Kripke, step-indexed logical

relations [Ahmed et al. 2009]. Because the language includes allocation of fresh type names at

runtime, the set of values that should be in the relation grows as the store increases. This is modeled

Kripke structure, which indexes the relation by a “possible world” that attaches invariants to the

allocated cases. Because our language includes diverging programs (due to the open sum type), we

need to use a step-indexed relation that decrements when pattern matching on OSum, and “times

out” when the step index hits 0. Finally, following [New and Ahmed 2018; New et al. 2019], to

model graduality we need to associate two relations to each type precision derivation: one which

times out when the left hand hand term runs out of steps, but allows the right hand side to take

any number of steps and vice-versa one that times out when the right runs out of steps.

Figure 16 includes preliminary definitions we need for the logical relation. First, Atom𝑛 [𝐴𝑙 , 𝐴𝑟]
and CAtom𝑛 [𝐴𝑙 , 𝐴𝑟] define the world-term-term triples that the relations are defined over. A

relation 𝑅 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟] at stage 𝑛 consists of triples of a world, and a value of type 𝐴𝑙 and

a value of type 𝐴𝑟 (ignore the 𝑛 for now) such that it is monotone in the world. The world

𝑤 ∈ World𝑛 contains the number of steps remaining𝑤.𝑗 , the current state of each side𝑤.Σ𝑙 ,𝑤.Σ𝑟 ,
and finally an interpretation of how the cases in the two stores are related𝑤.𝜂. An interpretation

𝜂 ∈ Interp𝑛 [Σ𝑙 , Σ𝑟] consists of a cardinality 𝜂.𝑠𝑖𝑧𝑒 which says how many cases are related and a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:25

Atom𝑛 [𝐴𝑙 , 𝐴𝑟] = {(𝑤,𝑉𝑙 ,𝑉𝑟) | 𝑤 ∈ World𝑛 ∧ (𝑤.Σ𝑙 | · ⊢ 𝑉𝑙 : 𝐴𝑙) ∧ (𝑤.Σ𝑟 | · ⊢ 𝑉𝑟 : 𝐴𝑟)}
CAtom𝑛 [𝐴𝑙 , 𝐴𝑟] = {(𝑤,𝑉𝑙 ,𝑉𝑟) | 𝑤 ∈ World𝑛 ∧𝑤.Σ𝑙 | · ⊢ 𝑀𝑙 : 𝐹𝐴𝑙 ∧𝑤.Σ𝑟 | · ⊢ 𝑀𝑟 : 𝐹𝐴𝑟 }

Rel𝑛 [𝐴𝑙 , 𝐴𝑟] = {𝑅 ⊆ Atom𝑛 [𝐴𝑙 , 𝐴𝑟] | ∀(𝑤,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅,𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅}
World𝑛 = {(𝑗, Σ𝑙 , Σ𝑟 , 𝜂) | 𝑗 < 𝑛 ∧ 𝜂 ∈ Interp𝑗 [Σ𝑙 , Σ𝑟]}

Interp𝑛 [Σ𝑙 , Σ𝑟] = {(𝑠𝑖𝑧𝑒, 𝑓 , 𝜌) | 𝑠𝑖𝑧𝑒 ∈ N ∧ 𝑓 ∈ [𝑠𝑖𝑧𝑒] → ([Σ𝑙 .𝑠𝑖𝑧𝑒] × [Σ2 .𝑠𝑖𝑧𝑒])
∧𝜌 : (𝑖 < 𝑠𝑖𝑧𝑒) → 𝑅𝑒𝑙𝑛 [Σ𝑙 (𝑓 (𝑖)); Σ𝑟 (𝑓 (𝑖))]
∧∀𝑖 < 𝑗 < 𝑠𝑖𝑧𝑒.𝑓 (𝑖)𝑙 ≠ 𝑓 (𝑗)𝑙 ∧ 𝑓 (𝑖)𝑟 ≠ 𝑓 (𝑗)𝑟 }

𝑤 ′ ⊐ 𝑤. = (𝑤 ′ ⊒ 𝑤) ∧𝑤 ′. 𝑗 > 𝑤.𝑗

𝑤 ′ ⊒ 𝑤 = 𝑤 ′. 𝑗 ≤ 𝑤.𝑗 ∧𝑤 ′.Σ𝑙 ⊒ 𝑤.Σ𝑙 ∧𝑤 ′.Σ𝑟 ⊒ 𝑤.Σ𝑟 ∧𝑤 ′.𝜂 ⊒ ⌊𝑤.𝜂⌋𝑤′. 𝑗
Σ′ ⊒ Σ = Σ′.𝑠𝑖𝑧𝑒 ≥ Σ.𝑠𝑖𝑧𝑒 ∧ ∀𝑖 < Σ.𝑠𝑖𝑧𝑒. Σ′(𝑖) = Σ(𝑖)
𝜂 ′ ⊒ 𝜂 = 𝜂 ′.𝑠𝑖𝑧𝑒 ≥ 𝜂 ∧ ∀𝑖 < 𝜂.𝑠𝑖𝑧𝑒. 𝜂 ′.𝑓 (𝑖) = 𝜂.𝑓 (𝑖) ∧ 𝜂 ′.𝜌 (𝑖) = 𝜂.𝜌 (𝑖)

⊲𝑅 = {(𝑤,𝑉𝑙 ,𝑉𝑟) | ∀𝑤 ′ ⊐ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅}
Rel𝜔 [𝐴𝑙 , 𝐴𝑟] = {𝑅 ⊆ ⋃

𝑛∈N Atom𝑛 [𝐴𝑙 , 𝐴𝑟] | ∀𝑛 ∈ N. ⌊𝑅⌋𝑛 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟]}
⌊𝜂⌋𝑛 = (𝜂.𝑠𝑖𝑧𝑒, 𝜂.𝑓 , 𝜆𝑖 .⌊𝜌 (𝑖)⌋𝑛)
⌊𝑅⌋𝑛 = {(𝑤,𝑉𝑙 ,𝑉𝑟) | 𝑤.𝑗 < 𝑛 ∧ (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅}

𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) = ∃𝑖 < 𝜂.𝑠𝑖𝑧𝑒. 𝜂.𝑓 (𝑖) = (𝜎𝑙 , 𝜎𝑟) ∧ 𝜂.𝜌 (𝑖) = 𝑅}

Fig. 16. Logical Relation Auxiliary Definitions

function 𝜂.𝑓 which says which cases are related, i.e., for each 𝑖 ∈ 𝜂.𝑠𝑖𝑧𝑒 it gives a pair of cases, one
valid in the left hand store and one in the right. Finally, 𝜂.𝜌 gives a relation between the types

of these two cases. The final side-condition says this association is a partial bijection: a case on
one side is associated to at most one case on the other side. Staging the relations and worlds is

necessary due to a circularity here: a relation is (contravariantly) dependent on the current world,

which contains relations. A relation in Rel𝑛 is indexed by a World𝑛 , but a World𝑛 contains relations

in Rel𝑤.𝑗 , and𝑤.𝑗 < 𝑛. In particular, World0 = ∅, so the definition is well-founded.

The next portion of the figure contains the definition of world extension𝑤 ′ ⊒ 𝑤2
, representing

the idea that 𝑤 ′ is a possible “future” of 𝑤 : the step index 𝑗 is smaller and the states of the two

sides have increased the number of allocated cases, but the old invariants are still there. We define

strict extension𝑤 ′ ⊐ 𝑤 to mean extension where the step has gotten strictly smaller. This allows

us to define the later relation ⊲𝑅 which is used to break circular definitions in the logical relation.

Next, we define our notion of non-indexed relation Rel𝜔 , which is what we quantify over in the

interpretation of ∀𝜈 , ∃𝜈 . Then we define the restriction of interpretations and relations to a stage

𝑛. An infinitary relation can be “clamped” to any stage 𝑛 using ⌊𝑅⌋𝑛 . Finally, we define when two

cases are related in an interpretation as 𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅).
The top of Figure 17 contains the definition of the logical relation on values and computations,

except for the standard cases for booleans, products and functions, which are included in the

appendix [New et al. 2020]. First, we write ∼ as a metavariable that ranges over two symbols: ≺
which indicates that we are counting steps on the left side, and ≻ which indicates we are counting

steps on the right side. We then define the value relationV∼𝑛 J𝐴⊑K𝛾𝛿 ∈ Rel𝑛 [𝛿𝑙 (𝐴𝑙), 𝛿𝑟 (𝐴𝑟)]. Here 𝛾
maps the free term variables to pairs of values and 𝛿 maps free type variables to triples of two types

and a relation between them. First, the definition for type variables looks up the relation in the

relational substitution 𝛿 . Next, two values in ? are related when they are both injections into OSum,

and the “payloads” of the injections are later related in the relation 𝑅 which the world associates

to the corresponding cases. The ⊲ is used because we count pattern matching on OSum as a step.

This also crucially lines up with the fact that pattern matching on the open sum type is the only

reduction that consumes a step in our operational semantics. Note that this is a generalization

of the logical relation definition for a recursive sum type, where each injection corresponds to a

2
there is a clash of notation between precision ⊑ and world extension ⊒ but it should be clear which is meant at any time.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:26 Max S. New, Dustin Jamner, and Amal Ahmed

case of the sum. Here since the sum type is open, we must look in the world to see what cases are

allocated. Next, the tag𝐺 (𝐴⊑) case relates values on the left at some type 𝐴𝑙 and values on the right

of type ?. The definition states that the dynamically typed value must be an injection using the tag

given by 𝐺 , and that the payload of that injection must be related to 𝑉𝑙 with the relation given by

𝐴⊑. This case splits into two because we are pattern matching on a value of the open sum type, and

so in the ≻ case we must decrement because we are consuming a step on the right, whereas in the

≺ case we do not decrement because we are only counting steps on the left. In the ∀𝜈𝑋 .𝐵⊑ case,
two values are related when in any future world, and any relation 𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟], and any pair

of cases 𝜎𝑙 , 𝜎𝑟 that have ⌊𝑅⌋𝑤′. 𝑗 as their associated relation, if the values are instantiated with 𝐴𝑙 , 𝜎𝑙
and 𝐴𝑟 , 𝜎𝑟 respectively, then they behave as related computations. The intuition is that values of

type ∀𝜈𝑋 .𝐵 are parameterized by a type𝐴 and a tag for that type 𝜎 , but the relational interpretation

of the two must be the same. This is the key to proving the seal𝑋 and unseal𝑋 cases of graduality.

The fresh existential is dual in the choice of relation, but the same in its treatment of the case 𝜎 .

Next, we define the relation on expressions. The two expression relations, E≺J𝐴⊑K and E≻J𝐴⊑K
capture the semantic idea behind graduality: either the left expression raises an error, or the

two programs have the same behavior: diverge or return related values inV∼J𝐴⊑K. However, to
account for step-indexing, each is an approximation to this notion where E≺J𝐴⊑K times out if the

left side consumes all of the available steps𝑤.𝑗 (where (Σ, 𝑀) ↦→𝑗
is shorthand for saying it steps

to something in 𝑗 steps), and E≻J𝐴⊑K times out if the right side consumes all of the available steps.

relation is that when We define the infinitary version of the relationsV∼J𝐴⊑K and E∼J𝐴⊑K a the
union of all of the level 𝑛 approximations.

Next, we give the relational interpretation of environments. The interpretation of the empty

environment are empty substitutions with a valid world𝑤 . Extending with a value variable 𝑥 : 𝐴⊑

means extending 𝛾 with a pair of values related byV∼J𝐴⊑K. For an abstract type variable 𝑋 , first 𝛿

is extended with a pair of types and a relation between them. Then, 𝛾 must also be extended with a

pair of cases encoding how these types are injected into the dynamic type. Crucially, just as with

the ∀𝜈 , ∃𝜈 value relations, these cases must be associated by 𝑤 to the 𝑤.𝑗 approximation of the

same relation with which we extend 𝛿 . The interpretation of the known type variables 𝑋 � 𝐴⊑ has
the same basic structure, the key difference is that rather than using an arbitrary, 𝛿 is extended

with the value relationV∼J𝐴⊑K.
With all of that preparation finished, we finally define the semantic interpretation of the graduality

judgment Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ in the bottom of Figure 17. First, it says that both𝑀𝑙 ⊑≺ 𝑀𝑟 and

𝑀𝑙 ⊑≻ 𝑀𝑟 hold, where we define ⊑∼ to mean that for any valid instantiation of the environments

(including the preamble Γ𝑝), we get related computations.We can then define the “logical” Graduality

theorem, that syntactic term precision implies semantic term precision, briefly, ⊢ implies ⊨.

Theorem 6.3 (Logical Graduality). If Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′, then Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′

The proof is by induction on the term precision derivation. Each case is proven as a separate

lemma in the appendix [New et al. 2020]. The cases of ∀𝜈 , ∃𝜈 , sealing and unsealing follow because

the treatment of type variables between the value and environment relations is the same. In the

hide case, the world is extended withV∼J𝐴⊑K as the relation between new cases. The cast cases

are the most involved, following by two lemmas proven by induction over precision derivations:

one for when the cast is on the left, and the other when the cast is on the right.

Finally, we prove the operational graduality theorem as a corollary of the logical graduality

Theorem 6.3 and the adequacy Theorem 5.2. By constructing a suitable starting world𝑤𝑝𝑟𝑒 that

allocates the globally known tags, we ensure the operational graduality property holds for the code

translated to CBPVOSum, and then the simulation theorem implies the analogous property holds

for the PolyC
𝜈
operational semantics.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:27

V∼𝑛 J𝑋 K𝛾𝛿 = ⌊𝛿 (𝑋)⌋𝑛
V∼𝑛 J?K𝛾𝛿 = {(𝑤, inj𝜎𝑙 𝑉𝑙 , inj𝜎𝑟 𝑉𝑟) ∈ Atom𝑛 [?]𝛿 | 𝑤.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) ∧ (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⊲𝑅}

V≺𝑛 Jtag𝐺 (𝐴⊑)K𝛾𝛿 = {(𝑤,𝑉𝑙 , inj𝛾𝑟 (case(𝐺)) 𝑉𝑟) ∈ Atom𝑛 [tag𝐺 (𝐴⊑)]𝛿 | (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿}
V≻𝑛 Jtag𝐺 (𝐴⊑)K𝛾𝛿 = {(𝑤,𝑉𝑙 , inj𝛾𝑟 (case(𝐺)) 𝑉𝑟) ∈ Atom𝑛 [tag𝐺 (𝐴⊑)]𝛿 | (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ (⊲V≻J𝐴⊑K𝛾𝛿)}
V∼𝑛 J∀𝜈𝑋 .𝐵⊑K𝛾𝛿 = {(𝑤,𝑉𝑙 ,𝑉𝑟) ∈ Atom𝑛 [∀𝜈𝑋 .𝐴⊑]𝛿 |

∀𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] .∀𝑤 ′ ⊒ 𝑤.∀𝜎𝑙 , 𝜎𝑟 .𝑤 ′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) =⇒
(𝑤 ′, force 𝑉𝑙 [𝐴𝑙] 𝜎𝑙 , force 𝑉𝑟 [𝐴𝑟] 𝜎𝑟) ∈ E∼𝑛 J𝐵⊑K𝛾 ′𝛿 ′

(where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟), and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅))}
V∼𝑛 J∃𝜈𝑋 .𝐵⊑K𝛾𝛿 = {(𝑤, pack (𝐴𝑙 ,𝑉𝑙), pack (𝐴𝑟 ,𝑉𝑟)) ∈ Atom𝑛 [∃𝜈𝑋 .𝐵⊑]𝛿 |

∃𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] .∀𝑤 ′ ⊒ 𝑤.∀𝜎𝑙 , 𝜎𝑟 .𝑤 ′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) =⇒
(force 𝑉𝑙 𝜎𝑙 , force 𝑉𝑟 𝜎𝑟) ∈ E∼𝑛 J𝐵⊑K𝛾 ′𝛿 ′

(where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟), and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅))}
E≺𝑛 J𝐴⊑K𝛾𝛿 = {(𝑤,𝑀𝑙 , 𝑀𝑟) ∈ CAtom𝑛 [𝐴⊑]𝛿 | (𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤.𝑗 ∨((𝑤.Σ𝑙 , 𝑀𝑙) ↦→<𝑤.𝑗 (Σ′

𝑙
,℧))

∨(∃𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿.
(𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤′. 𝑗−𝑤.𝑗 (𝑤 ′.Σ𝑙 , ret 𝑉𝑙) ∧ (𝑤.Σ𝑟 , 𝑀𝑟) ↦→∗ (𝑤 ′.Σ𝑟 , ret 𝑉𝑟))}

E≻𝑛 J𝐴⊑K𝛾𝛿 = {(𝑤,𝑀𝑙 , 𝑀𝑟) ∈ CAtom𝑛 [𝐴⊑]𝛿 | (𝑤.Σ𝑟 , 𝑀𝑟) ↦→𝑤.𝑗 ∨((𝑤.Σ𝑙 , 𝑀𝑙) ↦→∗ (Σ′𝑙 ,℧))
∨∃𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿.
(𝑤.Σ𝑙 , 𝑀𝑙) ↦→∗ (𝑤 ′.Σ𝑙 , ret 𝑉𝑙) ∧ (𝑤.Σ𝑟 , 𝑀𝑟) ↦→𝑤′. 𝑗−𝑤.𝑗 (𝑤 ′.Σ𝑟 , ret 𝑉𝑟)}

V∼J𝐴⊑K𝛾𝛿 =
⋃
𝑛∈N
V∼𝑛 J𝐴⊑K𝛾𝛿 E∼J𝐴⊑K𝛾𝛿 =

⋃
𝑛∈N
E∼𝑛 J𝐴⊑K𝛾𝛿

G∼J·K = {(𝑤, ∅, ∅) | ∃𝑛.𝑤 ∈ World𝑛}
G∼JΓ⊑, 𝑥 : 𝐴⊑K = {(𝑤, (𝛾, 𝑥 ↦→ (𝑉𝑙 ,𝑉𝑟)), 𝛿) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K ∧ (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴⊑K𝛾𝛿}
G∼JΓ⊑, 𝑋 K = {(𝑤, (𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)), 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅)) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K

∧𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] ∧ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤.𝑗) ∈ 𝑤}
G∼JΓ⊑, 𝑋 � 𝐴⊑K = {(𝑤, (𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)), 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 ,V∼J𝐴⊑K𝛾𝛿)) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K

𝑤 ⊨ (𝜎𝑙 , 𝜎𝑟 ,V∼𝑤.𝑗
J𝐴⊑K𝛾𝛿)}

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ = Γ⊑ ⊨ 𝑀𝑙 ⊑≺ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ ∧ Γ⊑ ⊨ 𝑀𝑙 ⊑≻ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′
Γ⊑ ⊨ 𝑀𝑙 ⊑∼ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ = ∀(𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑, Γ⊑′K.

(𝑤, J𝑀𝑙 K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑙] [𝛿𝑙]) ∈ E∼J𝐴⊑K𝛾𝛿

Fig. 17. Graduality/Parametricity Logical Relation (fragment)

6.4 Parametricity and Free Theorems
Our relational approach to proving the graduality theorem is not only elegant, it also makes the

theorem more general, and in particular it subsumes the parametricity theorem that we want for

the language, because we already assign arbitrary relations to abstract type variables. Then the

parametricity theorem is just the reflexivity case of the graduality theorem.

Theorem 6.4 (Parametricity). If Γ ⊢ 𝑀 : 𝐴; Γ′, then Γ ⊨ 𝑀+ ⊑ 𝑀+ : 𝐴; Γ′.

To demonstrate that this really is a parametricity theorem, we show that from this theorem

we can prove “free theorems” that are true in polymorphic languages. These free theorems are

naturally stated in terms of contextual equivalence, the gold standard for operational equivalence of

programs, which we define as both programs diverging, erroring, or terminating successfully when

plugged into an arbitrary context. The appendix contains a formal definition [New et al. 2020].

To use our logical relation to prove contextual equivalence, we need the following lemma, which

says that semantic term precision both ways is sound for PolyG
𝜈
contextual equivalence.

Lemma 6.5. If Γ ⊨ 𝑀𝑙 ⊑ 𝑀2 ∈ 𝐴; Γ𝑀 and Γ ⊨ 𝑀2 ⊑ 𝑀1 ∈ 𝐴; Γ𝑀 , then Γ ⊨ 𝑀𝑙 ≈ctx 𝑀2 ∈ 𝐴; Γ𝑀 .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:28 Max S. New, Dustin Jamner, and Amal Ahmed

𝑀 : ∀𝜈𝑋 .𝑋 → 𝑋 𝑉𝐴 : 𝐴 𝑉𝐵 : 𝐵

𝜆_ : ?.unseal𝑋 (𝑀 {𝑋 � 𝐴}(seal𝑋𝑉𝐴)) ≈ctx 𝜆_ : ?.let 𝑦 = 𝑀 {𝑋 � 𝐵 }𝑉𝐵 ;𝑉𝐴

𝑀 : ∀𝜈𝑋 .∀𝜈𝑌 .(𝑋 ×𝑌) → (𝑌 ×𝑋) 𝑉𝐴 : 𝐴 𝑉𝐵 : 𝐵

𝜆_ : ?.let (𝑦, 𝑥) = (𝑀 {𝑋 � 𝐴}{𝑌 � 𝐵 } (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)) ; (unseal𝑋𝑥, unseal𝑌 𝑦)
≈ctx 𝜆_ : ?.let (𝑦, 𝑥) = (𝑀 {𝑋 � 𝐵 }{𝑌 � 𝐴} (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)) ; (unseal𝑌 𝑦, unseal𝑋𝑥)

NOT = 𝜆𝑏 : B.if 𝑏 then false else true
WRAPNOT = 𝜆𝑥 : 𝑋 .seal𝑋 (NOT(unseal𝑋𝑥))

pack𝜈 (𝑋 � B, (seal𝑋 true, (WRAPNOT, 𝜆𝑥 : 𝑋 .unseal𝑋𝑥)))
≈ctx pack𝜈 (𝑋 � B, (seal𝑋 false, (WRAPNOT, 𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥))))

Fig. 18. Free Theorems without ?

We now substantiate that this is a parametricity theorem by proving a few contextual equivalence

results. First we present adaptations of some standard free theorems from typed languages in

Figure 18. The first equivalence shows that the behavior of any term with the “identity function

type” ∀𝜈𝑋 .𝑋 → 𝑋 must be independent of the input it is given. We place a 𝜆 on each side to

delimit the scope of the 𝑋 outward. Without the 𝑋 (or a similar thunking feature like ∀𝜈 or ∃𝜈),
the two programs would not have the same (effect) typing. In a more realistic language, this

corresponds to wrapping each side in a module boundary. The next result shows that a function

∀𝜈𝑋 .∀𝜈𝑌 .(𝑋 × 𝑌) → (𝑌 × 𝑋), if it terminates, must flip the values of the pair, and furthermore

whether it terminates, diverges or errors does not depend on the input values. Finally, we give an

example using existential types. That shows that an abstract “flipper” which uses true for on and

false for off in its internal state is equivalent to one using false and true, respectively as long as

they return the same value in their “readout” function.

Next, to give a flavor of what kind of relational reasoning is possible in the presence of the

dynamic type, we consider what free theorems are derivable for functions of type ∀𝑋 .? → 𝑋 .

A good intuition for this type is that the only possible outputs of the function are sealed values

that are contained within the dynamically typed input. It is difficult to summarize this in a single

statement, so instead we give the following three examples:

Theorem 6.6 (∀𝜈𝑋 .?→ 𝑋 Free Theorems). Let · ⊢ 𝑀 : ∀𝜈𝑋 .?→ 𝑋

(1) For any · ⊢ 𝑉 : ?, then 𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}𝑉)) true either diverges or errors.
(2) For any · ⊢ 𝑉 : 𝐴 and · ⊢ 𝑉 ′ : 𝐵,

𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴} (seal𝑋𝑉)) ≈ctx 𝜆_ : ?.let 𝑦 = (unseal𝑋 (𝑀{𝑋 � 𝐵} (seal𝑋𝑉 ′)));𝑉
(3) For any · ⊢ 𝑉 : 𝐴, · ⊢ 𝑉 ′ : 𝐵, · ⊢ 𝑉𝑑 : ?,
𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴} (seal𝑋𝑉 ,𝑉𝑑)) ≈ctx 𝜆_ : ?.let 𝑦 = (unseal𝑋 (𝑀{𝑋 � 𝐵} (seal𝑋𝑉 ′,𝑉𝑑)));𝑉

The first example passes in a value 𝑉 that does not use the seal 𝑋 , so we know that the function

cannot possibly return a value of type 𝑋 . The second example mimics the identity function’s free

theorem. It passes in a sealed value 𝑉 and the equivalence shows that 𝑉 ′’s effects do not depend

on what 𝑉 was sealed and the only value that 𝑉 ′ can return is the one that was passed in. The

third example illustrates that there are complicated ways in which sealed values might be passed

as a part of a dynamically typed value, but the principle remains the same: since there is only one

sealed value that’s part of the larger dynamically typed value, it is the only possible return value,

and the effects cannot depend on its actual value. The proof of the first case uses the relational

interpretation that 𝑋 is empty. The latter two use the interpretation that 𝑋 includes a single value.

Compare this reasoning to what is available in GSF, where the polymorphic function determines

which inputs are sealed and which are not, rather than the caller. Because of this, Toro et al. [2019]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:29

only prove “cheap” theorems involving ? where the polymorphic function is known to be a literal

Λ function and not a casted function. As an example, for arbitrary 𝑀 : ∀𝑋 .? → 𝑋 , consider the

application 𝑀 [B] (true, false). The continuation of this call has no way of knowing if neither,

one or both booleans are members of the abstract type 𝑋 . The following examples of possible terms

for𝑀 illustrate these three cases:

(1) 𝑀1 = (Λ𝑋 .𝜆𝑥 : B × B.if or𝑥 then ℧ else Ω) :: ∀𝑋 .?→ 𝑋

(2) 𝑀2 = (Λ𝑋 .𝜆𝑥 : 𝑋 × B.if snd𝑥 then fst𝑥 else Ω) :: ∀𝑋 .?→ 𝑋

(3) 𝑀3 = (Λ𝑋 .𝜆𝑥 : 𝑋 × 𝑋 .snd𝑥) :: ∀𝑋 .?→ 𝑋

If𝑀 = 𝑀1, both booleans are concrete so𝑋 is empty, but from the inputs the function can determine

whether to diverge or error. If𝑀 = 𝑀2, the first boolean is abstract and the second is concrete, so

only the first can inhabit 𝑋 , but the second can be used to determine whether to return a value or

not. Finally if𝑀 = 𝑀3, both booleans are abstract so the function cannot inspect them, but either

can be returned. It is unclear what reasoning the continuation has here: it must anticipate every

possible way in which the function might decide which values to seal, and so has to consider every

dynamically typed value of the instantiating type as possibly abstract and possibly concrete.

7 DISCUSSION AND RELATEDWORK
Dynamically typed PolyG𝜈 and Design Alternatives. Most gradually typed languages are based

on adding types to an existing dynamically typed language, with the static types capturing some

feature already existing in the dynamic language that can be migrated to use static typing. PolyG
𝜈

was designed as a proof-of-concept standalone gradual language, so it might not be clear what

dynamic typing features it supports migration of. In particular, since all sealing is explicit, PolyG
𝜈

does not model migration from programming without seals entirely to programming with them, so

its types are relevant to languages that include some kind of nominal data type generation.

The fresh existential types correspond to a particular mode of use of a module system that

supports creation of nominal types. The package itself corresponds to a module with a fresh type

declaration. Then sealing corresponds to the constructor of the fresh datatype, and unsealing to

pattern matching against it. For example, in Racket structs can be used to make fresh nominal

types and units provide first-class modules. It would be interesting future work to see if our logical

relation can usefully be adapted to Typed Racket’s typed units [Tobin-Hochstadt et al. [n. d.]].

Our fresh polymorphic types are more exotic than the fresh existentials, and don’t clearly corre-

spond to any existing programming features, but they model abstraction over nominal datatypes

where the datatype is guaranteed to be freshly generated. One issue with adding this feature to a

realistic language is that the outward scoping of type variables may be undesirable, so it is useful to

consider alternative designs that achieve the same abstraction principles. One possible design would

be to force an ANF-like [Sabry and Felleisen 1992] restriction on instantiations of polymorphic

functions, where all instantiations have to be of the form let 𝑀{𝑋 � 𝐴} = 𝑓 ;𝑁 , where 𝑋 � 𝐴 is

bound in 𝑁 . This makes the scope of the 𝑋 explicit: it is only bound in 𝑁 . Our translation could

easily be modified to accommodate this feature, we chose instead to consider the outward scoping

since it makes it easier to compare to programming in the style of System F.

Our use of abstract and known type variables was directly inspired by Neis et al. [2009], who

present a language with a fresh type creation mechanism which they show enables parametric

reasoning though the language overall does not satisfy a traditional parametricity theorem. This

suggests an alternative language design, where ∀ and ∃ behave normally and we add a newtype
facility, analogous to that feature of Haskell, where newtype allocates a new case of the open sum

type for each type it creates. Such a language would not have known type variables or PolyG
𝜈
’s

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:30 Max S. New, Dustin Jamner, and Amal Ahmed

inside-out scoping of type instantiation, but it would also not be parametric by default. Instead,

programmers could manually create fresh types and know that they are abstract to other modules.

Since sealing is explicit in PolyG
𝜈
, it does not provide a drop-in replacement for System F,

and so the additional syntactic overhead of sealing and unsealing can be quite heavy, especially

when using higher-order combinators. For instance a higher-order function composition combi-

nator has type ∀𝜈𝑋 .∀𝜈𝑌 .∀𝜈𝑍 .(𝑌 → 𝑍) → (𝑋 → 𝑌) → 𝑋 → 𝑍 and the System F composition

compose[I] [B] [B] not (> 0) would in PolyG
𝜈
be written

𝜆𝑛 : I. unseal𝑍 (compose{𝑋 � I}{𝑌 � B}{𝑍 � B}(𝜆𝑦 : 𝑌 .seal𝑍 (not (unseal𝑌𝑦)))
(𝜆𝑥 : 𝑋 .seal𝑌 (> 0 (unseal𝑋𝑥)))
seal𝑋𝑛)

This syntactic overhead can be mitigated via generic wrapping functions using dynamic typing:

wrap seal𝑋 unseal𝑍 (compose{𝑋 � I}{𝑌 � B}{𝑍 � B}(wrap unseal𝑌 seal𝑍 not)
(wrap unseal𝑋 seal𝑌 (> 0))

But the syntactic overhead cannot be completely removed or done entirely with static typing.

Tag Checking. Siek et al. [2015] claim that graduality demands that tag-checking functions like

our is(B)? form must error when applied to sealed values, and used this as a criticism of the

design of Typed Racket. However, in our language, is(B)? will simply return false, which
matches Typed Racket’s behavior. This is desirable if we are adding types to an existing dynamic

language, because typically a runtime tag check should be a safe operation in a dynamically typed

language. Explicit sealing avoids this graduality issue, an advantage over previous work.

Logical Relations. Our use of explicit sealing eliminates much of the complexity of prior logical

relations [Ahmed et al. 2017; Toro et al. 2019]. To accommodate dynamic conversion and evidence

insertion, those relations adopted complex value relations for universal types that in turn restricted

the ways in which they could treat type variables. Additionally, we are the first to give a logical

relation for fresh existential types, and it is not clear how to adapt the non-standard relation for

universals to existentials [Ahmed et al. 2017; Toro et al. 2019].

Next, while we argue that our logical relation more fully captures parametricity than previous

work on gradual polymorphism, this is not a fully formal claim. To formalize it, in future work we

could show that PolyG
𝜈
is a model of an effectful variant of an axiomatic parametricity formulation

such as Dunphy [2002]; Ma and Reynolds [1991]; Plotkin and Abadi [1993].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their in-depth comments. We also thank Matthias Felleisen

for explaining the importance that tag checks be total operations. This material is based on research

supported by the National Science Foundation under grants CCF-1910522, CCF-1816837, and CCF-

1453796. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES
Amal Ahmed, Derek Dreyer, andAndreas Rossberg. 2009. State-Dependent Representation Independence. InACM Symposium

on Principles of Programming Languages (POPL), Savannah, Georgia.
Amal Ahmed, Robert Bruce Findler, Jeremy Siek, and Philip Wadler. 2011. Blame for All. In ACM Symposium on Principles of

Programming Languages (POPL), Austin, Texas. 201–214.
Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity, With and

Without Types. In International Conference on Functional Programming (ICFP), Oxford, United Kingdom.

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. 2014. A Theory of Gradual Effect Systems. In Proceedings of the
19th ACM SIGPLAN International Conference on Functional Programming (ICFP ’14). 283–295.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:31

John Boyland. 2014. The Problem of Structural Type Tests in a Gradually-Typed Language. In 21st Workshop on Foundations
of Object-Oriented Languages.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. Proc. ACM Program. Lang.
1, ICFP, Article 41 (Aug. 2017), 28 pages. https://doi.org/10.1145/3110285

Tim Disney and Cormac Flanagan. 2011. Gradual Information Flow Typing. InWorkshop on Script-to-Program Evolution
(STOP).

Brian Patrick Dunphy. 2002. Parametricity As a Notion of Uniformity in Reflexive Graphs. Ph.D. Dissertation. Champaign, IL,

USA. Advisor(s) Reddy, Uday.

Matthias Felleisen. 1990. On the expressive power of programming languages. ESOP’90 (1990).
Luminous Fennell and Peter Thiemann. 2013. Gradual Security Typing with References. In CSF. IEEE Computer Society,

224–239.

Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for Gradual Programs (POPL ’15).
Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In ACM Symposium on Principles of

Programming Languages (POPL).
Atsushi Igarashi, Peter Thiemann, Vasco Vasconcelos, and Philip Wadler. 2017b. Gradual Session Types. In International

Conference on Functional Programming (ICFP).
Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017a. On Polymorphic Gradual Typing. In International Conference on

Functional Programming (ICFP), Oxford, United Kingdom.

Lintaro Ina and Atsushi Igarashi. 2011. Gradual typing for generics. In Proceedings of the 2011 ACM international conference
on Object oriented programming systems languages and applications (OOPSLA ’11).

Nico Lehmann and Éric Tanter. 2017. Gradual Refinement Types. In ACM Symposium on Principles of Programming Languages
(POPL).

Paul Blain Levy. 2003. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer.
QingMing Ma and John C. Reynolds. 1991. Types, Abstractions, and Parametric Polymorphism, Part 2. In Mathematical

Foundations of Programming Semantics, 7th International Conference, Pittsburgh, PA, USA.
John C. Mitchell and Gordon D. Plotkin. 1985. Abstract types have existential type. In ACM Symposium on Principles of

Programming Languages (POPL), New Orleans, Louisiana.
Georg Neis, Derek Dreyer, and Andreas Rossberg. 2009. Non-Parametric Parametricity. In International Conference on

Functional Programming (ICFP). 135–148.
Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. In International Conference on Functional

Programming (ICFP), St. Louis, Missouri.
Max S. New, Dustin Jamner, and Amal Ahmed. 2020. Technical Appendix to Graduality and Parametricity: Together Again

for the First Time. http://www.ccs.neu.edu/home/amal/papers/gradparam-tr.pdf

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory (POPL ’19).
Gordon Plotkin and Martín Abadi. 1993. A logic for parametric polymorphism. Typed Lambda Calculi and Applications

(1993), 361–375.

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congress, Paris, France.

Amr Sabry and Matthias Felleisen. 1992. Reasoning about Programs in Continuation-Passing Style. In Conf. on LISP and
functional programming, LFP ’92.

Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In ESOP (Lecture Notes in Computer Science), Vol. 7211.
Springer, 579–599.

Jeremy Siek, Micahel Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual Typing. In 1st
Summit on Advances in Programming Languages.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Scheme and Functional Programming
Workshop (Scheme). 81–92.

Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In European Conference on Object-Oriented Programming
(ECOOP).

Eijiro Sumii and Benjamin C. Pierce. 2004. A Bisimulation for Dynamic Sealing. In ACM Symposium on Principles of
Programming Languages (POPL), Venice, Italy.

Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual

typing for first-class classes (ACM Symposium on Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA)).

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In Dynamic
Languages Symposium (DLS). 964–974.

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In ACM Symposium
on Principles of Programming Languages (POPL), San Francisco, California.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

https://doi.org/10.1145/3110285
http://www.ccs.neu.edu/home/amal/papers/gradparam-tr.pdf

46:32 Max S. New, Dustin Jamner, and Amal Ahmed

Sam Tobin-Hochstadt, Vincent St-Amour, Eric Dobson, and Asumu Takikawa. [n. d.]. Typed Racket Reference. https:

//docs.racket-lang.org/ts-reference/Typed_Units.html Accessed: 2019-10-30.

Matías Toro, Ronald Garcia, and Éric Tanter. 2018. Type-Driven Gradual Security with References. ACM Transactions on
Programming Languages and Systems 40, 4 (Dec. 2018). http://doi.acm.org/10.1145/3229061

Matías Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricity, Revisited. Proc. ACM Program. Lang. 3, POPL,
Article 17 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290330

Roger Wolff, Ronald Garcia, Éric Tanter, and Jonathan Aldrich. 2011. Gradual Typestate. In Proceedings of the 25th European
Conference on Object-oriented Programming (ECOOP’11).

Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira. 2018. Consistent Subtyping for All. In Programming Languages and
Systems, Amal Ahmed (Ed.). Springer International Publishing, Cham, 3–30.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

https://docs.racket-lang.org/ts-reference/Typed_Units.html
https://docs.racket-lang.org/ts-reference/Typed_Units.html
http://doi.acm.org/10.1145/3229061
https://doi.org/10.1145/3290330

Graduality and Parametricity: Together Again for the First Time 46:33

⊢ ·
⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑥 : 𝐴

⊢ Γ
⊢ Γ, 𝑋

⊢ Γ Γ ⊢ 𝐴
⊢ Γ, 𝑋 � 𝐴

Γ ⊢ ?
𝑋 ∈ Γ
Γ ⊢ 𝑋

Γ ⊢ B
Γ ⊢ 𝐴1 Γ ⊢ 𝐴2

Γ ⊢ 𝐴1 ×𝐴2

Γ ⊢ 𝐴1 Γ ⊢ 𝐴2

Γ ⊢ 𝐴1 → 𝐴2

Γ, 𝑋 ⊢ 𝐴
Γ ⊢ ∃𝜈𝑋 .𝐴

Γ, 𝑋 ⊢ 𝐴
Γ ⊢ ∀𝜈𝑋 .𝐴

Fig. 19. Well-formedness of Environments, Types

Γ⊑ ⊢ ? : ? ⊑ ? Γ⊑ ⊢ B : B ⊑ B
𝑋 ∈ Γ⊑

Γ⊑ ⊢ 𝑋 : 𝑋 ⊑ 𝑋

Γ⊑ ⊢ 𝐴⊑ : 𝐴 ⊑ 𝐺
Γ⊑ ⊢ tag𝐺 (𝐴⊑) : 𝐴 ⊑ ?

Γ⊑, 𝑋 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊢ ∀𝜈𝑋 .𝐴⊑ : ∀𝜈𝑋 .𝐴𝑙 ⊑ ∀𝜈𝑋 .𝐴𝑟

Γ⊑, 𝑋 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊢ ∃𝜈𝑋 .𝐴⊑ : ∃𝜈𝑋 .𝐴𝑙 ⊑ ∃𝜈𝑋 .𝐴𝑟

Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝐴⊑ → 𝐵⊑ : 𝐴𝑙 → 𝐵𝑙 ⊑ 𝐴𝑟 → 𝐵𝑟

Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝐴⊑ × 𝐵⊑ : 𝐴𝑙 × 𝐵𝑙 ⊑ 𝐴𝑟 × 𝐵𝑟

·|Γ′ = ·
(𝑋 � 𝐴⊑, Γ⊑) |Γ′ = 𝑋 � 𝐴⊑, (Γ⊑ |Γ′) (FV(𝐴⊑) ∩ Γ′ = ∅)
(𝑋 � 𝐴⊑, Γ⊑) |Γ′ = Γ⊑ |Γ′,𝑋 (FV(𝐴⊑) ∩ Γ′ ≠ ∅)

Fig. 20. Type Precision in a Precision Context, Restriction of a Precision Context

A SURFACE LANGUAGE
Well-formedness of environments and types is mutually defined:

B TYPE PRECISION
We present the definition of type precision with respect to a precision context in Figure 20.

With this presentation it is easy to see that

(1) There is at most one derivation of Γ⊑ ⊢ 𝐴 ⊑ 𝐴′

(2) ? is the most imprecise type.

(3) Precision is reflexive.

(4) Precision is transitive.

The latter 3 statements are actually ambiguous because we haven’t said what Γ⊑ is in each situation.

We don’t use these operations in their full generality, but ok.

Lemma B.1. If Γ⊑ ⊢ 𝐴⊑ : 𝐴 ⊑ 𝐴′ and Γ⊑𝐵⊑ : 𝐴 ⊑ 𝐴′ then 𝐴⊑ = 𝐵⊑

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:34 Max S. New, Dustin Jamner, and Amal Ahmed

𝐴 ⊓ ? = 𝐴

? ⊓ 𝐵 = 𝐵

𝑋 ⊓ 𝑋 = 𝑋

B ⊓ B = B

(𝐴1 ×𝐴2) ⊓ (𝐵1 × 𝐵2) = (𝐴1 ⊓ 𝐵1) × (𝐴2 ⊓ 𝐵2)
(𝐴𝑖 → 𝐴𝑜) ⊓ (𝐵𝑖 → 𝐵𝑜) = (𝐴𝑖 ⊓ 𝐵𝑖) → (𝐴𝑜 ⊓ 𝐵𝑜)
(∃𝜈𝑋 .𝐴) ⊓ (∃𝜈𝑋 .𝐵) = ∃𝜈𝑋 .(𝐴 ⊓ 𝐵)
(∀𝜈𝑋 .𝐴) ⊓ (∀𝜈𝑋 .𝐵) = ∀𝜈𝑋 .(𝐴 ⊓ 𝐵)

Fig. 21. Gradual Meets

Proof. By induction on derivations. If 𝐴′ ≠ ?, then only one rule applies and the proof follows

by inductive hypotheses. If 𝐴⊑ = ? : ? ⊑ ?, the only other rule that could apply is tag𝐺 (𝐴⊑), which
cannot apply because it is easy to see that ? ⊑ 𝐺 does not hold for any 𝐺 . Finally, we need to show

that if 𝐴⊑ = tag𝐺 (𝐴⊑) and 𝐵⊑ = tag𝐺′ (𝐴⊑) then 𝐺 = 𝐺 ′ because it is easy to see if 𝐴 ⊑ 𝐺 and

𝐴 ⊑ 𝐺 ′ then 𝐺 = 𝐺 ′. □

This is “identity expansion”, the derivations are used in the parametricity theorem.

Lemma B.2. If Γ ⊢ 𝐴 is a well-formed type then Γ ⊢ 𝐴 : 𝐴 ⊑ 𝐴.

Proof. By induction over𝐴. Every type constructor is punned with its type precision constructor.

□

This is “cut elimination”:

Lemma B.3. If Γ⊑ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 and Γ⊑ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 then we can construct a proof
Γ⊑ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 .

Proof. By induction on 𝐵𝐶⊑.

(1) If 𝐵𝐶⊑ = ? : ? ⊑ ?, then the proof is just 𝐴𝐵⊑

(2) If 𝐵𝐶⊑ = tag𝐺 (𝐵𝐺 ⊑), then 𝐵𝐺 ⊑ : 𝐵 ⊑ 𝐺 so by inductive hypothesis, there is a proof

𝐴𝐺 ⊑ : 𝐴 ⊑ 𝐺 and the proof we need is tag𝐺 (𝐴𝐺 ⊑).
(3) If 𝐵𝐶⊑ = 𝐵𝐶⊑

1
× 𝐵𝐶⊑

2
, then it must also be the case that 𝐴𝐵⊑ = 𝐴𝐵⊑

1
× 𝐴𝐵⊑

2
, and then our

result is 𝐴𝐶⊑
1
×𝐴𝐶⊑

2
where 𝐴𝐶⊑

1
, 𝐴𝐶⊑

2
come from the inductive hypothesis.

(4) All other cases are analogous to the product.

□

Next, we (partially) define gradual meets 𝐴 ⊓ 𝐵 in Figure 21. The meet is undefined if the case is

missing.

Lemma B.4. For every Γ ⊢ 𝐴, 𝐵, Γ ⊢ 𝐴 ⊓ 𝐵 and there are precision derivations
(1) Γ ⊢ 𝐴⊓⊑ : 𝐴 ⊓ 𝐵 ⊑ 𝐴

(2) Γ ⊢ 𝐵⊓⊑ : 𝐴 ⊓ 𝐵 ⊑ 𝐵

Such that for any Γ ⊢ 𝐶 with Γ ⊢ 𝐶𝐴⊑ : 𝐶 ⊑ 𝐴 and Γ ⊢ 𝐶𝐵⊑ : 𝐶 ⊑ 𝐵, there exists a derivation

Γ ⊢ 𝐶⊓⊑ : 𝐶 ⊑ 𝐴 ⊓ 𝐵

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:35

𝐸 [℧] ↦→ ℧ where 𝐸 ≠ []
𝐸 [unseal𝜎 (seal𝜎𝑉)] ↦→ 𝐸 [𝑉]
𝐸 [is(𝐺)? (inj𝐺 𝑉)] ↦→ 𝐸 [true]
𝐸 [is(𝐺)? (inj𝐻 𝑉)] ↦→ 𝐸 [false] where 𝐺 ≠ 𝐻

Σ ⊲ 𝐸 [hide 𝑋 � 𝐴;𝑀] ↦→ Σ, 𝜎 : 𝐴 ⊲ 𝐸 [𝑀 [𝜎/𝑋]]

Σ ⊲ 𝐸

[
unpack (𝑋, 𝑥) = pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕], 𝑀);
𝑁

]
↦→ Σ, 𝜎 : 𝐴′ ⊲ 𝐸

[
let 𝑥 = ⟨𝐴⊑ [𝜎/𝑋]⟩↕𝑀 [𝜎/𝑋];
𝑁 [𝜎/𝑋]

]
𝐸 [pack𝜈 (𝑋 � 𝐴,𝑀)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴′, [], 𝑀)]
𝐸 [(Λ𝜈𝑋 .𝑀){𝜎 � 𝐴}] ↦→ 𝐸 [𝑀 [𝜎/𝑋]]
𝐸 [(𝜆(𝑥 : 𝐴).𝑀) 𝑉] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
𝐸 [if true then 𝑀1 else 𝑀2] ↦→ 𝐸 [𝑀1]
𝐸 [if false then 𝑀1 else 𝑀2] ↦→ 𝐸 [𝑀2]
𝐸 [let (𝑥,𝑦) = (𝑉1,𝑉2);𝑀] ↦→ 𝐸 [𝑀 [𝑉1/𝑥] [𝑉2/𝑦]]
𝐸 [let 𝑥 = 𝑉 ;𝑀] ↦→ 𝐸 [𝑀 [𝑉 /𝑥]]
𝐸 [⟨𝐴⊑⟩↕ 𝑉] ↦→ 𝐸 [𝑉] where 𝐴⊑ ∈ {B, 𝜎, ?}
𝐸 [⟨𝐴⊑

1
×𝐴⊑

2
⟩↕ (𝑉1,𝑉2)] ↦→ 𝐸 [(⟨𝐴⊑

1
⟩↕ 𝑉1, ⟨𝐴⊑

2
⟩↕ 𝑉2)]

𝐸 [(⟨𝐴⊑
1
→ 𝐴⊑

2
⟩↕ 𝑉1) 𝑉2] ↦→ 𝐸 [⟨𝐴⊑

2
⟩↕ (𝑉1 ⟨𝐴⊑

1
⟩↕− 𝑉2)]

𝐸 [⟨∃𝜈𝑋 .𝐴⊑⟩↕ pack𝜈 (𝑋 � 𝐴′, [𝐴′⊑ ↕′, ...], 𝑀)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕, 𝐴′⊑ ↕′, ...], 𝑀)]
𝐸 [(⟨∀𝜈𝑋 .𝐴⊑⟩↕ 𝑉){𝜎 � 𝐴}] ↦→ 𝐸 [⟨𝐴⊑ [𝜎/𝑋]⟩↕ (𝑉 {𝜎 � 𝐴})]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉] ↦→ 𝐸 [inj𝐺 ⟨𝐴⊑⟩

↢

𝑉]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐺 𝑉] ↦→ 𝐸 [⟨𝐴⊑⟩ ↞ 𝑉]
𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐻 𝑉] ↦→ ℧ where 𝐻 ≠ 𝐺

Fig. 22. PolyC𝜈 Dynamic Semantics (full)

C CAST CALCULUS
We present the full cast calculus operational semantics in Figure 22.

Some of the semantics in Figure 7 involve terms with 𝜎s in places we would expect 𝑋 s, in

particular instantiations, seals, and unseals. These forms come about when we evaluate a hide and

substitute 𝜎 for 𝑋 . We also have our aforementioned intermediate form for pack casts. Figure 23
gives the static typing rules for runtime terms. Note that the typing of runtime terms depends on a

given Σ. To reason about well-typed terms at runtime, we also thread a store through the rules in

Figure 5.

We prove a few standard operational lemmas.

Lemma C.1 (Uniqe Decomposition). If Σ1; · ⊢ 𝑀1 : 𝐴, then there exist unique 𝐸,𝑀2 such that
𝑀1 = 𝐸 [𝑀2].

Proof. By induction on𝑀1. □

Lemma C.2 (Cast calculus dynamic semantics are deterministic). If Σ ⊲𝑀 ↦→ Σ1 ⊲𝑀1 and
Σ ⊲𝑀 ↦→ Σ2 ⊲𝑀2 then Σ1 = Σ2 and𝑀1 = 𝑀2.

Proof. By unique decomposition and definition of the dynamic semantics. □

Lemma C.3 (Progress). If Σ1; · ⊢ 𝑀1 : 𝐴 then either Σ1 ⊲𝑀1 ↦→ Σ2 ⊲𝑀2, 𝑀1 = ℧, or 𝑀1 = 𝑉 for
some 𝑉 .

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:36 Max S. New, Dustin Jamner, and Amal Ahmed

𝑥 : 𝐴 ∈ Γ
Σ; Γ ⊢ 𝑥 : 𝐴; ·

Σ; Γ ⊢ 𝑀 : 𝐴𝑙 ; Γ𝑀 Σ; Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Σ; Γ ⊢ ⟨𝐴⊑⟩

↢

𝑀 : 𝐴𝑟 ; Γ𝑀

Σ; Γ ⊢ 𝑀 : 𝐴𝑟 ; Γ𝑀 Σ; Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Σ; Γ ⊢ ⟨𝐴⊑⟩ ↞ 𝑀 : 𝐴𝑙 ; Γ𝑀

Σ; Γ ⊢ 𝑀 : 𝐴; Γ𝑀 Σ; Γ, Γ𝑀 , 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵; Γ𝑁

Σ; Γ ⊢ let 𝑥 = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Σ; Γ ⊢ 𝑀 : 𝐴; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜
Σ; Γ ⊢ seal𝑋𝑀 : 𝑋 ; Γ𝑜

Σ; Γ ⊢ 𝑀 : 𝑋 ; Γ𝑜 𝑋 � 𝐴 ∈ Γ, Γ𝑜
Σ; Γ ⊢ unseal𝑋𝑀 : 𝐴; Γ𝑜

Σ; Γ ⊢ 𝑀 : ?; Γ𝑜 Σ; Γ ⊢ 𝐺
Σ; Γ ⊢ is(𝐺)? 𝑀 : B; Γ𝑜

Σ; Γ ⊢ true : B; ·

Σ; Γ ⊢ false : B; ·
Σ; Γ ⊢ 𝑀 : B; Γ𝑀 Σ; Γ, Γ𝑀 ⊢ 𝑁𝑡 : 𝐵; Γ𝑁 Σ; Γ, Γ𝑀 ⊢ 𝑁𝑓 : 𝐵; Γ𝑁

Σ; Γ ⊢ if 𝑀 then 𝑁𝑡 else 𝑁𝑓 : 𝐵; Γ𝑀 , Γ𝑁

Σ; Γ ⊢ 𝑀1 : 𝐴1; Γ1 Σ; Γ, Γ1 ⊢ 𝑀2 : 𝐴2; Γ2

Σ; Γ ⊢ (𝑀1, 𝑀2) : 𝐴1 ×𝐴2; Γ1, Γ2

Σ; Γ ⊢ 𝑀 : 𝐴1 ×𝐴2; Γ𝑀 Σ; Γ, Γ𝑀 , 𝑥 : 𝐴1, 𝑦 : 𝐴2 ⊢ 𝑁 : 𝐵; Γ𝑁

Σ; Γ ⊢ let (𝑥,𝑦) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Σ; Γ ⊢ 𝐴 Σ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵; ·
Σ; Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 : 𝐴→ 𝐵; ·

Σ; Γ ⊢ 𝑀 : 𝐴→ 𝐵; Γ𝑀 Σ; Γ, Γ𝑀 ⊢ 𝑁 : 𝐴; Γ𝑁

Σ; Γ ⊢ 𝑀 𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Σ; Γ, 𝑋 � 𝐴 ⊢ 𝑀 : 𝐵; ·
Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴,𝑀) : ∃𝜈𝑋 .𝐵; ·

Σ; Γ ⊢ 𝑀 : ∃𝜈𝑋 .𝐴; Γ𝑀 Σ; Γ, Γ𝑀 , 𝑋, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵; Γ𝑁 Σ; Γ, Γ𝑀 ⊢ Γ𝑁 Σ; Γ, Γ𝑀 , Γ𝑁 ⊢ 𝐵
Σ; Γ ⊢ unpack (𝑋, 𝑥) = 𝑀 ;𝑁 : 𝐵; Γ𝑀 , Γ𝑁

Σ; Γ, 𝑋 ⊢ 𝑀 : 𝐴; ·
Σ; Γ ⊢ Λ𝜈𝑋 .𝑀 : ∀𝜈𝑋 .𝐴; ·

Σ; Γ ⊢ 𝑀 : ∀𝜈𝑋 .𝐴; Γ𝑀 Σ; Γ, Γ𝑀 ⊢ 𝐵
Σ; Γ ⊢ 𝑀{𝑋 � 𝐵} : 𝐴; Γ𝑀 , 𝑋 � 𝐵

Σ; Γ ⊢ 𝑀 : Γ𝑀 , 𝑋 � 𝐴, Γ′𝑀 Σ; Γ, Γ𝑀 ⊢ Γ′𝑀
Σ; Γ ⊢ hide 𝑋 � 𝐴;𝑀 ; Γ𝑀 , Γ′𝑀

Σ; Γ ⊢ 𝑀 : 𝐴; Γ𝑜 𝜎 : 𝐴 ∈ Σ
Σ; Γ ⊢ seal𝜎𝑀 : 𝜎 ; Γ𝑜

Σ; Γ ⊢ 𝑀 : 𝜎 ; Γ𝑜 𝜎 : 𝐴 ∈ Σ
Σ; Γ ⊢ unseal𝜎𝑀 : 𝐴; Γ𝑜

Σ; Γ ⊢ 𝑀 : ∀𝜈𝑋 .𝐴; Γ𝑀 𝜎 : 𝐴 ∈ Σ
Σ; Γ ⊢ 𝑀{𝜎 � 𝐵} : 𝐴; Γ𝑀

Σ; Γ, 𝑋 � 𝐴′ ⊢ ⟨𝐴⊑⟩↕ ... 𝑀 : 𝐵; ·
Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕ ...], 𝑀) : ∃𝜈𝑋 .𝐵; ·

Fig. 23. PolyC𝜈 Typing for Runtime Forms

Proof. If𝑀1 = ℧ or𝑀1 is a value, we conclude. Otherwise, by Lemma C.1 (unique decomposi-

tion), we have unique 𝐸,𝑀3 such that𝑀1 = 𝐸 [𝑀3]. We proceed by cases on𝑀3.

• 𝑀3 = ℧ Since𝑀1 ≠ ℧, we have 𝐸 ≠ [], so𝑀1 ↦→ ℧ and we conclude.

• 𝑀3 = hide 𝑋 � 𝐵;𝑀4 Then Σ1 ⊲ 𝑀3 ↦→ Σ1, 𝜎 : 𝐵 ⊲ 𝑀4 [𝜎/𝑋], so we conclude since 𝑀2 ↦→
𝐸 [𝑀4 [𝜎/𝑋]].
• 𝑀3 = if 𝑉 then 𝑀4 else 𝑀5 Since𝑀1 is well-typed, 𝑉 : B and so, by Lemma F.9 (canonical

forms), which we may use thanks to Lemma F.2, either 𝑉 = true or 𝑉 = false. In the first

case,𝑀3 ↦→ 𝑀4 and in the second𝑀3 ↦→ 𝑀5, so we conclude.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:37

• 𝑀3 = let 𝑥 = 𝑉 ;𝑀4 Then𝑀3 ↦→ 𝑀4 [𝑉 /𝑥], so we conclude.

• 𝑀3 = let (𝑥,𝑦) = 𝑉 ;𝑀4 Since 𝑀1 is well-typed, 𝑉 : 𝐴1 × 𝐴2 for some 𝐴1, 𝐴2 and so, by

Lemma F.9 (canonical forms), 𝑉 = (𝑉1,𝑉2) for some 𝑉1,𝑉2. Then𝑀3 ↦→ 𝑀4 [𝑉1/𝑥] [𝑉2/𝑦], so
we conclude.

• 𝑀3 = pack𝜈 (𝑋 � 𝐵,𝑀4) Then𝑀3 ↦→ pack𝜈 (𝑋 � 𝐵, [], 𝑀4), so we conclude.

• 𝑀3 = unpack (𝑋, 𝑥) = 𝑉 ;𝑀4 Since 𝑀1 is well-typed, 𝑉 : ∃𝜈𝑋𝐵 for some 𝐵 and so, by

Lemma F.9 (canonical forms), 𝑉 = pack𝜈 (𝑋 � 𝐵, [], 𝑀5) for some𝑀5. Then Σ ⊲𝑀3 ↦→ Σ, 𝜎 :

𝐵 ⊲ let 𝑥 = 𝑀5 [𝜎/𝑋];𝑀4 [𝜎/𝑋], so we conclude.

• 𝑀3 = 𝑉 {𝜎 � 𝐵} Since 𝑀1 is well-typed, 𝑉 : ∀𝜈𝑋𝐴1 for some 𝐴1 and so, by Lemma F.9

(canonical forms), 𝑉 = Λ𝜈𝑋 .𝑀4 for some 𝑀4 or 𝑉 = ⟨∀𝜈𝑋 .𝐴⊑⟩↕ 𝑉1 for some 𝐴⊑,𝑉1. In the

first case,𝑀3 ↦→ 𝑀4 [𝜎/𝑋] and in the second,𝑀3 ↦→ ⟨𝐴⊑ [𝜎/𝑋]⟩↕ (𝑉1{𝜎 � 𝐵}).
• 𝑀3 = 𝑉1 𝑉2 Since 𝑀1 is well-typed, 𝑉 : 𝐴1 → 𝐴2 for some 𝐴1, 𝐴2 and so, by Lemma F.9

(canonical forms), 𝑉1 = 𝜆𝑥 : 𝐴1 .𝑀4 for some𝑀4 or 𝑉 = ⟨𝐴⊑
1
→ 𝐴⊑

2
⟩↕ 𝑉1 for some 𝐴⊑

1
, 𝐴⊑

2
,𝑉1.

In the first case,𝑀3 ↦→ 𝑀4 [𝑉2/𝑥] and in the second,𝑀3 ↦→ ⟨𝐴⊑
2
⟩↕ (𝑉1 ⟨𝐴⊑

1
⟩↕− 𝑉2).

• 𝑀3 = unseal𝜎𝑉 Since 𝑀1 is well-typed, 𝑉 : 𝜎 and so, by Lemma F.9 (canonical forms),

𝑉 = seal𝜎𝑉1 for some 𝑉1. Then𝑀3 ↦→ 𝑉1, so we conclude.

• 𝑀3 = is(𝐺)? 𝑉 Since 𝑀1 is well-typed, 𝑉 : ? and so, by Lemma F.9 (canonical forms),

𝑉 = inj𝐻 𝑉1 for some 𝐻,𝑉1. If 𝐻 = 𝐺 , then𝑀3 ↦→ true, otherwise𝑀3 ↦→ false.
• 𝑀3 = ⟨∃𝜈𝑋 .𝐴⊑⟩ ↕ 𝑉 Since 𝑀1 is well-typed, 𝑉 : ∃𝜈𝑋 .𝐴1 for some 𝐴1 and so, by Lemma

F.9 (canonical forms), 𝑉 = pack𝜈 (𝑋 � 𝐵, [𝐴⊑
2
↕2 ...], 𝑀4) for some 𝐵,𝐴⊑

2
↕2 ..., 𝑀4. Then

𝑀3 ↦→ pack𝜈 (𝑋 � 𝐴2, [𝐴⊑ ↕, 𝐴⊑
2
↕2 ...], 𝑀4).

• 𝑀3 = ⟨𝐴⊑
1
×𝐴⊑

2
⟩↕ 𝑉 Since𝑀1 is well-typed,𝑉 : 𝐵1 × 𝐵2 for some 𝐵1, 𝐵2 and so, by Lemma F.9

(canonical forms), 𝑉 = (𝑉1,𝑉2) for some 𝑉1,𝑉2. Then𝑀3 ↦→ (⟨𝐴⊑
1
⟩↕ 𝑉1, ⟨𝐴⊑

2
⟩↕ 𝑉2).

• 𝑀3 = ⟨𝐴⊑⟩↕ 𝑉 where 𝐴⊑ ∈ {B, 𝜎, ?} Then𝑀3 ↦→ 𝑉 .

• 𝑀3 = ⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉 Then𝑀3 ↦→ inj𝐺 ⟨𝐴⊑⟩

↢

𝑉 .

• 𝑀3 = ⟨tag𝐺 (𝐴⊑)⟩ ↞ 𝑉 Since𝑀1 is well-typed, 𝑉 : ? and so, by Lemma F.9 (canonical forms),

𝑉 = inj𝐻 𝑉1 for some 𝐻,𝑉1. If 𝐻 = 𝐺 , then𝑀3 ↦→ ⟨𝐴⊑⟩ ↞ 𝑉 . Otherwise,𝑀3 ↦→ ℧.
□

D CBPV
Definition D.1 (Preamble store, substitution). We name the store generated by the preamble Σ𝑝 ,

defined as

Σ𝑝 = (4, 𝑓)
𝑓 (0) = B
𝑓 (1) = 𝑈 (OSum→ 𝐹OSum)
𝑓 (2) = OSum × OSum
𝑓 (3) = ∃𝑋 .𝑈 (Case 𝑋 → 𝐹OSum)
𝑓 (4) = 𝑈 (∀𝑋 .Case 𝑋 → 𝐹OSum)

We define 𝛾𝑝 to be a substitution that closes terms with respect to Γ𝑝 using the store Σ𝑝 :

𝛾𝑝 (𝑐Bool) = 0

𝛾𝑝 (𝑐Fun) = 1

𝛾𝑝 (𝑐Times) = 2

𝛾𝑝 (𝑐Ex) = 3

𝛾𝑝 (𝑐All) = 4

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:38 Max S. New, Dustin Jamner, and Amal Ahmed

Σ;Δ; Γ ⊢ 𝑉𝑇 : Case 𝐴 Σ;Δ; Γ ⊢ 𝑉 : OSum Σ;Δ; Γ, 𝑥 : 𝐴 | · ⊢ 𝑀 : 𝐵 Σ;Δ; Γ | · ⊢ 𝑁 : 𝐵

Σ;Δ; Γ | · ⊢ match 𝑉𝑇 with 𝑉 {inj 𝑥 .𝑀 | 𝑁 } : 𝐵

𝜎 : 𝐴 ∈ Σ Δ ⊢ 𝐴
Σ;Δ; Γ ⊢ 𝜎 : Case 𝐴

Δ ⊢ 𝐴 Σ;Δ; Γ, 𝑥 : Case 𝐴 | · ⊢ 𝑀 : 𝐵

Σ;Δ; Γ | · ⊢ newcase𝐴 𝑥 ;𝑀 : 𝐵

Σ;Δ; Γ ⊢ 𝑉𝑇 : Case 𝐴 Σ;Δ; Γ ⊢ 𝑉 : 𝐴

Σ;Δ; Γ ⊢ inj𝑉𝑇 𝑉 : OSum

Σ;Δ, 𝑋 ; Γ | · ⊢ 𝑀 : 𝐵

Σ;Δ; Γ | · ⊢ Λ𝑋 .𝑀 : ∀𝑋 .𝐵

Σ;Δ; Γ | Θ ⊢ 𝑀 : ∀𝑋 .𝐵 Δ ⊢ 𝐴
Σ;Δ; Γ | Θ ⊢ 𝑀 [𝐴] : 𝐵 [𝐴/𝑋]

Σ;Δ; Γ ⊢ 𝑉 : 𝐴[𝐴′/𝑋]
Σ;Δ; Γ ⊢ pack(𝐴′,𝑉) as ∃𝑋 .𝐴 : ∃𝑋 .𝐴

Σ;Δ; Γ ⊢ 𝑉 : ∃𝑋 .𝐴 Δ ⊢ 𝐵 Σ;Δ, 𝑋 ; Γ, 𝑥 : 𝐴 | · ⊢ 𝑀 : 𝐵

Σ;Δ; Γ | · ⊢ unpack (𝑋, 𝑥) = 𝑉 ;𝑀 : 𝐵 Σ;Δ; Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Σ;Δ; Γ | • : 𝐵 ⊢ • : 𝐵
Σ;Δ; Γ ⊢ 𝑉 : B Σ;Δ; Γ | · ⊢ 𝑀1 : 𝐵 Σ;Δ; Γ | · ⊢ 𝑀2 : 𝐵

Σ;Δ; Γ | · ⊢ if 𝑉 then 𝑀1 else 𝑀2 : 𝐵

Σ;Δ; Γ ⊢ true : B Σ;Δ; Γ ⊢ false : B

Σ;Δ; Γ ⊢ 𝑉1 : 𝐴1 Σ;Δ; Γ ⊢ 𝑉2 : 𝐴2

Σ;Δ; Γ ⊢ (𝑉1,𝑉2) : 𝐴1 ×𝐴2

Σ;Δ; Γ ⊢ 𝑉 : 𝐴1 ×𝐴2 Σ;Δ; Γ, 𝑥 : 𝐴1, 𝑦 : 𝐴2 | · ⊢ 𝑀 : 𝐵

Σ;Δ; Γ | · ⊢ let (𝑥,𝑦) = 𝑉 ;𝑀 : 𝐵

Σ;Δ; Γ | · ⊢ 𝑀 : 𝐵

Σ;Δ; Γ ⊢ thunk 𝑀 : 𝑈𝐵

Σ;Δ; Γ ⊢ 𝑉 : 𝑈𝐵

Σ;Δ; Γ | · ⊢ force 𝑉 : 𝐵

Σ;Δ; Γ ⊢ 𝑉 : 𝐴

Σ;Δ; Γ | · ⊢ ret 𝑉 : 𝐹𝐴

Σ;Δ; Γ | Θ ⊢ 𝑀 : 𝐹𝐴 Σ;Δ; Γ | · ⊢ 𝑁 : 𝐵

Σ;Δ; Γ | Θ ⊢ 𝑥 ← 𝑀 ;𝑁 : 𝐵

Σ;Δ; Γ | Θ ⊢ 𝑀 : 𝐴→ 𝐵 Σ;Δ; Γ ⊢ 𝑉 : 𝐴

Σ;Δ; Γ | Θ ⊢ 𝑀 𝑉 : 𝐵

Δ ⊢ 𝐴 Σ;Δ; Γ, 𝑥 : 𝐴 | · ⊢ 𝑉 : 𝐵

Σ;Δ; Γ | · ⊢ 𝜆𝑥 : 𝐴.𝑉 : 𝐴→ 𝐵 Σ;Δ; Γ | · ⊢ ℧ : 𝐵

Fig. 24. CBPVOSum Type System

We give the full translation from PolyC
𝜈
to CBPVOSum in Figure 26. Added to the cases from the

paper are the translation for types B and 𝐴 × 𝐵.

E TERM PRECISION
Figure 29 shows the full definition of term precision for PolyG

𝜈
. Figures 30 and 31 shows the full

definition of term precision for PolyC
𝜈
.

Lemma E.1 (Casts are Monotone). If 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 and 𝐴𝐵⊑𝑙 : 𝐴𝑙 ⊑ 𝐵𝑙 and 𝐴𝐵⊑𝑟 : 𝐴𝑟 ⊑ 𝐵𝑟 and
𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟 , then

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:39

𝑆 [℧] ↦→ ℧
Σ ⊲ 𝑆 [newcase𝐴 𝑥 ;𝑀] ↦→ Σ, 𝜎 : 𝐴 ⊲ 𝑆 [𝑀 [𝜎/𝑥]]

𝑆 [match inj𝜎 𝑉 with 𝜎{inj 𝑥 .𝑀 | 𝑁 }] ↦→ 𝑆 [𝑀 [𝑉 /𝑥]]
𝑆 [match inj𝜎1 𝑉 with 𝜎2{inj 𝑥 .𝑀 | 𝑁 }] ↦→ 𝑆 [𝑁] (where 𝜎1 ≠ 𝜎2)

𝑆 [if true then 𝑀 else 𝑁] ↦→ 𝑆 [𝑀]
𝑆 [if false then 𝑀 else 𝑁] ↦→ 𝑆 [𝑁]
𝑆 [let (𝑥,𝑦) = (𝑉1,𝑉2);𝑀] ↦→ 𝑆 [𝑀 [𝑉1/𝑥,𝑉2/𝑦]]

𝑆 [force (thunk 𝑀)] ↦→ 𝑆 [𝑀]
𝑆 [unpack (𝑋, 𝑥) = pack(𝐴,𝑉);𝑀] ↦→ 𝑆 [𝑀 [𝐴/𝑋,𝑉 /𝑥]]

𝑆 [(Λ𝑋 .𝑀) [𝐴]] ↦→ 𝑆 [𝑀 [𝐴/𝑋]]
𝑆 [(𝜆(𝑥 : 𝐴).𝑀) 𝑉] ↦→ 𝑆 [𝑀 [𝑉 /𝑥]]
𝑆 [𝑥 ← ret 𝑉 ;𝑁] ↦→ 𝑆 [𝑁 [𝑉 /𝑥]]

Fig. 25. CBPVOSum Operational Semantics

J𝑥K = ret 𝑥

Jlet 𝑥 = 𝑀 ;𝑁 K = 𝑥 ← J𝑀K; J𝑁 K
J℧𝐴K = ℧
Jseal𝛼𝑀K = J𝑀K
Junseal𝛼𝑀K = J𝑀K
Jinj𝐺 𝑀K = 𝑟 ← J𝑀K; ret inj

case(𝐺) 𝑟
Jis(𝐺)? 𝑀K = 𝑟 ← J𝑀K;

match 𝑟 with case(𝐺){inj 𝑦.ret true | ret false}
Jhide 𝑋 � 𝐴;𝑀K = newcaseJ𝐴K 𝑐𝑋 ; J𝑀K
J⟨𝐴⊑⟩↕ 𝑀K = J𝐴⊑K↕ [J𝑀K]
JtrueK = ret true
JfalseK = ret false
Jif 𝑀1 then 𝑀2 else 𝑀3K = 𝑟 ← J𝑀1K; if 𝑟 then J𝑀2K else J𝑀3K
J(𝑀1, 𝑀2)K = 𝑥1 ← J𝑀1K;𝑥2 ← J𝑀2K; ret (𝑥1, 𝑥2)
Jlet (𝑥,𝑦) = 𝑀 ;𝑁 K = 𝑟 ← J𝑀K; let (𝑥,𝑦) = 𝑟 ; J𝑁 K
Jpack𝜈 (𝑋 � 𝐴,𝑀)K = ret pack(𝐴, thunk (𝜆𝑐𝑋 : Case 𝐴.J𝑀K))
Jpack𝜈 (𝑋 � 𝐴′, [𝐴⊑𝑛 ↕𝑛 ... 𝐴⊑

1
↕1], 𝑀)K = ret pack(𝐴, thunk (𝜆𝑐𝑋 : Case 𝐴.𝑀 ′𝑛))

where𝑀 ′
0
= J𝑀K

and𝑀 ′
𝑖+1 = J𝐴⊑

𝑖+1K↕𝑖+1 [force (thunk (𝜆𝑐𝑋 : Case 𝐴′.J𝑀𝑖K)) 𝑐𝑋]
Junpack (𝑋, 𝑥) = 𝑀 ;𝑁 K = 𝑟 ← J𝑀K; unpack (𝑋, 𝑓) = 𝑟 ;

newcase𝑋 𝑐𝑋 ;𝑥 ← (force 𝑓) 𝑐𝑋 ; J𝑁 K
JΛ𝜈𝑋 .𝑀K = ret (thunk (Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).J𝑀K))
J𝑀{𝛼 � 𝐴}K = 𝑓 ← J𝑀K; (force 𝑓) [𝐴] (case(𝛼))
J𝜆(𝑥 : 𝐴) .𝑀K = ret thunk 𝜆(𝑥 : J𝐴K).J𝑀K
J𝑀 𝑁 K = 𝑓 ← J𝑀K;𝑎 ← J𝑁 K; (force 𝑓) 𝑎

Fig. 26. PolyC𝜈 term translation

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:40 Max S. New, Dustin Jamner, and Amal Ahmed

· : · ⊑ ·
Γ⊑ : Γ𝑙 ⊑ Γ𝑟 Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

(Γ⊑, 𝑥 : 𝐴⊑) : Γ𝑙 , 𝑥 : 𝐴𝑙 ⊑ Γ𝑟 , 𝑥 : 𝐴𝑟

Γ⊑ : Γ𝑙 ⊑ Γ𝑟 Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

(Γ⊑, 𝑋 � 𝐴⊑) : Γ𝑙 , 𝑋 � 𝐴𝑙 ⊑ Γ𝑟 , 𝑋 � 𝐴𝑟

Γ⊑ : Γ𝑙 ⊑ Γ𝑟

(Γ⊑, 𝑋) : Γ𝑙 , 𝑋 ⊑ Γ𝑟 , 𝑋

Fig. 27. Type Precision Contexts

cod(𝐴⊑ → 𝐵⊑) = 𝐵⊑

cod(?) = ?

cod(tag𝐺 (𝐴⊑ → 𝐵⊑))) = 𝐵⊑

𝜋𝑖 (𝐴⊑
0
×𝐴⊑

1
) = 𝐴⊑

𝑖

𝜋𝑖 (?) = ?

𝜋𝑖 (tag?×? (𝐴⊑0 ×𝐴
⊑
1
)) = 𝐴⊑

𝑖

un∀𝜈 (∀𝜈𝑋 .𝐴⊑) = 𝐴⊑

un∀𝜈 (?) = ?

un∀𝜈 (tag∀𝜈𝑋 .? (∀𝜈𝑋 .𝐴⊑)) = 𝐴⊑

un∃𝜈 (∃𝜈𝑋 .𝐴⊑) = 𝐴⊑

un∃𝜈 (?) = ?

un∃𝜈 (tag∃𝜈𝑋 .? (∃𝜈𝑋 .𝐴⊑)) = 𝐴⊑

Fig. 28. Metafunctions extended to type precision derivations

(1) If Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑, then Γ⊑ ⊢ ⟨𝐴𝐵⊑

𝑙
⟩

↢

𝑀𝑙 ⊑ ⟨𝐴𝐵⊑𝑟 ⟩

↢

𝑀𝑟 : 𝐵
⊑
; Γ⊑𝑜

(2) If Γ⊑ ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵
⊑
; Γ⊑𝑜 , then Γ⊑ ⊢ ⟨𝑐⟩ ↞ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑡ℎ𝑎𝑡𝐴𝐵⊑𝑙 𝑁𝑙 ⊑ ⟨𝐴𝐵⊑𝑟 ⟩ ↞ 𝑁𝑟 : 𝐴

⊑
; Γ⊑𝑜

Proof. (1) By the following derivation

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑𝑜

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐴𝐵⊑𝑟 ⟩

↢

𝑀𝑟 : 𝐴𝐵
⊑
𝑙𝑟
; Γ⊑𝑜

Γ⊑ ⊢ ⟨𝐴𝐵⊑
𝑙
⟩

↢

𝑀𝑙 ⊑ ⟨𝐴𝐵⊑𝑟 ⟩

↢

𝑀𝑟 : 𝐵
⊑
; Γ⊑𝑜

Where 𝐴𝐵⊑
𝑙𝑟
: 𝐴𝑙 ⊑ 𝐵𝑟 , which exists by transitivity lemma B.3.

(2) By the following derivation

Γ⊑ ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵
⊑
; Γ⊑𝑜

Γ⊑ ⊢ ⟨𝐴𝐵⊑
𝑙
⟩ ↞ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐴𝐵

⊑
𝑙𝑟
; Γ⊑𝑜

Γ⊑ ⊢ ⟨𝐴𝐵⊑
𝑙
⟩ ↞ 𝑁𝑙 ⊑ ⟨𝐴𝐵⊑𝑟 ⟩ ↞ 𝑁𝑟 : 𝐴

⊑
; Γ⊑𝑜

Where 𝐴𝐵⊑
𝑙𝑟
: 𝐴𝑙 ⊑ 𝐵𝑟 , which exists by transitivity lemma B.3.

□

Lemma E.2 (Hide Monotonicity). If Γ⊑
1

: Γ𝑙1 ⊑ Γ𝑟1 and Γ⊑
2

: Γ𝑙2 ⊑ Γ𝑟2 and Γ𝑙1 ⊆ Γ𝑙2 and Γ𝑟1 ⊆ Γ𝑟2
and𝑀𝑙 ⊑ 𝑀𝑟 , then

hide Γ𝑙1 ⊆ Γ𝑙2;𝑀𝑙 ⊑ hide Γ𝑟1 ⊆ Γ𝑟2;𝑀𝑟

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:41

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ (𝑀𝑙 :: 𝐵𝑙) ⊑ (𝑀𝑟 :: 𝐵𝑟) : 𝐵⊑; Γ⊑′
𝑥 : 𝐴⊑ ∈ Γ⊑

Γ⊑ ⊢ 𝑥 ⊑ 𝑥 : 𝐴⊑

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑, 𝑥 : 𝐴⊑ ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ let 𝑥 = 𝑀𝑙 ;𝑁𝑙 ⊑ let 𝑥 = 𝑀𝑟 ;𝑁𝑟 : 𝐵; Γ
⊑
𝑀
, Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑ 𝑋 � 𝐵⊑ ∈ Γ⊑

Γ⊑ ⊢ seal𝑋𝑀𝑙 ⊑ seal𝑋𝑀𝑟 : 𝑋

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑𝑜 𝑋 � 𝐵⊑ ∈ Γ⊑, Γ⊑𝑜

Γ⊑ ⊢ unseal𝑋𝑀𝑙 ⊑ unseal𝑋𝑀𝑟 : 𝐵
⊑
; Γ⊑𝑜

Γ⊑ ⊢ true ⊑ true : B; · Γ⊑ ⊢ false ⊑ false : B; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙𝑡 ⊑ 𝑁𝑟𝑡 : 𝐵

⊑
𝑡 ; Γ

⊑
𝑡 Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙 𝑓 ⊑ 𝑁𝑟 𝑓 : 𝐵⊑

𝑓
; Γ⊑

𝑓

Γ⊑ ⊢ if 𝑀𝑙 then 𝑁𝑙𝑡 else 𝑁𝑙 𝑓 ⊑ if 𝑀𝑟 then 𝑁𝑟𝑡 else 𝑁𝑟 𝑓 : 𝐵⊑𝑡 ⊔ 𝐵⊑𝑓 ; Γ
⊑
𝑀
, Γ⊑𝑡 ∩ Γ⊑

𝑓

Γ⊑ ⊢ 𝑀𝑙1 ⊑ 𝑀𝑟1 : 𝐴
⊑
1
; Γ⊑

1
Γ⊑, Γ⊑

1
⊢ 𝑀𝑙2 ⊑ 𝑀𝑟2 : 𝐴

⊑
2
; Γ⊑

2

Γ⊑ ⊢ (𝑀𝑙1, 𝑀𝑙2) ⊑ (𝑀𝑟1, 𝑀𝑟2) : 𝐴⊑1 ×𝐴
⊑
2
; Γ⊑

1
, Γ⊑

2

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
, 𝑥 : 𝜋0 (𝐴⊑), 𝑦 : 𝜋1 (𝐴⊑1) ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ let (𝑥,𝑦) = 𝑀𝑙 ;𝑁𝑙 ⊑ let (𝑥,𝑦) = 𝑀𝑟 ;𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁

Γ⊑, 𝑥 : 𝐴⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵
⊑
; Γ⊑′ Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊢ 𝜆𝑥 : 𝐴𝑙 .𝑀𝑙 ⊑ 𝜆𝑥 : 𝐴𝑟 .𝑀𝑟 : 𝐴
⊑ → 𝐵⊑; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙 𝑁𝑙 ⊑ 𝑀𝑟 𝑁𝑟 : cod(𝐴⊑); Γ⊑𝑀 , Γ
⊑
𝑁

Γ⊑, 𝑋 � 𝐵⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑𝑜 Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ pack𝜈 (𝑋 � 𝐵𝑙 , 𝑀𝑙) ⊑ pack𝜈 (𝑋 � 𝐵𝑟 , 𝑀𝑟) : ∃𝜈𝑋 .𝐴⊑; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
, 𝑋, 𝑥 : un∃𝜈 (𝐴⊑) ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ unpack (𝑋, 𝑥) = 𝑀𝑙 ;𝑁𝑙 ⊑ unpack (𝑋, 𝑥) = 𝑀𝑟 ;𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁
|𝑋

Γ⊑, 𝑋 ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑𝑜

Γ⊑ ⊢ Λ𝜈𝑋 .𝑀𝑙 ⊑ Λ𝜈𝑋 .𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑

𝑀
Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝑀𝑙 {𝑋 � 𝐵𝑙 } ⊑ 𝑀𝑟 {𝑋 � 𝐵𝑟 } : un∀𝜈 (𝐴⊑); Γ⊑𝑀 , 𝑋 � 𝐵⊑

Fig. 29. PolyG𝜈 Term Precision

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:42 Max S. New, Dustin Jamner, and Amal Ahmed

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶

Γ⊑ ⊢ ⟨𝐴𝐵⊑ ⟩

↢

𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶

Γ⊑ ⊢ ⟨𝐴𝐵⊑ ⟩ ↞ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐵⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑ ⟩

↢

𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶⊑ ; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶
Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑ ⟩ ↞ 𝑀𝑟 : 𝐴𝐵⊑ ; Γ⊑′

Fig. 30. PolyC𝜈 Term Precision Part 1

Proof. By induction over Γ⊑
2
, each case is either congruence or trivial application of inductive

hypothesis. □

Lemma E.3. If Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′ in the surface language, then Γ⊑ ⊢ 𝑀+

𝑙
⊑ 𝑀+𝑟 : 𝐴⊑; Γ⊑′

Proof. By induction on term precision derivations.

(1) Cast. By applying lemma E.1 twice.

(2) Var: Immediate

(3) Let: immediate

(4) seal: by the argument for the ascription case.

(5) unseal: There are three cases for 𝐴⊑: 𝑋 , ? and tag𝑋 (𝑋). The first case is immediate. If 𝐴⊑ = ?,

we need to show

unseal𝑋 ⟨tag𝑋 (𝑋)⟩ ↞ 𝑀+𝑙 ⊑ unseal𝑋 ⟨tag𝑋 (𝑋)⟩ ↞ 𝑀+𝑟
Which follows by unseal𝑋 congruence and lemma E.1. For the final case we need to show

unseal𝑋𝑀
+
𝑙
⊑ unseal𝑋 ⟨tag𝑋 (𝑋)⟩ ↞ 𝑀+𝑟

which follows by congruence for unseal𝑋 and the downcast-right rule.

(6) tag-check is(𝐺)? 𝑀𝑙 ⊑ is(𝐺)? 𝑀𝑟 : follows by congruence and lemma E.1.

(7) tru: Immediate

(8) fls: Immediate

(9) if: By if congruence, we need to show the condition and the two branches of the if are ordered.

• For the condition there are three subcases 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴⊑: either B, ? or tagB (B). The
ordering follows by the same argument as the unseal𝑋 case.

• The two branches follow by the same argument. We describe the true branch. We have by

inductive hypothesis that 𝑁 +
𝑡𝑙
⊑ 𝑁 +𝑡𝑟 and we need to show

⟨𝐵⊑
𝑡𝑙
⟩ ↞ hide Γ𝑡𝑙 ⊆ Γ𝑡𝑙 ∩ Γ𝑓 𝑙 ;𝑁

+
𝑡𝑙
⊑ ⟨𝐵⊑𝑡𝑟 ⟩ ↞ hide Γ𝑡𝑟 ⊆ Γ𝑡𝑟 ∩ Γ𝑓 𝑟 ;𝑁

+
𝑡𝑟

Which follows by lemmas E.1 and E.2.

(10) Pair intro: Immediate by inductive hypothesis.

(11) Pair elim: By similar argument to unseal𝑋
(12) By congruence and lemma E.2.

(13) Function application: similar argument to unseal𝑋
(14) ∃𝜈 introduction: by congruence and lemma E.2.

(15) ∀𝜈 elimination: by similar argument to unseal𝑋 , and lemma E.2.

(16) ∀𝜈 introduciton: by congruence and lemma E.2.

(17) ∀𝜈 elimination: by similar argument to unseal𝑋 case.

□

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:43

𝑥 : 𝐴⊑ ∈ Γ⊑

Γ⊑ ⊢ 𝑥 ⊑ 𝑥 : 𝐴⊑
Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴

⊑
; Γ𝑀 Γ⊑, Γ𝑀 , 𝑥 : 𝐴⊑ ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ𝑁

Γ⊑ ⊢ let 𝑥 = 𝑀𝑙 ;𝑁𝑙 ⊑ let 𝑥 = 𝑀𝑟 ;𝑁𝑟 : 𝐵
⊑
; Γ𝑀 , Γ𝑁

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵
⊑
; Γ⊑′, 𝑋 � 𝐴⊑, Γ⊑′′ Γ⊑, Γ⊑′ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊢ hide 𝑋 � 𝐴𝑙 ;𝑀𝑙 ⊑ hide 𝑋 � 𝐴𝑟 ;𝑀𝑟 : 𝐵
⊑
; Γ⊑′, Γ⊑′′

(𝑋 � 𝐴⊑) ∈ Γ⊑, Γ⊑′ Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; Γ⊑′

Γ⊑ ⊢ seal𝑋𝑀𝑙 ⊑ seal𝑋𝑀𝑟 : 𝑋 ; Γ⊑′

(𝑋 � 𝐴⊑) ∈ Γ⊑, Γ⊑′ Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝑋 ; Γ⊑′

Γ⊑ ⊢ unseal𝑋𝑀𝑙 ⊑ unseal𝑋𝑀𝑟 : 𝐴
⊑
; Γ⊑′

Γ⊑ ⊢ true ⊑ true : B

Γ⊑ ⊢ false ⊑ false : B

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : B; Γ
⊑
𝑀

Γ⊑, Γ⊑
𝑀
⊢ 𝑁𝑙𝑡 ⊑ 𝑁𝑟𝑡 : 𝐵

⊑
; Γ⊑

𝑁
Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙 𝑓 ⊑ 𝑁𝑟 𝑓 : 𝐵⊑; Γ⊑

𝑁

Γ⊑ ⊢ if 𝑀𝑙 then 𝑁𝑙𝑡 else 𝑁𝑙 𝑓 ⊑ if 𝑀𝑟 then 𝑁𝑟𝑡 else 𝑁𝑟 𝑓 : 𝐵⊑; Γ⊑
𝑀
, Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙1 ⊑ 𝑀𝑟1 : 𝐴
⊑
1
; Γ⊑

1
Γ⊑, Γ⊑

1
⊢ 𝑀𝑙2 ⊑ 𝑀𝑟2 : 𝐴

⊑
2
; Γ⊑

2

Γ⊑ ⊢ (𝑀𝑙1, 𝑀𝑙2) ⊑ (𝑀𝑟1, 𝑀𝑟2) : 𝐴⊑1 ×𝐴
⊑
2
; Γ⊑

1
, Γ⊑

2

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
1
×𝐴⊑

2
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
, 𝑥 : 𝐴⊑

1
, 𝑦 : 𝐴⊑

2
⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ let (𝑥,𝑦) = 𝑀𝑙 ;𝑁𝑙 ⊑ let (𝑥,𝑦) = 𝑀𝑟 ;𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁

Γ⊑, 𝑥 : 𝐴⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐵
⊑
; · Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊢ 𝜆𝑥 : 𝐴𝑙 .𝑀𝑙 ⊑ 𝜆𝑥 : 𝐴𝑙 .𝑀𝑙 : 𝐴
⊑ → 𝐵⊑; ·

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑ → 𝐵⊑; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐴

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙 𝑁𝑙 ⊑ 𝑀𝑟 𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁

Γ⊑, 𝑋 � 𝐵⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑
; ·

Γ⊑ ⊢ pack𝜈 (𝑋 � 𝐵𝑙 , 𝑀𝑙) ⊑ pack𝜈 (𝑋 � 𝐵𝑟 , 𝑀𝑟) : ∃𝜈𝑋 .𝐴⊑; ·

Γ⊑, Γ⊑
𝑀
⊢ Γ⊑

𝑁
Γ⊑, Γ⊑

𝑀
, Γ⊑

𝑁
⊢ 𝐵⊑

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : ∃𝜈𝑋 .𝐴⊑; Γ⊑
𝑀

Γ⊑, Γ⊑
𝑀
, 𝑋, 𝑥 : 𝐴⊑ ⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐵

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ unpack (𝑋, 𝑥) = 𝑀𝑙 ;𝑁𝑙 ⊑ unpack (𝑋, 𝑥) = 𝑀𝑟 ;𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑; Γ⊑′ Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊢ 𝑀𝑙 {𝑋 � 𝐵𝑙 } ⊑ 𝑀𝑟 {𝑋 � 𝐵𝑟 } : 𝐴⊑; Γ⊑′, 𝑋 � 𝐵⊑
Γ⊑, 𝑋 ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴

⊑
; ·

Γ⊑ ⊢ Λ𝜈𝑋 .𝑀𝑙 ⊑ Λ𝜈𝑋 .𝑀𝑟 : ∀𝜈𝑋 .𝐴⊑; ·

Fig. 31. PolyC𝜈 Term Precision Part 2

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:44 Max S. New, Dustin Jamner, and Amal Ahmed

F SIMULATION
We provide the full proof of simulation here, including all supporting lemmas. As outlined in the

paper, this proof revolves around a translation relation that generalizes our translation function.

Lemma F.1 (target language dynamic semantics are deterministic). If Σ′ ⊲𝑀 ′ ↦→ Σ′
1
⊲𝑀 ′

1

and Σ′ ⊲𝑀 ′ ↦→ Σ′
2
⊲𝑀 ′

2
then Σ′

1
= Σ′

2
and𝑀 ′

1
= 𝑀 ′

2
.

Lemma F.2. If Σ; Γ ⊢ 𝑀 : 𝐴; Γ′, then𝑀 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝑀K.

Proof. By induction on𝑀 . □

The proof of simulation requires knowledge about how substitutions translate. Value substitutions

are straightforward due to the definition of our relation. Type substitutions behave differently

depending on whether the type variable to be replaced is known.

Lemma F.3. If Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵; Γ′ and 𝑋 ∈ Γ and 𝜎 : 𝐴 ∈ Σ, then𝑀 [𝜎/𝑋] ⇝𝐶𝑇 𝑀 ′[JΣ; Γ ⊢
𝐴K/𝑋] [𝜎/𝑐𝑋].

Proof. By induction on the derivation of𝑀 ⇝𝐶𝑇 𝑀 ′. □

Lemma F.4. If Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵; Γ′ and 𝑋 � 𝐴 ∈ Γ, Γ′ and 𝜎 : 𝐴 ∈ Σ, then 𝑀 [𝜎/𝑋] ⇝𝐶𝑇

𝑀 ′[𝜎/𝑐𝑋].

Proof. By induction on the derivation of𝑀 ⇝𝐶𝑇 𝑀 ′. □

Lemma F.5. If Σ; Γ, 𝑥 : 𝐴′, Γ′ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴; Γ′′ and Σ; Γ ⊢ 𝑉 ⇝𝐶𝑇 ret 𝑉 ′ : 𝐴′; ·, then
Σ; Γ, Γ′ ⊢ 𝑀 [𝑉 /𝑥] ⇝𝐶𝑇 𝑀 ′[𝑉 ′/𝑥] : 𝐴; Γ′′.

Proof. By induction on the derivation of𝑀 ⇝𝐶𝑇 𝑀 ′. □

We use a restricted form of reduction that only eliminates bind steps in our proof of simulation.

This reduction gives us exactly the leeway we need to deal with the possibility of administrative

redexes in our translation.

Definition F.6 (bind reduction). We define ↦→𝑏 to be the least relation on closed terms such that

𝑆 [𝑥 ← ret 𝑉 ′;𝑀 ′] ↦→𝑏 𝑆 [𝑀 ′[𝑉 ′/𝑥]]. Note that ↦→𝑏 is a strict subset of ↦→. We use ↦→∗
𝑏
to mean

its reflexive, transitive closure.

Lemma F.7 (bind reduction normalization). Let Σ; · ⊢ 𝑀1 : 𝐴. There exists a unique𝑀2 such
that𝑀1 ↦→∗𝑏 𝑀2 and𝑀2 does not take a bind reduction.

Proof. By induction on the number of binds in𝑀1 not under thunks. If𝑀1 = 𝑆 [𝑥 ← ret 𝑉 ;𝑁1]
then𝑀1 ↦→𝑏 𝑁1 [𝑉 /𝑥] and we conclude by the inductive hypothesis for 𝑁1 [𝑉 /𝑥]. Otherwise,𝑀1

must not take a bind reduction, so𝑀2 = 𝑀1 and we conclude by reflexivity. □

Lemma F.8 (bind reduction confluence). Let Σ; · ⊢ 𝑀1 : 𝐴, Σ; · ⊢ 𝑀2 : 𝐴, and Σ; · ⊢ 𝑀3 : 𝐴. If
𝑀1 ↦→∗𝑏 𝑀2,𝑀1 ↦→∗𝑏 𝑀3, and𝑀3 does not take a bind reduction, then𝑀2 ↦→∗𝑏 𝑀3.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:45

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑥 ← ret 𝑉 ′;𝑀 ′ : 𝐴; Γ1

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′[𝑉 ′/𝑥] : 𝐴; Γ1

Σ; Γ ⊢ 𝑀1 ⇝
𝐶𝑇 𝑀 ′

1
: 𝐴1; Γ1 Σ; Γ, Γ1 ⊢ 𝑀2 ⇝

𝐶𝑇 𝑀 ′
2
: 𝐴2; Γ2

Σ; Γ ⊢ (𝑀1, 𝑀2) ⇝𝐶𝑇 𝑥1 ← 𝑀 ′
1
;𝑥2 ← 𝑀 ′

2
; ret (𝑥1, 𝑥2) : 𝐴1 ×𝐴2; Γ1, Γ2

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : B; Γ′ Σ; Γ, Γ′ ⊢ 𝑀1 ⇝
𝐶𝑇 𝑀 ′

1
: 𝐴; Γ′′ Σ; Γ, Γ′ ⊢ 𝑀2 ⇝

𝐶𝑇 𝑀 ′
2
: 𝐴; Γ′′

Σ; Γ ⊢ if 𝑀 then 𝑀1 else 𝑀2 ⇝
𝐶𝑇 𝑟 ← 𝑀 ′; if 𝑟 then 𝑀 ′

1
else 𝑀 ′

2
: 𝐴; Γ′, Γ′′

Σ; Γ ⊢ true⇝𝐶𝑇 ret true : B; · Σ; Γ ⊢ false⇝𝐶𝑇 ret false : B; · Σ; Γ ⊢ ℧⇝𝐶𝑇 ℧ : 𝐴; ·

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴; Γ′ Σ; Γ, Γ′, 𝑥 : 𝐴 ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′

Σ; Γ ⊢ let 𝑥 = 𝑀 ;𝑁 ⇝𝐶𝑇 𝑥 ← 𝑀 ′;𝑁 ′ : 𝐵; Γ′, Γ′′

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴1 ×𝐴2; Γ
′ Σ; Γ, Γ′, 𝑥 : 𝐴1, 𝑦 : 𝐴2 ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′

Σ; Γ ⊢ let (𝑥,𝑦) = 𝑀 ;𝑁 ⇝𝐶𝑇 𝑟 ← 𝑀 ′; let (𝑥,𝑦) = 𝑟 ;𝑁 ′ : 𝐵; Γ′, Γ′′

Σ; Γ, 𝑋 � 𝐴 ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵; · 𝐴′ = JΣ;Δ ⊢ 𝐴K

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴,𝑀) ⇝𝐶𝑇 ret pack(𝐴′, thunk 𝜆(𝑐𝑋 : Case 𝐴′).𝑀 ′) as JΣ; Γ ⊢ ∃𝜈𝑋 .𝐵K : ∃𝜈𝑋 .𝐵; ·

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : ∃𝜈𝑋 .𝐴; Γ′ Σ; Γ ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′ Γ, Γ′, Γ′′ ⊢ 𝐵
Σ; Γ ⊢ unpack (𝑋, 𝑥) = 𝑀 ;𝑁 ⇝𝐶𝑇 𝑟 ← 𝑀 ′; unpack (𝑋, 𝑓) = 𝑟 ;

newcase𝑋 𝑐𝑋 ;𝑥 ← (force 𝑓) 𝑐𝑋 ;𝑁 ′
: 𝐵; Γ′, Γ′′

Σ; Γ, 𝑋 ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴; ·
Σ; Γ ⊢ Λ𝑋 .𝑀 ⇝𝐶𝑇 ret thunk Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑀 ′ : ∀𝜈𝑋 .𝐴; ·

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : ∀𝜈𝑋 .𝐵; Γ′

Σ; Γ ⊢ 𝑀{𝑋 � 𝐴} ⇝𝐶𝑇 𝑓 ← 𝑀 ′; (force 𝑓) [𝐴] 𝑐𝑋 : 𝐵; Γ′, 𝑋 � 𝐴

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : ∀𝜈𝑋 .𝐵; Γ′

Σ; Γ ⊢ 𝑀{𝜎 � 𝐴} ⇝𝐶𝑇 𝑓 ← 𝑀 ′; (force 𝑓) [𝐴] 𝜎 : 𝐵 [𝜎/𝑋]; Γ′

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴→ 𝐵; Γ′ Σ; Γ, Γ′ ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐴; Γ′′

Σ; Γ ⊢ 𝑀 𝑁 ⇝𝐶𝑇 𝑓 ← 𝑀 ′;𝑎 ← 𝑁 ′; (force 𝑓) 𝑎 : 𝐵; Γ′, Γ′′

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵; ·
Σ; Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 ⇝𝐶𝑇 ret thunk 𝜆𝑥 : JΣ; Γ ⊢ 𝐴K.𝑀 ′ : 𝐴→ 𝐵; ·

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴; Γ′ 𝑋 � 𝐴 ∈ Γ, Γ′

Σ; Γ ⊢ seal𝑋𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝑋 ; Γ′
Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝑋 ; Γ′ 𝑋 � 𝐴 ∈ Γ, Γ′

Σ; Γ ⊢ unseal𝑋𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴; Γ′

Fig. 32. PolyC𝜈 translation relation

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:46 Max S. New, Dustin Jamner, and Amal Ahmed

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐺 ; Γ′

Σ; Γ ⊢ inj𝐺 𝑀 ⇝𝐶𝑇 𝑥 ← 𝑀 ′; ret inj
case(𝐺) 𝑥 : ?; Γ′

Σ; Γ, 𝑋 � 𝐴 ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵; · 𝐴′ = JΣ;Δ ⊢ 𝐴K

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴, [], 𝑀) ⇝𝐶𝑇 ret pack(𝐴′, thunk 𝜆(𝑐𝑋 : Case 𝐴′).𝑀 ′) as JΣ; Γ ⊢ ∃𝜈𝑋 .𝐵K : ∃𝜈𝑋 .𝐵; ·

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴, [𝐴2 ↕2 ...], 𝑀) ⇝𝐶𝑇 ret pack(𝐴′, thunk 𝜆(𝑐𝑋 : Case 𝐴′) .𝑀 ′) as ∃𝑋 .𝐴′1 : ∃𝜈𝑋 .𝐴⊑
1𝑙
; ·

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴, [𝐴1

↢

, 𝐴2 ↕2 ...], 𝑀)

⇝𝐶𝑇 ©­«
ret pack(𝐴′, thunk 𝜆𝑐𝑋 : Case 𝐴′.

JΣ; Γ, 𝑋 � 𝐴′ ⊢ 𝐴⊑K

↢

[(force thunk 𝜆𝑐𝑋 : Case 𝐴′.𝑀 ′) 𝑐𝑋]) as J∃𝜈𝑋 .𝐴⊑
1𝑟 K

ª®¬ : ∃𝜈𝑋 .𝐴⊑
1𝑟 ; ·

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴, [𝐴2 ↕2 ...], 𝑀) ⇝𝐶𝑇 ret pack(𝐴′, thunk 𝜆(𝑐𝑋 : Case 𝐴′) .𝑀 ′) as ∃𝑋 .𝐴′1 : ∃𝜈𝑋 .𝐴⊑
1𝑟 ; ·

Σ; Γ ⊢ pack𝜈 (𝑋 � 𝐴, [𝐴1 ↞, 𝐴2 ↕2 ...], 𝑀)

⇝𝐶𝑇 ©­«
ret pack(𝐴′, thunk 𝜆𝑐𝑋 : Case 𝐴′.

JΣ; Γ, 𝑋 � 𝐴′ ⊢ 𝐴⊑K ↞

[(force thunk 𝜆𝑐𝑋 : Case 𝐴′.𝑀 ′) 𝑐𝑋]) as J∃𝜈𝑋 .𝐴⊑
1𝑙

K

ª®¬ : ∃𝜈𝑋 .𝐴⊑
1𝑙
; ·

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴⊑
𝑙
; Γ′ Σ; Γ ⊢ 𝐴⊑

Σ; Γ ⊢ ⟨𝐴⊑⟩

↢

𝑀 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝐴⊑K

↢

[𝑀 ′] : 𝐴⊑𝑟 ; Γ′
Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴⊑𝑟 ; Γ

′ Σ; Γ ⊢ 𝐴⊑

Σ; Γ ⊢ ⟨𝐴⊑⟩ ↞ 𝑀 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝐴⊑K ↞ [𝑀 ′] : 𝐴⊑𝑙 ; Γ
′

Σ; Γ ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : ?; Γ′

Σ; Γ ⊢ is(𝐺)? 𝑀 ⇝𝐶𝑇

(
𝑟 ← 𝑀 ′;
match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}

)
: B; Γ′

Fig. 33. PolyC𝜈 translation relation (Continued)

Proof. By induction on𝑀1 ↦→∗𝑏 𝑀2. If𝑀1 = 𝑀2, then we conclude since𝑀1 ↦→∗𝑏 𝑀3. Otherwise,

by the definition of ↦→∗
𝑏
, we have 𝑀1 ↦→𝑏 𝑁1 ↦→∗𝑏 𝑀2. Since 𝑀1 takes a bind reduction, 𝑀1 ≠ 𝑀3

and so we must have 𝑀1 ↦→𝑏 𝑁2 ↦→∗𝑏 𝑀3. Furthermore, by Lemma C.2 (deterministic semantics),

we have 𝑁1 = 𝑁2. We then conclude by the inductive hypothesis for 𝑁2, 𝑀2, 𝑀3. □

At the core of our simulation argument is the guarantee that, up to some bind reductions, any

related terms have a related structure that follows the form of the translation function.

Lemma F.9 (canonical forms of the translation relation). If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐵, then
either
• 𝑀 = Λ𝑋 .𝑁1 and𝑀 ′ = ret thunk Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑁 ′

1

• 𝑀 = 𝑁1{𝜎 � 𝐴} and (𝑓 ← 𝑁 ′
1
; (force 𝑓) [𝐴] 𝜎) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = hide 𝑋 � 𝐴;𝑁1 and𝑀 ′ = newcase𝐴 𝑐𝑋 ;𝑁
′
1

• 𝑀 = (𝑁1, 𝑁2) and (𝑥1 ← 𝑁 ′
1
;𝑥2 ← 𝑁 ′

2
; ret (𝑥1, 𝑥2)) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = let (𝑥,𝑦) = 𝑁1;𝑁2 and (𝑟 ← 𝑁 ′
1
; let (𝑥,𝑦) = 𝑟 ;𝑁 ′

2
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = true and𝑀 ′ = ret true
• 𝑀 = false and𝑀 ′ = ret false
• 𝑀 = if 𝑁1 then 𝑁2 else 𝑁3 and (𝑟 ← 𝑁 ′

1
; if 𝑟 then 𝑁 ′

2
else 𝑁 ′

3
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = let 𝑥 = 𝑁1;𝑁2 and (𝑥 ← 𝑁 ′
1
;𝑁 ′

2
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = ℧𝐴 and𝑀 ′ = ℧

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:47

• 𝑀 = inj𝐺 𝑁1 and (𝑥 ← 𝑁 ′
1
; injcase(𝐺) 𝑥) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = ⟨𝐴⊑⟩↕ 𝑁1 and JΣ; · ⊢ 𝐴⊑K↕ [𝑁 ′
1
] [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]

• 𝑀 = is(𝐺)? 𝑁1 and
(𝑟 ← 𝑀 ′; match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}) [𝛾𝑝] ↦→∗𝑏 𝑀 ′[𝛾𝑝]
• 𝑀 = seal𝜎𝑁1 and 𝑁 ′1 ↦→∗𝑏 𝑀 ′

• 𝑀 = unseal𝜎𝑁1 and 𝑁 ′1 ↦→∗𝑏 𝑀 ′

• 𝑀 = pack𝜈 (𝑋 � 𝐴, 𝑁1) and𝑀 ′ = ret pack(𝐴, thunk 𝜆(𝑐𝑋 : Case 𝐴).𝑁 ′
1
) as J𝐵K

• 𝑀 = pack𝜈 (𝑋 � 𝐴′, [𝐴⊑ ↕ ...], 𝑁1) and𝑀 ′ = ret pack(𝐴, thunk 𝜆(𝑐𝑋 : Case 𝐴).𝑀 ′𝑛) as J𝐵K
where

𝑀 ′
0

= 𝑁 ′
1

𝑀 ′𝑖+1 = JΣ;Δ ⊢ 𝐴⊑
𝑖+1K↕𝑖+1 [force (thunk (𝜆𝑐𝑋 : Case 𝐴′.J𝑀𝑖K)) 𝑐𝑋]

• 𝑀 = unpack (𝑋, 𝑥) = 𝑁1;𝑁2 and𝑀𝑢𝑛𝑝 ↦→∗𝑏 𝑀 ′ where

𝑀𝑢𝑛𝑝 = 𝑟 ← 𝑁 ′
1
; unpack (𝑋, 𝑓) = 𝑟 ;

newcase𝑋 𝑐𝑋 ;𝑥 ← (force 𝑓) 𝑐𝑋 ;𝑁 ′2
for some 𝑁1, ..., 𝑁𝑛 and 𝑁 ′

1
, ..., 𝑁 ′𝑛 where 𝑁𝑖 ⇝𝐶𝑇 𝑁 ′𝑖 .

Proof. By induction on the derivation of 𝑀 ⇝𝐶𝑇 𝑀 ′. If the derivation ends in a congruence

from the translation, the conclusion is immediate by reflexivity. We then have only the bind-

reduction rule to consider. In this case, we have𝑀 ′ = 𝑀 ′′[𝑉 ′/𝑥] where𝑀 ⇝𝐶𝑇 𝑥 ← ret 𝑉 ′;𝑀 ′′.
By the inductive hypothesis, we have the desired property for 𝑀 and 𝑥 ← ret 𝑉 ′;𝑀 ′′. Then,
since (𝑥 ← ret 𝑉 ′;𝑀 ′′) [𝛾𝑝] ↦→𝑏 𝑀 ′′[𝑉 ′/𝑥] [𝛾𝑝] = 𝑀 ′[𝛾𝑝], we have what we need to show by

transitivity. □

Lemma F.10. Let Σ; · ⊢ 𝑉 : 𝐴. If 𝑉 ⇝𝐶𝑇 𝑀 ′, then for any closing 𝛾 𝑀 ′[𝛾] ↦→∗
𝑏
ret 𝑉 ′[𝛾] and

𝑉 ⇝𝐶𝑇 ret 𝑉 ′ for some 𝑉 ′.

Proof. By induction on the derivation of𝑉 ⇝𝐶𝑇 𝑀 ′. All cases are immediate since𝑀 ′ = ret 𝑉 ′

except the following:

• (𝑉1,𝑉2) ⇝𝐶𝑇 𝑥1 ← 𝑁 ′
1
;𝑥2 ← 𝑁 ′

2
; ret (𝑥1, 𝑥2) where 𝑉1 ⇝𝐶𝑇 𝑁 ′

1
and 𝑉2 ⇝𝐶𝑇 𝑁 ′

2
: By the

inductive hypothesis for each of these sub-derivations, we have 𝑁 ′𝑖 [𝛾] ↦→∗𝑏 ret 𝑉 ′𝑖 [𝛾] and
𝑉𝑖 ⇝𝐶𝑇 ret 𝑉 ′𝑖 . Then, by definition, we have 𝑀 ′[𝛾] ↦→∗

𝑏
ret (𝑉1,𝑉2) [𝛾] and (𝑉1,𝑉2) ⇝𝐶𝑇

ret (𝑉1,𝑉2) as we were required to show.

□

Since our dynamic semantics for PolyC
𝜈
uses evaluation contexts, we need to be able to describe

their transformation into CBPVOSum.

Lemma F.11 (Translation context decomposition). If Σ; · ⊢ 𝑀1 : 𝐴 and Σ; · ⊢ 𝐸 [𝑀1] ⇝𝐶𝑇 𝑀 ′ :
𝐵, then for any closing 𝛾 , 𝑆 [𝑀 ′

1
] [𝛾] ↦→∗

𝑏
𝑀 ′[𝛾] for some 𝑆 and 𝑀 ′

1
such that Σ; · ⊢ 𝑀1 ⇝𝐶𝑇 𝑀 ′

1
: 𝐴

and 𝐸 ⇝𝐶𝑇 𝑆 .

Proof. By induction on the derivation of 𝐸 [𝑀1] ⇝𝐶𝑇 𝑀 ′. All cases are straightforward except

the bind rule. That case proceeds as follows: we have 𝐸 [𝑀1] ⇝𝐶𝑇 𝑥 ← ret 𝑉 ′
1
;𝑀 ′′ and, from the

inductive hypothesis, some 𝑆,𝑀 ′
1
such that 𝑆 [𝑀 ′

1
] [𝛾] ↦→∗

𝑏
(𝑥 ← ret 𝑉 ′

1
;𝑀 ′′) [𝛾], Σ; · ⊢ 𝑀1 ⇝𝐶𝑇

𝑀 ′
1
: 𝐴, and 𝐸 ⇝𝐶𝑇 𝑆 . It then suffices to show that 𝑆 [𝑀 ′

1
] [𝛾] ↦→∗

𝑏
𝑀 ′′[𝑉 ′

1
/𝑥] [𝛾], which we have by

definition. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:48 Max S. New, Dustin Jamner, and Amal Ahmed

Σ; Γ | • : 𝐴 ⊢ [] ⇝𝐶𝑇 • : 𝐴; ·

Σ; Γ | • : 𝐴 ⊢ 𝐸1 ⇝𝐶𝑇 𝑆 ′
1
: 𝐴1; Γ1 Σ; Γ, Γ1 ⊢ 𝑀2 ⇝

𝐶𝑇 𝑀 ′
2
: 𝐴2; Γ2

Σ; Γ | • : 𝐴 ⊢ (𝐸1, 𝑀2) ⇝𝐶𝑇 𝑥1 ← 𝑆 ′
1
;𝑥2 ← 𝑀 ′

2
; ret (𝑥1, 𝑥2) : 𝐴1 ×𝐴2; Γ1, Γ2

Σ; Γ ⊢ 𝑉1 ⇝𝐶𝑇 ret 𝑉 ′
1
: 𝐴1; Γ1 Σ; Γ, Γ1 | • : 𝐴 ⊢ 𝐸2 ⇝𝐶𝑇 𝑆 ′

2
: 𝐴2; Γ2

Σ; Γ | • : 𝐴 ⊢ (𝑉1, 𝐸2) ⇝𝐶𝑇 𝑥2 ← 𝑆 ′
2
; ret (𝑉 ′

1
, 𝑥2) : 𝐴1 ×𝐴2; Γ1, Γ2

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : B; Γ′ Σ; Γ, Γ′ ⊢ 𝑀1 ⇝
𝐶𝑇 𝑀 ′

1
: 𝐴; Γ′′ Σ; Γ, Γ′ ⊢ 𝑀2 ⇝

𝐶𝑇 𝑀 ′
2
: 𝐴; Γ′′

Σ; Γ | • : 𝐴′ ⊢ if 𝐸 then 𝑀1 else 𝑀2 ⇝
𝐶𝑇 𝑟 ← 𝑆 ′; if 𝑟 then 𝑀 ′

1
else 𝑀 ′

2
: 𝐴; Γ′, Γ′′

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴; Γ′ Σ; Γ, Γ′, 𝑥 : 𝐴 ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′

Σ; Γ | • : 𝐴′ ⊢ let 𝑥 = 𝐸;𝑁 ⇝𝐶𝑇 𝑥 ← 𝑆 ′;𝑁 ′ : 𝐵; Γ′, Γ′′

Σ; Γ | • : 𝐴 ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴1 ×𝐴2; Γ
′ Σ; Γ, Γ′, 𝑥 : 𝐴1, 𝑦 : 𝐴2 ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′

Σ; Γ | • : 𝐴 ⊢ let (𝑥,𝑦) = 𝐸;𝑁 ⇝𝐶𝑇 𝑟 ← 𝑆 ′; let (𝑥,𝑦) = 𝑟 ;𝑁 ′ : 𝐵; Γ′, Γ′′

Σ; Γ | • : 𝐴 ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : ∃𝜈𝑋 .𝐴; Γ′ Σ; Γ ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵; Γ′′ Γ, Γ′, Γ′′ ⊢ 𝐵

Σ; Γ | • : 𝐴 ⊢ unpack (𝑋, 𝑥) = 𝐸;𝑁 ⇝𝐶𝑇

©­­­­­«
𝑟 ← 𝑆 ′;
unpack (𝑋, 𝑓) = 𝑟 ;

newcase𝑋 𝑐𝑋 ;

𝑥 ← (force 𝑓) 𝑐𝑋 ;
𝑁 ′

ª®®®®®¬
: 𝐵; Γ′, Γ′′

Fig. 34. PolyC𝜈 evaluation context translation relation

Lemma F.12 (Translation context plug). If Σ; · ⊢ 𝑀1 ⇝𝐶𝑇 𝑀 ′
1
: 𝐴 and Σ; · | • : 𝐴 ⊢ 𝐸 ⇝𝐶𝑇

𝑆 : 𝐵, then Σ; · ⊢ 𝐸 [𝑀1] ⇝𝐶𝑇 𝑆 [𝑀 ′
1
] : 𝐵.

Proof. By induction on the derivation of 𝐸 ⇝𝐶𝑇 𝑆 . □

Lemma F.13 (Translation stack decomposition). If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑆 [𝑀 ′
1
] : 𝐴 then𝑀 = 𝐸 [𝑀1]

for some 𝐸 and𝑀1 such that 𝐸 ⇝𝐶𝑇 𝑆 and𝑀1 ⇝𝐶𝑇 𝑀 ′
1
.

Proof. By induction on the derivation of𝑀 ⇝𝐶𝑇 𝑆 [𝑀 ′
1
]. □

Lemma F.14 (Bind reduction preserves translation). If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′
1
: 𝐴 and𝑀 ′

1
[𝛾𝑝] ↦→𝑏

𝑀 ′
2
[𝛾𝑝] then Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′

2
: 𝐴

Proof. By the definition of ↦→𝑏 , we have that𝑀
′
1
= 𝑆 [𝑥 ← ret 𝑉 ′;𝑀 ′

3
] and𝑀 ′

2
= 𝑆 [𝑀 ′

3
[𝑉 ′/𝑥]]

for some 𝑆,𝑉 ′, 𝑀 ′
3
. By Lemma F.13 (stack decomposition), we have 𝑀 = 𝐸 [𝑀3], 𝐸 ⇝𝐶𝑇 𝑆 and

𝑀3 ⇝𝐶𝑇 𝑥 ← ret 𝑉 ′;𝑀 ′
3
. We then apply the bind reduction rule, so we have𝑀3 ⇝𝐶𝑇 𝑀 ′

3
[𝑉 ′/𝑥]

and conclude by Lemma F.12 (translation context plug). □

We would like all PolyC
𝜈
terms to make progress whenever their corresponding CBPVOSum

translation evaluates. However, this is not always the case since some PolyC
𝜈
terms step to terms

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:49

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : ∀𝜈𝑋 .𝐵; Γ′

Σ; Γ | • : 𝐴′ ⊢ 𝐸{𝑋 � 𝐴} ⇝𝐶𝑇 𝑓 ← 𝑆 ′; (force 𝑓) [𝐴] 𝑐𝑋 : 𝐵; Γ′, 𝑋 � 𝐴

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : ∀𝜈𝑋 .𝐵; Γ′

Σ; Γ | • : 𝐴′ ⊢ 𝐸{𝜎 � 𝐴} ⇝𝐶𝑇 𝑓 ← 𝑆 ′; (force 𝑓) [𝐴] 𝜎 : 𝐵 [𝜎/𝑋]; Γ′

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴→ 𝐵; Γ′ Σ; Γ, Γ′ ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐴; Γ′′

Σ; Γ | • : 𝐴′ ⊢ 𝐸 𝑁 ⇝𝐶𝑇 𝑓 ← 𝑆 ′;𝑎 ← 𝑁 ′; (force 𝑓) 𝑎 : 𝐵; Γ′, Γ′′

Σ; Γ ⊢ 𝑉 ⇝𝐶𝑇 ret 𝑉 ′ : 𝐴→ 𝐵; Γ′ Σ; Γ, Γ′ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴; Γ′′

Σ; Γ | • : 𝐴′ ⊢ 𝑉 𝐸 ⇝𝐶𝑇 𝑎 ← 𝑆 ′; (force 𝑉 ′) 𝑎 : 𝐵; Γ′, Γ′′

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴; Γ′ 𝑋 � 𝐴 ∈ Γ, Γ′

Σ; Γ | • : 𝐴′ ⊢ seal𝑋𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝑋 ; Γ′
Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝑋 ; Γ′ 𝑋 � 𝐴 ∈ Γ, Γ′

Σ; Γ | • : 𝐴′ ⊢ unseal𝑋𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴; Γ′

Σ; Γ | • : 𝐴′ ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐺 ; Γ′

Σ; Γ | • : 𝐴′ ⊢ inj𝐺 𝐸 ⇝𝐶𝑇 𝑥 ← 𝑆 ′; inj
case(𝐺) 𝑥 : ?; Γ′

Σ; Γ | • : 𝐵 ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴⊑
𝑙
; Γ′ Σ; Γ ⊢ 𝐴⊑

Σ; Γ | • : 𝐵 ⊢ ⟨𝐴⊑⟩

↢

𝐸 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝐴⊑K

↢

[𝑆 ′] : 𝐴⊑𝑟 ; Γ′

Σ; Γ | • : 𝐵 ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : 𝐴⊑𝑟 ; Γ
′ Σ; Γ ⊢ 𝐴⊑

Σ; Γ | • : 𝐵 ⊢ ⟨𝐴⊑⟩ ↞ 𝐸 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝐴⊑K ↞ [𝑆 ′] : 𝐴⊑𝑙 ; Γ
′

Σ; Γ | • : 𝐵 ⊢ 𝐸 ⇝𝐶𝑇 𝑆 ′ : ?; Γ′

Σ; Γ | • : 𝐵 ⊢ is(𝐺)? 𝐸 ⇝𝐶𝑇

(
𝑟 ← 𝑆 ′;
match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}

)
: B; Γ′

Fig. 35. PolyC𝜈 calculus evaluation context translation relation (Continued)

with identical translations. However, the number of such steps is limited by the syntactic size of

the term, defined below.

Definition F.15 (Type/Term size).

let 𝑥 = 𝑀 ;𝑁	= 1 +	𝑁 [𝑀/𝑥]
tag𝐺 (𝐴⊑)	= 2 +	𝐴⊑
pack𝜈 (𝑋 � 𝐴′, 𝑀)	= 2 +	𝑀
𝐶 (®𝐴⊑, ®𝑀)	= 1 +∑	

𝑀 ∈ ®𝑀 |𝑀 | +
∑

𝐴⊑∈ ®𝐴⊑ |𝐴
⊑ | otherwise

where 𝐶 denotes any syntactic term or precision judgment constructor.

Theorem F.16 (Simulation). If Σ; · ⊢ 𝑀1 : 𝐴; · and Σ; · ⊢ 𝑀1 ⇝𝐶𝑇 𝑀 ′
1
: 𝐴; · and Σ ⊲ 𝑀1 ↦→

Σ′ ⊲ 𝑀2, then Σ′; · ⊢ 𝑀2 ⇝𝐶𝑇 𝑀 ′
2
: 𝐴; · and either Σ𝑝 , JΣK ⊲ 𝑀 ′

1
[𝛾𝑝] ↦→+ Σ𝑝 , JΣ′K ⊲ 𝑀 ′

2
[𝛾𝑝] or

Σ𝑝 , JΣK ⊲𝑀 ′
1
[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ′K ⊲𝑀 ′2 [𝛾𝑝] and |𝑀1 | > |𝑀2 | for some𝑀 ′

2
.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:50 Max S. New, Dustin Jamner, and Amal Ahmed

Proof. Note that, by unique decomposition, we have some context 𝐸 and redex 𝑀3 such that

𝑀1 = 𝐸 [𝑀3] and either 𝑀3 = ℧𝐵 or 𝑀3 ↦→ 𝑀4 for some 𝑀4. By Lemma F.11 (translation context

decomposition), we have some 𝑆,𝑀 ′
3
such that 𝑆 [𝑀 ′

3
] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

1
[𝛾𝑝] where 𝐸 ⇝𝐶𝑇 𝑆 and𝑀3 ⇝𝐶𝑇

𝑀 ′
3
. We proceed by cases on Σ ⊲𝑀1 ↦→ Σ′ ⊲𝑀2. In each case, we first use Lemma F.9 (canonical

forms of the translation) to determine the form of𝑀 ′
3
.

• Error:

𝐸 [℧𝐵] ↦→ ℧𝑡𝑦𝑝𝑒 (Σ;·⊢𝐸 [℧𝐵]) where 𝐸 ≠ []

We have𝑀 ′
3
= ℧ and so 𝑆 [𝑀 ′

3
] [𝛾𝑝] ↦→ ℧. Since Σ; · ⊢ ℧𝑡𝑦𝑝𝑒 (Σ;·⊢𝑀1) ⇝

𝐶𝑇 ℧ : 𝑡𝑦𝑝𝑒 (Σ; · ⊢ 𝑀1),
we have what we were required to show.

• Instantiation:

𝐸 [(Λ𝑋 .𝑁1){𝜎 � 𝐵}] ↦→ 𝐸 [𝑁1 [𝜎/𝑋]]
Let 𝐵′ = JΣ; · ⊢ 𝐵K. We have

(𝑓 ← ret thunk Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑁 ′
1
; (force 𝑓) [𝐵′] 𝜎) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝]

for some𝑁 ′
1
such that𝑁1 ⇝𝐶𝑇 𝑁 ′

1
. Then, by Lemma F.8 (bind confluence), we have𝑀 ′

3
[𝛾𝑝] ↦→∗𝑏

((force thunk Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑁 ′
1
) [𝐵′] 𝜎) [𝛾𝑝] and so by the dynamic semantics, we

have the following:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [(force thunk Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑁 ′
1
) [𝐵′] 𝜎] [𝛾𝑝]

↦→ 𝑆 [(Λ𝑋 .𝜆(𝑐𝑋 : Case 𝑋).𝑁 ′
1
) [𝐵′] 𝜎] [𝛾𝑝]

↦→ 𝑆 [(𝜆(𝑐𝑋 : Case 𝐵′).𝑁 ′
1
[𝐵′/𝑋]) 𝜎] [𝛾𝑝]

↦→ 𝑆 [𝑁 ′
1
[𝐵′/𝑋] [𝜎/𝑐𝑋]] [𝛾𝑝]

Furthermore, by Lemma F.3, since 𝜎 : 𝐵 ∈ Σ and Σ;𝑋 ⊢ 𝑁1 ⇝𝐶𝑇 𝑁 ′
1
: 𝐴1, we have that

𝑁1 [𝜎/𝑋] ⇝𝐶𝑇 𝑁 ′
1
[𝐵′/𝑋] [𝜎/𝑐𝑋]. Then, by Lemma F.12 (translation context plug), we have

what we were required to show.

• Hiding:

Σ ⊲ 𝐸 [hide 𝑋 � 𝐵;𝑁] ↦→ Σ, 𝜎 : Case 𝐵 ⊲ 𝐸 [𝑁 [𝜎/𝑋]]
We have 𝑀 ′

3
= newcase𝐵 𝑐𝑋 ;𝑁

′
for some 𝑁 ′ such that 𝑁 ⇝𝐶𝑇 𝑁 ′. We then have the

following by the operational semantics:

JΣK⊲ 𝑆 [newcase𝐵 𝑐𝑋 ;𝑁
′] [𝛾𝑝]

↦→ JΣK, 𝜎 : Case 𝐵⊲ 𝑆 [𝑁 ′[𝜎/𝑐𝑋]] [𝛾𝑝]

Then by Lemma F.4, since Σ; · ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐴,𝑋 � 𝐵, we have 𝑁 [𝜎/𝑋] ⇝𝐶𝑇 𝑁 ′[𝜎/𝑐𝑋], so
we conclude by Lemma F.12 (translation context plug).

• Pack:

𝐸 [pack𝜈 (𝑋 � 𝐴1, 𝑁1)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴1, [], 𝑁1)]
Note that pack𝜈 (𝑋 � 𝐴1, 𝑁1) ⇝𝐶𝑇 𝑀 ′

3
iff pack𝜈 (𝑋 � 𝐴1, [], 𝑁1) ⇝𝐶𝑇 𝑀 ′

3
, so by Lemma F.12

(translation context plug), we may choose𝑀 ′
2
= 𝑀 ′

1
. Then, it suffices to show that |𝑀1 | > |𝑀2 |.

This holds since |pack𝜈 (𝑋 � 𝐴1, 𝑁1) | = 2 + |𝑁1 | > 1 + |𝑁1 | = |pack𝜈 (𝑋 � 𝐴1, [], 𝑁1) |.
• Unpack:

Σ⊲ 𝐸 [unpack (𝑋, 𝑥) = pack𝜈 (𝑋 � 𝐴1, [𝐴⊑ ↕ ...], 𝑁1);𝑁2]
↦→ Σ, 𝜎 : Case 𝐴1⊲ 𝐸 [let 𝑥 = ⟨𝐴⊑ [𝜎/𝑋]⟩↕ ... 𝑁1 [𝜎/𝑋];𝑁2 [𝜎/𝑋]]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:51

Let 𝐴′ = JΣ; · ⊢ ∃𝜈𝑋 .𝐵K and 𝐴′
1
= JΣ; · ⊢ 𝐴1K. We have

𝑟 ← ret pack(𝐴′
1
, thunk 𝜆(𝑐𝑋 : Case 𝐴′

1
).𝑁 ′𝑐𝑠𝑡 [𝛾𝑝]) as 𝐴′;

unpack (𝑋, 𝑓) = 𝑟 ;

newcase𝑋 𝑐𝑋 ;

𝑥 ← (force 𝑓) 𝑐𝑋 ;
𝑁 ′
2
[𝛾𝑝]

↦→∗
𝑏

𝑀 ′
3
[𝛾𝑝]

where 𝑁 ′𝑐𝑠𝑡 = JΣ;𝑋 � 𝐴1 ⊢ 𝐴⊑K ↕ [force (thunk (𝜆𝑐𝑋 : Case 𝐴′.(... 𝑁 ′
1
...))) 𝑐𝑋] and

𝑁𝑖 ⇝𝐶𝑇 𝑁 ′𝑖 . We then have the following by Lemma F.8 (bind confluence) and the operational

semantics:

𝑀 ′
3
[𝛾𝑝]

↦→∗
𝑏

unpack (𝑋, 𝑓) = pack(𝐴′
1
, thunk 𝜆(𝑐𝑋 : Case 𝐴′

1
).𝑁 ′𝑐𝑠𝑡 [𝛾𝑝]) as 𝐴′;

newcase𝑋 𝑐𝑋 ;

𝑥 ← (force 𝑓) 𝑐𝑋 ;
𝑁 ′
2
[𝛾𝑝]

↦→ JΣK⊲ newcase𝐴′
1

𝑐𝑋 ;

𝑥 ← (force thunk 𝜆(𝑐𝑋 : Case 𝐴′
1
).𝑁 ′𝑐𝑠𝑡 [𝛾𝑝]) 𝑐𝑋 ;

𝑁 ′
2
[𝛾𝑝] [𝐴′1/𝑋] [thunk 𝜆(𝑐𝑋 : Case 𝐴′

1
).𝑁 ′𝑐𝑠𝑡 [𝛾𝑝]/𝑓]

= JΣK⊲ newcase𝐴′
1

𝑐𝑋 ;

𝑥 ← (force thunk 𝜆(𝑐𝑋 : Case 𝐴′
1
).𝑁 ′𝑐𝑠𝑡 [𝛾𝑝]) 𝑐𝑋 ;

𝑁 ′
2
[𝛾𝑝] [𝐴′1/𝑋]

↦→∗ JΣK, 𝜎 : 𝐴′
1
⊲ 𝑥 ← 𝑁 ′𝑐𝑠𝑡 [𝛾𝑝] [𝜎/𝑐𝑋];

𝑁 ′
2
[𝛾𝑝] [𝐴′1/𝑋] [𝜎/𝑐𝑋]

↦→∗ JΣK, 𝜎 : 𝐴′
1
⊲ 𝑥 ← JΣ;𝑋 � 𝐴1 ⊢ 𝐴⊑K↕ [... 𝑁 ′1 ...] [𝛾𝑝] [𝜎/𝑐𝑋];

𝑁 ′
2
[𝛾𝑝] [𝐴′1/𝑋] [𝜎/𝑐𝑋]

Note that, since Σ;𝑋 � 𝐴′
1
⊢ 𝑁1 ⇝𝐶𝑇 𝑁 ′

1
, we have Σ;𝑋 � 𝐴′

1
⊢ ⟨𝐴⊑ [𝜎/𝑋]⟩↕ ... 𝑁1 ⇝𝐶𝑇

JΣ;𝑋 � 𝐴1 ⊢ 𝐴⊑K↕ [... 𝑁 ′1 ...] by the definition of the translation relation for casts. Further-

more, by Lemma F.4, since 𝜎 : 𝐴1 ∈ Σ, we have ⟨𝐴⊑ [𝜎/𝑋]⟩↕ ... 𝑁1 [𝜎/𝑋] ⇝𝐶𝑇 JΣ;𝑋 � 𝐴1 ⊢
𝐴⊑K↕ [... 𝑁 ′

1
...] [𝜎/𝑐𝑋] and by Lemma F.3, since 𝜎 : 𝐴1 ∈ Σ and Σ;𝑋 ⊢ 𝑁2 ⇝𝐶𝑇 𝑁 ′

2
: 𝐴2, we

have 𝑁2 [𝜎/𝑋] ⇝𝐶𝑇 𝑁 ′
2
[𝐴′

1
/𝑋] [𝜎/𝑐𝑋]. Thus, we have

let 𝑥 = ⟨𝐴⊑ [𝜎/𝑋]⟩↕ ... 𝑁1 [𝜎/𝑋];𝑁2 [𝜎/𝑋] ⇝𝐶𝑇 𝑥 ← JΣ;𝑋 � 𝐴1 ⊢ 𝐴⊑K↕ [... 𝑁 ′1 ...] [𝜎/𝑐𝑋];𝑁 ′2 [𝐴′1/𝑋] [𝜎/𝑐𝑋]

so we conclude by Lemma F.12 (translation context plug).

• function application

𝐸 [(𝜆𝑥 : 𝐴.𝑁1) 𝑉] ↦→ 𝐸 [𝑁1 [𝑉 /𝑥]]

We have (𝑓 ← ret thunk 𝜆𝑥 : JΣ; · ⊢ 𝐴K.𝑁 ′
1
;𝑎 ← 𝑁 ′

2
; force 𝑓 𝑎) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where

𝑁𝑖 ⇝𝐶𝑇 𝑁 ′𝑖 . By Lemma F.10 (value translation), we have some 𝑉 ′ such that 𝑁 ′
2
[𝛾𝑝] ↦→∗𝑏

ret 𝑉 ′[𝛾𝑝] and 𝑉 ⇝𝐶𝑇 ret 𝑉 ′. Then, by Lemma F.8 (bind confluence), we have𝑀 ′
3
[𝛾𝑝] ↦→∗𝑏

(force (thunk 𝜆𝑥 : JΣ; · ⊢ 𝐴K.𝑁 ′
1
) 𝑉 ′) [𝛾𝑝]. Then𝑀 ′

3
[𝛾𝑝] ↦→+ 𝑁 ′1 [𝑉 ′/𝑥] [𝛾𝑝] and by Lemma

F.5 (value substitution translation), we have Σ; · ⊢ 𝑁1 [𝑉 /𝑥] ⇝𝐶𝑇 𝑁 ′
1
[𝑉 ′/𝑥] : 𝐵. Thus, we

conclude by Lemma F.12 (translation context plug).

• If true:

𝐸 [if true then 𝑁1 else 𝑁2] ↦→ 𝐸 [𝑁1]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:52 Max S. New, Dustin Jamner, and Amal Ahmed

We have (𝑟 ← ret true; if 𝑟 then 𝑁 ′
1
else 𝑁 ′

2
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝]. where 𝑁𝑖 ⇝𝐶𝑇 𝑁 ′𝑖 . We

then have the following by Lemma F.7 (bind normalization) and the operational semantics:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [if true then 𝑁 ′
1
else 𝑁 ′

2
] [𝛾𝑝]

↦→ 𝑆 [𝑁 ′
1
] [𝛾𝑝]

We then conclude by Lemma F.12 (translation context plug) since 𝑁1 ⇝𝐶𝑇 𝑁 ′
1
.

• If false:

if false then 𝑁1 else 𝑁2 ↦→ 𝑀2

We have (𝑟 ← ret false; if 𝑟 then 𝑁 ′
1
else 𝑁 ′

2
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝]. where 𝑁𝑖 ⇝𝐶𝑇 𝑁 ′𝑖 . We

then have the following by Lemma F.7 (bind normalization) and the operational semantics:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [if false then 𝑁 ′
1
else 𝑁 ′

2
] [𝛾𝑝]

↦→ 𝑆 [𝑁 ′
2
] [𝛾𝑝]

We then conclude by Lemma F.12 (translation context plug) since 𝑁2 ⇝𝐶𝑇 𝑁 ′
2
.

• Pair elimination:

let (𝑥,𝑦) = (𝑉1,𝑉2);𝑁 ↦→ 𝑁 [𝑉1/𝑥] [𝑉2/𝑦]
We have (𝑟 ← 𝑀 ′′; let (𝑥,𝑦) = 𝑟 ;𝑁 ′) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where (𝑉1,𝑉2) ⇝𝐶𝑇 𝑀 ′′ and

𝑁 ⇝𝐶𝑇 𝑁 ′. Thus, by Lemma F.10 (value translation), we further have𝑀 ′′[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝]
and (𝑉1,𝑉2) ⇝𝐶𝑇 ret 𝑉 ′ for some 𝑉 ′. Note that by the type of 𝑉 ′, we have 𝑉 ′ = (𝑉 ′

1
,𝑉 ′

2
) for

some 𝑉 ′
1
,𝑉 ′

2
.

We then have the following by Lemma F.8 (bind confluence) and the operational semantics:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [let (𝑥,𝑦) = (𝑉 ′
1
,𝑉 ′

2
);𝑁 ′] [𝛾𝑝]

↦→ 𝑆 [𝑁 ′[𝑉 ′
1
/𝑥] [𝑉 ′

2
/𝑦]] [𝛾𝑝]

By Lemma F.5, since 𝑉𝑖 ⇝𝐶𝑇 ret 𝑉 ′𝑖 , we have 𝑁 [𝑉1/𝑥] [𝑉2/𝑦] ⇝𝐶𝑇 𝑁 ′[𝑉 ′
1
/𝑥] [𝑉 ′

2
/𝑦]. We

then conclude by Lemma F.12 (translation context plug).

• Let:

let 𝑥 = 𝑉 ;𝑁2 ↦→ 𝑁2 [𝑉 /𝑥]
We have (𝑥 ← 𝑁 ′

1
;𝑁 ′

2
) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where𝑉 ⇝𝐶𝑇 𝑁 ′

1
and 𝑁2 ⇝𝐶𝑇 𝑁 ′

2
. Then, by Lemma

F.10 (value translation reduction), we have 𝑁 ′
1
[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝] for some 𝑉 ′ such that

𝑉 ⇝𝐶𝑇 ret 𝑉 ′. Thus, we have the following reduction:

𝑆 [𝑥 ← 𝑁 ′
1
;𝑁 ′

2
] [𝛾𝑝] ↦→∗𝑏 𝑆 [𝑁 ′

2
[𝑉 ′/𝑥]] [𝛾𝑝]

By Lemma F.7 (bind normalization) there exists a unique𝑀 ′
4
such that

𝑆 [𝑥 ← 𝑁 ′
1
;𝑁 ′

2
] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝]

and𝑀 ′
4
[𝛾𝑝] does not take a bind reduction. Then, by Lemma F.8 (bind reduction confluence),

we have𝑀 ′
1
[𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝] and 𝑆 [𝑁 ′2 [𝑉 ′/𝑥]] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝].

Note that, by Lemma F.5 (value substitution translation), we have 𝑁2 [𝑉 /𝑥] ⇝𝐶𝑇 𝑁 ′
2
[𝑉 ′/𝑥]

and thus by Lemma F.12 (translation context plug), we have 𝐸 [𝑁2 [𝑉 /𝑥]] ⇝𝐶𝑇 𝑆 [𝑁 ′
2
[𝑉 ′/𝑥]].

Then, by Lemma F.14 (bind reduction preserves translation), we have 𝐸 [𝑁2 [𝑉 /𝑥]] ⇝𝐶𝑇 𝑀 ′
4
.

It finally suffices to show that |𝑀1 | > |𝑀2 |, which we have since by definition |𝑀3 | =
1 + |𝑁2 [𝑉 /𝑥] |.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:53

• Unseal:

𝐸 [unseal𝜎seal𝜎𝑉] ↦→ 𝐸 [𝑉]
We have 𝑁 ′[𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where 𝑉 ⇝𝐶𝑇 𝑁 ′ and so 𝑆 [𝑁 ′] [𝛾𝑝] ↦→∗𝑏 𝑆 [𝑀 ′

3
] [𝛾𝑝]. By Lemma

F.7 (bind normalization) there exists a unique 𝑀 ′
4
such that 𝑆 [𝑁 ′] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝] and

𝑀 ′
4
[𝛾𝑝] does not take a bind reduction. Then, by Lemma F.8 (bind confluence), we have

𝑆 [𝑀 ′
3
] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝]. Since, by Lemmas F.12 (translation context plug) and F.14 (bind

reduction preserves translation), we have 𝐸 [𝑉] ⇝𝐶𝑇 𝑀 ′
4
, it suffices to show that |𝑀1 | > |𝑀2 |.

This holds since by definition |𝑀3 | = 1 + 1 + |𝑉 |.
• Atomic cast:

𝐸 [⟨𝐴⊑⟩↕ 𝑉] ↦→ 𝐸 [𝑉] where 𝐴 ∈ {B, 𝛼, ?}
The reasoning for this case is analogous to the prior case.

• Pair cast:

𝐸 [⟨𝐴⊑
1
×𝐴⊑

2
⟩↕ (𝑉1,𝑉2)] ↦→ 𝐸 [(⟨𝐴⊑

1
⟩↕ 𝑉1, ⟨𝐴⊑2 ⟩↕ 𝑉2)]

We have JΣ; · ⊢ 𝐴⊑
1
×𝐴⊑

2
K↕ [𝑥1 ← 𝑁 ′

1
;𝑥2 ← 𝑁 ′

2
; ret (𝑥1, 𝑥2)] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where 𝑉𝑖 ⇝𝐶𝑇

𝑁 ′𝑖 . Then, by Lemma F.10 (value translation reduction), we have 𝑁 ′𝑖 [𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′𝑖 [𝛾𝑝] for
some 𝑉 ′

1
,𝑉 ′

2
such that 𝑉𝑖 ⇝𝐶𝑇 ret 𝑉 ′𝑖 . Thus, we have the following reductions:

JΣ; · ⊢ 𝐴⊑
1
×𝐴⊑

2
K↕ [𝑥1 ← 𝑁 ′

1
;𝑥2 ← 𝑁 ′

2
; ret (𝑥1, 𝑥2)] [𝛾𝑝]

↦→∗
𝑏

JΣ; · ⊢ 𝐴⊑
1
×𝐴⊑

2
K↕ [ret (𝑉 ′

1
,𝑉 ′

2
)] [𝛾𝑝]

↦→∗
𝑏

let (𝑥1, 𝑥2) = (𝑉 ′1 ,𝑉 ′2) [𝛾𝑝];
𝑥 ′
1
← JΣ; Γ ⊢ 𝐴⊑

1
K↕ [ret 𝑥1] [𝛾𝑝];

𝑥 ′
2
← JΣ; Γ ⊢ 𝐴⊑

2
K↕ [ret 𝑥2] [𝛾𝑝];

ret (𝑥 ′
1
, 𝑥 ′

2
)

Let𝑀 ′
4
[𝛾𝑝] be the latter term. By Lemma F.8 (bind confluence), we have𝑀 ′

3
[𝛾𝑝] ↦→∗𝑏 𝑀 ′

4
[𝛾𝑝].

Thus, we have this last reduction:

𝑆 [𝑀 ′
3
] [𝛾𝑝]

↦→∗
𝑏

𝑆 [𝑀 ′
4
] [𝛾𝑝]

↦→ 𝑆 [𝑥 ′
1
← JΣ; Γ ⊢ 𝐴⊑

1
K↕ [ret 𝑉 ′

1
];

𝑥 ′
2
← JΣ; Γ ⊢ 𝐴⊑

2
K↕ [ret 𝑉 ′

2
];

ret (𝑥 ′
1
, 𝑥 ′

2
)] [𝛾𝑝]

And, since𝑉𝑖 ⇝𝐶𝑇 ret 𝑉 ′𝑖 , we have that this result is related to𝑀2 by Lemma F.12 (translation

context plug), so we conclude.

• Function cast:

𝐸 [(⟨𝐴⊑
1
→ 𝐴⊑

2
⟩↕ 𝑉1) 𝑉2] ↦→ 𝐸 [⟨𝐴⊑

2
⟩↕ (𝑉1 ⟨𝐴⊑1 ⟩↕

− 𝑉2)]
We have (𝑓 ← JΣ; · ⊢ 𝐴⊑

1
→ 𝐴⊑

2
K↕ [𝑁 ′

1
];𝑎 ← 𝑁 ′

2
; force 𝑓 𝑎) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where 𝑉𝑖 ⇝𝐶𝑇

𝑁 ′𝑖 . Then, by Lemma F.10 (value translation reduction), we have 𝑁 ′𝑖 [𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′𝑖 [𝛾𝑝] for
some 𝑉 ′

1
,𝑉 ′

2
such that 𝑉𝑖 ⇝𝐶𝑇 ret 𝑉 ′𝑖 . Thus, we have the following reduction:

(𝑓 ← JΣ; · ⊢ 𝐴⊑
1
→ 𝐴⊑

2
K↕ [𝑁 ′

1
];𝑎 ← 𝑁 ′

2
; force 𝑓 𝑎) [𝛾𝑝]

↦→∗
𝑏
(force (thunk 𝜆𝑦 : JΣ; Γ ⊢ 𝐴⊑

1𝑙
K.

𝑎 ← JΣ; Γ ⊢ 𝐴⊑
1
K↕− [ret 𝑦]; JΣ; Γ ⊢ 𝐴⊑

2
K↕ [force 𝑉 ′

1
𝑎]) 𝑉 ′

2
) [𝛾𝑝]

↦→+ (𝑎 ← JΣ; Γ ⊢ 𝐴⊑
1
K↕− [ret 𝑉 ′

2
]; JΣ; Γ ⊢ 𝐴⊑

2
K↕ [force 𝑉 ′

1
𝑎]) [𝛾𝑝]

Let 𝑀 ′
4
[𝛾𝑝] be the latter term. Then we have ⟨𝐴⊑

2
⟩↕ (𝑉1 ⟨𝐴⊑

1
⟩↕− 𝑉2 ⇝𝐶𝑇 𝑀 ′

4
since 𝑉𝑖 ⇝𝐶𝑇

ret 𝑉 ′𝑖 , applying the bind reduction rule to eliminate the first bind. We then conclude by

Lemma F.12 (translation context plug).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:54 Max S. New, Dustin Jamner, and Amal Ahmed

• Universal cast:

𝐸 [(⟨∀𝜈𝑋 .𝐴⊑⟩↕ Λ𝑋 .𝑁){𝜎 � 𝐴1}] ↦→ 𝐸 [⟨𝐴⊑ [𝜎/𝑋]⟩↕ 𝑁 [𝜎/𝑋]]

Let 𝐴′
1
= JΣ; · ⊢ 𝐴1K. We have

(𝑥 ← JΣ; Γ ⊢ ∀𝜈𝑋 .𝐴⊑K↕ [ret thunk Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑁 ′]; force 𝑥 [𝐴′
1
] 𝜎) [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝]

where 𝑁 ⇝𝐶𝑇 𝑁 ′. Let 𝑉 ′ = thunk Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑁 ′. We then have the following

reduction:

(𝑥 ← JΣ; · ⊢ ∀𝜈𝑋 .𝐴⊑K↕ [ret 𝑉 ′]; force 𝑥 [𝐴′
1
] 𝜎) [𝛾𝑝]

↦→∗
𝑏
(force (thunk Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .JΣ;𝑋 ⊢ 𝐴⊑K↕ [force 𝑉 ′ [𝑋] 𝑐𝑋]) [𝐴′1] 𝜎) [𝛾𝑝]

Then, by Lemma F.8 (bind confluence) and the operational semantics, we have

𝑆 [𝑀 ′
3
] [𝛾𝑝]

↦→∗
𝑏

𝑆 [force (thunk Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .JΣ;𝑋 ⊢ 𝐴⊑K↕ [force 𝑉 ′ [𝑋] 𝑐𝑋]) [𝐴′1] 𝜎] [𝛾𝑝]
↦→+ 𝑆 [(JΣ;𝑋 ⊢ 𝐴⊑K↕ [𝐴′

1
/𝑋] [𝜎/𝑐𝑋]) [force 𝑉 ′ [𝐴′

1
] 𝜎]] [𝛾𝑝]

↦→+ 𝑆 [(JΣ;𝑋 ⊢ 𝐴⊑K↕ [𝐴′
1
/𝑋] [𝜎/𝑐𝑋]) [𝑁 ′[𝐴′1/𝑋] [𝜎/𝑐𝑋]]] [𝛾𝑝]

= 𝑆 [JΣ;𝑋 ⊢ 𝐴⊑K↕ [𝑁 ′] [𝐴′
1
/𝑋] [𝜎/𝑐𝑋]] [𝛾𝑝]

Let 𝑀 ′
2
[𝛾𝑝] be the latter term. Then, by Lemma F.12 (translation context plug), and since

⟨𝐴⊑ [𝜎/𝑋]⟩↕ 𝑁 [𝜎/𝑋] ⇝𝐶𝑇 JΣ;𝑋 ⊢ 𝐴⊑K↕ [𝑁 ′] [𝐴′
1
/𝑋] [𝜎/𝑐𝑋], which we have by Lemma F.3

(type variable translation substitution) because Σ;𝑋 ⊢ 𝑁 ⇝𝐶𝑇 𝑁 ′ : 𝐵 and 𝜎 : 𝐴1 ∈ Σ, we
may conclude.

• tag upcast:

𝐸 [⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉] ↦→ 𝐸 [inj𝐺 ⟨𝐴⊑⟩

↢

𝑉]
We have JΣ; · ⊢ tag𝐺 (𝐴⊑)K

↢

[𝑁 ′] [𝛾𝑝] ↦→∗𝑏 𝑀 ′
3
[𝛾𝑝] where 𝑉 ⇝𝐶𝑇 𝑁 ′. Then, by Lemma F.10

(value translation), we have some 𝑉 ′ such that 𝑁 ′[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝] and 𝑉 ⇝𝐶𝑇 ret 𝑉 ′.
Thus, we have the following reduction:

JΣ; · ⊢ tag𝐺 (𝐴⊑)K

↢

[𝑁 ′] [𝛾𝑝]
↦→∗

𝑏
JΣ; · ⊢ tag𝐺 (𝐴⊑)K

↢

[ret 𝑉 ′] [𝛾𝑝]
= (𝑟 ← JΣ; · ⊢ 𝐴⊑K

↢

[ret 𝑉 ′]; inj
case(𝐺) 𝑟) [𝛾𝑝]

Let the latter term be𝑀 ′
4
[𝛾𝑝]. By Lemma F.7 (bind normalization) there must exist some𝑀 ′

5

such that 𝑆 [𝑀 ′
4
] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

5
[𝛾𝑝] and𝑀 ′5 [𝛾𝑝] does not take a bind reduction. Then, by Lemma

F.8 (bind confluence), we have that 𝑀 ′
1
[𝛾𝑝] ↦→∗𝑏 𝑀 ′

5
[𝛾𝑝]. Note that 𝐸 [inj𝐺 ⟨𝐴⊑⟩

↢

𝑉] ⇝𝐶𝑇

𝑆 [𝑀 ′
4
] by Lemma F.12 (translation context plug). Then, by Lemma F.14 (bind reduction

preserves translation), we have 𝐸 [inj𝐺 ⟨𝐴⊑⟩

↢

𝑉] ⇝𝐶𝑇 𝑀 ′
5
. Thus, it suffices to show that

|⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉 | > |inj𝐺 ⟨𝐴⊑⟩

↢

𝑉 |, which we have since |⟨tag𝐺 (𝐴⊑)⟩

↢

𝑉 | = 1+2+|𝐴⊑ |+ |𝑉 |.
• tag downcast:

𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐺 𝑉] ↦→ 𝐸 [⟨𝐴⊑⟩ ↞ 𝑉]
We have JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [𝑟 ← 𝑁 ′; ret inj

case(𝐺) 𝑟] [𝛾𝑝] ↦→∗𝑏 𝑀 ′
3
[𝛾𝑝] where 𝑉 ⇝𝐶𝑇 𝑁 ′.

Then, by Lemma F.10 (value translation), we have some 𝑉 ′ such that 𝑁 ′[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝]
and 𝑉 ⇝𝐶𝑇 ret 𝑉 ′. Thus, we have the following reduction:

JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [𝑟 ← 𝑁 ′; ret inj
case(𝐺) 𝑟] [𝛾𝑝]

↦→∗
𝑏

JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [ret inj
case(𝐺) 𝑉

′] [𝛾𝑝]
↦→∗

𝑏
match case(𝐺) with (inj

case(𝐺) 𝑉
′){inj 𝑦.JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑦] | ℧}[𝛾𝑝]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:55

Let 𝑀 ′
4
[𝛾𝑝] be the latter term. Then, by Lemma F.8 (bind confluence) and the operational

semantics, we have the following reductions:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [match case(𝐺) with (inj
case(𝐺) 𝑉

′){inj 𝑦.JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑦] | ℧}] [𝛾𝑝]
↦→ 𝑆 [JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑉 ′]] [𝛾𝑝]

Then, since 𝑉 ⇝𝐶𝑇 ret 𝑉 ′, we have ⟨𝐴⊑⟩ ↞ 𝑉 ⇝𝐶𝑇 JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑉 ′] [𝛾𝑝] and we may

conclude by Lemma F.12 (translation context plug).

• tag downcast error:

𝐸 [⟨tag𝐺 (𝐴⊑)⟩ ↞ inj𝐻 𝑉] ↦→ 𝐸 [℧𝐵] where 𝐺 ≠ 𝐻

We have JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [𝑟 ← 𝑁 ′; ret inj
case(𝐻) 𝑟] [𝛾𝑝] ↦→∗𝑏 𝑀 ′

3
[𝛾𝑝] where 𝑉 ⇝𝐶𝑇 𝑁 ′.

Then, by Lemma F.10 (value translation), we have some 𝑉 ′ such that 𝑁 ′[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝]
and 𝑉 ⇝𝐶𝑇 ret 𝑉 ′. Thus, we have the following reduction:

JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [𝑟 ← 𝑁 ′; ret inj
case(𝐻) 𝑟] [𝛾𝑝]

↦→∗
𝑏

JΣ;Δ ⊢ tag𝐺 (𝐴⊑)K ↞ [ret inj
case(𝐻) 𝑉

′] [𝛾𝑝]
↦→∗

𝑏
match case(𝐺) with (inj

case(𝐻) 𝑉
′){inj 𝑦.JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑦] | ℧}[𝛾𝑝]

Let 𝑀 ′
4
[𝛾𝑝] be the latter term. Then, by Lemma F.8 (bind confluence) and the operational

semantics, we have the following reductions:

𝑀 ′
1
[𝛾𝑝]

↦→∗
𝑏

𝑆 [match case(𝐺) with (inj
case(𝐻) 𝑉

′){inj 𝑦.JΣ; Γ ⊢ 𝐴⊑K ↞ [ret 𝑦] | ℧}] [𝛾𝑝]
↦→ 𝑆 [℧] [𝛾𝑝]

Then, since ℧𝐵 ⇝𝐶𝑇 ℧, we may conclude by Lemma F.12 (translation context plug).

• Existential upcast:

𝐸 [⟨∃𝜈𝑋 .𝐴⊑
1
⟩

↢

pack𝜈 (𝑋 � 𝐴, [𝐴⊑
2
↕ ...], 𝑁1)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴, [𝐴⊑

1

↢

, 𝐴⊑
2
↕ ...], 𝑁1)]

For some 𝑁 ′
1
such that 𝑁1 ⇝𝐶𝑇 𝑁 ′

1
, we have

JΣ; · ⊢ ∃𝜈𝑋 .𝐴⊑
1
K

↢

[ret pack(𝐴′, thunk 𝜆𝑐𝑋 : Case 𝐴′.𝑁 ′𝑐𝑠𝑡) as JΣ; · ⊢ ∃𝜈𝑋 .𝐴⊑
1𝑟 K] [𝛾𝑝] ↦→

∗
𝑏
𝑀 ′

3
[𝛾𝑝]

where 𝑁𝑐𝑠𝑡 = JΣ;𝑋 � 𝐴′ ⊢ 𝐴⊑
2
K ↕ [force (thunk (𝜆𝑐𝑋 : Case 𝐴′.(... 𝑁 ′

1
...))) 𝑐𝑋] and

𝐴′ = JΣ; · ⊢ 𝐴K. By Lemma F.8 (bind confluence), we then have the following reductions:

𝑀 ′
3
[𝛾𝑝]

↦→∗
𝑏

unpack (𝑌, 𝑓) = pack(𝐴′, thunk 𝜆𝑐𝑋 : Case 𝐴′.𝑁 ′𝑐𝑠𝑡) as J∃𝜈𝑋 .𝐴⊑
1𝑙
K;

ret pack(𝑌, thunk 𝜆𝑐𝑋 : Case 𝑌 .JΣ;𝑌,𝑋 � 𝑌 ⊢ 𝐴⊑
1
K

↢

[force 𝑓 𝑐𝑋]) as J∃𝜈𝑋 .𝐴⊑
1𝑟

K[𝛾𝑝]
↦→+ ret pack(𝐴′, thunk 𝜆𝑐𝑋 : Case 𝐴′.

JΣ;𝑋 � 𝐴′ ⊢ 𝐴⊑
1
K

↢

[force (thunk 𝜆𝑐𝑋 : Case 𝐴′.𝑁 ′𝑐𝑠𝑡) 𝑐𝑋]) as J∃𝜈𝑋 .𝐴⊑
1𝑟

K[𝛾𝑝]

Let the above term be 𝑀 ′
4
[𝛾𝑝]. We know that pack𝜈 (𝑋 � 𝐴′, [𝐴⊑

1

↢

, 𝐴⊑
2
↕ ...], 𝑁1) ⇝𝐶𝑇 𝑀 ′

4

since 𝑁1 ⇝𝐶𝑇 𝑁 ′
1
, so we conclude by Lemma F.12 (translation context plug).

• Existential downcast:

𝐸 [⟨∃𝜈𝑋 .𝐴⊑
1
⟩ ↞ pack𝜈 (𝑋 � 𝐴, [𝐴⊑

2
↕ ...], 𝑁1)] ↦→ 𝐸 [pack𝜈 (𝑋 � 𝐴, [𝐴⊑

1 ↞, 𝐴
⊑
2
↕ ...], 𝑁1)]

This case proceeds analogously, replacing 𝐴⊑
1𝑟
with 𝐴⊑

1𝑙
and vice versa.

• Tag check true:

𝐸 [is(𝐺)? inj𝐺 𝑉] ↦→ 𝐸 [true]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:56 Max S. New, Dustin Jamner, and Amal Ahmed

We have

(𝑟 ← 𝑥 ← 𝑁 ′; ret inj
case(𝐺) 𝑥 ;

match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}) [𝛾𝑝]
↦→∗

𝑏
𝑀 ′

3
[𝛾𝑝]

where 𝑉 ⇝𝐶𝑇 𝑁 ′. Then, by Lemma F.10 (value translation), we have some 𝑉 ′ such that

𝑁 ′[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝] and 𝑉 ⇝𝐶𝑇 ret 𝑉 ′. Thus, we have the following reduction:

(𝑟 ← 𝑥 ← 𝑁 ′; ret inj
case(𝐺) 𝑥 ;

match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}) [𝛾𝑝]
↦→∗

𝑏
(𝑟 ← ret inj

case(𝐺) 𝑉
′
;

match case(𝐺) with 𝑟 {inj 𝑦.ret true | ret false}) [𝛾𝑝]
↦→∗

𝑏
(match case(𝐺) with (inj

case(𝐺) 𝑉
′){inj 𝑦.ret true | ret false}) [𝛾𝑝]

Then, by Lemma F.8 (bind confluence), we have

𝑀 ′
3

↦→∗
𝑏
(match case(𝐺) with (inj

case(𝐺) 𝑉
′){inj 𝑦.ret true | ret false}) [𝛾𝑝]

↦→ ret true

Since true⇝𝐶𝑇 ret true, we conclude by Lemma F.12 (translation context plug).

• Tag check false:

𝐸 [is(𝐺)? inj𝐻 𝑉] ↦→ 𝐸 [false] where 𝐺 ≠ 𝐻

This case is analogous to the former except that since𝐺 ≠ 𝐻 , the translation produces false
and since false⇝𝐶𝑇 false, we conclude.

□

Lemma F.17 (Multi-step simulation). If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴 and Σ ⊲ 𝑀 ↦→∗ Σ1 ⊲ 𝑀1, then
𝑀1 ⇝𝐶𝑇 𝑀 ′

1
and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ1K ⊲𝑀 ′1 [𝛾𝑝] for some𝑀 ′

1
.

Proof. We proceed by induction on the number of steps 𝑛 in Σ ⊲𝑀 ↦→∗ Σ1 ⊲𝑀1.

• 𝑛 = 0: Then𝑀1 = 𝑀 , so we have𝑀1 ⇝𝐶𝑇 𝑀 ′ and𝑀 ′[𝛾𝑝] ↦→∗ 𝑀 ′[𝛾𝑝] by reflexivity.

• 𝑛 = 𝑛′ + 1: Then there exists some Σ2, 𝑀2 such that Σ ⊲𝑀 ↦→∗ Σ2 ⊲𝑀2 ↦→ Σ1 ⊲𝑀1. By the

inductive hypothesis for 𝑛′, we then have some𝑀 ′
2
such that𝑀2 ⇝𝐶𝑇 𝑀 ′

2
and

Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ2K ⊲𝑀 ′2 [𝛾𝑝]

Finally, by Theorem F.16 (simulation), since 𝑀2 ⇝𝐶𝑇 𝑀 ′
2
and Σ2 ⊲ 𝑀2 ↦→ Σ1 ⊲ 𝑀1, there

exists 𝑀 ′
1
such that 𝑀1 ⇝𝐶𝑇 𝑀 ′

1
and Σ𝑝 , JΣ2K ⊲ 𝑀 ′2 [𝛾𝑝] ↦→∗ Σ𝑝 , JΣ1K ⊲ 𝑀 ′1 [𝛾𝑝]. Therefore,

Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ1K ⊲𝑀 ′1 [𝛾𝑝] as we were required to show.

□

F.1 Adequacy
Now that we have established the multi-step simulation theorem, we can prove our desired adequacy

theorems that say that we can tell if a PolyC
𝜈
term terminates, errors or diverges by looking at its

translation to CBPVOSum. They follow by our simulation theorem and progress for PolyC
𝜈
.

Corollary F.18. If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴, and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ⇑, then Σ ⊲𝑀 ⇑.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:57

Proof. Assume the opposite, that𝑀 ↦→∗ 𝑀1 and𝑀1 does not take a step. By Lemma F.17 (multi-

step simulation), we have some𝑀 ′
1
such that𝑀1 ⇝𝐶𝑇 𝑀 ′

1
and𝑀 ′[𝛾𝑝] ↦→∗ 𝑀 ′1 [𝛾𝑝]. Then, by Lemma

C.3 (progress),𝑀1 = ℧ or𝑀1 = 𝑉 for some value 𝑉 so we have two cases to consider:

• 𝑀1 = ℧: By Lemma F.9 (canonical forms),𝑀 ′
1
= ℧ and we have𝑀 ′[𝛾𝑝] ↦→∗ ℧, but𝑀 ′[𝛾𝑝] ⇑,

so we have a contradiction.

• 𝑀1 = 𝑉 : By Lemma F.10, we have 𝑀 ′[𝛾𝑝] ↦→∗ 𝑀 ′1 [𝛾𝑝] ↦→∗ ret 𝑉 ′ for some value 𝑉 ′, but
𝑀 ′[𝛾𝑝] ⇑, so again we have a contradiction.

□

Theorem F.19. If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴, and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ⇓, then Σ ⊲𝑀 ⇓.

Proof. We proceed by induction first on the number of steps 𝑀 ′[𝛾𝑝] takes and then on |𝑀 |.
Assume that Σ ⊲𝑀 ↦→ Σ1 ⊲𝑀1 since otherwise, we may conclude. By Theorem F.16 (simulation),

we have some 𝑀 ′
1
such that 𝑀1 ⇝𝐶𝑇 𝑀 ′

1
and either Σ𝑝 , JΣK ⊲ 𝑀 ′[𝛾𝑝] ↦→+ Σ𝑝 , JΣ1K ⊲ 𝑀 ′1 [𝛾𝑝] or

Σ𝑝 , JΣK ⊲ 𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ1K ⊲ 𝑀 ′1 [𝛾𝑝] and |𝑀 | > |𝑀1 |. Note that since 𝑀 ′[𝛾𝑝] ⇓, by Lemma

F.1 (target semantics deterministic) we have 𝑀 ′
1
[𝛾𝑝] ⇓. We then have two cases to consider. If

𝑀 ′ ↦→+ 𝑀 ′
1
, then we conclude by the inductive hypothesis for𝑀 ′

1
[𝛾𝑝] ⇓. Otherwise, we have that

|𝑀 | > |𝑀1 |, so we conclude by the inductive hypothesis for |𝑀1 |.
□

Lemma F.20. If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴, and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ⇓ ℧, then Σ ⊲𝑀 ⇓ ℧𝐴.

Proof. By Theorem ?? (target termination implies source termination), we have Σ ⊲𝑀 ⇓ 𝑀𝑅

for some𝑀𝑅 . If𝑀𝑅 = ℧𝐴, we conclude. Otherwise,𝑀𝑅 = ret 𝑉 for some 𝑉 . We prove this case by

contradiction. By Lemma F.17 (multi-step simulation), We have some Σ𝑅, 𝑀
′
𝑅
such that𝑀𝑅 ⇝𝐶𝑇 𝑀 ′

𝑅

and Σ𝑝 , JΣK ⊲ 𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ𝑅K ⊲ 𝑀 ′
𝑅
[𝛾𝑝]. Then, by Lemma F.10 (value translation), we then

have 𝑀 ′
𝑅
[𝛾𝑝] ↦→∗𝑏 ret 𝑉 ′[𝛾𝑝]. However, by Lemma F.1 (target language deterministic), we have

𝑀 ′
𝑅
[𝛾𝑝] ⇓ ℧ and we have a contradiction. □

Lemma F.21. If Σ; · ⊢ 𝑀 ⇝𝐶𝑇 𝑀 ′ : 𝐴, and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ⇓ ret 𝑉 ′, then Σ ⊲𝑀 ⇓ 𝑉 .

Proof. By Theorem ?? (target termination implies source termination), we have Σ ⊲𝑀 ⇓ 𝑀𝑅

for some 𝑀𝑅 . If 𝑀𝑅 = 𝑉 for some 𝑉 , we conclude. Otherwise, 𝑀𝑅 = ℧𝐴. We prove this case by

contradiction. By Lemma F.17 (multi-step simulation), We have some Σ𝑅, 𝑀
′
𝑅
such that𝑀𝑅 ⇝𝐶𝑇 𝑀 ′

𝑅

and Σ𝑝 , JΣK ⊲𝑀 ′[𝛾𝑝] ↦→∗ Σ𝑝 , JΣ𝑅K ⊲𝑀 ′
𝑅
[𝛾𝑝]. Then, by Lemma F.9 (canonical forms), we then have

𝑀 ′
𝑅
= ℧. However, by Lemma F.1 (target language deterministic), we have𝑀 ′

𝑅
[𝛾𝑝] ⇓ ret 𝑉 ′ and

we have a contradiction. □

G GRADUALITY AND PARAMETRICITY
First, we show the full graduality/parametricity logical relation in Figure 36

Definition G.1. We say 𝛾, 𝛿 are valid instantiations of Γ⊑ in CBPVOSum, written (𝛾, 𝛿) ⊨ Γ⊑. when

• For each 𝑖 ∈ {𝑙, 𝑟 }, there exists Σ𝑖 such that for each (𝑥 : 𝐴⊑) ∈ Γ⊑, Σ𝑖 | · ⊢ 𝛾𝑖 (𝑥) : J𝐴𝑖K
when Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 and for each 𝑋 ∈ Γ⊑, · ⊢ 𝛿𝑖 (𝑋) and Σ𝑖 | · ⊢ 𝛾𝑖 (𝑐𝑋) : Case 𝛿𝑖 (𝑋).
• For each 𝑋 ∈ Γ⊑, 𝛿𝑅 (𝑋) ∈ Rel𝜔 [𝛿𝑙 (𝑋), 𝛿𝑟 (𝑋)].

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:58 Max S. New, Dustin Jamner, and Amal Ahmed

V∼𝑛 J𝑋 K𝛾𝛿 = ⌊𝛿 (𝑋)⌋𝑛
V∼𝑛 J?K𝛾𝛿 = {(𝑤, inj𝜎𝑙 𝑉𝑙 , inj𝜎𝑟 𝑉𝑟) ∈ Atom𝑛 [?]𝛿 | 𝑤.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) ∧ (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⊲𝑅}

V≺𝑛 Jtag𝐺 (𝐴⊑)K𝛾𝛿 = {(𝑤,𝑉𝑙 , inj𝛾𝑟 (case(𝐺)) 𝑉𝑟) ∈ Atom𝑛 [tag𝐺 (𝐴⊑)]𝛿 | (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿}
V≻𝑛 Jtag𝐺 (𝐴⊑)K𝛾𝛿 = {(𝑤,𝑉𝑙 , inj𝛾𝑟 (case(𝐺)) 𝑉𝑟) ∈ Atom𝑛 [tag𝐺 (𝐴⊑)]𝛿 | (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ (⊲V≻J𝐴⊑K𝛾𝛿)}

V∼𝑛 JBK𝛾𝛿 = {(𝑤, true, true) ∈ Atom𝑛 [B]𝛿} ∪ {(𝑤, false, false) ∈ Atom𝑛 [B]𝛿}
V∼𝑛 J𝐴⊑

1
×𝐴⊑

2
K𝛾𝛿 = {((𝑉𝑙1,𝑉𝑙2), (𝑉𝑟1,𝑉𝑟2)) ∈ Atom𝑛 [𝐴⊑

1
×𝐴⊑

2
]𝛿

| (𝑤,𝑉𝑙1,𝑉𝑟1) ∈ V∼𝑛 J𝐴⊑
1
K𝛾𝛿 ∧ (𝑤,𝑉𝑙2,𝑉𝑟2) ∈ V∼𝑛 J𝐴⊑

2
K𝛾𝛿}

V∼𝑛 J𝐴⊑ → 𝐵⊑K𝛾𝛿 = {(𝑤,𝑉𝑙 ,𝑉𝑟) ∈ Atom𝑛 [𝐴⊑ → 𝐵⊑]𝛿 | ∀𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V∼𝑛 J𝐴⊑K𝛾𝛿.

(𝑤 ′, force 𝑉𝑙 𝑉
′
𝑙
, force 𝑉𝑟 𝑉

′
𝑟) ∈ E∼𝑛 J𝐵⊑K𝛾𝛿}

V∼𝑛 J∀𝜈𝑋 .𝐵⊑K𝛾𝛿 = {(𝑤,𝑉𝑙 ,𝑉𝑟) ∈ Atom𝑛 [∀𝜈𝑋 .𝐴⊑]𝛿 |
∀𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] .∀𝑤 ′ ⊒ 𝑤.∀𝜎𝑙 , 𝜎𝑟 .𝑤 ′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) =⇒
(𝑤 ′, force 𝑉𝑙 [𝐴𝑙] 𝜎𝑙 , force 𝑉𝑟 [𝐴𝑟] 𝜎𝑟) ∈ E∼𝑛 J𝐵⊑K𝛾 ′𝛿 ′
(where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟), and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅))}

V∼𝑛 J∃𝜈𝑋 .𝐵⊑K𝛾𝛿 = {(𝑤, pack (𝐴𝑙 ,𝑉𝑙), pack (𝐴𝑟 ,𝑉𝑟)) ∈ Atom𝑛 [∃𝜈𝑋 .𝐵⊑]𝛿 |
∃𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] .∀𝑤 ′ ⊒ 𝑤.∀𝜎𝑙 , 𝜎𝑟 .𝑤 ′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) =⇒
(force 𝑉𝑙 𝜎𝑙 , force 𝑉𝑟 𝜎𝑟) ∈ E∼𝑛 J𝐵⊑K𝛾 ′𝛿 ′
(where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟), and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅))}

E≺𝑛 J𝐴⊑K𝛾𝛿 = {(𝑤,𝑀𝑙 , 𝑀𝑟) ∈ CAtom𝑛 [𝐴⊑]𝛿 | (𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤.𝑗 ∨((𝑤.Σ𝑙 , 𝑀𝑙) ↦→<𝑤.𝑗 (Σ′
𝑙
,℧))

∨(∃𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿.
(𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤′. 𝑗−𝑤.𝑗 (𝑤 ′.Σ𝑙 , ret 𝑉𝑙) ∧ (𝑤.Σ𝑟 , 𝑀𝑟) ↦→∗ (𝑤 ′.Σ𝑟 , ret 𝑉𝑟))}

E≻𝑛 J𝐴⊑K𝛾𝛿 = {(𝑤,𝑀𝑙 , 𝑀𝑟) ∈ CAtom𝑛 [𝐴⊑]𝛿 | (𝑤.Σ𝑟 , 𝑀𝑟) ↦→𝑤.𝑗 ∨((𝑤.Σ𝑙 , 𝑀𝑙) ↦→∗ (Σ′𝑙 ,℧))
∨∃𝑤 ′ ⊒ 𝑤.(𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V≺𝑛 J𝐴⊑K𝛾𝛿.
(𝑤.Σ𝑙 , 𝑀𝑙) ↦→∗ (𝑤 ′.Σ𝑙 , ret 𝑉𝑙) ∧ (𝑤.Σ𝑟 , 𝑀𝑟) ↦→𝑤′. 𝑗−𝑤.𝑗 (𝑤 ′.Σ𝑟 , ret 𝑉𝑟)}

V∼J𝐴⊑K𝛾𝛿 =
⋃
𝑛∈N
V∼𝑛 J𝐴⊑K𝛾𝛿 E∼J𝐴⊑K𝛾𝛿 =

⋃
𝑛∈N
E∼𝑛 J𝐴⊑K𝛾𝛿

G∼J·K = {(𝑤, ∅, ∅) | ∃𝑛.𝑤 ∈ World𝑛}
G∼JΓ⊑, 𝑥 : 𝐴⊑K = {(𝑤, (𝛾, 𝑥 ↦→ (𝑉𝑙 ,𝑉𝑟)), 𝛿) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K ∧ (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴⊑K𝛾𝛿}
G∼JΓ⊑, 𝑋 K = {(𝑤, (𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)), 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅)) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K

∧𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟] ∧ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤.𝑗) ∈ 𝑤}
G∼JΓ⊑, 𝑋 � 𝐴⊑K = {(𝑤, (𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)), 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 ,V∼J𝐴⊑K𝛾𝛿)) | (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K

𝑤 ⊨ (𝜎𝑙 , 𝜎𝑟 ,V∼𝑤.𝑗 J𝐴
⊑K𝛾𝛿)}

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ = Γ⊑ ⊨ 𝑀𝑙 ⊑≺ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ ∧ Γ⊑ ⊨ 𝑀𝑙 ⊑≻ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′
Γ⊑ ⊨ 𝑀𝑙 ⊑∼ 𝑀𝑟 ∈ 𝐴⊑; Γ⊑′ = ∀(𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑, Γ⊑′K.

(𝑤, J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑙] [𝛿𝑙]) ∈ E∼J𝐴⊑K𝛾𝛿

Fig. 36. Graduality/Parametricity Logical Relation

Definition G.2. We define the extension of an interpretation 𝜂 with a new association between

seals as

𝜂 ⊞ (𝜎𝑙 , 𝜎𝑟 , 𝑅) = (𝜂.𝑠𝑖𝑧𝑒 + 1, (𝑓 , 𝜂.𝑠𝑖𝑧𝑒 ↦→ (𝜎𝑙 , 𝜎𝑟)), (𝜌, 𝜂.𝑠𝑖𝑧𝑒 ↦→ 𝑅))

Logical Lemmas

Lemma G.3. If 𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟], then ⌊𝑅⌋𝑛 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟]

Proof. Direct by definition. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:59

Lemma G.4. ⌊V∼J𝐴⊑K𝛾𝛿⌋𝑛 = V∼𝑛 J𝐴⊑K𝛾𝛿

Proof. Direct by definition. □

Lemma G.5. If 𝑅 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟], then ⊲𝑅 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟]

Proof. If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ (⊲𝑅) and𝑤 ′ ⊒ 𝑤 , then to show (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ ⊲𝑅, we need to show that for

any𝑤 ′′ ⊐ 𝑤 ′, that (𝑤 ′′,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅, but this follows because (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⊲𝑅 and𝑤 ′′ ⊐ 𝑤 ′ ⊒ 𝑤 . □

Lemma G.6. Let Γ⊑ be a well-formed context, with Γ⊑ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 . If (𝛾, 𝛿) ⊨ Γ⊑, then
V∼𝑛 J𝐴⊑K𝛾𝛿 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟].

Proof. By induction on 𝐴⊑.

(1) 𝑋 : by lemma G.3.

(2) ?: If (𝑤, inj𝜎𝑙 𝑉𝑙 , inj𝜎𝑟 𝑉𝑟) ∈ V∼𝑛 J?K𝛾𝛿 and𝑤 ′ ⊒ 𝑤 , then there exists 𝑅 ∈ Rel𝑛 [𝐴𝑙 , 𝐴𝑟] with
𝑤.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) and (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⊲𝑅. By definition of ⊒, we have that𝑤 ′ ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) so
it is sufficient to show (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⊲⌊𝑅⌋𝑤′. 𝑗 , which follows by lemma G.5 that later preserves

monotonicity.

(3) tag𝐺 (𝐴⊑): by inductive hypothesis, using lemma G.5 in the ≻ case.

(4) B: immediate

(5) ×: immediate by inductive hypothesis.

(6) →: If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼𝑛 J𝐴⊑ → 𝐵⊑K𝛾𝛿 and 𝑤 ′ ⊒ 𝑤 . Then given 𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈

V∼𝑛 J𝐴⊑K𝛾𝛿 , we need to show (𝑤 ′′, force 𝑉𝑙 𝑉
′
𝑙
, force 𝑉𝑟 𝑉

′
𝑟)E∼𝑛 J𝐵⊑K𝛾𝛿 , but this holds by

relatedness of 𝑉𝑙 ,𝑉𝑟 because𝑤
′′ ⊒ 𝑤 by transitivity of world extension.

(7) ∀𝜈 , ∃𝜈 : similar to the→ case.

□

Lemma G.7. If (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K and𝑤 ′ ⊒ 𝑤 , then (𝑤 ′, 𝛾, 𝛿) ∈ G∼JΓ⊑K.

Proof. By induction on Γ⊑, uses monotonicity ofV∼J𝐴⊑K □

Corollary G.8. V∼J𝐴⊑K𝛾𝛿 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟]

Lemma G.9 (Anti-Reduction). (1) If 𝑤 ′ ⊒ 𝑤 and (𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤.𝑗−𝑤′. 𝑗 (𝑤 ′.Σ𝑙 , 𝑀 ′𝑙) and
(𝑤.Σ𝑟 , 𝑀𝑟) ↦→∗ (𝑤 ′.Σ𝑟 , 𝑀 ′𝑟) and (𝑤 ′, 𝑀 ′𝑙 , 𝑀

′
𝑟) ∈ E≺J𝐴⊑K𝛾𝛿 , then (𝑤,𝑀𝑙 , 𝑀𝑟) ∈ E≺J𝐴⊑K𝛾𝛿 .

(2) If𝑤 ′ ⊒ 𝑤 and (𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤.𝑗−𝑤′. 𝑗 (𝑤 ′.Σ𝑙 , 𝑀 ′𝑙) and (𝑤.Σ𝑟 , 𝑀𝑟) ↦→∗ (𝑤 ′.Σ𝑟 , 𝑀 ′𝑟) and (𝑤 ′, 𝑀 ′𝑙 , 𝑀
′
𝑟) ∈

E≻J𝐴⊑K𝛾𝛿 , then (𝑤,𝑀𝑙 , 𝑀𝑟) ∈ E≻J𝐴⊑K𝛾𝛿 .

Proof. We do the ≺ case, the other is symmetric. By case analysis on (𝑤 ′, 𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E≺J𝐴⊑K𝛾𝛿 .

(1) If𝑤 ′.Σ𝑙 , 𝑀
′
𝑙
↦→𝑤′. 𝑗+1

, then (𝑤.Σ𝑙 , 𝑀𝑙) ↦→𝑤.𝑗−𝑤′. 𝑗+𝑤′. 𝑗+1
and𝑤.𝑗 −𝑤 ′. 𝑗 +𝑤 ′. 𝑗 + 1 = 𝑤.𝑗 + 1.

(2) If𝑤 ′.Σ𝑙 , 𝑀
′
𝑙
↦→𝑗 Σ′

𝑙
,℧, with 𝑗 ≤ 𝑤.𝑗 , then𝑤.Σ𝑙 , 𝑀𝑙 ↦→𝑤.𝑗−𝑤′. 𝑗+𝑗 Σ′

𝑙
,℧ and𝑤.𝑗 −𝑤 ′. 𝑗 + 𝑗 ≤ 𝑤.𝑗

since 𝑗 −𝑤 ′. 𝑗 ≤ 0.

(3) Finally, if there is some 𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑙 ,𝑉𝑟) ∈ V≺J𝐴⊑K𝛾𝛿 with 𝑤 ′.Σ𝑙 , 𝑀
′
𝑙
↦→𝑤′ 𝑗 .−𝑤′′. 𝑗

𝑤 ′′.Σ𝑙 , ret 𝑉𝑙 and𝑤
′.Σ𝑟 , 𝑀 ′𝑟 ↦→∗ 𝑤 ′′, Σ𝑟 , ret 𝑉𝑟 , then𝑤.Σ𝑙 , 𝑀𝑙 ↦→𝑤.𝑗−𝑤′. 𝑗+𝑤′. 𝑗−𝑤′′. 𝑗 𝑤 ′′.Σ𝑙 , ret 𝑉 ′′

𝑙

and 𝑤.Σ𝑟 , 𝑀𝑟 ↦→∗ 𝑤 ′′, Σ𝑟 , ret 𝑉𝑟 and 𝑤.𝑗 −𝑤 ′. 𝑗 +𝑤 ′. 𝑗 −𝑤 ′′. 𝑗 = 𝑤.𝑗 − 𝑤 ′′. 𝑗 so the result

holds.

□

LemmaG.10 (Pure Anti-Reduction). If (𝑤,𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E∼J𝐴⊑K𝛾𝛿 and (𝑤.Σ𝑙 , 𝑀𝑙) ↦→0 (𝑤.Σ𝑙 , 𝑀

′
𝑙
)

and (𝑤.Σ𝑟 , 𝑀𝑟) ↦→0 (𝑤.Σ𝑟 , 𝑀
′
𝑟), then (𝑤,𝑀𝑙 , 𝑀𝑟) ∈ E∼J𝐴⊑K𝛾𝛿 .

Proof. Immediate corollary of anti-reduction lemma G.9 □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:60 Max S. New, Dustin Jamner, and Amal Ahmed

Lemma G.11 (Pure Forward Reduction). If (𝑤,𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E∼J𝐴⊑K𝛾𝛿 and (𝑤.Σ𝑙 , 𝑀𝑙) ↦→0

(𝑤.Σ𝑙 , 𝑀
′
𝑙
) and (𝑤.Σ𝑟 , 𝑀𝑟) ↦→0 (𝑤.Σ𝑟 , 𝑀

′
𝑟), then (𝑤,𝑀𝑙 , 𝑀𝑟) ∈ E∼J𝐴⊑K𝛾𝛿 .

Proof. By determinism of evaluation. □

Lemma G.12 (Monadic bind). If (𝑤,𝑀𝑙 , 𝑀𝑟) ∈ E∼J𝐴⊑K𝛾𝛿 and for all𝑤 ′ ⊒ 𝑤 , and (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈
V∼J𝐴⊑K𝛾𝛿 , (𝑤 ′, 𝑆𝑙 [ret 𝑉𝑙], 𝑆𝑟 [ret 𝑉𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿 , then (𝑤, 𝑆𝑙 [𝑀𝑙], 𝑆𝑟 [𝑀𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿 .

Proof. We show the proof for E≺J𝐴⊑K, the ≻ case is symmetric. By case analysis on (𝑤,𝑀𝑙 , 𝑀𝑟) ∈
E∼J𝐴⊑K𝛾𝛿 .
(1) If𝑤.Σ𝑙 , 𝑀𝑙 ↦→𝑤.𝑗+1

, then𝑤.Σ𝑙 , 𝑆 [𝑀𝑙] ↦→𝑤.𝑗+1
.

(2) If𝑤.Σ𝑙 , 𝑀𝑙 ↦→𝑗 𝑤.Σ′
𝑙
,℧, then𝑤.Σ𝑙 , 𝑆 [𝑀𝑙] ↦→𝑗 𝑤.Σ′

𝑙
,℧.

(3) Otherwise there exists𝑤 ′ and (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V≺J𝐴⊑K𝛾𝛿 with𝑤.Σ𝑙 , 𝑀𝑙 ↦→𝑤.𝑗−𝑤′. 𝑗 𝑤 ′.Σ𝑙 , ret 𝑉𝑙
and𝑤.Σ𝑟 , 𝑀𝑟 ↦→∗ 𝑤 ′.Σ𝑟 , ret 𝑉𝑟 . Then𝑤.Σ𝑙 , 𝑆𝑙 [𝑀𝑙] ↦→𝑤.𝑗−𝑤′. 𝑗 𝑤 ′.Σ𝑙 , 𝑆 [ret 𝑉𝑙] and𝑤.Σ𝑟 , 𝑆𝑟 [𝑀𝑟] ↦→∗
𝑤 ′.Σ𝑟 , 𝑆𝑟 [ret 𝑉𝑟], and the result follows by the assumption.

□

Pure evaluation is monotone.

Lemma G.13. If Σ, 𝑀 ↦→∗ Σ, 𝑁 , then for any Σ′ ⊒ Σ, Σ′, 𝑀 ↦→∗ Σ′, 𝑁 .

Clamping

Lemma G.14. If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ 𝑅 and𝑤.𝑗 ≤ 𝑛, then (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ ⌊𝑅⌋𝑛 .

Proof. Direct from definition. □

Tag-to-type

Lemma G.15. V∼𝑛 J𝐺K𝛾𝛿 = ⌊𝛿𝑅 (case(𝐺))⌋𝑛
Proof. Direct from definition □

Lemma G.16 (Weakening). If Γ⊑ ⊢ 𝐴⊑ and Γ⊑ ⊆ Γ⊑′ and (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K and (𝑤,𝛾 ′, 𝛿 ′) ∈
G∼JΓ⊑′K, where 𝛾 ⊆ 𝛾 ′ and 𝛿 ⊆ 𝛿 ′, then all of the following are true:

V∼J𝐴⊑K𝛾𝛿 = V∼J𝐴⊑K𝛾 ′𝛿 ′

E∼J𝐴⊑K𝛾𝛿 = E∼J𝐴⊑K𝛾 ′𝛿 ′

Proof. Straightforward, by induction over Γ⊑′. □

G.1 Cast Lemmas
To prove the cast left lemma, we need the following lemma that casts always either error or

terminate with a value on well-typed inputs.

Lemma G.17 (Casts don’t diverge). If Γ ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 , then for any Σ, and Σ | · ⊢ 𝛾 : JΓK,
(1) If Σ | · ⊢ 𝑉 : 𝐴𝑙 , then either Σ, J⟨𝐴⊑⟩ ↞K[ret 𝑉𝑙] [𝛾] ↦→∗ Σ,℧ or Σ, J⟨𝐴⊑⟩ ↞K[ret 𝑉𝑙] [𝛾] ↦→∗

Σ, ret 𝑉 ′.
(2) If Σ | · ⊢ 𝑉 : 𝐴𝑟 , then either Σ, J⟨𝐴⊑⟩ ↞K[ret 𝑉] [𝛾] ↦→∗ Σ,℧ or Σ, J⟨𝐴⊑⟩ ↞K[ret 𝑉] [𝛾] ↦→∗

Σ, ret 𝑉 ′.

Proof. By induction on 𝐴⊑.

(1) If 𝐴⊑ ∈ {?,B} the cast is trivial.
(2) Case 𝐴⊑ = tag𝐺 (𝐴𝐺 ⊑):

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:61

(a) The upcast definition expands as follows:

J⟨tag𝐺 (𝐴𝐺 ⊑)⟩

↢

K[ret 𝑉] [𝛾] = 𝑥 ← J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉] [𝛾]; ret inj𝜎 𝑥

where 𝜎 = 𝛾 (case(𝐺)). By inductive hypothesis, J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉] [𝛾] either errors (in
which case the whole term errors), or runs to a value 𝑉 ′, in which case

𝑥 ← ret 𝑉 ′; ret inj𝜎 𝑥 ↦→∗ ret inj𝜎 𝑉 ′

(b) The downcast definition expands as follows:

J⟨tag𝐺 (𝐴𝐺 ⊑)⟩ ↞K[ret 𝑉] [𝛾] = 𝑥 ← ret 𝑉 ; match 𝑥 with 𝜎{inj 𝑦.J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑦] [𝛾] | ℧}

Since Σ | ·𝑉 : OSum, 𝑉 = inj𝜎′ 𝑉
′
for some 𝜎 ′ ∈ Σ.

(i) If 𝜎 ′ = 𝜎 , then

match inj𝜎 𝑉 ′ with 𝜎{inj 𝑦.J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑦] [𝛾] | ℧} ↦→1 J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑉 ′] [𝛾]

and then it follows by inductive hypothesis with 𝐴𝐺 ⊑.
(ii) If 𝜎 ′ ≠ 𝜎 , then

match inj𝜎 𝑉 ′ with 𝜎{inj 𝑦.J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑦] [𝛾] | ℧} ↦→1 ℧

and the result holds.

(3) If 𝐴⊑ = 𝐴⊑
1
×𝐴⊑

2
, we consider the downcast case, the upcast is entirely symmetric. First,

J⟨𝐴⊑
1
×𝐴⊑

2
⟩ ↞K[ret 𝑉] [𝛾] = 𝑥 ← ret 𝑉 ;

let (𝑥1, 𝑥2) = 𝑥 ;

𝑦1 ← J⟨𝐴⊑
1
⟩ ↞K[ret 𝑥1] [𝛾];

𝑦2 ← J⟨𝐴⊑
2
⟩ ↞K[ret 𝑥2] [𝛾];

ret (𝑦1, 𝑦2)
Next, since 𝑉 is well-typed, 𝑉 = (𝑉1,𝑉2). Then,

𝑥 ← ret 𝑉 ;

let (𝑥1, 𝑥2) = 𝑥 ;

𝑦1 ← J⟨𝐴⊑
1
⟩ ↞K[ret 𝑥1] [𝛾];

𝑦2 ← J⟨𝐴⊑
2
⟩ ↞K[ret 𝑥2] [𝛾];

ret (𝑦1, 𝑦2)

↦→0 𝑦1 ← J⟨𝐴⊑
1
⟩ ↞K[ret 𝑉1] [𝛾];

𝑦2 ← J⟨𝐴⊑
2
⟩ ↞K[ret 𝑉2] [𝛾];

ret (𝑦1, 𝑦2)

Applying the inductive hypothesis to 𝐴⊑
1
, either J⟨𝐴⊑

1
⟩ ↞K[ret 𝑉1] [𝛾] errors (in which case

the whole term errors), or it runs to a value 𝑉 ′
1
. Then we need to show

𝑦2 ← J⟨𝐴⊑
2
⟩ ↞K[ret 𝑉2] [𝛾];

ret (𝑉 ′
1
, 𝑦2)

errors or terminates. Applying the inductive hypothesis to 𝐴⊑
2
, either J⟨𝐴⊑

2
⟩ ↞K[ret 𝑉2] [𝛾]

errors (in which case the whole term errors), or it runs to a value 𝑉 ′
2
. Then the whole term

runs to ret (𝑉 ′
1
,𝑉 ′

2
).

(4) If 𝐴⊑ = 𝐴⊑
𝑖
→ 𝐴⊑𝑜 , we consider the downcast case (upcast is symmetric). The downcast

definition expands as follows:

J⟨𝐴⊑𝑖 → 𝐴⊑𝑜 ⟩ ↞K[ret 𝑉] [𝛾] = 𝑓 ← ret 𝑉 ; ret thunk 𝜆𝑥.J⟨𝐴⊑𝑜 ⟩ ↞K[𝑦 ← J⟨𝐴⊑
𝑖
⟩

↢

K[ret 𝑥] [𝛾]; force 𝑓 𝑦] [𝛾]

Which steps immediately to a value.

(5) If 𝐴⊑ = ∀𝜈𝑋 .𝐴⊑𝑜 , then it follows by similar reasoning to the function case, that is, it immedi-

ately terminates.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:62 Max S. New, Dustin Jamner, and Amal Ahmed

(6) If𝐴⊑ = ∃𝜈𝑋 .𝐴⊑𝑜 , we consider the downcast case (upcast is symmetric). The definition expands

as follows:

J⟨∃𝜈𝑋 .𝐴⊑𝑜 ⟩ ↞K[ret 𝑉] [𝛾] = unpack (𝑋, 𝑥) = ret 𝑉 ; ret thunk 𝜆𝑐𝑋 .J⟨𝐴⊑𝑜 ⟩ ↞K[force 𝑥 𝑐𝑋]
Which steps immediately to a value.

□

Lemma G.18 (Cast Right). For any Γ⊑ : Γ, if Γ⊑ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 and Γ⊑ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵, and
Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 , Then if (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K,
(1) If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴𝐵⊑K𝛾𝛿 , then (𝑤, ret 𝑉𝑙 , J⟨𝐵𝐶⊑⟩

↢
K[ret 𝑉𝑟] [𝛾𝑟]) ∈ E∼J𝐴𝐶⊑K𝛾𝛿

(2) If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴𝐶⊑K𝛾𝛿 , then (𝑤, ret 𝑉𝑙 , J⟨𝐵𝐶⊑⟩ ↞K[ret 𝑉𝑟] [𝛾𝑟]) ∈ E∼J𝐴𝐵⊑K𝛾𝛿

Proof. By induction on 𝐵𝐶⊑.

(1) If 𝐵𝐶⊑ ∈ {B, ?, 𝑋 }, then the cast is trivial.

(2) If 𝐵𝐶⊑ = tag𝐺 (𝐵𝐺 ⊑), then 𝐴𝐶⊑ = tag𝐺 (𝐴𝐺 ⊑).
(a) For the upcast case, we are given that (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴𝐵⊑K𝛾𝛿 and we need to prove that

(𝑤, ret 𝑉𝑙 , 𝑦 ← J⟨𝐵𝐺 ⊑⟩
↢

K[𝑉𝑟] [𝛾𝑟]; ret inj𝐺 𝑦) ∈ E∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿
By inductive hypothesis, we know

(𝑤, ret 𝑉𝑙 , J⟨𝐵𝐺 ⊑⟩

↢

K𝑉𝑟 [𝛾𝑟]) ∈ E∼J𝐴𝐺 ⊑K𝛾𝛿
We then use monadic bind (lemma G.12). Suppose𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉 ′

𝑙
,𝑉 ′𝑟) ∈ V∼J𝐴𝐺 ⊑K𝛾𝛿 .

We need to show that

(𝑤 ′, ret 𝑉 ′
𝑙
, 𝑦 ← ret 𝑉 ′𝑟 ; ret inj𝐺 𝑦) ∈ E∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

By anti reduction, it is sufficient to show

(𝑤 ′,𝑉𝑙 , inj𝛾𝑟 (𝐺) 𝑉𝑟) ∈ V
∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

(i) If ∼=≺, we need to show (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿 , which follows by inductive

hypothesis.

(ii) If ∼=≻, we need to show (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ ⊲V∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿 , that is for any 𝑤 ′′ ⊐ 𝑤 ′,
(𝑤 ′′,𝑉𝑙 ,𝑉𝑟) ∈ V∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿 which also follows by inductive hypothesis.

(b) For the downcast case, we know (𝑉𝑙 ,𝑉𝑟) ∈ V∼Jtag𝐺 (𝐴𝐺 ⊑)K𝑤𝛾 . Let 𝜎𝑟 = 𝛾𝑟 (case(𝐺)).
(i) In the ≺ case, we know 𝑉𝑟 = inj𝜎𝑟 𝑉

′
𝑟 and

(𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈ V≺J𝐴𝐺 ⊑K𝛾𝛿

we need to show

(𝑤, ret 𝑉𝑙 , match (inj𝜎𝑟 𝑉
′
𝑟) with 𝜎𝑟 {inj 𝑥 .J⟨𝐵𝐺 ⊑⟩ ↞K[𝑥] [𝛾𝑟] | ℧}) ∈ E≺J𝐴𝐵⊑K𝛾𝛿

the right hand side reduces to J⟨𝐵𝐺 ⊑⟩ ↞K[𝑉 ′′], so by anti-reduction it is sufficient to show

(𝑤, ret 𝑉𝑙 , J⟨𝐵𝐺 ⊑⟩ ↞K[𝑉 ′𝑟]) ∈ E≺J𝐴𝐵⊑K𝛾𝛿
which follows by inductive hypothesis.

(ii) In the ≻ case, we know 𝑉𝑟 = inj𝜎𝑟 𝑉
′
𝑟 and

(𝑤,𝑉 ,𝑉 ′𝑟) ∈ ⊲(V≺J𝐴𝐺 ⊑K𝛾𝛿)
(note the ⊲). We need to show

(𝑤, ret 𝑉𝑙 , match (inj𝜎𝑟 𝑉
′
𝑟) with 𝜎𝑟 {inj 𝑥 .J⟨𝐵𝐺 ⊑⟩ ↞K[𝑥] [𝛾𝑟] | ℧}) ∈ E≻J𝐴𝐵⊑K𝛾𝛿

the right hand side takes 1 step to J⟨𝐵𝐺 ⊑⟩ ↞K[𝑉 ′𝑟].
(A) If𝑤.𝑗 = 0, then we are done.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:63

(B) Otherwise, define𝑤 ′ = (𝑤.𝑗 − 1,𝑤 .Σ𝑙 ,𝑤 .Σ𝑟 , ⌊𝑤.𝜂⌋𝑤.𝑗−1). Then by anti-reduction, it is

sufficient to show

(𝑤 ′, ret 𝑉𝑙 , J⟨𝐵𝐺 ⊑⟩ ↞K[𝑉 ′𝑟]) ∈ E≻J𝐴𝐵⊑K𝛾𝛿

(𝑤 ′, ret 𝑉𝑙 , J⟨𝐵𝐺 ⊑⟩ ↞K[𝑉 ′𝑟]) ∈ E≻J𝐴𝐵⊑K
By inductive hypothesis, it is sufficient to show

(𝑤 ′,𝑉𝑙 ,𝑉 ′𝑟) ∈ V≺J𝐴𝐺 ⊑K𝛾𝛿

which follows by assumption because𝑤 ′ ⊐ 𝑤 .

(3) If 𝐵𝐶⊑ = 𝐵𝐶⊑
1
× 𝐵𝐶⊑

2
, then by precision inversion also 𝐴𝐶⊑ = 𝐴𝐶⊑

1
× 𝐴𝐶⊑

2
and 𝐴𝐵⊑ =

𝐴𝐵⊑
1
×𝐴𝐵⊑

2
. We consider the upcast case, the downcast case follows by an entirely analogous

argument.

Given (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐵𝐶⊑1 × 𝐵𝐶
⊑
2
K𝛾𝛿 , we need to show

(𝑤, ret 𝑉𝑙 , J⟨𝐵𝐶⊑1 × 𝐵𝐶
⊑
2
⟩

↢
K[ret 𝑉𝑙] [𝛾𝑟]) ∈ E∼J𝐴𝐶⊑1 ×𝐴𝐶

⊑
2
K𝛾𝛿

Expanding definitions, and applying anti-reductino , this reduces to showing

(𝑤, ret 𝑉𝑙 , let (𝑦1, 𝑦2) = 𝑉𝑟 ;

𝑧1 ← J⟨𝐵𝐶⊑
1
⟩ ↞K[ret 𝑦1] [𝛾𝑟];

𝑧2 ← J⟨𝐵𝐶⊑
2
⟩ ↞K[ret 𝑦2] [𝛾𝑟];

ret (𝑧1, 𝑧2)

) ∈ E∼J𝐴𝐶⊑
1
×𝐴𝐶⊑

2
K𝛾𝛿

Since (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐵𝐶⊑1 × 𝐵𝐶
⊑
2
K𝛾𝛿 , we know

𝑉𝑙 = (𝑉𝑙1,𝑉𝑙2) 𝑉𝑟 = (𝑉𝑟1,𝑉𝑟2)

(𝑉𝑙1,𝑉𝑟1) ∈ V∼J𝐵𝐶⊑1 K𝛾𝛿 (𝑉𝑙2,𝑉𝑟2) ∈ V∼J𝐵𝐶⊑2 K𝛾𝛿

So after a reduction we need to show

(𝑤, ret 𝑉𝑙 , 𝑧1 ← J⟨𝐵𝐶⊑
1
⟩ ↞K[ret 𝑉𝑟1] [𝛾𝑟];

𝑧2 ← J⟨𝐵𝐶⊑
2
⟩ ↞K[ret 𝑉𝑟2] [𝛾𝑟];

ret (𝑧1, 𝑧2)

) ∈ E∼J𝐴𝐶⊑
1
×𝐴𝐶⊑

2
K𝛾𝛿

By forward reduction, it is sufficient to prove the following, (which is amenable to monadic

bind):

(𝑤, 𝑧 ← ret 𝑉𝑙1;1
𝑧2 ← ret 𝑉𝑙2;

ret (𝑧1, 𝑧2)

, 𝑧1 ← J⟨𝐵𝐶⊑
1
⟩ ↞K[ret 𝑉𝑟1] [𝛾𝑟];

𝑧2 ← J⟨𝐵𝐶⊑
2
⟩ ↞K[ret 𝑉𝑟2] [𝛾𝑟];

ret (𝑧1, 𝑧2)

) ∈ E∼J𝐴𝐶⊑
1
×𝐴𝐶⊑

2
K𝛾𝛿𝑤𝛾

We then apply monadic bind with the inductive hypothesis for 𝐵𝐶⊑
1
. Given 𝑤 ′ ⊒ 𝑤 and

(𝑉 ′
𝑙1
,𝑉 ′𝑟1) ∈ V∼J𝐴𝐶⊑1 K𝛾𝛿 the goal reduces to

(𝑤 ′, 𝑧2 ← ret 𝑉𝑙2;

ret (𝑉 ′
𝑙1
, 𝑧2)

, 𝑧2 ← J⟨𝐵𝐶⊑
2
⟩ ↞K[ret 𝑉𝑟2] [𝛾𝑟];

ret (𝑉 ′𝑟1, 𝑧2)
) ∈ E∼J𝐴𝐶⊑

1
×𝐴𝐶⊑

2
K𝛾𝛿

We then apply another monadic bind with the inductive hypothesis for 𝐵𝐶⊑
2
. Given𝑤 ′′ ⊒ 𝑤 ′

and (𝑉 ′
𝑙2
,𝑉 ′𝑟2) ∈ V∼J𝐴𝐶⊑2 K𝑤 ′𝛾 , the goal reduces to

(𝑤 ′′, (𝑉 ′
𝑙1
,𝑉 ′

𝑙2
), (𝑉 ′𝑟1,𝑉 ′𝑟2)) ∈ V∼J𝐴𝐶⊑1 ×𝐴𝐶

⊑
2
K𝑤 ′′𝛾

which follows immediately by our assumptions from monadic bind.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:64 Max S. New, Dustin Jamner, and Amal Ahmed

(4) If 𝐵𝐶⊑ = 𝐵𝐶⊑
𝑖
→ 𝐵𝐶⊑𝑜 , then by precision inversion also 𝐴𝐶⊑ = 𝐴𝐶⊑

𝑖
→ 𝐴𝐶⊑𝑜 and 𝐴𝐵⊑ =

𝐴𝐵⊑
𝑖
→ 𝐴𝐵⊑𝑜 . We consider the upcast case, the downcast case follows by an entirely analogous

argument.

Given (𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐵𝐶⊑𝑖 → 𝐵𝐶⊑𝑜 K𝛾𝛿 , we need to show

(𝑤, ret 𝑉𝑙 , J⟨𝐵𝐶⊑𝑖 → 𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑉𝑟] [𝛾𝑟]) ∈ E∼J𝐴𝐶⊑𝑖 → 𝐴𝐶⊑𝑜 K𝛾𝛿

Expanding definitions, this reduces to showing

(𝑤,𝑉𝑙 , thunk (𝜆𝑥.𝑦 ← J⟨𝐵𝐶⊑
𝑖
⟩ ↞K[ret 𝑥] [𝛾𝑟];

𝑧 ← force 𝑉𝑟𝑦;

J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑧] [𝛾𝑟]

)) ∈ V∼J𝐴𝐶⊑𝑖 → 𝐴𝐶⊑𝑜 K𝛾𝛿

Let 𝑤 ′ ⊒ 𝑤 be a future world and (𝑤 ′,𝑉𝑙𝑖 ,𝑉𝑟𝑖) ∈ V∼J𝐴𝐶⊑𝑖 K𝛾𝛿 . Then our goal reduces to

showing

(𝑤 ′, force 𝑉𝑙𝑉𝑙𝑖 , 𝑦 ← J⟨𝐵𝐶⊑
𝑖
⟩ ↞K[ret 𝑉𝑟𝑖] [𝛾𝑟];

𝑧 ← force 𝑉𝑟𝑦;

J⟨𝐵𝐶⊑𝑜 ⟩
↢

K[ret 𝑧] [𝛾𝑟]

) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾𝛿

by forward reduction, it is sufficient to show

(𝑤 ′, 𝑦 ← 𝑉𝑙𝑖 ;

force 𝑉𝑙𝑦

,𝑦 ← J⟨𝐵𝐶⊑
𝑖
⟩ ↞K[ret 𝑉𝑟𝑖] [𝛾𝑟];

𝑧 ← force 𝑉𝑟𝑦;

J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑧] [𝛾𝑟]

) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾𝛿

We then use the inductive hypothesis on 𝐵𝐶⊑
𝑖
(which applies because of downward-closure)

and monadic bind: assume𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉 ′
𝑙𝑖
,𝑉 ′𝑟𝑖) ∈ V∼J𝐴𝐶⊑𝑖 K𝛾𝛿 . We need to show

(𝑤 ′′, force 𝑉𝑙𝑉
′
𝑙𝑖
, 𝑧 ← force 𝑉𝑟𝑉

′
𝑟𝑖 ;

J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑧] [𝛾𝑟]
) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾𝛿

We apply monadic bind again, noting that the applications are related by assumption and

downward closure. Assume𝑤 ′′′ ⊒ 𝑤 ′′ and (𝑤 ′′′,𝑉𝑙𝑜 ,𝑉𝑟𝑜) ∈ V∼J𝐴𝐵⊑𝑜 K𝛾𝛿 . By anti-reduction ,

the goal reduces to showing

(ret 𝑉𝑜 , J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑉 ′𝑜] [𝛾]) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾𝛿

which follows by inductive hypothesis for 𝐵𝐶⊑𝑜 .
(5) If 𝐵𝐶⊑ = ∀𝜈𝑋 .𝐵𝐶⊑𝑜 , then by precision inversion also 𝐴𝐶⊑ = ∀𝜈𝑋 .𝐴𝐶⊑𝑜 and 𝐴𝐵⊑ = ∀𝜈𝑋 .𝐴𝐵⊑𝑜 .

We consider the upcast case, the downcast case follows by an entirely analogous argument.

Given (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J∀𝜈𝑋 .𝐵𝐶⊑𝑜 K𝛾𝛿 , we need to show

(𝑤, ret 𝑉𝑙 , J⟨∀𝜈𝑋 .𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑉𝑟] [𝛾𝑟]) ∈ E∼J∀𝜈𝐴𝐶⊑𝑜 K𝛾𝛿

Expanding definitions and applying anti-reduction, this reduces to showing

(𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈ V∼J∀𝜈𝐴𝐶⊑𝑜 K𝛾𝛿

where

𝑉 ′𝑟 = thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .J⟨𝐵𝐶⊑𝑜 ⟩ ↞K[(force 𝑉𝑟)𝑋 𝑐𝑋] [𝛾𝑟])
Let𝑤 ′ ⊒ 𝑤 , 𝑅 ∈ 𝑅𝑒𝑙 [𝐴𝑙 , 𝐴𝑟], and𝑤.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤.𝑗), then we need to show that

(𝑤 ′, (force 𝑉𝑙)𝐴𝑙 𝜎𝑙 , (force 𝑉 ′𝑟)𝐴𝑟 𝜎𝑟) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾 ′𝛿 ′

where 𝛾 ′ = (𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)) and 𝛿 ′ = (𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅)) which reduces in 0 steps to

showing

(𝑤 ′, (force 𝑉𝑙)𝐴𝑙 𝜎𝑙 , J⟨𝐵𝐶⊑𝑜 ⟩ ↞K[(force 𝑉𝑟)𝐴𝑟 𝜎] [𝛾 ′𝑟]) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾 ′𝛿 ′

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:65

by noting that by definition, 𝛾 ′𝑟 = 𝛾𝑟 , 𝑐𝑋 ↦→ 𝜎𝑟 .

Then, we invokemonadic bind using (𝑤 ′, (force 𝑉𝑙)𝐴𝑙 𝜎𝑙 , (force 𝑉𝑟)𝐴𝑟 𝜎𝑟) ∈ E∼J𝐵𝐶⊑𝑜 K𝛾 ′𝛿 ′.
Let𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑙𝑜 ,𝑉𝑟𝑜) ∈ V∼J𝐵𝐶⊑𝑜 K𝛾 ′𝛿 ′. We then need to show

(𝑤 ′′, ret 𝑉𝑙𝑜 , J⟨𝐵𝐶⊑𝑜 ⟩ ↞K[ret 𝑉𝑟𝑜] [𝛾 ′𝑟] ∈ E∼J𝐴𝐶⊑𝑜 K𝛾 ′𝛿 ′)
which follows by inductive hypothesis.

(6) If 𝐵𝐶⊑ = ∃𝜈𝑋 .𝐵𝐶⊑𝑜 , then by precision inversion also 𝐴𝐶⊑ = ∃𝜈𝑋 .𝐴𝐶⊑𝑜 and 𝐴𝐵⊑ = ∃𝜈𝑋 .𝐴𝐵⊑𝑜 .
We consider the upcast case, the downcast case follows by an entirely analogous argument.

Given (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J∃𝜈𝑋 .𝐵𝐶⊑𝑜 K𝛾𝛿 , we need to show

(𝑤, ret 𝑉𝑙 , J⟨∃𝜈𝑋 .𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑉𝑟] [𝛾𝑟]) ∈ E∼J∃𝜈𝐴𝐶⊑𝑜 K𝛾𝛿

Expanding definitions and applying anti-reduction, this reduces to showing

(𝑤, ret 𝑉𝑙 , unpack (𝑋,𝑦) = ret 𝑉𝑟 ;

ret pack(𝑋, ()thunk (𝜆𝑐𝑋 : Case 𝑋 .J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[(force 𝑦) 𝑐𝑋] [𝛾𝑟]))
) ∈ E∼J∃𝜈 .𝐴𝐶⊑𝑜 K𝛾𝛿

By definition ofV∼J∃𝜈𝑋 .𝐵𝐶⊑𝑜 K𝛾𝛿 , we know

𝑉𝑙 = pack(𝐴𝑙 ,𝑉
′
𝑙
)

𝑉𝑟 = pack(𝐴𝑟 ,𝑉
′
𝑟)

and there is an associated relation 𝑅 ∈ Rel𝜔 [𝐴𝑙 , 𝐴𝑟]. Then the goal reduces to showing

(pack(𝐴𝑙 ,𝑉
′
𝑙
), pack(𝐴𝑙 , ()thunk (𝜆𝑐𝑋 .J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[(force 𝑉 ′𝑟) 𝑐𝑋] [𝛾𝑟]))) ∈ V∼J∃𝜈𝑋 .𝐴𝐶⊑𝑜 K𝛾𝛿

we choose 𝑅 as the relation for 𝑋 , and then we need to show (after applying anti-reduction)

that for any𝑤 ′ ⊒ 𝑤 ,𝑤 ′ ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗) that
(𝑤 ′, (force 𝑉 ′

𝑙
) 𝜎, J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[(force 𝑉 ′𝑟) 𝜎] [𝛾 ′𝑟]) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾 ′𝛿 ′

where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟). and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅). We use the relatedness assumption

and monadic bind again. Then we are given 𝑤 ′′ ⊒ 𝑤 ′, and (𝑉𝑙𝑜 ,𝑉𝑟𝑜) ∈ V∼J𝐴𝐵⊑𝑜 K𝛾 ′𝛿 ′ and
need to show

(𝑤 ′′, ret 𝑉𝑙𝑜 , J⟨𝐵𝐶⊑𝑜 ⟩

↢

K[ret 𝑉𝑟𝑜]) ∈ E∼J𝐴𝐶⊑𝑜 K𝛾 ′𝛿 ′

which follows by inductive hypothesis.

□

Lemma G.19 (Cast Left). For any Γ⊑ : Γ, Γ⊑ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 , Γ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵, Γ⊑ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶
and (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑K,
(1) If (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐵𝐶⊑K𝛾𝛿 , then (𝑤, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉𝑟) ∈ E∼J𝐴𝐶⊑K𝛾𝛿
(2) If (𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴𝐶⊑K𝛾𝛿 , then (𝑤, J⟨𝐴𝐵⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉𝑟) ∈ E∼J𝐵𝐶⊑K𝛾𝛿

Proof. By nested induction on 𝐴𝐵⊑ and 𝐴𝐶⊑, i.e., if 𝐴𝐵⊑ becomes smaller 𝐴𝐶⊑ can be anything

but if 𝐴𝐶⊑ becomes smaller, then 𝐴𝐵⊑ must stay the same.

(1) If 𝐴𝐶⊑ ∈ {B, 𝐴𝐶⊑
0
× 𝐴𝐶⊑

1
, 𝐴𝐶⊑

𝑖
→ 𝐴𝐶⊑𝑜 ,∀𝜈𝑋 .𝐴𝐶⊑𝑜 , ∃𝜈𝑋 .𝐴𝐶⊑𝑜 }, then 𝐴𝐵⊑ has the same top-

level connective, and the proof is symmetric to the case of lemma G.18, which always makes

𝐴𝐵⊑ and 𝐴𝐶⊑ smaller in uses of the inductive hypothesis.

(2) If 𝐴𝐶⊑ = ?, then also 𝐴𝐵⊑ = 𝐵𝐶⊑ = ? and the cast is trivial.

(3) If 𝐴𝐶⊑ = tag𝐺 (𝐴𝐺 ⊑), there are two cases: either 𝐵𝐶⊑ = ? or 𝐵𝐶⊑ = tag𝐺 (𝐵𝐺 ⊑).
(a) If 𝐵𝐶⊑ = ?, then 𝐴𝐵⊑ = tag𝐺 (𝐴𝐺 ⊑) = 𝐴𝐶⊑. Define 𝜎𝑙 = 𝛾𝑙 (case(𝐺)), 𝜎𝑟 = 𝛾𝑟 (case(𝐺)).

(i) In the upcast case, we know (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿 . In which case, 𝑉𝑟 =

inj𝜎𝑟 𝑉
′
𝑟

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:66 Max S. New, Dustin Jamner, and Amal Ahmed

(A) In the ≺ case, we know (𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈ V≺J𝐴𝐺 ⊑K𝛾𝛿 , and we need to show

(𝑤, (𝑥 ← J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙]; ret inj𝜎𝑙 𝑥), ret inj𝜎𝑟 𝑉
′
𝑟) ∈ E≺J?K𝛾𝛿

which by forward reduction is equivalent to showing

(𝑤, (𝑥 ← J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙]; ret inj𝜎𝑙 𝑥), 𝑥 ← ret 𝑉 ′𝑟 ; ret inj𝜎𝑟 𝑥) ∈ E≺J?K𝛾𝛿
By inductive hypothesis, we know

(𝑤, J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉 ′𝑟) ∈ 𝛿𝑅 (case(𝐺))
so can we apply monadic bind. Let 𝑤 ′ ⊒ 𝑤 , and (𝑤 ′,𝑉 ′

𝑙
,𝑉 ′′𝑟) ∈ V≺J𝐺K𝛾𝛿 . Then we

need to show (after applying anti-reduction)

(𝑤 ′, inj𝜎𝑙 𝑉
′
𝑙
, inj𝜎𝑟 𝑉

′′
𝑟) ∈ V≺J?K𝛾𝛿

To do this, we need to give a relation 𝑅 such that𝑤 ′ ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) and (𝑤 ′,𝑉 ′𝑙 ,𝑉
′′
𝑟) ∈ ⊲𝑅.

Since 𝛾 (case(𝐺)) = (𝜎𝑙 , 𝜎𝑟), we know 𝑅 = ⌊𝛿𝑅 (case(𝐺))⌋𝑤′. 𝑗 . And we need to show

that for any 𝑤 ′′ ⊐ 𝑤 ′, that (𝑤 ′′,𝑉 ′
𝑙
,𝑉 ′′𝑟) ∈ ⌊𝑅⌋𝑤′. 𝑗 . Which follows by monotonicity

because𝑤 ′′ ⊒ 𝑤 .

(B) The ≻ case is slightly more complicated. This time we only knowwe know (𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈

⊲V≻J𝐴𝐺 ⊑K𝛾𝛿 (note the ⊲), and we need to show

(𝑤, (𝑥 ← J⟨𝐴𝐺 ⊑⟩
↢

K[ret 𝑉𝑙] [𝛾𝑙]; ret inj𝜎𝑙 𝑥), ret inj𝜎𝑟 𝑉
′
𝑟) ∈ E≻J?K𝛾𝛿

By lemma G.17, we know J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙] either runs to error or terminates. If it

runs to an error then our goal holds. Otherwise, let J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙] ↦→∗ ret 𝑉 ′
𝑙
.

Applying anti-reduction, we need to show

(𝑤, inj𝜎𝑙 𝑉
′
𝑙
, inj𝜎𝑟 𝑉

′
𝑟) ∈ V≻J?K𝛾𝛿

by the same reasoning as above, we need to show

(𝑤,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ ⊲⌊𝛿𝑅 (case(𝐺))⌋𝑤.𝑗

Let𝑤 ′ ⊐ 𝑤 . We need to show

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ ⌊𝛿𝑅 (case(𝐺))⌋𝑤.𝑗

By our assumption, we know

(𝑤 ′,𝑉𝑙 ,𝑉 ′𝑟) ∈ V≻J𝐴𝐺 ⊑K𝛾𝛿
so by inductive hypothesis, we know

(𝑤 ′, J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉 ′𝑟) ∈ E≻J𝐺K𝛾𝛿 = 𝛿𝑅 (case(𝐺))
And since we know 𝑤 ′.Σ𝑙 , J⟨𝐴𝐺 ⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙] ↦→∗ 𝑤 ′.Σ𝑙 , ret 𝑉 ′
𝑙
by lemma G.17,

this means

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V≻J𝐺K𝛾𝛿 = 𝛿𝑅 (case(𝐺))

so the result follows by lemma G.14.

(ii) For the downcast case, we know (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J?K𝛾𝛿 which means there exists 𝜎𝑙 , 𝜎𝑟 , 𝑅

with𝑤.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , 𝑅) and 𝑉𝑙 = inj𝜎𝑙 𝑉
′
𝑙
and 𝑉𝑟 = inj𝜎𝑟 𝑉

′
𝑟 and

(𝑤,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ ⊲𝑅

Expanding the definition of the cast and applying anti-reduction, we need to show

(𝑤, match 𝑉𝑙 with 𝜎𝑙 {inj 𝑥 .J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑥] | ℧}, ret 𝑉𝑟) ∈ E∼Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿
If 𝛾𝑙 (case(𝐺)) = 𝜎𝑙 , the left side errors and the result holds. Otherwise,

match 𝑉𝑙 with 𝜎𝑙 {inj 𝑥 .J⟨𝐴𝐺 ⊑⟩ ↞K[ret 𝑥] | ℧} ↦→1 J⟨𝐴𝐺 ⊑⟩ ↞Kret 𝑉 ′
𝑙

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:67

(A) In the ≻ case, we need to show

(𝑤, J⟨𝐴𝐺 ⊑⟩ ↞Kret 𝑉 ′
𝑙
, ret 𝑉𝑟) ∈ E≻Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

Which follows by inductive hypothesis if we can show

(𝑤,𝑉 ′
𝑙
,𝑉𝑟) ∈ V≻Jtag𝐺 (𝐺)K𝛾𝛿

which reduces to showing

(𝑤,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ ⊲V≻J𝐺K𝛾𝛿

So let𝑤 ′ ⊐ 𝑤 . We need to show

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V≻J𝐺K𝛾𝛿

But we know (𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ 𝑅 where 𝑅 = ⌊𝛿𝑅 (case(𝐺))⌋𝑤.𝑗 so the result follows by

lemma G.15.

(B) In the ≺ case, we check𝑤.𝑗

• If𝑤.𝑗 = 0, then the left side takes 1 step so the result holds.

• Otherwise, define𝑤 ′ = (𝑤.𝑗 −1,𝑤 .Σ𝑙 ,𝑤 .Σ𝑟 , ⌊𝑤.𝜂⌋𝑤.𝑗−1). Then it is sufficient to show

(𝑤 ′, J⟨𝐴𝐺 ⊑⟩ ↞Kret 𝑉 ′
𝑙
, ret 𝑉𝑟) ∈ E≺Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

To apply the inductive hypothesis we need to show

(𝑤 ′,𝑉 ′
𝑙
, ret 𝑉𝑟) ∈ V≺Jtag𝐺 (𝐺)K𝛾𝛿

Unrolling definitions, it is sufficient to show

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V≺J𝐺K𝛾𝛿

But we know already that (𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ 𝑅 where 𝑅 = ⌊𝛿𝑅 (case(𝐺))⌋𝑤.𝑗 so the result

follows.

(b) Finally, if 𝐵𝐶⊑ = tag𝐺 (𝐵𝐺 ⊑), then 𝐴𝐶⊑ = tag𝐺 (𝐴𝐺 ⊑). We consider the downcast case,

the upcast case is entirely symmetric. Let (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼Jtag𝐺 (𝐵𝐺 ⊑)K𝛾𝛿 . Then we know

𝑉𝑟 = inj𝜎𝑟 𝑉
′
𝑟 where 𝜎𝑟 = 𝛾𝑟 (case(𝐺)).

(i) If ∼=≺, we furthermore know (𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈ V≺J𝐵𝐺 ⊑K𝛾𝛿 . We need to show that

(𝑤, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], ret inj𝜎𝑟 𝑉
′
𝑟) ∈ E≺Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

by forward reduction it is sufficient to show

(𝑤, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], 𝑥 ← ret 𝑉 ′𝑟 ; ret inj𝜎𝑟 𝑥) ∈ E≺Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿
We know by inductive hypothesis that

(𝑤, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉𝑟)
so we can apply monadic bind. Let 𝑤 ′ ⊒ 𝑤 , and (𝑤 ′,𝑉 ′

𝑙
,𝑉 ′′𝑟) ∈ V≺J𝐴𝐺 ⊑K𝛾𝛿 . Then we

need to show (after applying anti-reduction) that

(𝑤 ′,𝑉 ′
𝑙
, inj𝜎𝑟 𝑉

′′
𝑟) ∈ V≺Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

Which, unrolling the definition, is

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′′𝑟) ∈ V≺J𝐴𝐺 ⊑K𝛾𝛿

which was our assumption.

(ii) If ∼=≻, we only know (𝑤,𝑉𝑙 ,𝑉
′
𝑟) ∈ ⊲V≻J𝐵𝐺 ⊑K𝛾𝛿 (note the ⊲).

(𝑤, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], ret inj𝜎𝑟 𝑉
′
𝑟) ∈ E≻Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

By lemma G.17, the left hand side either errors or terminates with a value.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:68 Max S. New, Dustin Jamner, and Amal Ahmed

(A) If𝑤.Σ𝑙 , J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙] ↦→∗ 𝑤.Σ𝑙 ,℧, then the result holds.

(B) If𝑤.Σ𝑙 , J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙] ↦→∗ 𝑤.Σ𝑙 , ret 𝑉 ′
𝑙
, then we need to show that

(𝑤,𝑉 ′
𝑙
, inj𝜎𝑟 𝑉

′
𝑟) ∈ V≻Jtag𝐺 (𝐴𝐺 ⊑)K𝛾𝛿

Which unrolls to

(𝑤,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ ⊲V≻J𝐴𝐺 ⊑K𝛾𝛿

So let𝑤 ′ ⊐ 𝑤 . We need to show

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V≻J𝐴𝐺 ⊑K𝛾𝛿

By inductive hypothesis, we know

(𝑤 ′, J⟨𝐴𝐵⊑⟩ ↞K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉 ′𝑟) ∈ E≻J𝐴𝐺 ⊑K𝛾𝛿
and so by determinism of evaluation, we know

(𝑤 ′,𝑉 ′
𝑙
,𝑉 ′𝑟) ∈ V≻J𝐴𝐺 ⊑K𝛾𝛿

so the result holds.

□

G.2 Compatibility Lemmas
Lemma G.20.

Γ⊑
1
, 𝑥 : 𝐴⊑, Γ⊑

2
⊨ 𝑥 ⊑∼ 𝑥 ∈ 𝐴⊑; ·

Proof. We need to show

(𝑤, ret 𝑉𝑙 , ret 𝑉𝑟) ∈ E∼J𝐴⊑K𝛾𝛿
where 𝑉𝑖 = 𝛾𝑖 (𝑥). Since both sides are values, it is sufficient to show

(𝑤,𝛾𝑙 (𝑥), 𝛾𝑟 (𝑥)) ∈ V∼J𝐴⊑K𝛾𝛿
By definition of G∼JΓ⊑

1
, 𝑥 : 𝐴⊑, Γ⊑

2
K, we know 𝛾 = 𝛾1, 𝑥 ↦→ (𝑉𝑙 ,𝑉𝑟), 𝛾2 and 𝛿 = 𝛿1, 𝛿2 where

(𝑤,𝛾1, 𝛿2) ∈ G∼JΓ⊑
1

K and (𝑤,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴⊑K𝛾1𝛿1.
Then the result follows becauseV∼J𝐴⊑K𝛾1𝛿1 = V∼J𝐴⊑K𝛾𝛿 by Lemma G.16 □

Lemma G.21. Generation compatibility.

Γ⊑ ⊨ 𝑀𝑙 ⊑∼ 𝑀𝑟 ∈ 𝐵⊑; Γ⊑′, 𝑋 � 𝐴⊑, Γ⊑′′ Γ⊑, Γ⊑′ ⊨ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟

Γ⊑ ⊨ hide 𝑋 � 𝐴𝑙 ;𝑀𝑙 ⊑∼ hide 𝑋 � 𝐴𝑟 ;𝑀𝑟 ∈ 𝐵⊑; Γ⊑′, Γ⊑′′

Proof. The translation is defined as

Jhide 𝑋 � 𝐴𝑖 ;𝑀𝑖K = newcaseJ𝐴𝑖K 𝑐𝑋 ; J𝑀𝑖K

We need to show

(𝑤, newcaseJ𝐴𝑙 K[𝛿𝑙] 𝑐𝑋 ; J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], newcaseJ𝐴𝑟 K[𝛿𝑟] 𝑐𝑋 ; J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿
Define 𝑤 ′ = (𝑤.𝑗, (𝑤.Σ𝑙 , J𝐴𝑙K[𝛿]), (𝑤.Σ𝑟 , J𝐴𝑟 K[𝛿]), 𝜂 ⊞ (𝑤.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 .Σ𝑟 .𝑠𝑖𝑧𝑒, ⌊V∼J𝐴⊑K𝛾𝛿⌋𝑤 . 𝑗)).
Then

𝑤.Σ𝑙 , newcaseJ𝐴𝑙 K[𝛿𝑙] 𝑐𝑋 ; J𝑀𝑙K[𝛾𝑙] [𝛿𝑙] ↦→0 𝑤 ′.Σ𝑙 , J𝑀𝑙K[𝛾𝑙] [𝛿𝑙] [𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒/𝑐𝑋]
and similarly for the right side

𝑤.Σ𝑟 , newcaseJ𝐴𝑟 K[𝛿𝑟] 𝑐𝑋 ; J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟] ↦→0 𝑤 ′.Σ𝑟 , J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟] [𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒/𝑐𝑋]
Then by the anti-reduction lemma G.9, it is sufficient to show

(𝑤 ′, J𝑀𝑙K[𝛾𝑙] [𝛿𝑙] [𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒/𝑐𝑋], J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟] [𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒/𝑐𝑋]) ∈ E∼J𝐵⊑K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:69

Define 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒) and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝛿𝑙 (𝐴𝑙), 𝛿𝑟 (𝐴𝑟),V∼J𝐴⊑K𝛾𝛿𝛾𝛿).
Then (𝑤 ′, 𝛾 ′, 𝛿 ′) ∈ G∼JΓ𝑝 , Γ⊑′, 𝑋 � 𝐴, Γ⊑′′K since (𝑤 ′, 𝛾, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑′, Γ⊑′′K (by monotonicity

lemma G.7). Furthermore, J𝑀𝑖K[𝛾𝑖] [𝛿𝑖] [𝑤 ′.Σ𝑖 .𝑠𝑖𝑧𝑒/𝑐𝑋] = J𝑀𝑖K[𝛾 ′𝑖] [𝛿 ′𝑖], so the result is equivalent
to

(𝑤 ′, J𝑀𝑙K[𝛾 ′𝑙] [𝛿
′
𝑙
], J𝑀𝑟 K[𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿

which is equivalent to showing

(𝑤 ′, J𝑀𝑙K[𝛾 ′𝑙] [𝛿
′
𝑙
], J𝑀𝑟 K[𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐵⊑K𝛾 ′𝛿 ′

by lemma G.16. Finally this result holds by applying the hypothesis. □

Lemma G.22 (Compatibility: Upcast Left).

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴𝐶⊑; Γ⊑′ Γ⊑, Γ⊑′ ⊨ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 Γ, Γ′ ⊨ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊨ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶
Γ⊑ ⊨ ⟨𝐴𝐵⊑⟩

↢
𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐵𝐶⊑; Γ⊑′

Proof. We need to show

(𝑤, J⟨𝐴𝐵⊑⟩

↢

K[J𝑀𝑙K] [𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐵𝐶⊑K𝛾𝛿

By assumption, we know

(𝑤, J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴𝐶⊑K𝛾𝛿

So we apply monadic bind. Let𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴𝐶⊑K𝛾𝛿 . We need to show

(𝑤 ′, J⟨𝐴𝐵⊑⟩

↢

K[ret 𝑉𝑙] [𝛾𝑙], ret 𝑉𝑟) ∈ E∼J𝐵𝐶⊑K𝛾𝛿

which follows by lemma G.19. □

Lemma G.23 (Compatibility: Downcast Left).

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐵𝐶⊑; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 Γ, Γ′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵 Γ⊑, Γ⊑′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶
Γ⊑ ⊨ ⟨𝐴𝐵⊑⟩ ↞ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴𝐶⊑; Γ⊑′

Proof. By same argument as lemma G.22. □

Lemma G.24 (Compatibility: Upcast Right).

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴𝐵⊑; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊨ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑⟩

↢

𝑀𝑟 ∈ 𝐴𝐶⊑; Γ⊑′

Proof. By same argument as lemma G.22, but using lemma G.18. □

Lemma G.25.

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴𝐶
⊑
; Γ⊑′ Γ⊑, Γ⊑′ ⊢ 𝐴𝐶⊑ : 𝐴 ⊑ 𝐶 Γ, Γ′ ⊢ 𝐵𝐶⊑ : 𝐵 ⊑ 𝐶 Γ⊑, Γ⊑′ ⊢ 𝐴𝐵⊑ : 𝐴 ⊑ 𝐵

Γ⊑ ⊢ 𝑀𝑙 ⊑ ⟨𝐵𝐶⊑⟩ ↞ 𝑀𝑟 : 𝐴𝐵
⊑
; Γ⊑′

Proof. By same argument as lemma G.22, but using lemma G.18. □

Lemma G.26. If (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑
1
, 𝑋 � 𝐴⊑, Γ⊑

2
K of (𝑤,𝛾, 𝛿) ∈ G∼JΓ⊑

1
, 𝑋, Γ⊑

2
K, then

V∼J𝑋 K𝛾𝛿 = V∼J𝐴⊑K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:70 Max S. New, Dustin Jamner, and Amal Ahmed

Proof. By definition,𝛾 = 𝛾1, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟), 𝛾2 and 𝛿 = 𝛿1, 𝑋 ↦→ (𝐴𝑙 , 𝐴𝑟 , 𝑅), 𝛿2, where (𝑤,𝛾1, 𝛿1) ∈
G∼JΓ⊑

1
K. Then

V∼J𝑋 K𝛾𝛿 = 𝛿 (𝑋) = V∼J𝐴⊑K𝛾1𝛿1
So it is sufficient to show

V∼J𝐴⊑K𝛾1𝛿1 = V∼J𝐴⊑K𝛾𝛿
which follows by Lemma G.16. □

Lemma G.27. Seal
(𝑋 � 𝐴⊑) ∈ Γ⊑, Γ⊑′ Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴

⊑
; Γ⊑′

Γ⊑ ⊢ seal𝑋𝑀𝑙 ⊑ seal𝑋𝑀𝑟 : 𝑋 ; Γ⊑′

Proof. Assume (𝑀𝑙 [𝛾𝑙] [𝛿𝑙], 𝑀𝑟 [𝛾𝑙] [𝛿𝑙]) ∈ E∼J𝐴⊑K𝛾𝛿 . We need to show

(𝑀𝑙 [𝛾𝑙] [𝛿𝑙], 𝑀𝑟 [𝛾𝑙] [𝛿𝑙]) ∈ E∼J𝑋 K𝛾𝛿

This follows immediately from Lemma G.26 □

Lemma G.28. UnSeal
(𝑋 � 𝐴⊑) ∈ Γ⊑, Γ⊑′ Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝑋 ; Γ⊑′

Γ⊑ ⊢ unseal𝑋𝑀𝑙 ⊑ unseal𝑋𝑀𝑟 : 𝐴
⊑
; Γ⊑′

Proof. By same reasoning as the seal case. □

Lemma G.29.

Γ𝑖 ⊢ true ⊑∼ true : B Γ𝑖 ⊢ false ⊑∼ false : B

Proof. The result (𝑤, ret true, ret true) ∈ E∼JBK𝛾𝛿 follows because (𝑤, true, true) ∈ V∼JBK𝛾𝛿 .
Similarly for false. □

Lemma G.30.

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ B; Γ⊑0 Γ⊑, Γ⊑
0
⊨ 𝑁𝑙𝑡 ⊑ 𝑁𝑟𝑡 ∈ 𝐵⊑; Γ⊑ Γ⊑, Γ⊑

0
⊨ 𝑁𝑙 𝑓 ⊑ 𝑁𝑟 𝑓 ∈ 𝐵⊑; Γ⊑

Γ⊑ ⊨ if 𝑀𝑙 then 𝑁𝑙𝑡 else 𝑁𝑙 𝑓 ⊑ if 𝑀𝑟 then 𝑁𝑟𝑡 else 𝑁𝑟 𝑓 ∈ 𝐵⊑; Γ⊑0 , Γ
⊑

Proof. Define 𝑀 ′
𝑙
= J𝑀𝑙K[𝛾𝑙] [𝛿𝑙] and similarly for the rest of the subterms. Then we need to

show

(𝑤, 𝑥 ← 𝑀 ′
𝑙
; case 𝑥{𝑥𝑡 .𝑁 ′𝑙𝑡 | 𝑥 𝑓 .𝑁

′
𝑙 𝑓
}, 𝑥 ← 𝑀 ′𝑟 ; case 𝑥{𝑥𝑡 .𝑁 ′𝑟𝑡 | 𝑥 𝑓 .𝑁 ′𝑟 𝑓 }) ∈ E

∼J𝐵⊑K𝛾𝛿

By assumption and weakening, (𝑤,𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E∼JBK𝛾𝛿 , and we apply monadic bind. Suppose

𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼JBK𝛾𝛿 . We need to show

(𝑤, 𝑥 ← ret 𝑉𝑙 ; case 𝑥{𝑥𝑡 .𝑁 ′𝑙𝑡 | 𝑥 𝑓 .𝑁
′
𝑙 𝑓
}, 𝑥 ← ret 𝑉𝑟 ; case 𝑥{𝑥𝑡 .𝑁 ′𝑟𝑡 | 𝑥 𝑓 .𝑁 ′𝑟 𝑓 }) ∈ E

∼J𝐵⊑K𝛾𝛿

By definition either 𝑉𝑙 = 𝑉𝑟 = true or 𝑉𝑙 = 𝑉𝑟 = false. WLOG assume it is true. Then

𝑥 ← ret 𝑉𝑙 ; case 𝑥{𝑥𝑡 .𝑁 ′𝑙𝑡 | 𝑥 𝑓 .𝑁
′
𝑙 𝑓
} ↦→0 𝑁 ′

𝑙𝑡

and similarly for the right side. By anti-reduction (lemma G.9), it is sufficient to show

(𝑤 ′, 𝑁 ′
𝑙𝑡
, 𝑁 ′𝑟𝑡) ∈ E∼J𝐵⊑K𝛾𝛿

which follows by hypothesis. □

Lemma G.31. Product intro
Γ⊑ ⊨ 𝑀𝑙0 ⊑ 𝑀𝑟0 ∈ 𝐴⊑0 ; Γ

⊑
0

Γ⊑, Γ⊑
0
⊨ 𝑀𝑙1 ⊑ 𝑀𝑟1 ∈ 𝐴⊑1 ; Γ

⊑
1

Γ⊑ ⊨ (𝑀𝑙0, 𝑀𝑙1) ⊑ (𝑀𝑟0, 𝑀𝑟1) ∈ 𝐴⊑0 ×𝐴
⊑
1
; Γ⊑

0
, Γ⊑

1

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:71

Proof. We need to show that

(𝑤, 𝑥 ← J𝑀𝑙0K[𝛾𝑙] [𝛿𝑙];
𝑦 ← J𝑀𝑙1K[𝛾𝑙] [𝛿𝑙];
ret (𝑥,𝑦)

, 𝑥 ← J𝑀𝑟0K[𝛾𝑟] [𝛿𝑟];
𝑦 ← J𝑀𝑟1K[𝛾𝑟] [𝛿𝑟];
ret (𝑥,𝑦)

) ∈ E∼J𝐴⊑
0
×𝐴⊑

1
K𝛾𝛿

By inductive hypothesis and weakening, we know (𝑤, J𝑀𝑙0K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟0K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴⊑
0
K𝛾𝛿 .

Applying monadic bind we get some 𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉𝑙0,𝑉𝑟0) ∈ V∼J𝐴⊑0 K𝛾𝛿 and applying anti-

reduction, we need to show

(𝑤 ′, 𝑦 ← J𝑀𝑙1K[𝛾𝑙] [𝛿𝑙];
ret (𝑉𝑙0, 𝑦)

, 𝑦 ← J𝑀𝑟1K[𝛾𝑟] [𝛿𝑟];
ret (𝑉𝑟0, 𝑦)

) ∈ E∼J𝐴⊑
0
×𝐴⊑

1
K𝛾𝛿

By inductive hypothesis, weakening andmonotonicity, we know (𝑤 ′, J𝑀𝑙1K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟1K[𝛾𝑟] [𝛿𝑟]) ∈
E∼J𝐴⊑

1
K𝛾𝛿 . Applying monadic bind we get some 𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑙1,𝑉𝑟1) ∈ V∼J𝐴⊑1 K𝛾𝛿 and

applying anti-reduction we need to show

(𝑤 ′′, (𝑉𝑙0,𝑉𝑙1), (𝑉𝑟0,𝑉𝑟1)) ∈ V∼J𝐴⊑0 ×𝐴
⊑
1
K𝛾𝛿

That is that for each 𝑖 ∈ {0, 1} that

(𝑤 ′′,𝑉𝑙𝑖 ,𝑉𝑟𝑖) ∈ V∼J𝐴⊑𝑖 K𝛾𝛿

which follows by assumption and monotonicity. □

Lemma G.32. Product elim

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑0 ×𝐴
⊑
1
; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
, 𝑥 : 𝐴⊑

0
, 𝑦 : 𝐴⊑

1
⊨ 𝑁𝑙 ⊑ 𝑁𝑟 ∈ 𝐵⊑; Γ⊑𝑁

Γ⊑ ⊨ let (𝑥,𝑦) = 𝑀𝑙 ;𝑁𝑙 ⊑ let (𝑥,𝑦) = 𝑀𝑟 ;𝑁𝑟 ∈ 𝐵⊑; Γ⊑𝑀 , Γ
⊑
𝑁

Proof. We need to show

(𝑤, 𝑧 ← J𝑀𝑙K[𝛾𝑙] [𝛿𝑙];
let (𝑥,𝑦) = 𝑧;

J𝑁𝑙K[𝛾𝑙] [𝛿𝑙]

, 𝑧 ← J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟];
let (𝑥,𝑦) = 𝑧;

J𝑁𝑟 K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐵⊑K𝛾𝛿

First, by inductive hypothesis and weakening, we know

(𝑤, J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴⊑0 ×𝐴
⊑
1
K𝛾𝛿

Applying monadic bind, we get some𝑤 ′ ⊒ 𝑤 with (𝑤 ′,𝑉𝑙0,𝑉𝑟0) ∈ V∼J𝐴⊑0 K𝛾𝛿 and (𝑤 ′,𝑉𝑙1,𝑉𝑟1) ∈
V∼J𝐴⊑

1
K𝛾𝛿 , and applying anti-reduction we need to show

(𝑤 ′, J𝑁𝑙K[𝛾 ′𝑙] [𝛿𝑙], J𝑁𝑟 K[𝛾 ′𝑟] [𝛿𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿

Where we define 𝛾 ′ = 𝛾, 𝑥 ↦→ (𝑉𝑙0,𝑉𝑟0), 𝑦 ↦→ (𝑉𝑙1,𝑉𝑟1). By weakening, it is sufficient to show

(𝑤 ′, J𝑁𝑙K[𝛾 ′𝑙] [𝛿𝑙], J𝑁𝑟 K[𝛾 ′𝑟] [𝛿𝑟]) ∈ E∼J𝐵⊑K𝛾 ′𝛿

which follows by inductive hypothesis if we can show

(𝑤 ′, 𝛾 ′, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑, Γ⊑𝑀 , Γ
⊑
𝑁
, 𝑥 : 𝐴⊑

0
, 𝑦 : 𝐴⊑

1
K

which follows by definition and monotonicity. □

Lemma G.33. Fun intro

Γ⊑, 𝑥 : 𝐴⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐵⊑; ·
Γ⊑ ⊨ 𝜆𝑥 : 𝐴𝑙 .𝑀𝑙 ⊑ 𝜆𝑥 : 𝐴𝑙 .𝑀𝑙 ∈ 𝐴⊑ → 𝐵⊑; ·

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:72 Max S. New, Dustin Jamner, and Amal Ahmed

Proof. It is sufficient to show

(𝑤, thunk (𝜆𝑥 : 𝐴𝑙 [𝛿𝑙] .𝑀 ′𝑙), thunk (𝜆𝑥 : 𝐴𝑟 [𝛿𝑟] .𝑀 ′𝑟)) ∈ V∼J𝐴⊑ → 𝐵⊑K𝛾𝛿

where 𝑀 ′
𝑙
= J𝑀𝑙K[𝛾𝑙] [𝛿𝑙] and similarly define 𝑀 ′𝑟 . Suppose 𝑤

′ ⊒ 𝑤 and (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴⊑K𝛾𝛿 .
We need to show

(𝑤 ′, force (thunk (𝜆𝑥 : 𝐴𝑙 [𝛿𝑙] .J𝑀𝑙K[𝛾𝑙] [𝛿𝑙]))𝑉𝑙 , force (thunk (𝜆𝑥 : 𝐴𝑟 [𝛿𝑟] .J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]))𝑉𝑟) ∈ E∼J𝐵⊑K𝛾𝛿
By anti-reduction it is sufficient to show

(𝑤 ′, J𝑀𝑙K[𝛾 ′𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾 ′𝑟] [𝛿𝑟]) ∈ E∼J𝐵⊑K𝛾𝛿

where 𝛾 ′ = 𝛾, 𝑥 ↦→ (𝑉𝑙 ,𝑉𝑟). By monotonicity, we have (𝑤 ′, 𝛾 ′, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑K so the result follows

by hypothesis. □

Lemma G.34.

Γ⊑ ⊢ 𝑀𝑙 ⊑ 𝑀𝑟 : 𝐴
⊑ → 𝐵⊑; Γ⊑

𝑀
Γ⊑, Γ⊑

𝑀
⊢ 𝑁𝑙 ⊑ 𝑁𝑟 : 𝐴

⊑
; Γ⊑

𝑁

Γ⊑ ⊢ 𝑀𝑙 𝑁𝑙 ⊑ 𝑀𝑟 𝑁𝑟 : 𝐵
⊑
; Γ⊑

𝑀
, Γ⊑

𝑁

Proof. Define𝑀 ′
𝑙
= J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], etc. We need to show

(𝑤, 𝑓 ← 𝑀 ′
𝑙
;𝑥 ← 𝑁 ′

𝑙
; force 𝑓 𝑥 𝑓 ← 𝑀 ′𝑟 ;𝑥 ← 𝑁 ′𝑟 ; force 𝑓 𝑥) ∈ E∼J𝐵⊑K𝛾𝛿

We apply monadic bind with (𝑤,𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E∼J𝐴⊑ → 𝐵⊑K𝛾𝛿 which holds by hypothesis and

weakening. Suppose𝑤 ′ ⊒ 𝑤 , with anti-reduction it is sufficient to show

(𝑤 ′, 𝑥 ← 𝑁 ′
𝑙
; force 𝑉𝑙 𝑥, 𝑥 ← 𝑁 ′𝑟 ; force 𝑉𝑟 𝑥) ∈ E∼J𝐵⊑K𝛾𝛿

where (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝐴⊑ → 𝐵⊑K𝛾𝛿 . Then we apply monadic bind with (𝑤 ′, 𝑁 ′
𝑙
, 𝑁 ′𝑟) ∈ E∼J𝐴⊑K𝛾𝛿

which holds by hypothesis, weakening and monotonicity. Suppose𝑤 ′′ ⊒ 𝑤 ′; with anti-reduction it

is sufficient to show

(𝑤 ′′, force 𝑉𝑙 𝑉
′
𝑙
, force 𝑉𝑟 𝑉

′
𝑟) ∈ E∼J𝐵⊑K𝛾𝛿

Which follows by definition of the value relation and transitivity of ⊒. □

Lemma G.35. Forall intro

Γ⊑, 𝑋 ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; ·
Γ⊑ ⊨ Λ𝜈𝑋 .𝑀𝑙 ⊑ Λ𝜈𝑋 .𝑀𝑟 ∈ ∀𝜈𝑋 .𝐴⊑; ·

Proof. Define𝑀 ′𝑖 = J𝑀𝑖K[𝛾𝑖] [𝛿𝑖] It is sufficient to show

(𝑤, thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑀 ′
𝑙
), thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑀 ′𝑟)) ∈ V∼J∀𝜈𝑋 .𝐴⊑K𝛾𝛿

Given𝑤 ′ ⊒ 𝑤 , and 𝑅 ∈ Rel𝑛 [𝐵𝑙 , 𝐵𝑟] and𝑤 ′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗), we need to show

(𝑤 ′, force thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑀 ′
𝑙
) 𝐵𝑙 𝜎𝑙force thunk (Λ𝑋 .𝜆𝑐𝑋 : Case 𝑋 .𝑀 ′𝑟) 𝐵𝑟 𝜎𝑟) ∈ V∼J𝐴⊑K𝛾 ′𝛿 ′

where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟) and 𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐵𝑙 , 𝐵𝑟 , 𝑅). By anti-reduction it is sufficient to show

(𝑤 ′, J𝑀𝑙K[𝛾 ′𝑙] [𝛿
′
𝑙
], J𝑀𝑟 K[𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ V∼J𝐴⊑K𝛾 ′𝛿 ′

which follows by hypothesis if since (𝑤 ′, 𝛾 ′, 𝛿 ′) ∈ G∼JΓ𝑝 , Γ⊑, 𝑋 K by definition andmonotonicity. □

Lemma G.36. Forall elim

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ ∀𝜈𝑋 .𝐴⊑; Γ⊑′ Γ⊑ ⊨ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊨ 𝑀𝑙 {𝑋 � 𝐵𝑙 } ⊑ 𝑀𝑟 {𝑋 � 𝐵𝑟 } ∈ 𝐴⊑; Γ⊑′, 𝑋 � 𝐵⊑

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:73

Proof. By definition, instantiation translates as

J𝑀𝑖 {𝑋 � 𝐵𝑖 }K = 𝑓 ← J𝑀𝑖K; force 𝑓 J𝐵𝑖K 𝑐𝑋
Define𝑀 ′𝑖 = J𝑀𝑖K[𝛾𝑖] [𝛿𝑖], then we need to show

(𝑤, 𝑓 ← 𝑀 ′
𝑙
; force 𝑓 J𝐵𝑙K[𝛿𝑙] 𝛾𝑙 (𝑐𝑋), 𝑓 ← 𝑀 ′𝑟 ; force 𝑓 J𝐵𝑟 K[𝛿𝑟] 𝛾𝑟 (𝑐𝑋) ∈ E∼J𝐴⊑K𝛾𝛿

We know (𝑤,𝑀 ′
𝑙
, 𝑀 ′𝑟) ∈ E∼J∀𝜈𝑋 .𝐴⊑K𝛾𝛿 by hypothesis and weakening (lemma G.16), so we can

apply monadic bind. Suppose𝑤 ′ ⊒ 𝑤 , then by anti-reduction it is sufficient to show

(𝑤 ′, force 𝑉𝑙 J𝐵𝑙K[𝛿𝑙] 𝛾𝑙 (𝑐𝑋), force 𝑉𝑟 J𝐵𝑟 K[𝛿𝑟] 𝛾𝑟 (𝑐𝑋)) ∈ E∼J𝐴⊑K𝛾𝛿
where (𝑤 ′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J∀𝜈𝑋 .𝐴⊑K𝛾𝛿 . Thus it is sufficient to give some relation𝑅 ∈ Rel𝑛 [J𝐵𝑙K[𝛿𝑙], J𝐵𝑟 K[𝛿𝑟]]
such that 𝑤 ′ ⊨ (𝛾𝑙 (𝑐𝑋), 𝛾𝑟 (𝑐𝑋), 𝑅). By definition of G∼JΓ𝑝 , Γ⊑′, 𝑋 � 𝐵⊑K, this holds for 𝑅 =

V∼J𝐵⊑K𝛾𝛿 . □

Lemma G.37.

Γ⊑, 𝑋 � 𝐵⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴⊑; · Γ⊑ ⊢ 𝐵⊑ : 𝐵𝑙 ⊑ 𝐵𝑟

Γ⊑ ⊨ pack𝜈 (𝑋 � 𝐵𝑙 , 𝑀𝑙) ⊑ pack𝜈 (𝑋 � 𝐵𝑟 , 𝑀𝑟) ∈ ∃𝜈𝑋 .𝐴⊑; ·
Proof. Recall the translation is

Jpack𝜈 (𝑋 � 𝐵𝑖 , 𝑀𝑖)K = ret (pack(J𝐵𝑖K, thunk 𝜆𝑐𝑋 : Case J𝐵𝑖K.J𝑀𝑖K) as J∃𝜈𝑋 .𝐴𝑖K)
where Γ⊑, 𝑋 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 . So it is sufficient to show

(𝑤, pack(J𝐵𝑙K[𝛿𝑙], thunk 𝜆𝑐𝑋 : Case (J𝐵𝑙K[𝛿𝑙]) .J𝑀𝑙K[𝛾𝑙] [𝛿𝑙]) as J∃𝜈𝑋 .𝐴⊑K[𝛿𝑙], pack(J𝐵𝑟 K[𝛿𝑟], thunk 𝜆𝑐𝑋 : Case (J𝐵𝑟 K[𝛿𝑟]).J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) as J∃𝜈𝑋 .𝐴⊑K[𝛿𝑟]) ∈ V∼J∃𝜈𝑋 .𝐴⊑K𝛾𝛿

For the relation, we pick 𝑅 = V∼J𝐵⊑K𝛾𝛿 . Let 𝑤 ′ ⊒ 𝑤 and 𝜎𝑙 , 𝜎𝑟 be seals such that 𝑤 ′.𝜂 ⊨
(𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗). Then we need to show

(𝑤, force (thunk 𝜆𝑐𝑋 : Case (J𝐵𝑙K[𝛿𝑙]).J𝑀𝑙K[𝛾𝑙] [𝛿𝑙]) 𝜎𝑙 , force (thunk 𝜆𝑐𝑋 : Case (J𝐵𝑟 K[𝛿𝑟]).J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) 𝜎𝑟) ∈ E∼J𝐴⊑K𝛾 ′𝛿 ′

where

𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)
𝛿 ′ = 𝛿, 𝑋 ↦→ (J𝐵𝑙K[𝛿𝑙], J𝐵𝑙K[𝛿𝑙], 𝑅)

By anti reduction this reduces to showing

(𝑤 ′, J𝑀𝑙K[𝛾 ′𝑙] [𝛿
′
𝑙
], J𝑀𝑟 K[𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐴⊑K𝛾 ′𝛿 ′

which follows by assumption. □

Lemma G.38.

Γ⊑, Γ⊑
𝑀
⊨ Γ⊑

𝑁
Γ⊑, Γ⊑

𝑀
, Γ⊑

𝑁
⊨ 𝐵⊑

Γ⊑ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ ∃𝜈𝑋 .𝐴⊑; Γ⊑
𝑀

Γ⊑, Γ⊑
𝑀
, 𝑋, 𝑥 : 𝐴⊑ ⊨ 𝑁𝑙 ⊑ 𝑁𝑟 ∈ 𝐵⊑; Γ⊑𝑁

Γ⊑ ⊨ unpack (𝑋, 𝑥) = 𝑀𝑙 ;𝑁𝑙 ⊑ unpack (𝑋, 𝑥) = 𝑀𝑟 ;𝑁𝑟 ∈ 𝐵⊑; Γ⊑𝑀 , Γ
⊑
𝑁

Proof. Recall the translation:

Junpack (𝑋, 𝑥) = 𝑀𝑖 ;𝑁𝑖K = 𝑝 ← J𝑀𝑖K;
unpack (𝑋, 𝑓) = 𝑝;

newcase𝑋 𝑐𝑋 ;

𝑥 ← (force 𝑓 𝑐𝑋);
J𝑁𝑖K

Let (𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝 , Γ⊑, Γ⊑𝑀 , Γ
⊑
𝑁

K. By assumption (andweakening), we know (𝑤, J𝑀𝑙K[𝛾𝑙] [𝛿𝑙], J𝑀𝑟 K[𝛾𝑟] [𝛿𝑟]) ∈
E∼J∃𝜈𝑋 .𝐴⊑K. We apply monadic bind. Let𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉∃𝜈𝑙 ,𝑉∃𝜈𝑟) ∈ V∼J∃𝜈𝑋 .𝐴⊑K.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:74 Max S. New, Dustin Jamner, and Amal Ahmed

Then 𝑉∃𝜈𝑙 = pack(𝐴𝑋𝑙 ,𝑉𝑓 𝑙) and 𝑉∃𝜈𝑟 = pack(𝐴𝑋𝑟 ,𝑉𝑓 𝑟) with some associated relation 𝑅 ∈
Rel[𝐴𝑋𝑙 , 𝐴𝑋𝑟]. Then by anti-reduction we need to show

(𝑤 ′, newcase𝐴𝑋𝑙
𝑐𝑋 ;

𝑥 ← (force 𝑉𝑓 𝑙 𝑐𝑋);
J𝑁𝑙K[𝛾𝑙] [𝛿𝑙]

, newcase𝐴𝑋𝑟
𝑐𝑋 ;

𝑥 ← (force 𝑉𝑓 𝑟 𝑐𝑋);
J𝑁𝑟 K[𝛾𝑙] [𝛿𝑙]

) ∈ E∼J𝐵⊑K𝛾𝛿

Define

𝑤 ′′ = (𝑤 ′. 𝑗, (𝑤 ′.Σ𝑙 , 𝐴𝑋𝑙), (𝑤 ′.Σ𝑟 , 𝐴𝑋𝑟),𝑤 ′.𝜂 ⊞ (𝐴𝑋𝑙 , 𝐴𝑋𝑟 , ⌊𝑅⌋𝑤′. 𝑗))
𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒)
𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑋𝑙 , 𝐴𝑋𝑟 , 𝑅)

Then by anti-reduction it is sufficient to show

(𝑤 ′′, (𝑥 ← (force 𝑉𝑓 𝑙 𝜎𝑙); J𝑁𝑙K[𝛾 ′𝑙] [𝛿
′
𝑙
]), (𝑥 ← (force 𝑉𝑓 𝑟 𝜎𝑟); J𝑁𝑟 K[𝛾 ′𝑟] [𝛿 ′𝑟])) ∈ E∼J𝐵⊑K𝛾 ′𝛿 ′

By assumption (and monotonicity), (𝑤 ′′, force 𝑉𝑓 𝑙 𝜎𝑙 , force 𝑉𝑓 𝑟 𝜎𝑟) ∈ E∼J𝐴⊑K𝛾 ′𝛿 ′, so we can

apply monadic bind. Let𝑤 ′′′ ⊒ 𝑤 ′′ and (𝑤 ′′′,𝑉𝐴𝑙 ,𝑉𝐴𝑟) ∈ V∼J𝐴⊑K𝛾 ′𝛿 ′. Then after anti-reduction

we need to show

(𝑤 ′′′, J𝑁𝑙K[𝛾 ′′𝑙] [𝛿
′
𝑙
], J𝑁𝑟 K[𝛾 ′′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐵⊑K𝛾 ′𝛿 ′

where 𝛾 ′′ = 𝛾 ′, 𝑥 ↦→ (𝑉𝐴𝑙 ,𝑉𝐴𝑟). By weakening this is equivalent to

(𝑤 ′′′, J𝑁𝑙K[𝛾 ′′𝑙] [𝛿
′
𝑙
], J𝑁𝑟 K[𝛾 ′′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐵⊑K𝛾 ′′𝛿 ′

which follows by assumption. □

G.3 Proof of Graduality
Lemma G.39. If 𝐶 : (Γ ⊢ · : 𝐴; Γ𝑜) ⇒ (Γ′ ⊢ · : 𝐵; Γ′𝑜) and Γ ⊨ 𝑀𝑙 ⊑ 𝑀𝑟 ∈ 𝐴; Γ𝑜 , then Γ′ ⊨ 𝐶 [𝑀𝑙] ⊑

𝐶 [𝑀𝑟] ∈ 𝐵; Γ′𝑜 .

Proof. By induction on 𝐶 , using a corresponding compatibility lemma in each case. □

We define contextual error approximation, following [New and Ahmed 2018]:

Definition G.40. Let Γ ⊢ 𝑀1 : 𝐴; Γ𝑀 and Γ ⊢ 𝑀2 : 𝐴; Γ𝑀 . Then we say 𝑀1 (contextually) error
approximates𝑀2, written Γ ⊨ 𝑀1 ⊑𝑐𝑡𝑥 𝑀2 ∈ 𝐴; Γ𝑀 when for any context𝐶 : (Γ ⊢ 𝐴; Γ𝑀) ⇒ (· ⊢ 𝐵; ·),
all of the following hold:

(1) If 𝐶 [𝑀1] ⇑ then 𝐶 [𝑀2] ⇑
(2) If 𝐶 [𝑀1] ⇓ 𝑉1 then there exists 𝑉2 such that 𝐶 [𝑀2] ⇓ 𝑉2.

Definition G.41. If Γ ⊢ 𝑀1 : 𝐴; Γ𝑀 and Γ ⊢ 𝑀2 : 𝐴; Γ𝑀 , then𝑀1 and𝑀2 are contextually equivalent,
Γ ⊨ 𝑀1 ≈ctx 𝑀2 ∈ 𝐴; Γ𝑀 , when for any context 𝐶 : (Γ ⊢ 𝐴; Γ𝑀) ⇒ (· ⊢ 𝐵; ·), both diverge

𝐶 [𝑀1],𝐶 [𝑀2] ⇑, or error 𝐶 [𝑀1],𝐶 [𝑀2] ⇓ ℧ or terminate successfully 𝐶 [𝑀1] ⇓ 𝑉1, 𝐶 [𝑀2] ⇓ 𝑉2.

From syntactic type safety, it is clear that mutual error approximation implies equivalence:

Lemma G.42. If Γ ⊨ 𝑀1 ⊑𝑐𝑡𝑥 𝑀2 : 𝐴; Γ𝑀 and Γ ⊨ 𝑀2 ⊑𝑐𝑡𝑥 𝑀1 : 𝐴; Γ𝑀 , then Γ ⊨ 𝑀1 ≈ctx 𝑀2 : 𝐴; Γ𝑀

Proof. The first two cases are direct. For the third case, we know by type safety that there are

only 3 possibilities for a closed term’s behavior: 𝐶 [𝑀𝑖] ⇑, 𝐶 [𝑀𝑖] ⇓ 𝑉𝑖 or 𝐶 [𝑀𝑖] ⇓ ℧. If 𝐶 [𝑀1] ⇓ ℧,
then it is not the case that 𝐶 [𝑀1] ⇑ or 𝐶 [𝑀1] ⇓ 𝑉1 but by the first two cases that means that it

is not the case that 𝐶 [𝑀2] ⇑ or 𝐶 [𝑀1] ⇓ 𝑉 , so it must be the case that 𝐶 [𝑀2] ⇓ ℧. The opposite
direction follows by symmetry. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:75

To prove the soundness of the logical relation with respect to error approximation, we first need

to construct for each step-index 𝑛 a world𝑤∼𝑝 (𝑛) to hold the invariants for the cases generated in

the preamble of a whole program, a substitution 𝛿∼𝑝 to give the relational interpretation of 𝛾𝑝 , and a

“binary” version 𝛾2𝑝 of the preamble substitution 𝛾𝑝 .

Definition G.43 (Preamble World, Relational Substitution).

𝜂∼𝑝 (𝑛) = ∅ ⊞ (B,B,V∼𝑛 JBK∅∅) ⊞ (OSum × OSum,OSum × OSum,V∼𝑛 J? × ?K∅∅)
⊞ (𝑈 (OSum→ 𝐹OSum),𝑈 (OSum→ 𝐹OSum), ⌊V∼𝑛 J?→ ?K∅∅⌋)
⊞ (∃𝑋 .𝑈 (Case 𝑋 → 𝐹OSum), ∃𝑋 .𝑈 (Case 𝑋 → 𝐹OSum),V∼𝑛 J∃𝜈𝑋 .?K∅∅)
⊞ (𝑈 (∀𝑋 .Case 𝑋 → 𝐹OSum),∀𝑋 .𝑈 (Case 𝑋 → 𝐹OSum),V∼𝑛 J∀𝜈𝑋 .?K∅∅)

𝑤∼𝑝 (𝑛) = (𝑛, Σ𝑝 , Σ𝑝 , 𝜂∼𝑝 (𝑛))
𝛿∼𝑝 = ∅, Bool ↦→ (B,B,V∼JBK∅∅),Times ↦→ (OSum × OSum,OSum × OSum,V∼J? × ?K∅∅),

Fun ↦→ (𝑈 (OSum→ 𝐹OSum),𝑈 (OSum→ 𝐹OSum),V∼J?→ ?K∅∅),
Ex ↦→ (∃𝑋 .𝑈 (Case 𝑋 → 𝐹OSum), ∃𝑋 .𝑈 (Case 𝑋 → 𝐹OSum),V∼J∃𝜈𝑋 .?K∅∅),
All ↦→ (𝑈 (∀𝑋 .Case 𝑋 → 𝐹OSum),∀𝑋 .𝑈 (Case 𝑋 → 𝐹OSum),V∼J∀𝜈𝑋 .?K∅∅)

𝛾2𝑝 (𝑥) = (𝛾𝑝 (𝑥), 𝛾𝑝 (𝑥))

The crucial property is that these together satisfy G∼JΓ𝑝K:

Lemma G.44 (Validity of Preamble World). For every 𝑛, (𝑤∼𝑝 (𝑛), 𝛾2𝑝 , 𝛿∼𝑝) ∈ G∼JΓ𝑝K.

Proof. Clear by definition. □

Lemma G.45.

Γ ⊨ 𝑀𝑙 ⊑ 𝑀2 ∈ 𝐴; Γ𝑀
Γ ⊨ 𝑀𝑙 ⊑𝑐𝑡𝑥 𝑀2 ∈ 𝐴; Γ𝑀

Proof. Let 𝐶 be an appropriately typed closing context. By the congruence Lemma G.39 we

know

· ⊨ 𝐶 [𝑀1] ⊑ 𝐶 [𝑀2] ∈ 𝐵; ·
By Lemma G.44, we know that

(𝑤∼𝑝 (𝑛), J𝐶 [𝑀1]K[𝛾𝑝], J𝐶 [𝑀2]K[𝛾𝑝] ∈ E∼J𝐵⊑K𝛾2𝑝𝛿∼𝑝
(noting that J𝐶 [𝑀𝑖]K[𝛾𝑝] [𝛿∼𝑝] = J𝐶 [𝑀𝑖]K[𝛾𝑝]).
• If 𝐶 [𝑀1] ⇑, then by the simulation Theorem F.16 we know Σ𝑝 , J𝐶 [𝑀1]K[𝛾𝑝] ⇑. Then, by
adequacy for divergence Corollary F.18, to show 𝐶 [𝑀2] ⇑ it is sufficient to show that

Σ𝑝 , J𝐶 [𝑀2]K[𝛾𝑝] ⇑. We will show that for every 𝑛, Σ𝑝 , J𝐶 [𝑀2]K[𝛾𝑝] ↦→𝑛 Σ𝑛, 𝑁𝑛 for some

Σ𝑛, 𝑁𝑛 . We know

(𝑤 ≻𝑝 (𝑛), J𝐶 [𝑀1]K[𝛾𝑝], J𝐶 [𝑀2]K[𝛾𝑝]) ∈ E≻J𝐵⊑K𝛾𝛿
we proceed by the cases of E≻J𝐵⊑K𝛾𝛿
– If𝑤 ≻𝑝 (𝑛).Σ𝑟 , J[𝐶 [𝑀2]] [𝛾𝑝]K ↦→𝑤≻𝑝 (𝑛) . 𝑗

we are done because𝑤 ≻𝑝 (𝑛).Σ𝑟 = Σ𝑝 and𝑤 ≻𝑝 (𝑛). 𝑗 =
𝑛.

– If𝑤 ≻𝑝 (𝑛).Σ𝑙 , J[𝐶 [𝑀1]] [𝛾𝑝]K ↦→∗ Σ′,℧we have a contradiction because Σ𝑝 , J[𝐶 [𝑀1]] [𝛾𝑝]K ⇑
– If 𝑤 ≻𝑝 (𝑛).Σ𝑙 , J[𝐶 [𝑀1]] [𝛾𝑝]K ↦→∗ Σ′, ret 𝑉1, we also have a contradiction for the same

reason.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:76 Max S. New, Dustin Jamner, and Amal Ahmed

• If 𝐶 [𝑀1] ⇓ 𝑉1 then by simulation we know Σ𝑝 , J𝐶 [𝑀1]K ↦→𝑛 Σ′, ret 𝑉 ′
1
for some 𝑛,𝑉1.

Furthermore, to show 𝐶 [𝑀2] ⇓ 𝑉2 it is sufficient by simulation to show Σ𝑝 , J𝐶 [𝑀2]K ↦→∗
ret 𝑉 ′

2
. We know

(𝑤 ≺𝑝 (𝑛), J𝐶 [𝑀1]K[𝛾𝑝], J𝐶 [𝑀2]K[𝛾𝑝]) ∈ E≺J𝐵⊑K𝛾𝛿

we proceed by the cases of E≺J𝐵⊑K𝛾𝛿 .
– If𝑤 ≺𝑝 (𝑛).Σ𝑙 , J𝐶 [𝑀1]K[𝛾𝑝] ↦→𝑤≺𝑝 (𝑛) . 𝑗+1

or𝑤 ≺𝑝 (𝑛).Σ𝑙 , J𝐶 [𝑀1]K[𝛾𝑝] ↦→𝑗 ℧ this contradicts the

fact that Σ𝑝 , J𝐶 [𝑀1]K ↦→𝑛 Σ′, ret 𝑉 ′
1
.

– Otherwise,𝑤 ≺𝑝 (𝑛).Σ𝑟 , J𝐶 [𝑀2]K[𝛾𝑝] ↦→∗ Σ′, ret 𝑉 ′
2
, so the result holds because𝑤 ≺𝑝 (𝑛).Σ𝑟 =

Σ𝑝 .

□

Finally we prove Lemma G.39 that states that semantic term precision is a congruence.

Proof. By induction over 𝐶 . In ever non-cast case we use the corresponding compatibility rule.

The two casts cases are precisely dual.

• If 𝐶 = ⟨𝐴⊑⟩

↢

𝐶 ′, where Γ, Γ′𝑜 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 then we need to show

Γ′ ⊨ ⟨𝐴⊑⟩

↢

𝐶 ′[𝑀𝑙] ⊑ ⟨𝐴⊑⟩

↢

𝐶 ′[𝑀𝑟] ∈ 𝐴𝑟 ; Γ
′
𝑜

First we use the upcast-left compatibility rule, meaning we need to show

Γ′ ⊨ 𝐶 ′[𝑀𝑙] ⊑ ⟨𝐴⊑⟩

↢

𝐶 ′[𝑀𝑟] ∈ 𝐴⊑; Γ′𝑜
Next, we use the upcast-right compatibility rule, meaning we need to show

Γ′ ⊨ 𝐶 ′[𝑀𝑙] ⊑ 𝐶 ′[𝑀𝑟] ∈ 𝐴𝑙 ; Γ
′
𝑜

which follows by inductive hypothesis.

• If 𝐶 = ⟨𝐴⊑⟩ ↞ 𝐶 ′, where Γ, Γ′𝑜 ⊢ 𝐴⊑ : 𝐴𝑙 ⊑ 𝐴𝑟 then we need to show

Γ′ ⊨ ⟨𝐴⊑⟩ ↞ 𝐶 ′[𝑀𝑙] ⊑ ⟨𝐴⊑⟩ ↞ 𝐶 ′[𝑀𝑟] ∈ 𝐴𝑙 ; Γ
′
𝑜

First we use the downcast-right compatibility rule, meaning we need to show

Γ′ ⊨ ⟨𝐴⊑⟩ ↞ 𝐶 ′[𝑀𝑙] ⊑ 𝐶 ′[𝑀𝑟] ∈ 𝐴⊑; Γ′𝑜
Next, we use the downcast-left compatibility rule, meaning we need to show

Γ′ ⊨ 𝐶 ′[𝑀𝑙] ⊑ 𝐶 ′[𝑀𝑟] ∈ 𝐴⊑; Γ′𝑜
which follows by inductive hypothesis.

□

G.4 Free Theorems
Most of the free theorems are stated in terms of contextual equivalence. We define contextual

equivalence of PolyG
𝜈
terms to mean contextual equivalence of their elaborations into PolyC

𝜈

terms. By lemma G.42, we can prove a contextual equivalence𝑀1 ≈ctx 𝑀2 by proving contextual

error approximation both ways (𝑀1 ⊑𝑐𝑡𝑥 𝑀2 and 𝑀2 ⊑𝑐𝑡𝑥 𝑀1). We can prove contextual error

approximation by proving logical relatedness by soundness of the logical relation for open terms

(Lemma G.45), which is defined in terms of the two logical relations ⊑≺, ⊑≻, giving us technically

4 things to prove: ⊑≺, ⊑≻, ≻⊒ and ≺⊒. However, these cases are all very similar so we show only

one case and the other cases follow by essentially symmetric arguments.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:77

Standard Free Theorems.

𝑀 : ∀𝜈𝑋 .𝑋 → 𝑋 𝑉𝐴 : 𝐴 𝑉𝐵 : 𝐵

𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}(seal𝑋𝑉𝐴)) ≈ctx 𝜆_ : ?.let 𝑦 = 𝑀{𝑋 � 𝐵}𝑉𝐵 ;𝑉𝐴
Theorem G.46.

Proof. There are 4 cases: ⊑≺, ⊑≻, ≻⊒ and ≺⊒ but they are all by a similar argument. Let

(𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝 , ΓK. We need to show

(𝑤, ret thunk 𝜆_ : ?.

newcaseJ𝐴K[𝛿𝑙] 𝑐𝑋 ;
Junseal𝑋 (𝑀{𝑋 � 𝐴}(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]

, ret thunk 𝜆_ : ?.

newcaseJ𝐴K[𝛿𝑟] 𝑐𝑋 ;
Jlet 𝑦 = 𝑀{𝑋 � 𝐵}𝑉𝐵 ;𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐴K𝛾𝛿

Given some 𝑤 ′ ⊒ 𝑤 and (irrelevant) values (𝑤 ′,𝑉𝑑𝑢𝑚𝑙 ,𝑉𝑑𝑢𝑚𝑟), we need to show (after applying

anti-reduction) that

(𝑤 ′, newcaseJ𝐴K[𝛿𝑙] 𝑐𝑋 ;
Junseal𝑋 (𝑀{𝑋 � 𝐴}(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]

, newcaseJ𝐴K[𝛿𝑟] 𝑐𝑋 ;
Jlet 𝑦 = 𝑀{𝑋 � 𝐵}𝑉𝐵 ;𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

∈ E∼J𝐴K𝛾𝛿

Each side allocates a new case and we need to pick a relation with which to instantiate it. By

Lemmas F.10 and F.2, we have that J𝑉𝐴K[𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 and J𝑉𝐵K[𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐵𝑟 for

some 𝑉𝐴𝑙 and 𝑉𝐵𝑟 . We define 𝑅 to be the “singleton” relation:

𝑅 = {(𝑤,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ Atom[J𝐴K[𝛿𝑙], J𝐵K[𝛿𝑟]] | 𝑤 ⊒ 𝑤 ′}

Then we define𝑤 ′′ to be the world extended with ⌊𝑅⌋𝑤′. 𝑗 :

𝑤 ′′ = (𝑤 ′. 𝑗,𝑤 ′.Σ𝑙 , J𝐴K[𝛿𝑙],𝑤 ′.Σ𝑟 [𝛿𝑟],𝑤 ′.𝜂 ⊞ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒, ⌊𝑅⌋𝑤′. 𝑗)

Then clearly𝑤 ′′ ⊒ 𝑤 ′ and

𝑤 ′.Σ𝑙 , newcaseJ𝐴K[𝛿𝑙] 𝑐𝑋 ;
Junseal𝑋 (𝑀{𝑋 � 𝐴}(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]

↦→0 𝑤 ′′.Σ𝑙 , Junseal𝑋 (𝑀{𝑋 � 𝐴}(seal𝑋𝑉𝐴))K[𝛾 ′𝑙] [𝛿𝑙]

and similarly for the right hand side:

𝑤 ′.Σ𝑟 , newcaseJ𝐴K[𝛿𝑟] 𝑐𝑋 ;
Jlet 𝑦 = 𝑀{𝑋 � 𝐵}𝑉𝐵 ;𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

↦→0 𝑤 ′′.Σ𝑟 , Jlet 𝑦 = 𝑀{𝑋 � 𝐵}𝑉𝐵 ;𝑉𝐴K[𝛾 ′𝑟] [𝛿𝑟]

where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒). Expanding definitions (and noting that 𝑐𝑋 is free in

𝑀), we need to show

(𝑤 ′′, 𝑆𝑙 [J𝑀K[𝛾 ′
𝑙
] [𝛿𝑙]], 𝑆2 [J𝑀K[𝛾 ′𝑟] [𝛿𝑟]]) ∈ E∼J𝐴K𝛾𝛿

where

𝑆𝑙 = 𝑓 ← (𝑧 ← •; force 𝑧 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋));
𝑥 ← J𝑉𝐴K[𝛾𝑙] [𝛿𝑙];
force 𝑓 𝑥

and

𝑆2 = 𝑦 ←

©­­­­­«
𝑓 ← (𝑧 ← •; force 𝑧 (J𝐵K[𝛿𝑙]) 𝛾 ′𝑟 (𝑐𝑋));
𝑥 ← J𝑉𝐵K[𝛾𝑟] [𝛿𝑟];
force 𝑓 𝑥

ª®®®®®¬
; J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:78 Max S. New, Dustin Jamner, and Amal Ahmed

We applymonadic bind. Let𝑤 ′′′ ⊒ 𝑤 ′′ and (𝑤 ′′′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J∀𝜈𝑋 .𝑋 → 𝑋 K𝛾𝛿 . After anti-reduction
we need to show

(𝑤 ′′′, 𝑓 ← force 𝑉𝑙 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋);
𝑥 ← J𝑉𝐴K[𝛾𝑙] [𝛿𝑙];
force 𝑓 𝑥

, 𝑆 ′𝑟


𝑓 ← force 𝑉𝑟 (J𝐵K[𝛿𝑙]) 𝛾 ′𝑟 (𝑐𝑋);
𝑥 ← J𝑉𝐵K[𝛾𝑟] [𝛿𝑟];
force 𝑓 𝑥


) ∈ E∼J𝐴K𝛾𝛿

where

𝑆 ′𝑟 = 𝑦 ← •; J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾𝛿

By weakening it is equivalent to showing the terms are in the relation E∼J𝐴K𝛾 ′𝛿 ′ where 𝛿 ′ =
(J𝐴K[𝛿𝑙], J𝐵K[𝛿𝑟], 𝑅). By definition ofV∼J∀𝜈𝑋 .𝑋 → 𝑋 K, we have

(𝑤 ′′′, force 𝑉𝑙 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋), force 𝑉𝑟 (J𝐵K[𝛿𝑟]) 𝛾 ′𝑟 (𝑐𝑋)) ∈ E∼J𝑋 → 𝑋 K𝛾 ′𝛿 ′

So we apply monadic bind. Let 𝑤 ′′′′ ⊒ 𝑤 ′′′ and let (𝑤 ′′′′,𝑉𝑓 𝑙 ,𝑉𝑓 𝑟) ∈ V∼J𝑋 → 𝑋 K𝛾 ′𝛿 ′. Applying
anti-reduction, we need to show

(𝑤 ′′′′, force 𝑉𝑓 𝑙 𝑉𝐴𝑙 , 𝑦 ← force 𝑉𝑓 𝑟 𝑉𝐵𝑟 ; J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾 ′𝛿 ′

By definition ofV∼J𝑋 → 𝑋 K, (𝑤 ′′′′, force 𝑉𝑓 𝑙 𝑉𝐴𝑙 , force 𝑉𝑓 𝑟 𝑉𝐵𝑟) ∈ E∼J𝑋 K𝛾 ′𝛿 ′ if (𝑤 ′′′′,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈
V∼J𝑋 K𝛾 ′𝛿 ′ which holds because (𝑤 ′′′′,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ 𝑅. By Lemmas F.10 and F.2, we have that

J𝑉𝐴K[𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐴𝑟 for some 𝑉𝐴𝑟 . Applying monadic bind a final time we get 𝑤 𝑓 𝑖𝑛 ⊒ 𝑤 ′′′′

and (𝑤 𝑓 𝑖𝑛,𝑉
′
𝐴𝑙
,𝑉 ′

𝐵𝑟
) ∈ V∼J𝑋 K𝛾 ′𝛿 ′ and after anti-reduction need to show that

(𝑤 𝑓 𝑖𝑛, ret 𝑉 ′
𝐴𝑙
, ret 𝑉𝐴𝑟) ∈ E∼J𝐴K𝛾 ′𝛿 ′

By weakening this is equivalent to

(𝑤 𝑓 𝑖𝑛, ret 𝑉 ′
𝐴𝑙
, ret 𝑉𝐴𝑟) ∈ E∼J𝐴K𝛾𝛿

By the definition of V∼J𝑋 K𝛾 ′𝛿 ′, 𝑉 ′
𝐴𝑙

= 𝑉𝐴𝑙 , so this follows by reflexivity; specifically that Γ ⊨
𝑉𝐴 ⊑ 𝑉𝐴 ∈ 𝐴; ·. This is because, by the definition of E∼J𝐴K𝛾𝛿 , since 𝑉𝐴 [𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 and

𝑉𝐴 [𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐴𝑟 , those values are related. □

Theorem G.47.

𝑀 : ∀𝜈𝑋 .∀𝜈𝑌 .(𝑋 × 𝑌) → (𝑌 × 𝑋) 𝑉𝐴 : 𝐴 𝑉𝐵 : 𝐵

𝜆_ : ?.let (𝑦, 𝑥) = (𝑀{𝑋 � 𝐴}{𝑌 � 𝐵} (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)); (unseal𝑋𝑥, unseal𝑌𝑦)
≈ctx 𝜆_ : ?.let (𝑦, 𝑥) = (𝑀{𝑋 � 𝐵}{𝑌 � 𝐴} (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)); (unseal𝑌𝑦, unseal𝑋𝑥)

Proof. We show the ⊑∼ case, the ∼⊒ case is symmetric. Let (𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝 , ΓK. Define the
following terms

𝑁𝑙 = Jlet (𝑦, 𝑥) = (𝑀{𝑋 � 𝐴}{𝑌 � 𝐵} (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)); (unseal𝑋𝑥, unseal𝑌𝑦)K
𝑁𝑟 = Jlet (𝑦, 𝑥) = (𝑀{𝑋 � 𝐵}{𝑌 � 𝐴} (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)); (unseal𝑌𝑦, unseal𝑋𝑥)K

Then we need to show for any𝑤1 ⊒ 𝑤 that

(𝑤1, newcase𝐴 𝑐𝑋 ; newcase𝐵 𝑐𝑌 ;𝑁𝑙 [𝛾𝑙] [𝛿𝑙], newcase𝐵 𝑐𝑋 ; newcase𝐴 𝑐𝑌 ;𝑁𝑟 [𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴×𝐵K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:79

By Lemmas F.10 and F.2, we have that J𝑉𝐴K[𝛾𝑖] [𝛿𝑖] ↦→0 ret 𝑉𝐴𝑖 and J𝑉𝐵K[𝛾𝑖] [𝛿𝑖] ↦→0 ret 𝑉𝐵𝑖 for

some 𝑉𝐴𝑖 and 𝑉𝐵𝑖 . Define

𝐴𝑖 = J𝐴K[𝛿𝑖]
𝐵𝑖 = J𝐵K[𝛿𝑖]
𝑅𝑋 = {(𝑤,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ Atom[𝐴𝑙 , 𝐵𝑟] | 𝑤 ⊒ 𝑤1}
𝑅𝑌 = {(𝑤,𝑉𝐵𝑙 ,𝑉𝐴𝑟) ∈ Atom[𝐵𝑙 , 𝐴𝑟] | 𝑤 ⊒ 𝑤1}
𝑤2 = (𝑤1 . 𝑗, (𝑤1.Σ𝑙 , 𝐴𝑙 , 𝐵𝑙), (𝑤1.Σ𝑟 , 𝐵𝑟 , 𝐴𝑟), (𝑤1 .𝜂 ⊞ (𝐴𝑙 , 𝐵𝑟 , ⌊𝑅𝑋 ⌋𝑤1 . 𝑗) ⊞ (𝐵𝑙 , 𝐴𝑟 , ⌊𝑅𝑌 ⌋𝑤1 . 𝑗)))
𝜎𝑋𝑖 = 𝑤1.Σ𝑖 .𝑠𝑖𝑧𝑒

𝜎𝑌𝑖 = 𝑤1.Σ𝑖 .𝑠𝑖𝑧𝑒 + 1
𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑋𝑙 , 𝜎𝑋𝑟), 𝑐𝑌 ↦→ (𝜎𝑌𝑙 , 𝜎𝑌𝑟)
𝛿 ′ = 𝛿, 𝑋 ↦→ (𝐴𝑙 , 𝐵𝑟 , 𝑅𝑋), 𝑌 ↦→ (𝐵𝑙 , 𝐴𝑟 , 𝑅𝑌)

Then it is sufficient to show that

(𝑤2, 𝑁𝑙 [𝛾 ′𝑙] [𝛿
′
𝑙
], 𝑁𝑟 [𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐴 × 𝐵K𝛾𝛿

which is equivalent by weakening to

(𝑤2, 𝑁𝑙 [𝛾 ′𝑙] [𝛿
′
𝑙
], 𝑁𝑟 [𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

Next, note that by reflexivity,

(𝑤2, J𝑀K[𝛾 ′
𝑙
] [𝛿 ′

𝑙
], J𝑀K[𝛾 ′𝑟] [𝛿 ′𝑟]) ∈ E∼J∀𝜈𝑋 .∀𝜈𝑌 .(𝑋 × 𝑌) → (𝑌 × 𝑋)K𝛾 ′𝛿 ′

and

𝑁𝑖 = J𝑆𝑖K[J𝑀K] [𝛾 ′𝑖] [𝛿 ′𝑖]
for stacks

𝑆𝑙 = let (𝑦, 𝑥) = (•{𝑋 � 𝐴}{𝑌 � 𝐵} (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)); (unseal𝑋𝑥, unseal𝑌𝑦)
𝑆𝑟 = let (𝑦, 𝑥) = (•{𝑋 � 𝐵}{𝑌 � 𝐴} (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)); (unseal𝑌𝑦, unseal𝑋𝑥)

So we can apply monadic bind. Let 𝑤3 ⊒ 𝑤2 and (𝑤3,𝑉∀𝜈𝑙 ,𝑉∀𝜈𝑟) ∈ V∼J∀𝜈𝑋 .∀𝜈𝑌 .(𝑋 × 𝑌) →
(𝑌 × 𝑋)K𝛾 ′𝛿 ′. Then by anti-reduction it is sufficient to show

(𝑤3, J𝑆 ′𝑙 K[force 𝑉∀𝜈𝑙 𝐴𝑙 𝜎𝑋𝑙], J𝑆 ′𝑟 K[force 𝑉∀𝜈𝑟 𝐵𝑟 𝜎𝑋𝑟]) ∈ E∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

for stacks

𝑆 ′
𝑙
= let (𝑦, 𝑥) = (•{𝑌 � 𝐵} (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)); (unseal𝑋𝑥, unseal𝑌𝑦)

𝑆 ′𝑟 = let (𝑦, 𝑥) = (•{𝑌 � 𝐴} (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)); (unseal𝑌𝑦, unseal𝑋𝑥)

By definition, we know (𝑤3, force 𝑉∀𝜈𝑙 𝐴𝑙 𝜎𝑋𝑙 , force 𝑉∀𝜈𝑟 𝐵𝑟 𝜎𝑋𝑟) ∈ E∼J∀𝜈𝑌 .(𝑋 × 𝑌) → (𝑌 ×
𝑋)K𝛾 ′𝛿 ′, so we can apply monadic bind again. Let 𝑤4 ⊒ 𝑤3 and (𝑤4,𝑉

′
∀𝜈𝑙 ,𝑉

′
∀𝜈𝑟) ∈ V

∼J∀𝜈𝑌 .(𝑋 ×
𝑌) → (𝑌 × 𝑋)K𝛾 ′𝛿 ′. Then after anti-reduction we need to show

(𝑤4, J𝑆 ′′𝑙 K[force 𝑉 ′∀𝜈𝑙 𝐵𝑙 𝜎𝑌𝑙], J𝑆
′′
𝑟 K[force 𝑉 ′∀𝜈𝑟 𝐴𝑟 𝜎𝑌𝑟]) ∈ E∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

for stacks

𝑆 ′′
𝑙
= let (𝑦, 𝑥) = (• (seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)); (unseal𝑋𝑥, unseal𝑌𝑦)

𝑆 ′′𝑟 = let (𝑦, 𝑥) = (• (seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)); (unseal𝑌𝑦, unseal𝑋𝑥)

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:80 Max S. New, Dustin Jamner, and Amal Ahmed

Similarly to before, we know (𝑤4, force 𝑉 ′∀𝜈𝑙 𝐵𝑙 𝜎𝑌𝑙 , force 𝑉 ′∀𝜈𝑟 𝐴𝑟 𝜎𝑌𝑟) ∈ E∼J(𝑋 × 𝑌) → (𝑌 ×
𝑋)K𝛾 ′𝛿 ′ so we can apply monadic bind again. Let 𝑤5 ⊒ 𝑤𝑟 and (𝑤5,𝑉𝑓 𝑙 ,𝑉𝑓 𝑟) ∈ V∼J(𝑋 × 𝑌) →
(𝑌 × 𝑋)K𝛾 ′𝛿 ′. Next, note that

J(seal𝑋𝑉𝐴, seal𝑌𝑉𝐵)K[𝛾 ′𝑙] [𝛿
′
𝑙
] ↦→0 ret (𝑉𝐴𝑙 ,𝑉𝐵𝑙)

J(seal𝑋𝑉𝐵, seal𝑌𝑉𝐴)K[𝛾 ′𝑟] [𝛿 ′𝑟] ↦→0 ret (𝑉𝐵𝑟 ,𝑉𝐴𝑟)

So by anti-reduction we need to show

(𝑤5, J𝑆 ′′′𝑙 K[force 𝑉 ′∀𝜈𝑙 (𝑉𝐴𝑙 ,𝑉𝐵𝑙)], J𝑆
′′′
𝑟 K[force 𝑉 ′∀𝜈𝑟 (𝑉𝐵𝑟 ,𝑉𝐴𝑟)]) ∈ E

∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

where

𝑆 ′′′
𝑙

= let (𝑦, 𝑥) = •; (unseal𝑋𝑥, unseal𝑌𝑦)
𝑆 ′′′𝑟 = let (𝑦, 𝑥) = •; (unseal𝑌𝑦, unseal𝑋𝑥)

To show that

(𝑤5, force 𝑉 ′∀𝜈𝑙 (𝑉𝐴𝑙 ,𝑉𝐵𝑙), force 𝑉 ′∀𝜈𝑟 (𝑉𝐵𝑟 ,𝑉𝐴𝑟)) ∈ E
∼J𝑌 × 𝑋 K𝛾 ′𝛿 ′

It is sufficient to show

(𝑤5, (𝑉𝐴𝑙 ,𝑉𝐵𝑙), (𝑉𝐵𝑟 ,𝑉𝐴𝑟)) ∈ E∼J𝑋 × 𝑌 K𝛾 ′𝛿 ′

which follows because (𝑤5,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ 𝑅𝑋 and (𝑤5,𝑉𝐵𝑟 ,𝑉𝐴𝑟) ∈ 𝑅𝑌 . Then we can apply monadic

bind a final time. Let𝑤 𝑓 𝑖𝑛 ⊒ 𝑤5 and (𝑤 𝑓 𝑖𝑛,𝑉𝑜𝑙 ,𝑉𝑜𝑟) ∈ V∼J𝑌 × 𝑋 K𝛾 ′𝛿 ′. Then we need to show

(𝑤 𝑓 𝑖𝑛, J𝑆 ′′′𝑙 K[ret 𝑉𝑜𝑙], J𝑆 ′′′𝑟 K[ret 𝑉𝑜𝑟]) ∈ E∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

First, by definition, it must be the case that 𝑉𝑜𝑙 = (𝑉𝐵𝑙 ,𝑉𝐴𝑙) and 𝑉𝑜𝑟 = (𝑉𝐴𝑟 ,𝑉𝐵𝑟). Then by anti-

reduction we need to show

(𝑤 𝑓 𝑖𝑛, ret (𝑉𝐴𝑙 ,𝑉𝐵𝑙), ret (𝑉𝐴𝑟 ,𝑉𝐵𝑟)) ∈ E∼J𝐴 × 𝐵K𝛾 ′𝛿 ′

which means we need to show

(𝑤 𝑓 𝑖𝑛,𝑉𝐴𝑙 ,𝑉𝐴𝑟) ∈ V∼J𝐴K𝛾 ′𝛿 ′

and

(𝑤 𝑓 𝑖𝑛,𝑉𝐵𝑙 ,𝑉𝐵𝑟) ∈ V∼J𝐵K𝛾 ′𝛿 ′

which follows by reflexivity and monotonicity. □

Lemma G.48.

pack𝜈 (𝑋 � B, (seal𝑋true, (NOT, 𝜆𝑥 : 𝑋 .unseal𝑋𝑥)))
≈ctx pack𝜈 (𝑋 � B, (seal𝑋false, (NOT, 𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥))))

Proof. We do the ⊑∼ case, the ∼⊒ case is symmetric. Let (𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝K. The goal reduces
to showing(

𝑤,
pack(B, (thunk 𝜆𝑐𝑋 : Case 𝑋 .J(seal𝑋true, (NOT, (𝜆𝑥 : 𝑋 .unseal𝑋𝑥)))K)),
pack(B, thunk 𝜆𝑐𝑋 : Case 𝑋 .J(seal𝑋false, (NOT, 𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥)))K)

)
∈ V∼J∃𝜈𝑋 .𝑋 × ((𝑋 → 𝑋) × (𝑋 → B))K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:81

The relation we pick is 𝑅 = {(𝑤 ′, true, false) ∈ Atom[B,B]}∪{(𝑤 ′, false, true) ∈ Atom[B,B]}
Then we need to show for any future𝑤 ′ ⊒ 𝑤 and𝑤 ′ ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′. 𝑗), that(

𝑤 ′,
(force (thunk 𝜆𝑐𝑋 : Case 𝑋 .J(seal𝑋true, (NOT, 𝜆𝑥 : 𝑋 .unseal𝑋𝑥))K) 𝜎𝑙),
(force thunk 𝜆𝑐𝑋 : Case 𝑋 .J(seal𝑋true, (NOT, 𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥)))K𝜎𝑟)

)
∈ E∼J𝑋 × ((𝑋 → 𝑋) × (𝑋 → B))K𝛾 ′𝛿 ′

where

𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝜎𝑙 , 𝜎𝑟)
𝛿 ′ = 𝛿, 𝑋 ↦→ (B,B, 𝑅)

And after applying anti-reduction, by monadic bind, we need to show the following 3 things:

(𝑤 ′, true, false) ∈ V∼J𝑋 K𝛾 ′𝛿 ′

(𝑤 ′, JNOTK[𝛾 ′
𝑙
] [𝛿 ′

𝑙
], JNOT[𝛾 ′𝑟] [𝛿 ′𝑟]K) ∈ E∼J𝑋 → 𝑋 K𝛾 ′𝛿 ′

(𝑤 ′, J𝜆𝑥 : 𝑋 .unseal𝑋𝑥K, J𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥)K) ∈ E∼J𝑋 → BK𝛾 ′𝛿 ′

(1) First, (𝑤 ′, true, false) ∈ V∼J𝑋 K𝛾 ′𝛿 ′ follows directly from the definition of 𝛿𝑅 (𝑋) = 𝑅.

(2) Second, let𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝑋 K𝛾 ′𝛿 ′. Then we need to show

(𝑤 ′′, force 𝑉𝑁𝑂𝑇 [𝛾 ′𝑙] [𝛿
′
𝑙
]𝑉𝑙 , force 𝑉𝑁𝑂𝑇 [𝛾 ′𝑟] [𝛿 ′𝑟]𝑉𝑟) ∈ E∼J𝑋 K𝛾 ′𝛿 ′

where JNOTK = ret 𝑉𝑁𝑂𝑇 . There are two cases: either 𝑉𝑙 = true and 𝑉𝑟 = false or vice-

versa. In either case, NOT swaps the two values and the result holds.

(3) Finally, let𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J𝑋 K𝛾 ′𝛿 ′. Then we need to show,

(𝑤 ′′, force 𝑉𝑓 𝑙 𝑉𝑙 , force 𝑉𝑓 𝑟 𝑉𝑟) ∈ E∼JBK𝛾 ′𝛿 ′

where J𝜆𝑥 : 𝑋 .unseal𝑋𝑥K = ret 𝑉𝑓 𝑙 and J𝜆𝑥 : 𝑋 .NOT (unseal𝑋𝑥)K = ret 𝑉𝑓 𝑟 . By definition

of 𝑅, either 𝑉𝑙 = true and 𝑉𝑟 = false or vice-versa. In either case, both sides evaluate to

ret 𝑉𝑙 , and we need to show

(𝑤 ′′,𝑉𝑙 ,𝑉𝑙) ∈ V∼JBK𝛾 ′𝛿 ′

which follows by definition.

□

Free Theorems with the Dynamic Type.

Theorem G.49. If𝑀 : ∀𝜈𝑋 .?→ 𝑋 and · ⊢ 𝐴 and · ⊢ 𝑉 : ?, then either

((𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}𝑉)) true)+ ⇑
or

((𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}𝑉)) true)+ ↦→∗ ℧

Proof. Define 𝑁 = (𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}𝑉)) true By the adequacy lemmas ??,??, it is
sufficient to show that for every 𝑛 ∈ N, either

Σ𝑝 ⊲ J(𝑁)+K[𝛾𝑝] ↦→𝑛

or

Σ𝑝 ⊲ J(𝑁)+K[𝛾𝑝] ↦→≤𝑛 ℧
Unraveling definitions, we get

Σ𝑝 ; J((𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴}𝑉)) true)+K ↦→∗ Σ𝑝 ; newcaseJ𝐴K 𝑐𝑋 ; J((𝑀{𝑋 � 𝐴}𝑉))+K[𝛾𝑝]
↦→ Σ; J((𝑀{𝑋 � 𝐴}𝑉))+K[𝛾𝑝 , 𝑐𝑋 ↦→ 𝜎]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:82 Max S. New, Dustin Jamner, and Amal Ahmed

where 𝜎 = Σ𝑝 .𝑠𝑖𝑧𝑒 , Σ = Σ𝑝 , 𝜎 .
Next, define 𝛾 = 𝛾2𝑝 , 𝑐𝑋 ↦→ (𝜎, 𝜎), 𝑤 = (𝑤 ≺ (𝑛). 𝑗, Σ, Σ,𝑤 .𝜂 ⊞ (J𝐴K, J𝐴K, ∅)) and 𝛿 = 𝛿 ≺𝑝 , 𝑋 ↦→
(J𝐴K, J𝐴K, ∅), noting that we use the empty relation ∅ as the interpretation of 𝑋 .

To prove the claim, it is sufficient to show that

(𝑤, J((𝑀{𝑋 � 𝐴}𝑉))+K[𝛾𝑙], J((𝑀{𝑋 � 𝐴}𝑉))+K[𝛾𝑟]) ∈ E≺J𝑋 K𝛾𝛿

sinceV≺J𝑋 K𝛾𝛿 = ∅ and therefore the case where the two sides reduce to values is impossible.

First, since (𝑤,𝛾2𝑝 , 𝛿
≺
𝑝) ∈ G≺JΓ𝑝K, by reflexivity andweakeningwe know (𝑤, J(𝑀)+K[𝛾𝑙], J(𝑀)+K[𝛾𝑟]) ∈

E≺J∀𝜈𝑋 .?→ 𝑋 K𝛾𝛿 .
We apply monadic bind. Assume 𝑤 ′ ⊒ 𝑤 and (𝑤 ′,𝑉∀,𝑙 ,𝑉∀,𝑟) ∈ V≺J∀𝜈𝑋 .? → 𝑋 K𝛾𝛿 , then by

anti-reduction we need to show that

(𝑤 ′, J𝑆K[force 𝑉∀,𝑙 [J𝐴K] 𝜎] [𝛾𝑙] [𝛿𝑙], J𝑆K[force 𝑉∀,𝑟 [J𝐴K] 𝜎] [𝛾𝑟] [𝛿𝑟]) ∈ E≺J𝑋 K𝛾𝛿

where

𝑆 = •𝑉
Next, since𝑤 ′.𝜂 ⊨ (𝜎, 𝜎, ∅) and𝛿 (𝑋) = (J𝐴K, J𝐴K, ∅), we have (𝑤 ′, force 𝑉∀,𝑙 [J𝐴K] 𝜎, force 𝑉∀,𝑙 [J𝐴K] 𝜎) ∈
E≺J? → 𝑋 K𝛾𝛿 Again we apply monadic bind. Assume 𝑤 ′′ ⊒ 𝑤 ′ and (𝑤 ′′,𝑉𝑓 ,𝑙 ,𝑉𝑓 ,𝑟) ∈ V≺J? →
𝑋 K𝛾𝛿 . Then by Lemma F.10, we know Σ ⊲ J𝑉 +K[𝛾𝑖] ↦→∗ Σ ⊲ ret 𝑉𝑥 [𝛾𝑖], so applying anti-reduction

it suffices to show

(𝑤 ′′, force 𝑉𝑓 ,𝑙 𝑉𝑥 [𝛾𝑙], force 𝑉𝑓 ,𝑟 𝑉𝑥 [𝛾𝑟]) ∈ E≺J𝑋 K𝛾𝛿

for which it suffices to show that

(𝑤 ′′,𝑉𝑥 [𝛾𝑙],𝑉𝑥 [𝛾𝑟]) ∈ V≺J?K𝛾𝛿

for which it suffices to show that

(𝑤 ′′, J𝑉 +K[𝛾𝑙], J𝑉 +K[𝛾𝑟]) ∈ E≺J?K𝛾𝛿

which by weakening is equivalent to showing

(𝑤 ′′, J𝑉 +K[𝛾𝑝], J𝑉 +K[𝛾𝑝]) ∈ E≺J?K𝛾2𝑝𝛿 ≺𝑝
which follows by reflexivity and the fact that (𝑤 ′′, 𝛾2𝑝 , 𝛿 ≺𝑝) ∈ G≺JΓ𝑝K. □

Theorem G.50. For any · ⊢ 𝐴, 𝐵 and 𝑉𝐴 : 𝐴 and 𝑉𝐵 : 𝐵,

𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴} seal𝑋𝑉𝐴) ≈ctx

𝜆_ : ?.let 𝑦 = (unseal𝑋 (𝑀{𝑋 � 𝐵} seal𝑋𝑉𝐵));𝑉𝐴 : ?→ 𝐴

Proof. We show one direction of the 4 cases, the others are analogous. Let (𝑤,𝛾, 𝛿) ∈ G∼JΓ𝑝K.
We need to show

(𝑤, ret thunk 𝜆_ : ?.

newcaseJ𝐴K 𝑐𝑋 ;

J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]

,

ret thunk 𝜆_ : ?.

newcaseJ𝐴K 𝑐𝑋 ;

Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐵));𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐴K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:83

Given some 𝑤 ′ ⊒ 𝑤 and (irrelevant) values (𝑤 ′,𝑉𝑑𝑢𝑚𝑙 ,𝑉𝑑𝑢𝑚𝑟), we need to show (after applying

anti-reduction) that

(𝑤 ′, newcaseJ𝐴K 𝑐𝑋 ;

J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]
,

newcaseJ𝐴K 𝑐𝑋 ;

Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐵));𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐴K𝛾𝛿

Each side allocates a new case and we need to pick a relation with which to instantiate it. By

Lemmas F.10 and F.2, we have that J𝑉𝐴K[𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 and J𝑉𝐵K[𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐵𝑟 for

some 𝑉𝐴𝑙 and 𝑉𝐵𝑟 . As in the ordinary identity function proof, we define 𝑅 to be the “singleton”

relation:

𝑅 = {(𝑤,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ Atom[J𝐴K[𝛿𝑙], J𝐵K[𝛿𝑟]] | 𝑤 ⊒ 𝑤 ′}

Then we define𝑤 ′′ to be the world extended with ⌊𝑅⌋𝑤′. 𝑗 :

𝑤 ′′ = (𝑤 ′. 𝑗,𝑤 ′.Σ𝑙 , J𝐴K[𝛿𝑙],𝑤 ′.Σ𝑟 [𝛿𝑟],𝑤 ′.𝜂 ⊞ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒, ⌊𝑅⌋𝑤′. 𝑗)

Then clearly𝑤 ′′ ⊒ 𝑤 ′ and

𝑤 ′.Σ𝑙 , newcaseJ𝐴K[𝛿𝑙] 𝑐𝑋 ;
J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐴))K[𝛾𝑙] [𝛿𝑙]

↦→0 𝑤 ′′.Σ𝑙 , J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐴))K[𝛾 ′𝑙] [𝛿𝑙]

and similarly for the right hand side:

𝑤 ′.Σ𝑟 , newcaseJ𝐴K[𝛿𝑟] 𝑐𝑋 ;
Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐵));𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

↦→0 𝑤 ′′.Σ𝑟 , Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag𝑋 (𝑋)⟩

↢

(seal𝑋𝑉𝐵));𝑉𝐴K[𝛾 ′𝑟] [𝛿𝑟]

where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒). Expanding definitions (and noting that 𝑐𝑋 is free in

𝑀), we need to show

(𝑤 ′′, 𝑆𝑙 [J𝑀K[𝛾 ′
𝑙
] [𝛿𝑙]], 𝑆2 [J𝑀K[𝛾 ′𝑟] [𝛿𝑟]]) ∈ E∼J𝐴K𝛾𝛿

where

𝑆𝑙 = 𝑓 ← (𝑧 ← •; force 𝑧 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋));
𝑥 ← J⟨tag𝑋 (𝑋)⟩

↢

K[𝛾𝑙] [𝛿𝑙] [J𝑉𝐴K[𝛾𝑙] [𝛿𝑙]];
force 𝑓 𝑥

and

𝑆2 = 𝑦 ←

©­­­­­«
𝑓 ← (𝑧 ← •; force 𝑧 (J𝐵K[𝛿𝑙]) 𝛾 ′𝑟 (𝑐𝑋));
𝑥 ← J⟨tag𝑋 (𝑋)⟩

↢

K[𝛾𝑟] [𝛿𝑟] [J𝑉𝐵K[𝛾𝑟] [𝛿𝑟]];
force 𝑓 𝑥

ª®®®®®¬
; J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

46:84 Max S. New, Dustin Jamner, and Amal Ahmed

We apply monadic bind. Let𝑤 ′′′ ⊒ 𝑤 ′′ and (𝑤 ′′′,𝑉𝑙 ,𝑉𝑟) ∈ V∼J∀𝜈𝑋 .?→ 𝑋 K𝛾𝛿 . After anti-reduction
we need to show

(𝑤 ′′′, 𝑓 ← force 𝑉𝑙 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋);
𝑥 ← J⟨tag𝑋 (𝑋)⟩

↢

K[𝛾𝑙] [𝛿𝑙] [J𝑉𝐴K[𝛾𝑙] [𝛿𝑙]];
force 𝑓 𝑥

, 𝑆 ′𝑟


𝑓 ← force 𝑉𝑟 (J𝐵K[𝛿𝑙]) 𝛾 ′𝑟 (𝑐𝑋);
𝑥 ← J⟨tag𝑋 (𝑋)⟩

↢
K[𝛾𝑟] [𝛿𝑟] [J𝑉𝐵K[𝛾𝑟] [𝛿𝑟]];

force 𝑓 𝑥


)

∈ E∼J𝐴K𝛾𝛿

where

𝑆 ′𝑟 = 𝑦 ← •; J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾𝛿
By weakening it is equivalent to showing the terms are in the relation E∼J𝐴K𝛾 ′𝛿 ′ where 𝛿 ′ =
(J𝐴K[𝛿𝑙], J𝐵K[𝛿𝑟], 𝑅). By definition ofV∼J∀𝜈𝑋 .?→ 𝑋 K, we have

(𝑤 ′′′, force 𝑉𝑙 (J𝐴K[𝛿𝑙]) 𝛾 ′𝑙 (𝑐𝑋), force 𝑉𝑟 (J𝐵K[𝛿𝑟]) 𝛾 ′𝑟 (𝑐𝑋)) ∈ E∼J?→ 𝑋 K𝛾 ′𝛿 ′

So we apply monadic bind. Let 𝑤 ′′′′ ⊒ 𝑤 ′′′ and let (𝑤 ′′′′,𝑉𝑓 𝑙 ,𝑉𝑓 𝑟) ∈ V∼J? → 𝑋 K𝛾 ′𝛿 ′. Applying
anti-reduction, we need to show

(𝑤 ′′′′, force 𝑉𝑓 𝑙 (inj𝜎𝑙 𝑉𝐴𝑙), 𝑦 ← force 𝑉𝑓 𝑟 (inj𝜎𝑟 𝑉𝐵𝑟); J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾 ′𝛿 ′

By definition ofV∼J?→ 𝑋 K, we can prove (𝑤 ′′′′, force 𝑉𝑓 𝑙 (inj𝜎𝑙 𝑉𝐴𝑙), force 𝑉𝑓 𝑟 (inj𝜎𝑟 𝑉𝐵𝑟)) ∈
E∼J𝑋 K𝛾 ′𝛿 ′ by showing that (𝑤 ′′′′, inj𝜎𝑙 𝑉𝐴𝑙 , inj𝜎𝑟 𝑉𝐵𝑟) ∈ V∼J?K𝛾 ′𝛿 ′. This holds because (𝑤 ′′′′,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈
⌊𝑅⌋𝑤′′′′.𝑛 because𝑤 ′′′′.𝜂 ⊨ (𝜎𝑙 , 𝜎𝑟 , ⌊𝑅⌋𝑤′′′′.𝑛).
By Lemmas F.10 and F.2, we have that J𝑉𝐴K[𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐴𝑟 for some𝑉𝐴𝑟 . Applying monadic

bind a final time we get 𝑤 𝑓 𝑖𝑛 ⊒ 𝑤 ′′′′ and (𝑤 𝑓 𝑖𝑛,𝑉
′
𝐴𝑙
,𝑉 ′

𝐵𝑟
) ∈ V∼J𝑋 K𝛾 ′𝛿 ′ and after anti-reduction

need to show that

(𝑤 𝑓 𝑖𝑛, ret 𝑉 ′
𝐴𝑙
, ret 𝑉𝐴𝑟) ∈ E∼J𝐴K𝛾 ′𝛿 ′

By weakening this is equivalent to

(𝑤 𝑓 𝑖𝑛, ret 𝑉 ′
𝐴𝑙
, ret 𝑉𝐴𝑟) ∈ E∼J𝐴K𝛾𝛿

By the definition of V∼J𝑋 K𝛾 ′𝛿 ′, 𝑉 ′
𝐴𝑙

= 𝑉𝐴𝑙 , so this follows by reflexivity; specifically that Γ ⊨
𝑉𝐴 ⊑ 𝑉𝐴 ∈ 𝐴; ·. This is because, by the definition of E∼J𝐴K𝛾𝛿 , since 𝑉𝐴 [𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 and

𝑉𝐴 [𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐴𝑟 , those values are related. □

Theorem G.51. For any · ⊢ 𝐴, 𝐵 and 𝑉𝐴 : 𝐴,𝑉𝐵 : 𝐵, · ⊢ 𝑉𝑑 : ?,

𝜆_ : ?.unseal𝑋 (𝑀{𝑋 � 𝐴} (seal𝑋𝑉𝐴,𝑉𝑑)) ≈ctx

𝜆_ : ?.let 𝑦 = (unseal𝑋 (𝑀{𝑋 � 𝐵} (seal𝑋𝑉𝐵,𝑉𝑑)));𝑉𝐴
Proof. Again, we show one direction of the 4 cases, the others are analogous. Let (𝑤,𝛾, 𝛿) ∈
G∼JΓ𝑝K. We need to show

(𝑤, ret thunk 𝜆_ : ?.

newcaseJ𝐴K 𝑐𝑋 ;

J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐴),𝑉𝑑)K[𝛾𝑙] [𝛿𝑙]

,

ret thunk 𝜆_ : ?.

newcaseJ𝐴K 𝑐𝑋 ;

Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐵),𝑉𝑑);𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐴K𝛾𝛿

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

Graduality and Parametricity: Together Again for the First Time 46:85

Given some 𝑤 ′ ⊒ 𝑤 and (irrelevant) values (𝑤 ′,𝑉𝑑𝑢𝑚𝑙 ,𝑉𝑑𝑢𝑚𝑟), we need to show (after applying

anti-reduction) that

(𝑤 ′, newcaseJ𝐴K 𝑐𝑋 ;

J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐴),𝑉𝑑)K[𝛾𝑙] [𝛿𝑙]
,

newcaseJ𝐴K 𝑐𝑋 ;

Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐵),𝑉𝑑);𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

) ∈ E∼J𝐴K𝛾𝛿

Each side allocates a new case and again we to pick a relation with which to instantiate it. Again,

by Lemmas F.10 and F.2, we have that J𝑉𝐴K[𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 and J𝑉𝐵K[𝛾𝑟] [𝛿𝑟] ↦→0 ret 𝑉𝐵𝑟 for

some 𝑉𝐴𝑙 and 𝑉𝐵𝑟 . As in the ordinary identity function proof, we define 𝑅 to be the “singleton”

relation:

𝑅 = {(𝑤,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ Atom[J𝐴K[𝛿𝑙], J𝐵K[𝛿𝑟]] | 𝑤 ⊒ 𝑤 ′}
Then we define𝑤 ′′ to be the world extended with ⌊𝑅⌋𝑤′. 𝑗 :

𝑤 ′′ = (𝑤 ′. 𝑗,𝑤 ′.Σ𝑙 , J𝐴K[𝛿𝑙],𝑤 ′.Σ𝑟 [𝛿𝑟],𝑤 ′.𝜂 ⊞ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒, ⌊𝑅⌋𝑤′. 𝑗)
Then clearly𝑤 ′′ ⊒ 𝑤 ′ and

𝑤 ′.Σ𝑙 , newcaseJ𝐴K[𝛿𝑙] 𝑐𝑋 ;
J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐴),𝑉𝑑)K[𝛾𝑙] [𝛿𝑙]

↦→0 𝑤 ′′.Σ𝑙 , J𝑀{𝑋 � 𝐴} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐴),𝑉𝑑)K[𝛾 ′𝑙] [𝛿𝑙]
and similarly for the right hand side:

𝑤 ′.Σ𝑟 , newcaseJ𝐴K[𝛿𝑟] 𝑐𝑋 ;
Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐵),𝑉𝑑);𝑉𝐴K[𝛾𝑟] [𝛿𝑟]

↦→0 𝑤 ′′.Σ𝑟 , Jlet 𝑦 = 𝑀{𝑋 � 𝐵} (⟨?⟩ ↞ ⟨tag?×? (𝑋 × ?)⟩

↢

(seal𝑋𝑉𝐵),𝑉𝑑);𝑉𝐴K[𝛾 ′𝑟] [𝛿𝑟]
where 𝛾 ′ = 𝛾, 𝑐𝑋 ↦→ (𝑤 ′.Σ𝑙 .𝑠𝑖𝑧𝑒,𝑤 ′.Σ𝑟 .𝑠𝑖𝑧𝑒). Following the same argument as the previous cases,

using monadic bind several times, we need to show that for some𝑤 ′′′′ ⊒ 𝑤 ′′ and (𝑤 ′′′′,𝑉𝑓 𝑙 ,𝑉𝑓 𝑟) ∈
V∼J?→ 𝑋 K𝛾 ′𝛿 ′, that

(𝑤 ′′′′, force 𝑉𝑓 𝑙 inj𝛾𝑙 (𝑐Times) (inj𝜎𝑙 𝑉𝐴𝑙 ,𝑉𝑑𝑙), 𝑦 ← force 𝑉𝑓 𝑟 inj𝛾𝑟 (𝑐Times) (inj𝜎𝑟 𝑉𝐵𝑟 ,𝑉𝑑𝑟); J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾 ′𝛿 ′

By definition ofV∼J?→ 𝑋 K, we can prove

(𝑤 ′′′′, force 𝑉𝑓 𝑙 inj𝛾𝑙 (𝑐Times) (inj𝜎𝑙 𝑉𝐴𝑙 ,𝑉𝑑𝑙), force 𝑉𝑓 𝑟 inj𝛾𝑟 (𝑐Times) (inj𝜎𝑟 𝑉𝐵𝑟 ,𝑉𝑑𝑟)) ∈ 𝐸𝑟𝑒𝑙𝑝𝑋𝛾
′𝛿 ′

by showing that

(𝑤 ′′′′, inj𝛾𝑙 (𝑐Times) (inj𝜎𝑙 𝑉𝐴𝑙 ,𝑉𝑑𝑙), inj𝛾𝑟 (𝑐Times) (inj𝜎𝑟 𝑉𝐵𝑟 ,𝑉𝑑𝑟)) ∈ V
∼J?K𝛾 ′𝛿 ′.

since (𝑤 ′′′′, 𝛾, 𝛿) ∈ G∼JΓ𝑝K, which holds because (𝑤 ′′′′,𝑉𝐴𝑙 ,𝑉𝐵𝑟) ∈ 𝑅 and (𝑤 ′′′′,𝑉𝑑𝑙 ,𝑉𝑑𝑟) ∈ E∼J𝑑𝑦𝑛K𝛾 ′𝛿 ′.
So again we apply monadic bind, receiving some𝑤 ′′′′′ ⊒ 𝑤 ′′′′ and (𝑤 ′′′′′,𝑉𝑋𝑙 ,𝑉𝑋𝑟) ∈ V∼J𝑋 K𝛾 ′𝛿 ′

and we need to show (after applying anti-reduction) that

(𝑤 ′′′′′, ret 𝑉𝑋𝑙 , J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾 ′𝛿 ′

But by definition ofV∼J𝑋 K𝛾 ′𝛿 ′, we know that𝑉𝑋𝑙 = 𝑉𝐴𝑙 and that J𝑉𝐴K[𝛾𝑙] [𝛿𝑙] ↦→0 ret 𝑉𝐴𝑙 , so it is

sufficient to show

(𝑤 ′′′′′, J𝑉𝐴K[𝛾𝑙] [𝛿𝑙], J𝑉𝐴K[𝛾𝑟] [𝛿𝑟]) ∈ E∼J𝐴K𝛾 ′𝛿 ′

which follows by reflexivity. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 46. Publication date: January 2020.

	Abstract
	1 Introduction
	1.1 Polymorphism and Runtime Sealing
	1.2 Overview

	2 Graduality and Parametricity, Friends or Enemies?
	2.1 ``Naïve'' Attempt
	2.2 Type-directed Sealing
	2.3 To Seal, or not to Seal
	2.4 Resolution: Explicit Sealing

	3 PolyG: A Gradual Language with Polymorphism and Sealing
	3.1 PolyG Informally
	3.2 PolyG Formal Syntax and Semantics

	4 PolyC: Cast Calculus
	4.1 PolyC Type Precision
	4.2 PolyC Type System
	4.3 Elaboration from PolyG to PolyC
	4.4 PolyC Dynamic Semantics

	5 Typed Interpretation of the Cast Calculus
	5.1 Typed Metalanguage
	5.2 Static and Dynamic Semantics
	5.3 Translation
	5.4 Simulation

	6 Graduality and Parametricity
	6.1 Term Precision
	6.2 Graduality Theorem
	6.3 Logical Relation
	6.4 Parametricity and Free Theorems

	7 Discussion and Related Work
	Acknowledgments
	References
	A Surface Language
	B Type Precision
	C Cast Calculus
	D CBPV
	E Term Precision
	F Simulation
	F.1 Adequacy

	G Graduality and Parametricity
	G.1 Cast Lemmas
	G.2 Compatibility Lemmas
	G.3 Proof of Graduality
	G.4 Free Theorems

