
Multi-Language Programming Systems: a Linear Experiment

Gabriel Scherer Max New Amal Ahmed
Northeastern University

{gasche,maxnew,amal}@ccs.neu.edu

Abstract
Instead of a monolithic programming language trying to cover
all features of interest, some programming systems are design
by combining together simpler languages that cooperate to
cover the same feature space. This can improve usability by
making each part simpler than the whole, but there is a risk
of abstraction leaks from one language to another that would
break expectations of the users familiar with only one or some
of the involved languages.

We formally study this problem by reusing ideas from
previous work on multi-language semantics, used to study
modular compilation, that suggest a formal definition of what
it means for a given language to be usable without leaks:
it should embed into the multi-language system in a fully
abstract way, that is, its contextual equivalence should be un-
changed in the larger system. This strong formal requirement
does not hold in most existing systems; is it a attainable goal
for language design?

As a first experiment, we design a multi-language pro-
gramming system that combines a simple ML-like language
and a very simple linear language with linear state. The goal
is to cover a good part of the expressiveness of languages that
mix functional programming and linear state (ownership), at
only a fraction of the complexity. We prove that the embed-
ding of ML into the multi-language system is fully abstract:
functional programmers should not fear abstraction leaks.
We show examples of combined programs demonstrating
in-place memory updates and typestate-like usage protocols.

1. Introduction
1.1 Motivation: Multi-Languages Against Complexity
Feature accretion is a common trend among mature but
actively-evolving programming languages: C++, Haskell,
Java, OCaml, Python, Scala, etc. Each new feature strives for
generality and expressiveness, and may provide a large usabil-
ity improvement to users of the particular problem domain or
programming style it was designed to empower (XML docu-
ments, asynchronous communication, staged evaluation...),
but it also makes it harder to master the language as a whole,
requires additional work on the part of tooling providers, and
may lead to fragility in tools or language implementations.

A natural response to growing language complexity is to
define subsets of the language designed for better program-
ming experience: a subset could be easier to teach while
sufficiently educative (“Core” ML1, Haskell 98 as opposed
to “GHC Haskell”, Scala mastery levels2), it could facilitate
static analysis or decrease the risk of programming errors,
while remaining sufficiently expressive for the target userbase
needs (MISRA C, Spark/Ada), or be designed to encourage
a transition to deprecate some ill-behaved language features
(strict Javascript).

Once a subset has been selected, it may be the case that
users write whole programs purely in the subset (possibly
using tooling to enforce that property); but programs will
commonly rely on other libraries that are not themselves
implemented in the same subset of the language. If we stay
in the subset while using these libraries, we will only interact
with the part of the library whose interface is expressible in
our subset; but does the behavior respect the expectations
of a user that would only know the subset? When calling a
function from within the subset breaks subset expectations, it
is a sign of leaky abstraction.

How should we design languages with useful subsets that
manage complexity while avoiding abstraction leaks?

This question can be generalized to multi-language
programming systems, where a piece of software is writ-
ten by mixing together fragments written in different lan-
guages – such multi-language programs are ubiquitous. Multi-
language systems are also used to manage complexity, by
letting users write each part of the program using appropriate
linguistic abstractions, without the need for a giant mono-
lithic programming language that would cover all needs. In
fact, the subset use-case is an instance of a multi-language
system, if we consider the subset and the full language as two
separate – yet related – programming languages.

The question of respecting user expectations also occurs
there. Can a user of only one of the involved language
correctly reason about the program fragment they are working
on, or do they need to master all the languages used to reason
about their code? When you write C primitives for a Python
program, you would not expect this C code to break memory-

1 https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html
2 http://www.scala-lang.org/old/node/8610

1 2016/11/23

https://caml.inria.fr/pub/docs/u3-ocaml/ocaml-ml.html
http://www.scala-lang.org/old/node/8610

safety of Python user code – you expect some basic Python
reasoning principles to be respected. If users cannot safely
ignore the other, more complex languages when working on
their code, usability is not really improved. Note that this
issue also occurs when some of the languages or linguistic
abstractions involved are not separate languages, but DSLs
included or embedded into a general-purpose programming
language.

How should we design multi-language programming sys-
tems, so that the languages interact gracefully together?

Of course, there is more to programming system design
than piling features or languages on top of each other. Lan-
guage designers occasionally strike gold and develop a pow-
erful, unifying feature that subsumes several more specific-
purpose features while extending the expressiveness of the
language (delimited control, monads, continuation marks, de-
pendent types...). But the availability of these features does
not make the simpler subsumed features disappear overnight:
their simplicity may make them more comfortable to use in
the common case, more optimizable, and users will often
reintroduce them as libraries. The fact that their are all imple-
mented in terms of a powerful general feature will make it
easier to make those sub-abstractions work well together, but
we should still understand what exactly this “working well”
requirement means and how to check it.

1.2 Formal Design of Multi-Language Systems
We propose to formally study those usability questions in
programming language design. To do that, we rely on a
existing body of work on the formal study of multi-language
semantics, initially developed to formally study modular
compilers let us link program fragments written in the source
language, target language, and possibly some intermediate
compilation languages. A formal notion used in these work,
full abstraction, is of particular interest here. Consider a
source language S and a target language T , both equipped
with a given equivalence relation – the usual definition is
that two fragments are equivalent if, whenever placed in
a well-typed context, replacing one by the other does not
change the program behavior. An embedding or translation
from S to T is fully abstract if, whenever two program
fragments in S are equivalent, then the translation of those
fragments are equivalent: the translation preserves equational
reasoning. Full abstraction gives a very strong notion of
“graceful interaction”: if the embedding of a single language
into the multi-language system is fully abstract, we know that
equational reasoning in this single language remains valid in
the multi-language system.

We thus propose to evaluate the following design principle:
in subset/superset or multi-language settings, the language
that we think as “simple” should embed into its superset,
or the multi-language, in a fully-abstract way. Is this a
reasonable guiding principle, or is it unrealistic?

Of course, sometimes adding new behaviors that the pre-
vious system could not express is the very point of extending

a language – adding non-termination, or non-determinism, or
input-output to a previously pure language can let us distin-
guish programs that were previously indistinguishable. Full
abstraction may not hold in every case, but we designers
should know, and let our users know, when it does or does
not hold – by intent or by mistake? Below are two reasons
to believe that we could design realistic multi-languages into
which the component languages embed fully-abstractly.

First, static type systems can make more translations fully-
abstract. To define a multi-language formed of statically typed
language, one specifies the relation between the types of the
two languages. Consider our example of a pure language
to which you add input-output. If both pure and impure
functions have the same type in the extended system, then
the embedding is not fully-abstract; but if an effect system
tracks the difference in types, you may interpret functions
in the subset as pure functions, and distinguishing contexts
in the extended language would be become ill-typed. For an
example of the real world, consider the subset of Haskell that
does not contain IO (input-output as a type-tracked effect):
it should embed into full Haskell in a fully-abstract way in
absence of the abstraction-leaking unsafePerformIO.

Second, the notion full abstraction depends on the spec-
ified equivalence relation: you can obtain full abstraction
by weakening the source equivalence relation. If you have
a language with pure functions, but you wish to add im-
pure functions later, you could specify your language with
a weaker equivalence relation, by forbidding equational rea-
soning that reorder or duplicate function calls. The benefit
of forcing you to formulate this weaker equivalence is that
it precisely, formally expresses the limit of the equational
reasoning principles that the subset-language designer can
guarantee to its users.

It would be very optimistic to take an existing, com-
monly used multi-language system (Python+C, C+Assembly,
OCaml+Coq, etc.) and hope for a reasonably concise, clarify-
ing full-abstraction statement. Preservation of user reasoning
is currently not enforced by language design, but by social
contracts, careful library design and iterative bug fixing. In
order to experiment with full abstraction as a guiding princi-
ple for multi-language system design, we therefore decided
to build our own multi-language, as simple as possible.

We took inspiration from the ML community, where plenty
of extension of ML languages were proposed to cover addi-
tional problem domains: dependent types for verification, lin-
ear types for resource or memory safety, type-and-effect sys-
tems, concurrency and parallelism, etc. In the present work,
we propose a multi-language semantics for a simple ML lan-
guage paired with a very simple linearly-typed language, such
that ML embeds in the multi-language in a fully-abstract way.
Our linear language λL is sensibly simpler, and in several
ways less expressive, than advanced programming languages
based on linear logic [11], separation logic [1], fine-grained
permissions [6]: it is not designed to stand on its own, but to

2 2016/11/23

Types σ ::= α | σ1×σ2 | 1 | σ1→σ2 |
σ1 +σ2 | µα.σ | ∀α.σ

Expressions e ::= x |
〈e1,e2〉 | π1 e | π2 e |
〈〉 | e1; e2 |
λ(x :σ). e | e1 e2 |
inj1 e | inj2 e | case e′ of x1. e1 | x2. e2 |
foldµα.σ e | unfold e |
Λα.e | e [σ]

Values v ::= x | 〈v1,v2〉 | 〈〉 | λ(x :σ). e |
inj1 v | inj2 v | foldµα.σ v | Λα.v

Typing contexts Γ ,∆ ::= · | Γ , x :σ | Γ , α

Figure 1. Unrestricted language syntax

serve as a useful side-kick to a functional language, allowing
safer resource handling, rather than a language of its own.

We found this experiment encouraging: the programming
system that we obtain by mixing two different languages
in a careful way has a good power-to-weight ratio. We will
present some examples of the useful hybrid programs that
can be written in this system. Finally, we hope that this
experiment can help us better understand how to gracefully
enable interoperation between linearity-agnostic languages
and existing languages with linearity, such as Mezzo or Rust.

We claim the following contributions:

1. We design an extremely simple linear language, λL, that
supports linear state. This very simple design for linear
state is a contribution of its own; in particular, erasing
the terms from the linear typing rules gives exactly the
standard presentation of linear logic. (Section 2)

2. We present a multi-language programming system λUL

combining a core ML language, λU (U for Unrestricted,
as opposed to Linear) with λL, such that the embedding
of the ML language λU is fully abstract. (Section 3)

3. We evaluate the resulting language design by providing
examples of hybrid λUL programs exhibiting various
programming patterns inaccessible to ML alone, such that
safe in-place updates and typestate-like static protocol
enforcement. (Section 4)

2. The λU and λL Languages
The unrestricted language λU is a run-off-the-mill idealized
ML language with functions, pairs, sums, iso-recursive types
and polymorphism. It is presented in its explicitly typed form –
we will not discuss type inference in this work. The full syntax
is described in Figure 1, and the typing rule in Figure 2 – the
dynamic semantics are completely standard. Having binary
sums, binary products and iso-recursive types lets us express
algebraic datatypes in the usual way.

Γ `U e : σ

x :σ ∈ Γ

Γ `U x : σ

Γ `U e1 : σ1 Γ `U e2 : σ2

Γ `U 〈e1,e2〉 : σ1×σ2

Γ `U e : σ1×σ2

Γ `U πi e : σi

Γ `U 〈〉 : 1

Γ `U e : 1 Γ `U e′ : σ

Γ `U e ; e′ : σ

Γ , x :σ `U e : σ′

Γ `U λ(x :σ). e : σ→σ′
Γ `U e : σ′→σ Γ `U e′ : σ′

Γ `U e e′ : σ

Γ `U e : σi

Γ `U inji e : σ1 +σ2

Γ `U e : σ1 +σ2

Γ , x1 : σ1 `U e1 : σ
Γ , x2 : σ2 `U e2 : σ

Γ `U case e of x1. e1 | x2. e2 : σ

Γ `U e : σ [µα.σ/α]

Γ `U foldµα.σ e : µα.σ

Γ `U e : µα.σ

Γ `U unfold e : σ [µα.σ/α]

Γ , α `U v : σ

Γ `U Λα.v : ∀α.σ
Γ `U e : ∀α.σ Γ ` σ′

Γ `U e [σ′] : σ [σ′/α]

Figure 2. Unrestricted Language: Static Semantics

The novelty lies in the linear language λL, which we
present in several steps. As is common in λ-calculi with
references, the small-step operational semantics is given
for a language that is not exactly the source language in
which programs are written, because memory allocation
returns locations ` that are not in the grammar of source
terms. Reductions are defined on configurations, a local store
paired with a term in in a slightly larger extended language.
We give two type systems, a type system on source terms,
that does not mention locations and stores – it is the one
the programmer needs to know – and a type system on
configurations, which contains enough static information
to reason about the dynamics of our language and prove
subject reduction. Again, this follows the standard structure
of syntactic soundness proofs for languages with a mutable
store.

We present the source language and type system in Sec-
tion 2.1, except for the language fragment manipulating the
linear store which is presented in Section 2.2. Finally, the
extended terms, their typing and reduction semantics are pre-
sented in Section 2.3.

2.1 The Core of λL

We present in Figure 3 the source syntax of our linear
language λL. For the syntactic categories of types σ , and

3 2016/11/23

Types σ ::= σ1⊗σ2 | 1 | σ1(σ2 |
σ1⊕σ2 | µα.σ | α | !σ |
Box b σ

Expressions e ::= x |
〈e1,e2〉 | let 〈v1,v2〉= e1 in e2 |
〈〉 | e1; e2 |
λ(x :σ). e | e1 e2 |
share e | copy e |
inj1 e | inj2 e |
case e′ of x1. e1 | x2. e2 |
foldµα.σ e | unfold e |
new e | free e | box e | unbox e

Values v ::= x | 〈v1,v2〉 | 〈〉 | λ(x :σ). e |
inj1 v | inj2 v | foldµα.σ v | share v

Typing contexts Γ ,∆ ::= · | Γ ,x :σ

Figure 3. Linear language: Source syntax

expressions e , the last line contains the constructions related
to the linear store that we only discuss in Section 2.2.

In technical terms, our linear type system is exactly
propositional intuitionistic linear logic, extended with iso-
recursive types. Intuitionistic linear logic is a subset of
linear logic, without the negative/additive sums σ1 `σ2,
whose syntax and type system can be easily expressed as
a λ-calculus. For simplicity and because we did not need
them, our current system also does not have polymorphism or
negative/additive/lazy pairs σ1 &σ2. Additive pairs would
be a trivial addition, but polymorphism would require more
work to define the multi-language semantics in Section 3.

In less technical terms, our type system can enforce
that values be used linearly, meaning that they cannot be
duplicated or erased, they have to be deconstructed exactly
once. Only some types have this linearity restriction, others
allow to duplicate and share values at will. We can think
of linear values as resources to be spent wisely; for any
linear value somewhere in a term, there can be only one
way to access this value, so we can interpret the language as
enforcing an ownership discipline where whoever points to a
linear value owns it.

The types of linear values are the type of linear pairs
σ1⊗σ2, of linear disjoint unions σ1⊕σ2 of linear func-
tions σ1(σ2, and of the linear unit type 1. For example, a
linear function must be called exactly once, and its result must
in turn be consumed – such linear functions can safely capture
linear resources. The expression-formers at these types use
the same syntax as the unrestricted language λU, with the ex-
ception of linear pair deconstruction let 〈v1,v2〉=e1 in e2,
which names both members of the deconstructed pair at once.
A linear pair type with projection would only ever allow to
observe one of the two members; this would correspond to
the negative/lazy pairs σ1 &σ2, where only one of the two
members is ever computed.

Γ1 . Γ2

(Γ1,x : !σ) . (Γ2,x : !σ)
def
= (Γ1 . Γ2),x : !σ

(Γ1,x :σ) . Γ2
def
= (Γ1 . Γ2),x :σ (x /∈ Γ2)

Γ1 . (Γ2,x :σ)
def
= (Γ1 . Γ2),x :σ (x /∈ Γ1)

Γ `L e : σ

!Γ ,x :σ `L x : σ

Γ1 `L e1 : σ1 Γ2 `L e2 : σ2

Γ1 . Γ2 `L 〈e1,e2〉 : σ1⊗σ2

Γ `L e : σ1⊗σ2

∆ ,x1 :σ1,x2 :σ2 `L e′ : σ

Γ . ∆ `L let 〈x1,x2〉= e in e′ : σ

!Γ `L 〈〉 : 1

Γ `L e : 1 ∆ `L e′ : σ

Γ . ∆ `L e; e′ : σ

Γ ,x :σ `L e : σ′

Γ `L λ(x :σ). e : σ(σ′

Γ `L e : σ′(σ ∆ `L e′ : σ′

Γ . ∆ `L e e′ : σ

Γ `L e : σi

Γ `L inji e : σ1⊕σ2

Γ `L e : σ1⊕σ2

∆ ,x1 : σ1 `L e1 : σ
∆ ,x2 : σ2 `L e2 : σ

Γ . ∆ `L case e of x1. e1 | x2. e2 : σ

!Γ `L e : σ

!Γ `L share(ς :Φ). e : !σ

Γ `L e : !σ

Γ `L copyσ e : σ

µα.σ

unfold
−(›−

foldµα.σ

σ [µα.σ/α]

Figure 4. Linear Language: Source Static Semantics

The types of non-linear, duplicable values are the types of
the form !σ – the exponential modality of linear logic. If e
has type σ , the term share e has type !σ . Values of this type
are not uniquely owned, they can be shared at will. If the term
e has duplicable type !σ , then the type copy e has type σ :
this creates a local copy of the value that is uniquely-owned
by its receiver, and must be consumed linearily.

This resource usage discipline is enforced by the source
typing rules of λL, presented in Figure 4. They are exactly
the standard (two-sided) logical rules of intuitionistic linear
logic, annotated with program terms. The non-duplicability
of linear values is enforced by the way contexts are merged
by the inference rules: if e1 is type-checked in the context
Γ1 and e2 in Γ2, then the linear pair 〈e1,e2〉 is only valid
in the combined context Γ1 . Γ2. The () . operation is
partial; this combined context is defined only if the variables
shared by Γ1 and Γ2 are duplicable – their type is of the
form !σ . In other words, a variable at a non-duplicable type

4 2016/11/23

σ ::= . . . | Box b σ b ::=0 | 1

1

new
−(›−
free

Box 0 σ Box 1 σ

unbox
−(›−
box

Box 0 σ ⊗σ

Figure 5. Linear language: Store Source Static Semantics

in Γ1 . Γ2 cannot possibly appear in both Γ1 and Γ2: it
must appear exactly once3. A good way to think of the linear
judgment Γ `L e : σ is that the evaluation of e consumes
the linear variables of Γ ; it is thus natural that the strict pair
〈e1,e2〉 would need separate set of resources Γ1 and Γ2, as
it evaluates both members to return a value. On the other
hand, case elimination case e of x1. e1 | x2. e2 reuses the
same context ∆ in both branches e1 and e2: only one will
be evaluated, so they do not compete for resources.

The variable rule does not expect a context of the form
Γ ,x :σ but of the form !Γ ,x :σ . !Γ is a notation for the
pair-wise application of the (!) connective to all types of
Γ – all types in !Γ are of the form !σ . This means that the
variable rule can only be used when all variables in the context
are duplicable, except maybe the variable that is being used.
A context of the form Γ ,x :σ would allow to forget some
variable present in the context; in our judgment Γ `L e : σ ,
all non-duplicable variables in Γ must appear (once) in e .

The form !Γ is also used in the typing rule for share e :
a term can only be made duplicable if it does not depend on
linear resources from the context. Otherwise, duplicating the
shared value could break the unique-ownership discipline on
these linear resources.

Finally, the linear isomorphism notation for fold and
unfold in Figure 4 defines them as primitive functions, at
the given linear function type, in the empty context – using
they does not consume resources. This notation also means
that, operationally, these two operations shall be inverse of
each other.

Lemma 2.1 (Context joining properties)
Context joining (.) is partial but associative and commuta-
tive. In particular, if (Γ1 . Γ2) . ∆ is defined, then both
Γi . ∆ are defined.

2.2 Linear Memory in λL

The source typing rules for the linear store are given in
Figure 5. The linear type Box b σ represents a memory
location that may hold a value of type σ . The parameter b
is boolean: if it is 0, then the location is empty, it does not
contain a value, and if it is 1 the location currently contains a
value. The primitive operations to act on this type are given as
linear isomorphisms: new turns a unit value into an empty

3 Standard presentations of linear logic force contexts to be completely
distinct, but have a separate rule to duplicate linear variables, which is less
natural for programming

location, it allocates; conversely free reclaims an empty
location. Putting a value into the location and taking it out are
expressed by box and unbox , which convert between a
pair of an empty location and a value, of type Box 0 σ⊗σ ,
and a full location, of type Box 1 σ .

For example, the following program takes a full reference
and a value, and swaps the value with the content of the
reference:

λ(p : Box 1 σ ⊗σ).
let 〈r,x〉= p in
let 〈l,xl〉= unbox r in
〈box 〈l,x〉,xl〉

The programming style following from this presentation
of linear memory is functional, or applicative, rather than im-
perative. Rather than insisting on the mutability of references
– which is allowed by the linear discipline – we may think of
the type Box b σ as representing the indirection through the
heap that is implicit in functional programs. In a sense, we
are not writing imperative programs with a mutable store, but
rather explicitating allocations and dereferences happening in
higher-level purely functional language – in this view, empty
cells allow memory reuse.

This view that Box b σ represents indirection through
the memory suggests to encode lists of values of type σ

by the type LinList σ
def
= µα.1⊕Box 1 (σ⊗α) – the

placement of the box inside the sum mirrors the fact that
empty list is represented as an immediate value in functional
languages. From this type definition, one can write a in-place
reverse function on lists of σ as follows:

fix λ(rev_into : LinList σ(LinList σ(LinList σ).
λ(xs : LinList σ).λ(acc : LinList σ).

casexsof
|y . (y; acc)

|y .
let 〈l,p〉= y in

let 〈xs,x〉= unbox p in
rev_into xs box 〈l,〈x ,acc〉〉

This definition uses a fixpoint operator fix that can be
defined, in the standard way, using the iso-recursive type
µα.α(σ(σ′ of the strict fixpoint combinator on func-
tions σ(σ′.

Our linear λ-calculus is a formal language that is not
terribly convenient to program directly. We will not present a
full surface language in this work, but one could easily define
syntactic sugar to write the exact same function as follows:

rev_into Nil acc = acc
rev_into Cons 〈x ,xs〉@ l acc = rev_into xs 〈x ,acc〉@ l

One can read this function as the usual functional
rev_append function on lists, annotated with memory reuse
information: if we assume we are the unique owner of the in-
put list and won’t need it anymore, we can reuse the memory
of its cons cells (given in this example the name l) to store
the reversed list. On the other hand, if you read the box and
unbox as imperative operations, this code expresses the
usual imperative pointer-reversal algorithm.

5 2016/11/23

This double view of linear state occurs in other program-
ming systems with linear state. It was recently emphasized
in O’Connor, Chen, Rizkallah, Amani, Lim, Murray, Na-
gashima, Sewell, and Klein [9], where the functional point
view is seen as easing formal verification, while the imper-
ative view is used as a compilation technique to produce
efficient C code from linear programs.

2.3 Extended Terms Syntax Typing
To give a dynamic semantics and prove it sound, we need to
extend the language with explicit stores and store locations.
Indeed, the allocating term new 〈〉 should reduce to a “fresh
location” ` allocated in some store ς , and neither are part of
the source term syntax. The corresponding extended typing
judgment is more complex, but remember that users do not
need to know about it to reason about correctness of source
program. It could be hidden in a soundness proof, but is
also very useful to define a multi-language semantics in
Section 3. Besides, the additional structure is designed to
help reasoning about soundness during program execution;
the same concepts may also help the programmer reason
about program execution.

The syntax of extended terms and the extended type
system are presented in Figure 6. Reduction will be defined on
configurations (ς | e), which are pairs of a store ς and a term
e . Stores ς map locations ` to either nothing (the location is
empty), written [` 7→ ·], or a value paired its own local store,
noted [` 7→ (ς | v)]. Having local stores in this way, instead
of a single global store as is typical in formalizations of ML,
directly expresses the idea of “memory ownership” in the
syntax: a term e “owns” the locations that appear in it, and a
configuration (ς | e) is only well-typed if the domain of ς is
exactly those locations. Each store slot, in turn, may contain
value and the local store owned by the value; in particular,
passing a full location of type Box 1 σ transfers ownership
of the location, but also of the store fragment captured by the
value.

Our extended type judgment Φ | Γ `L ς | e : σ checks
configurations, not just terms, and relies not only on a typing
context for variables Γ but also on a store typing Φ , which
maps the locations of the configuration to typing assumptions
of two forms: (· | · ` ` : Box 0 σ) indicates that ` must
be empty in the configuration, and (Γ | Φ ` ` : Box 1 σ)
indicates that ` is full, and that the value it contains owns a
local store of type ς and the resources in Γ .

Just as linear variables must occur exactly once in a term,
locations have linear types and thus occur exactly once in
a term. Our typing judgment uses disjoint of store typings
Φ1]Φ2 to enforce this linearity. Similarly, leaf rules such
as the variable, unit and location rules enforce that both the
store typing and the store be empty, which enforces that all
locations are used in the term.

Locations ` are always linear, never duplicable. To allow
sharing terms that contain locations, the extended language
uses the extended construction share(ς :Φ). e , that captures

Types σ (unchanged from Figure 4)

Expressions e . . . | ` | share(ς :Φ). e

with share e
def
= share(∅:·). e

Values v . . . | ` | share(ς :Φ).v

Store ς ::= ∅ | ς [` 7→ (ς | v)] | ς [` 7→ ·]

Configurations ::= (ς | e)

Store typing Φ ,Ψ ::= · | Φ , (· | · ` ` :Box 0 σ)
| Φ , (Φ | Γ ` ` :Box 1 σ)

Φ1]Φ2 Disjoint union of (location 7→ judgments) mappings

Φ | Γ `L ς | e : σ Γ `L e : σ
def
= · | Γ `L ∅ | e : σ

· | !Γ ,x :σ `L ∅ | x : σ

Φ1 | Γ1 `L ς 1 | e1 : σ1 Φ2 | Γ2 `L ς 2 | e2 : σ2

Φ1]Φ2 | Γ1 . Γ2 `L ς 1 ++ ς 2 | 〈e1,e2〉 : σ1⊗σ2

Φ | Γ `L ς | e : σ1⊗σ2

Ψ |∆ ,x1 :σ1,x2 :σ2 `L ς
′ | e′ : σ

Φ]Ψ | Γ . ∆ `L ς ++ ς ′ | let 〈x1,x2〉= e in e′ : σ

· | !Γ `L 〈〉 | ∅ : 1

Φ | Γ `L ς | e : 1 Ψ |∆ `L ς
′ | e′ : σ

Φ]Ψ | Γ . ∆ `L ς ++ ς ′ | e; e′ : σ

Φ | Γ ,x :σ `L ς | e : σ′

Φ | Γ `L ς | λ(x :σ). e : σ(σ′

Φ | Γ `L ς | e : σ′(σ Ψ |∆ `L ς
′ | e′ : σ′

Φ]Ψ | Γ . ∆ `L ς ++ ς ′ | e e′ : σ

Φ | Γ `L ς | e : σi

Φ | Γ `L ς | inji e : σ1⊕σ2

Φ | Γ `L ς | e : σ1⊕σ2 Ψ |∆ ,x1 : σ1 `L ς
′ | e1 : σ

Ψ |∆ ,x2 : σ2 `L ς
′ | e2 : σ

Φ]Ψ | Γ . ∆ `L ς ++ ς ′ | case e of x1. e1 | x2. e2 : σ

µα.σ

unfold
−(›−

foldµα.σ

σ [µα.σ/α]

Φ | !Γ `L ς | e : σ

· | !Γ `L ∅ | share(ς :Φ). e : !σ

Φ | Γ `L ς | e : !σ

Φ | Γ `L ς | copyσ e : σ

(· | · ` ` :Box 0 σ) | !Γ `L [` 7→ ·] | ` : Box 0 σ

Φ | Γ `L ς | v : σ

(Φ | Γ ` ` :Box 1 σ) | Γ . !Γ′ `L [` 7→ (ς | v)] | ` : Box 1 σ

1

new
−(›−
free

Box 0 σ Box 1 σ

unbox
−(›−
box

Box 0 σ ⊗σ

Figure 6. Linear Language: Extended Static Semantics

6 2016/11/23

a local store ς : Φ . This notation is a binding construct:
the locations in ς are bound by this shared term, and not
visible outside this term. In particular, the typing rule for
share(ς :Φ). e checks the term e in the store ς , but it is
itself only valid paired with an empty store, under the empty
store typing. When new copies of a shared term are made, the
local store is copied as well: this is necessary to guarantee
that locations remain linear – and for correctness of linear
state update.

The typing rule for functions λ(x :σ). e lets func-
tion bodies use an arbitrary store typing Φ . This would
be unsound if our functions were duplicable, but it is a
natural and expressive choice for linear, one-shot func-
tions. To make a function duplicable, one can share it at
type !(σ(σ′), whose values are of the canonical form
share(ς :Φ).λ(x :σ). e . It is the sharing construct, not
the function itself, that closes over the local store.

With the macro-expansion share e
def
= share(∅:·). e ,

any term e of the source language (Figure 3 can be seen
as a term of the extended language (Figure 6). In particular,
we can prove that the source and extended typing judgments
coincide on source terms.

Lemma 2.2
If e is a source term of λL, then the source judgment
Γ `L e : σ holds if and only if the extended judgment
· | Γ `L ∅ | e : σ holds.

The following technical results are used in the soundness
proof for the language, Theorem 2.8 (Subject reduction for
λL).

Lemma 2.3 (Inversion principle for λL values)
In any complete derivation of Φ | Γ `L ς | v : σ , either v
is a variable x , or the derivation starts with the introduction
rule for σ .

For example, if we have Φ | Γ `L ς | v : !σ ,
then we know that v is either a variable or of the form
share(ς ′:Ψ).v′ for some v′, but also that ς = ∅, Φ = ·
and that Γ is of the form !Γ′ for some Γ′. The latter is
immediate if v is share(ς ′:Ψ).v′, and also holds if v is a
variable.

Lemma 2.4 (Weakening of duplicable contexts)
Φ |∆ `L ς | e : σ implies Φ | !Γ ,∆ `L ς | e : σ .

2.4 Reduction of Extended Terms
Figure 7 gives a small-step operational semantics for the
extended terms of λL. We separate the head reductions (L

)

from reductions in depth (
L
↪→). The head reduction of the

linear types of the core language do not involve the store and
are standard. For the store primitives of Figure 5 acting on
Box b σ , we reuse the isomorphism notation to emphasize
that the related primitives are inverse of each other.

There are several reduction rules for copy (share e),
one for each type connective. These reductions perform a

head reduction e
L
 e′ (ς | e) L

 (ς ′ | e′)

let 〈x1,x2〉= 〈v1,v2〉 in e
L
 e [v1/x1][v2/x2]

〈〉; e
L
 e

(λ(x :σ). e) v
L
 e [v/x]

case (inji v)of x1. e1 | x2. e2
L
 ei[v/xi]

unfold (foldµα.σ v)
L
 v

e
L
 e′

(ς | e) L
 (ς | e′)

(∅ | 〈〉)
new

L
↪→
L

free

([` 7→ ·] | `)

(ς [` 7→ ·] | 〈`,v〉)
box

L
↪→
L

unbox

([` 7→ (ς | v)] | `)

copy (share(ς 1 ++ ς 2:Φ1]Φ2). 〈v1,v2〉)
L
 if locs(ς i) = locs(Φi) = locs(vi)
〈copy share(ς 1:Φ1).v1,copy share(ς 2:Φ2).v2〉

copy (share(∅:·). 〈〉) L
 〈〉

copy (share(ς :Φ). inji v)
L
 inji (share(ς :Φ).v)

copy (share(ς :Φ). fold v)
L
 fold (copy (share(ς :Φ).v))

(∅ | copy (share(ς :Φ).λ(x :σ). e))
L
 (ς | λ(x :σ). e)

copy (share(∅:·). (share(ς :Φ).v))
L
 share(ς :Φ).v

copy (share([` 7→ ·]:(· | · ` ` :Box 0 σ)). `)
L
 new 〈〉

copy (share([` 7→ (ς | v)]:(Φ | !Γ ` ` :Box 1 σ)). `)
L
 box 〈new 〈〉,copy (share(ς :Φ).v)〉

linear reduction contexts Φ | Γ `L ς | K [� :σ] : σ′

K ::= � :σ | 〈K ,e2〉 | 〈v ,K〉 | let 〈v1,v2〉= K in e2 |
K; e | K e | v K | copy K |
inj1 K | inj2 K | case K of x1. e1 | x2. e2 |
foldµα.σ K | unfold K |
new K | free K | box K | unbox K

typing rules of terms, plus: · | · `L ∅ | (� :σ) : σ

reduction (ς | e) L
↪→ (ς ′ | e′)

(ς | e) L
 (ς ′ | e′)

(ς | e) L
↪→ (ς ′ | e′)

Ψ | Γ `L ς
′′ | K [� :σ] : σ′ (ς | e) L

↪→ (ς ′ | e′)

(ς ′′ ++ ς | K [e])
L
↪→ (ς ′′ ++ ς ′ | K [e′])

Φ | Γ `L ς | e : σ

(ς | e) L
↪→ (ς ′ | e′) Φ′ | Γ `L ς

′ | e′ : σ

(∅ | share(ς :Φ). e)
L
↪→ (∅ | share(ς ′:Φ′). e′)

Figure 7. Linear language: Operational Semantics

7 2016/11/23

deep copy of the value, stopping only on ground data (〈〉),
function values, and shared sub-terms: when copying a !!σ
into a !σ , there is no need for a deep copy. When it encounters
a location, copy (share `) reduces to a new allocation; if
the location contains a value, the new location is filled with a
copy of this value.

The copying rule for functions performs a copy of the
local store ς of the shared function: the locations in ς are
bound on the left-hand-side of the reduction, and free on the
right-hand-side: this reduction step allocates fresh locations,
and the store typing of the term changes from · on the left
to Φ on the right. The fact that reduction changes the store
typing is not unique to this rule, it is also the case when
directly copying locations. In ML languages with references,
the store only grows during reduction, it is not the case for our
linear store: our reduction may either allocate new locations
or free existing ones.

We define a grammar of (deterministic) reduction contexts,
which contain exactly one hole� in evaluation position. How-
ever, we only define linear contexts K that do not share their
hole: we need a specific treatment of the share(ς :Φ). e
reduction. Its subterm e is reduced in the local store ς , but
may create or free locations in the store; so we need to update
the local store and its store typing during the reduction.

Theorem 2.5 (Progress)
If Φ | Γ `L ς | e : σ , then either e is a value v or there

exists (ς ′ | e′) such that (ς | e) L
↪→ (ς ′ | e′).

Lemma 2.6 (Non-store-escaping substitution principle)
If Φ | Γ ,x :σ `L ς

′ | e : σ′ Ψ |∆ `L ς | v : σ

Γ . ∆ x /∈ Φ

then Φ]Ψ | Γ . ∆ `L ς ++ ς ′ | e [v/x] : σ′

Lemma 2.7 (Context decomposition)
If Φ′ | Γ′ `L ς

′ | K [� :σ] : σ′ holds, then Φ′′ | Γ′′ `L

ς ′′ | K [e] : σ′ holds if and only if there exists Φ ,Γ , ς
such that Φ′′ = Φ]Φ′, Γ′′ = Γ . Γ′, ς ′′ = ς ++ ς ′ and
Φ | Γ `L ς | e : σ .

Theorem 2.8 (Subject reduction for λL)
If Φ | Γ `L ς | e : σ and (ς | e) L

↪→ (ς ′ | e′), then there
exists a (unique) Φ′ such that Φ′ | Γ `L ς

′ | e′ : σ .

3. Multi-Language Semantics
To formally define our multi-language semantics we create
a combined language λUL which let us compose term frag-
ments from both λU and λL together, and we give an op-
erational semantics to this combined language. Interaction
is enabled by specifying how to transport values across the
language boundaries.

Multi-language systems in the wild are not defined in this
way: both language are given a semantics, by interpretation
or compilation, in terms of a shared lower-level language
(C, assembly, the JVM or CLR bytecode, or Racket’s core

forms), and the two languages are combined at that level. Our
formal multi-language description can be seen as a model
such combinations, that gives a specification of the expected
observable behavior of this language combination.

Another difference from multi-languages in the wild is
our use of very fine-grained language boundaries: a term
written in one language can have its subterms written in
the other, provided the type-checking rules allow it. Most
multi-language systems, typically using Foreign Function
Interfaces, offer coarser-grained composition, at the level
of compilation units. Fine-grained composition of existing
languages, as done in the Eco project [2], is difficult because
of semantic mismatches. In Section 4 (Hybrid program
examples) we demonstrate that fine-grained composition is
a rewarding language design, enabling new programming
patterns.

3.1 Lump Type and Language Boundaries
The core components the multi-language semantics are shown
Figure 8 – the communication of values from one language
to the other is only described in the next section. The multi-
language λUL has two distinct syntactic categories of types,
values and expressions: those that come λU and those that
come from λL. Contexts, on the other hand, are mixed, they
can have variables of both sorts – for a mixed context Γ , the
notation !Γ only applies (!) to its linear variables.

The typing rules of λU and λL are imported in our multi-
language system, working on those two separate categories of
program. They need to be extended to handle mixed contexts
Γ instead of their original contexts Γ and Γ . In the linear
case, the rules look exactly the same. In the ML case, remark
that the typing rules implicitly duplicate all the variables in
the context; to remain sound in presence of linear variables,
we state that those typing rules should use not an arbitrary
context Γ instead of Γ , but a duplicable context !Γ .

To build interesting multi-language programs, we need a
way to insert a fragment coming from a language into a term
written in another. This is allowed language boundaries, two
new term formers LU(e) UL(ς :Φ | e) and that inject a ML
term into the syntactic category of linear terms, and a linear
configuration into the category of ML terms.

Of course, we need new typing rules for these term-level
constructions, clarifying when it is valid to send a value
from λU into λL and conversely. Allowing to send any type
from one language into the other, for example by adding the
counterpart of our language boundaries in the syntax of types,
would be incorrect: values of linear types must be uniquely
owned, so they cannot possibly be sent to the ML side, as the
ML type system cannot enforce unique ownership.

On the other hand, any ML value could safely be sent
to the linear world. For closed types, we could provide a
corresponding linear type (1 maps to !1, etc.), but an ML
value may also be typed by an abstract type variable α , in
which case we can’t know what the linear counterpart should
be. Instead of trying to provide translations, we will send any

8 2016/11/23

Types σ | σ
σ (unchanged from Figure 1)
σ . . . | [σ]

Values v | v
v (unchanged from Figure 1)
v . . . | [v]

Expressions e | e
e . . . | UL(ς :Φ | e)

with UL(e) def
= UL(∅ : · | e)

e . . . | LU(e)

Contexts Γ ::= · | Γ , x :σ | Γ , α | Γ ,x :σ

Typing rules Γ `LU e : σ Φ | Γ `UL ς | e : σ

with Γ `UL e : σ
def
= · | Γ `UL ∅ | e : σ

(Typing rules of Γ `U e : σ reused, with mixed context !Γ)

(Typing rules of Φ | Γ `L ς | e : σ reused, with mixed context Γ)

!Γ `LU e : σ

· | !Γ `UL ∅ | LU(e) : ![σ]

Φ | !Γ `UL ς | e : ![σ]

!Γ `LU UL(ς :Φ | e) : σ

Reduction rules

(Reduction rules of λU and λL reused unchanged)

e
U
↪→ e′

LU(e) L
↪→ LU(e′) LU(v) L

 [v] UL(∅ : · | [v])
U
↪→ v

Φ | Γ `UL ς | e : σ

(ς | e) L
↪→ (ς ′ | e′) Φ′ | Γ `UL ς

′ | e′ : σ

UL(ς :Φ | e) U
↪→ UL(ς ′ :Φ′ | e′)

Figure 8. Multi-language: lump and boundaries

ML type σ to the lump type [σ], which embeds ML types into
linear types. A lump is a blackbox, not a type translation: the
linear language does not assume anything about the behavior
of its values – the values of [σ] are of the form [v], where
v : y is a ML value that the linear world cannot use. More
precisely, we only propagate the information that ML values
are all duplicable by sending σ to ![σ].

The typing rules for the language boundaries insert lumps
when going from λU to λL, and remove them when going
back from λL to λU. In particular, arbitrary linear types
cannot occur at the boundary, they must be of the form ![σ].

Finally, boundaries have reduction rules: a term or con-
figuration inside a boundary in reduction position is reduced
until it becomes a value – then a lump is added or removed
depending on the boundary direction. Note that because the

Interaction context Σ ::= · | Σ , α ' !β

Compatibility relation Σ `UL σ ' σ

with σ ' σ
def
= · `UL σ ' σ

Σ `UL 1 ' !1

Σ `UL σ1 ' !σ1 Σ `UL σ2 ' !σ2

Σ `UL σ1×σ2 ' !(σ1⊗σ2)

Σ `UL σ1 ' !σ1 Σ `UL σ2 ' !σ2

Σ `UL σ1 +σ2 ' !(σ1⊕σ2)

Σ `UL σ ' !σ Σ `UL σ′ ' !σ′

Σ `UL σ→σ′ ' !(!σ(!σ′) Σ `UL σ ' ![σ]

Σ `UL σ ' !σ

Σ `UL σ ' !!σ

Σ `UL σ ' !σ

Σ `UL σ ' !(Box 1 σ)

Σ , α ' !β `UL σ ' !σ

Σ `UL µα.σ ' !(µβ.σ)

(α ' !β) ∈ Σ

Σ `UL α ' !β

Interaction primitives and derived constructs:

![σ]

σ unlump
−(›−

lumpσ

σ whenever · `UL σ ' σ

σLU(e) def
= σ unlump LU(e) ULσ (e)

def
= UL(lumpσ e)

Figure 9. Multi-language: static interaction semantics

v in UL(ς :Φ | v) is at a duplicable type ![σ], we know by
inversion that the store is empty.

3.2 Interaction Semantics: Static Semantics
If the linear language could not interact with lumped values
at all, our multi-language programs would be rather boring,
as the only way for the linear extension to provide a value
back to ML would be to have received it from λU and pass it
unchanged. To provide a real interaction, we provide a way
to extract values out of a lump ![σ], use it at some linear type
σ , and put it back in before sending the result to λU.

The correspondence between intuitionistic types σ and
linear types σ is specified by a heterogeneous compatibility
relation σ ' σ defined in Figure 9 (Multi-language: static
interaction semantics). The specification of this relation is
that if σ ' σ holds, then the space of values of ![σ] and
σ are isomorphic: we can convert back and forth between
them. When this relation holds, the term-formers lumpσ and
σ unlump perform the conversion. (The position of the index
σ emphasizes that the input e of lumpσ e has type σ , while
the output of σ unlump e has type σ .)

9 2016/11/23

For example, we have ![(σ→σ′)] ' !(![σ](![σ′]).
Given a lumped ML function, we can unlump it to see it
as a linear function. We can call it from the linear side, but
have to pass it a duplicable argument, as a ML function may
duplicate its argument. Conversely, we can convert a linear
function into a lumped function type to pass it to the ML side,
but it has to have a duplicable return type, given that the ML
side may freely share the return value.

Our lumpσ and σ unlump primitives are only indexed
by the linear type σ , because compatible ML type σ can be
uniquely recovered, as per the following result.

Lemma 3.1 (Determinism of the compatibility relation)
If σ ' σ and σ′ ' σ then σ = σ′.

Note that the converse property does not hold: for a given
σ , there are many σ such that σ ' σ . For example, we
have 1 ' !1 but also 1 ' !!1. This corresponds to the
fact that the linear types are more fine-grained, and make
distinctions (inner duplicability, dereference of full locations)
that are erased in the ML world. The σ ' ![σ] case also
allows you to (un)lump as deeply or as shallowly as you need:
σ1× (σ2×) is compatible with both !(![σ1]⊗ ![σ2×])
and !(![σ1]⊗ (![σ2]⊗ ![])). We could not systematically
translate the complete type σ , as type variables cannot be
translate and need to remain lumped: allowing lumps to “stop”
the translation at arbitrary depth is a natural generalization.

The term LU(e) turns a e : σ into a lumped type ![σ], and
we need to unlump it with some σ unlump for a compatible
σ ' σ to interact with it on the linear side. It is common to
combine both operations and we provide a syntactic sugar for
it, σLU(e). Similarly ULσ (e) first lumps a linear term then
sends the result to the ML world.

The following technical result provides some confidence
in the definition of compatibility for linear types, and is useful
when reasoning on the operational semantics in the next
section.

Lemma 3.2 (Substitution of recursive hypotheses)
If Σ , α ' !β `UL σ ' σ , α /∈ σ , and Σ `UL σ′ ' !σ′ then
Σ `UL σ [σ′/α] ' σ [σ′/β].

3.3 Interaction Semantics: Dynamic Semantics
We were careful to define the compatibility relation such that
σ ' σ only holds when ![σ] and σ are isomorphic, in the
sense that any value of one can be converted into a value
of another. Figure 10 defines the operational semantics of
the lumping and unlumping operations precisely as realizing
these isomorphisms. For concision, we specify the isomor-
phisms as relations, following the inductive structure of the
compatibility judgment itself. We write (

∼↔) when a rule can
be read bidirectionally to convert in either directions (assum-
ing the same direction holds of the premises), and (

∼←) or
(
∼→) for rules that only describe how to convert values in one

direction.

〈〉 ∼↔!1
share 〈〉

v1
∼↔!σ1

share(ς 1:Φ1).v1

v2
∼↔!σ2

share(ς 2:Φ2).v2

locs(ς 1) = locs(Φ1) = locs(v1)
locs(ς 2) = locs(Φ2) = locs(v2)

〈v1,v2〉
∼↔!(σ1 ⊗σ2)

share(ς 1 ++ ς 2:Φ1]Φ2). 〈v1,v2〉

v
∼↔!σi

share(ς :Φ).v

inji v
∼↔!(σ1 ⊕σ2)

share(ς :Φ). inji v

σ ' σ σ′ ' σ′

e
∼→!(!σ (!σ′)

shareλ(x : !σ). σ
′
LU(e ULσ (x))

σ ' σ σ′ ' σ′

λ(x :σ).ULσ′
(copy e σLU(x))) ∼←!(σ (σ′)

e

v
∼↔![σ]

share [v]

v
∼↔!σ

share v

v
∼↔!!σ

share (share v)

v
∼↔!σ

share(ς :Φ).v

v
∼↔!Box 1 σ

share([` 7→ (ς | v)]:(· | ` `Φ :Box 1 σ)). `

v
∼↔!σ [µα.σ/α]

share(ς :Φ).v

foldµα.σ v
∼↔!µα.σ

share(ς :Φ). (foldµα.σ v)

(∅ | share [v])

σ unlump
L
↪→
L

lumpσ

(∅ | v)

whenever v
∼→σ

v

whenever v
∼←σ

v

Figure 10. Multi-language: dynamic interaction semantics

Theorem 3.3 (Value translations are functional)
If σ ' σ , then for any closed value v : σ there is a unique
v : σ such that v

∼→
σ

v , and conversely for any closed
value v : σ there is a unique v : σ such that v

∼←
σ

v .

Lemma 3.4 (Lumping cancellation)
The lump conversions lumpσ and σ unlump cancel each
other modulo βη. In particular,

σLU((ULσ ((ς | v)))) =βη v ULσ ((σLU(v))) =βη v

Implementation consideration In a realistic implementa-
tion of this multi-language system, we would expect the rep-
resentation choices made for λU and λL to be such that, for
some but not all compatible pairs σ ' σ , the types σ and
σ actually have the exact same representation, making the
conversion an efficient no-op. An implementation could even
restrict the compatibility relation to accept only the pairs
that can be implemented in this way; it would reject some
λUL programs, but the “graceful interaction” result that is our
essential contribution would still hold.

10 2016/11/23

3.4 Multi-Languages and Parametricity
We discussed the design choice of manipulating lumps [σ] of
any ML type, not just the type variable that motivates them.
In presence of polymorphism, this generalization is also an
important design choice to preserve parametricity.

Let us define idσ (e)
def
= lumpσ (σ unlump e), and con-

sider a polymorphic term of the form Λα.UL(. . . id![α] . . .).
The (un)lumping operations on a lumped type such as ![α]
are just the identity: the lumped value is passed around un-
changed, so id![α](v) shall reduce to v . Now, if we instanti-
ate this polymorphic term with a ML type σ , it will reduce to
a term UL(. . . id![σ] . . .) whose unlumping operation is still
on a lumped type, so is still exactly the identity.

On the contrary, if we allowed lumps only on type vari-
ables, we would have to push the lump inside σ , and the
(un)lumping operations would become more complex: if σ
starts with a ML product type _× _, it would be turned into
a shared linear pair !(_⊗ _) by unlumping, and back into
a ML pair by lumping. In general, idσ may perform deep
η-expansions of lumped values. The fact that, after instanti-
ation of the polymorphic term, we get a monomorphic term
that has a different (but η-equivalent) computational behavior
would cause meta-theoretic difficulties; this is the approach
that was adopted in previous work on multi-languages with
polymorphism, Perconti and Ahmed [10], and it made some
proofs substantially more complex.

In contrast, our handling of lump types as turning arbitrary
types into blackboxes makes type instantiation obviously
parametric.

Lemma 3.5 (Substitution of polymorphic variables)
If Σ `UL σ ' σ and α /∈ Σ , then Σ `UL σ [σ′/α] '
σ [σ′/α] and their lumping operations coincide on all values.

3.5 Full Abstraction From λU Into λUL

We can now state and prove the major meta-theoretical result
of this work, which is the proposed multi-language design
extends the simple language λU in a way that provably has,
in a certain sense, “no abstraction leaks”.

Definition 3.6 (Contextual equivalence in λU)
We say that e , e′ such that Γ `U e , e′ : σ are contextually
equivalent, written e ≈ctx

U e′, if, for any expression context
C [�] such that · `U C [e] : 1, the closed terms C [e] and C [e′]
are equi-terminating.

Definition 3.7 (Contextual equivalence in λUL)
We say that e , e′ such that Γ `LU e , e′ : σ are contextually
equivalent, written e ≈ctx

LU e′, if, for any expression context
C [�] such that · `LU C [e] : 1, the closed terms C [e] and
C [e′] are equi-terminating.

The proof of full abstraction is actually rather simple. It
relies on the idea, that we already mentioned in Section 2.2
(Linear memory in λL), that linear state can be seen as either
being imperatively mutated, but also as a purely functional

J1K def
= 1

Jσ1⊗σ2K
def
= Jσ1K× Jσ2K
. . .

J!σK def
= JσK

JBox 0 σK def
= 1

JBox 1 σK def
= 1× JσK

J[σ]K def
= σ

Jµα.σK def
= µαα .JσK

JαK def
= αα

J〈〉K def
= 〈〉

Je; e′K def
= JeK; Je′K

Jλ(x :σ). eK def
= λ(xx : JσK). JeK

Je e′K def
= JeK Je′K

JLU(e)K def
= JeK

Jnew eK def
= JeK; 〈〉

Jfree eK def
= JeK; 〈〉

Jbox eK def
= 〈〈〉,π2 JeK〉

Junbox eK def
= 〈〈〉,π2 JeK〉

JxK def
= xx

J`K def
= x`

J(∅ | e)K def
= JeK

J(ς [` 7→ ·] | e)K def
= J(ς | e)K[〈〉/x`]

J(ς [` 7→ (ς ′ | v)] | e)K def
= J(ς | e)K[〈〈〉,J(ς ′ | v)K〉/x`]

Figure 11. Pure semantics of linear state

feature that just explicits memory layout. In absence of
aliasing, we can give a purely functional semantics to linear
state operations – instead of the store-modifying semantics
of Figure 7 (Linear language: Operational Semantics) – and
in fact this semantics determines a translation from linear
programs back into pure ML programs. Those ML programs
will not have the same allocation behavior as the initial linear
programs (in-place programs won’t be in-place anymore),
but they are observably equivalent in that they are equi-
terminating and return the same outputs from the same inputs.

The definition of the functional translation of linear con-
texts, terms and types is given in Figure 11. To simplify the
translation of terms and the statement of Theorem 3.8, we
assume that a global injective mapping is chosen from linear
variables x and locations ` to ML variables xx and x` , from
linear type variables α to ML type variables αα , and that
the inputs terms and types have all bound variables distinct
from each other and their free variables.

Lemma 3.8 (Compositionality)
JC [e]K = JCK[JeK].

Lemma 3.9 (Projection)
If e ∈ λUL is in the λU subset, then JeK = e .

Theorem 3.10 (Termination equivalence)
The reduction of JeK in λU terminates if and only if the
reduction of e in λUL terminates.

Theorem 3.11 (Full Abstraction)
The embedding of λU into λUL is fully-abstract:

Γ `U e ≈ctx
U e′ : σ =⇒ Γ `LU e ≈ctx

LU e′ : σ

11 2016/11/23

4. Hybrid Program Examples
4.1 In-Place Transformations
In Section 2.2 (Linear memory in λL) we proposed a pro-
gram for in-place reversal of linear lists defined by the type
LinList σ

def
= µα.1⊕Box 1 (σ⊗α). We can also de-

fine a type of ML lists List σ
def
= µα.1+σ ×α . Note that

ML lists are compatible with shared linear lists, in the sense
that List σ ' !(LinList ![σ]). This enables writing in-place
list-manipulation functions in λL, and exposing them to be-
ginners at a λU type: rev xs

def
=

ULLinList ![σ](share (rev_into copy (LinList ![σ]LU(xs)) Nil))

This example is arguably silly, as the allocations that are
avoided by doing an in-place traversal are paid when copying
the shared list to obtain a uniquely-owned version. A better
example of list operations that can profitably be sent on the
linear side is merge sort: a ML implementation allocates the
size of the list on each merge layer, while the surprisingly
readable λU implementation only allocates for the first copy.

4.2 Typestate Protocols
Linear types can enforce proper allocation and deallocation of
resources, and in general any automata/typestate-like proto-
cols on their usage by encoding the state transitions as linear
transformations. In the simple example of file-descriptor han-
dling, additional safety compared to ML programming can
be obtained by exposing file-handling functions on the λU
side, with linear types. Consider a linear library providing the
following operations

open : !![Path](Handle
line : !Handle((1⊕ (![String]⊗Handle))
close : !Handle(1

then a user willing to read files from their ML program would
have to do it inside a linear boundary, enforcing safe resource
handling. But the granularity of our handles means that the
user can easily open a nested boundary in the line-consuming
code, and write it in simple ML again. Only the resource-
consumption structure needs to be in the linear fragment:

let concat_lines path : String = UL(
loop (open LU(path)) LU(Nil)
where rec loop handle (acc : ![List String]) =
match line handle with
| EOF -> LU(rev_concat "\n" acc)
| Next line handle ->
line handle LU(Cons line UL(acc)))

5. Conclusion
Two languages that are each as simple as possible can be
combined in a multi-language system, who can be sensibly
simpler than monolithic languages covering the same feature
space yet reasonably expressive. In our case study, a very
simple system mirroring the standard rules of intuitionistic

linear logic can be equipped with linear state and usefully
complement a general-purpose functional ML language.

Fine-grained language boundaries allow interesting pro-
gramming patterns to emerge, and we believe that full ab-
straction provides a stringent but rewarding notion of what
it means for the isolated languages to “gracefully” embed in
the system, avoiding abstraction leaks for the other parts.

5.1 Related Work
Having a stack of usable, interoperable languages, extensions
or dialects is the forefront of the Racket approach to program-
ming environments, in particular for teaching [5]. The Racket
community did seminal work on specifying formal seman-
tics for multi-language systems [8], but it only addresses the
question of soundness of the multi-language; we propose a
formal treatment not only of correctness, but also usability.

We are not aware of existing systems exploiting the simple
idea of using promotion to capture uniquely-owned state and
dereliction to copy it – common formulations would rather
perform copies on the contraction rule.

The general idea that linear types can permit reuse of
unused allocated cells is not new. In Wadler [12], a system
is proposed with both linear and non-linear types to attack
precisely this problem. It is however more distant from
standard linear logic and somewhat ad-hoc; for example,
there is no way to permanently turn a uniquely-owned value
into a shared value, it provides instead a local borrowing
construction that comes with ad-hoc restrictions necessary
for safety. (The inability to give up unique ownership, which
is essential in our list-programming examples, seems to also
be missing from Rust, where one would need to perform a
costly operation of traversing the graph of the value to turn
all pointers into Arc nodes.)

The RAML project [7] also combines linear logic and
memory reuse: its destructive match operator will implicitly
reuse consumed cells in new allocations occurring within the
match body. Multi-languages give us the option to explore
more explicit, flexible representations of those low-level con-
cern, without imposing the complexity to all programmers.

A recent related work is the Cogent language [9], in which
linear state is also viewed as both function and imperative
– the latter view enabling memory reuse. The language
design is interestingly reversed: in Cogent, the linear layer is
the simple language that everyone uses, and the non-linear
language is a complex but powerful language that is used
when one really has to, named C.

One major simplification of our design compared to more
advanced linear or separation-logic-based languages is that
we do not separate physical locations from the logical capa-
bility/permission to access them. This restricts expressiveness
in well-understood ways [4]: shared values cannot point to
linear values.

Finally, on the side of the semantics, our system is related
to LNL [3], a calculus for linear logic that, in a sense, is
itself built as a multi-language system where (non-duplicable)

12 2016/11/23

linear types and (duplicable) intuitionistic types interact
through a boundary. It is not surprising that our design
contains has an instance of this adjunction: for any σ there
is a unique σ such that σ ' !σ , and converting a σ value
to this σ and back gives a !σ and is provably equivalent, by
boundary cancellation, to just using share .

References
[1] Thibaut Balabonski, François Pottier, and Jonathan Protzenko.

The design and formalization of Mezzo, a permission-based
programming language. ACM Transactions on Programming
Languages and Systems, 38(4):14:1–14:94, August 2016. doi:
http://dx.doi.org/10.1145/2837022.

[2] Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Lau-
rence Tratt. Fine-grained language composition: A case study.
In ECOOP, July 2016.

[3] P Nick Benton. A mixed linear and non-linear logic: Proofs,
terms and models. In International Workshop on Computer
Science Logic, 1994.

[4] Manuel Fahndrich and Robert DeLine. Adoption and focus:
Practical linear types for imperative programming. In PLDI’02,
PLDI ’02, 2002.

[5] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and
Shriram Krishnamurthi. The teachscheme! project: Comput-
ing and programming for every student. Computer Science
Education, 14(1):55–77, 2004.

[6] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich.
Foundations of typestate-oriented programming. TOPLAS,
2014.

[7] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource
Aware ML. In 24rd International Conference on Computer
Aided Verification (CAV’12), volume 7358 of Lecture Notes in
Computer Science, pages 781–786. Springer, 2012.

[8] Jacob Matthews and Robert Bruce Findler. Operational se-
mantics for multi-language programs. ACM Transactions on
Programming Languages and Systems (TOPLAS), 31(3):12,
2009.

[9] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney
Amani, Japheth Lim, Toby Murray, Yutaka Nagashima,
Thomas Sewell, and Gerwin Klein. Refinement through re-
straint: Bringing down the cost of verification. In ICFP, 2016.

[10] James T Perconti and Amal Ahmed. Verifying an open
compiler using multi-language semantics. In ESOP, 2014.

[11] Jesse A Tov and Riccardo Pucella. Practical affine types. In
POPL, 2011.

[12] Philip Wadler. Linear Types Can Change the World! In
Programming Concepts and Methods, 1990.

A. Proof Outlines
Proof (Theorem 2.5 (Progress))

By induction on the typing derivation of e , using induc-
tion hypothesis in the evaluation order corresponding to
the structure of contexts K . If one induction hypothesis re-

turns a reduction, we build a bigger reduction (
L
↪→) for the

whole term. If all induction hypotheses return a value, the
proof depends on whether the head term-former is an in-
troduction/construction form or an elimination/destruction
form. An introduction form whose subterms are values is
a value. For elimination forms, we use Theorem 2.3 (In-
version principle for λL values) on the eliminated subterm
(a value), to learn that it starts with an introduction form,
and thus forms a head redex with the head elimination
form, so we build a head reduction (

L
).

Proof (Theorem 2.6 (Non-store-escaping substitution
principle))

The proof, summarized below, proceeds by induction on
the typing derivation of e .
Most cases need an additional case analysis on whether
the substituted type σ is a duplicable type of the form !σ′′,
as it influence whether it may appear in zero or several
subterms of e . (This is a price to pay for contraction and
weakening happening in all rules for convenience, instead
of being isolated in separate structural rules.)
For example, in the variable case, e may be the variable
x itself, in which case we know that Γ is empty and
conclude immediately. But e may also be another variable
y if x is duplicable and has been dropped. In that case,
we perform an inversion (Theorem 2.3) on the v premise
to learn that Φ is empty and ∆ is duplicable, and can
thus use Theorem 2.4 (Weakening of duplicable contexts).
In the 〈e1,e2〉 case, if x is a linear variable it only occurs
in one subterm on which we apply our induction hypothe-
sis. If x is duplicable, inversion on the v premises again
tells us that ∆ is duplicable. We know by assumption that
(Γ1 . Γ2) . ∆ ; because ∆ is duplicable, we can deduce
from Theorem 2.1 (Context joining properties) that the
Γi . ∆ are also defined, which let us apply an induction
hypothesis on both subterms ei. To conclude, we need the
computation

(Γ1 . ∆) . (Γ2 . ∆)
= Γ1 . Γ2 . (∆ . ∆)
= Γ1 . Γ2 . ∆

which again comes from duplicability of ∆ .
The assumption x /∈ Φ enforces that the resource x is
consumed in the term e itself, not in one of the values
[` 7→ (ς | v)] in the store: otherwise x would appear
in the store typing (Γ | ` ` Φ : Box 1) of this
location in Φ . It is used in the case where e : σ is a
full location ` : Box 1 σ′. If x could appear in the value
of ` in the store, we would have substitute it in the store

13 2016/11/23

as well – in our substitution statement, only the term is
modified. Here we know that this value is unused, so it
has a duplicable type and we can perform an inversion in
the other cases.

Proof (Theorem 2.8 (Subject reduction for λL))

The proof is done by induction on the reduction derivation.
The head-reduction rules involving substitutions rely on
Theorem 2.6 (Non-store-escaping substitution principle);
note that in each of them, for example (λ(x :σ′). e′) e′′,
the substituted variable x is bound in the term e , and
thus does not appear in the store ς : the non-store-escaping
hypothesis holds.
For the copy rule and the store operators, we build a valid
derivation for the reduced configuration by inverting the
typing derivation of the reducible configuration.
In the non-head-reduction cases, the share case is by
direction, and the context case K [e] uses Theorem 2.7
(Context decomposition) to obtain a typing derivation for
e , and the same lemma again rebuild a derivation of the
reduced term K [e′].

Proof (Theorem 3.1 (Determinism of the compatibility
relation))

By induction on the syntax of σ : the judgment Σ `UL

σ ' σ is syntax-directed in its σ component.

Proof (Theorem 3.2 (Substitution of recursive hypotheses))

By induction on the σ ' σ derivation. There are two leaf
cases: the case recursive hypotheses, which is immediate,
and the case of lump σ ' ![σ]. In this latter case, notice
that σ is a type of λU, so in particular it does not contain
the variable β ; and we assumed α /∈ σ so we also have
α /∈ σ , so σ [σ′/α] = σ ' ![σ] = σ [σ′/β].

Proof (Theorem 3.3 (Value translations are functional))

Remark that in the statement of the term, when we
quantify over all closed values v : σ , we implicitly
assume that in the general case values of v live in the
empty global store – otherwise we would have a value of
the form Φ | · `L ς | v : σ . This is valid because all
types σ in the image of the type-compatibility relation
are duplicable types of the form !σ′, so by Theorem 2.3
(Inversion principle for λL values) we know that v is in
fact of the form a share(ς :Φ). e′, living in the empty
store.)
The two sides of the result are proved simultaneously by
induction on σ ' σ , using inversion to reason on the
shapes of v and v . Note that the inductive cases remain
on closed values: the only variable-binder constructions,
λ-abstractions, do not use the recursion hypothesis.
In the recursive case µα.σ ' !(µα.σ), to use the
induction hypothesis on the folded values we need to know
that the unfolded types σ [µα.σ/α] and σ [µα.σ/α] are

compatible. This is exactly Theorem 3.2 (Substitution
of recursive hypotheses), using the hypothesis µα.σ '
!(µα.σ) itself.

Proof

By induction on σ , and then by parallel induction on the
derivations of type compatibility and value compatibility.
The parallel cases are symmetric by definition, only
the function case !(!σ(!σ′) needs to be checked. A
simple computation, using the induction hypothesis on
the smaller types !σ and !σ′, shows that composing the
two function translations gives an η-expansion – plus the
βη-steps from the induction hypotheses.

Proof (Theorem 3.5 (Substitution of polymorphic variables))

By induction on σ ' σ . In the variable leaf case, we
know α /∈ Σ . In the lump leaf case σ ' ![σ], the goal
σ [σ′/α] ' ![σ [σ′/α]] is immediate.

Proof (Theorem 3.10 (Termination equivalence))

The translation respects the evaluation structure: a value is
translated into a value, and a position in the original term
is reducible if and only if the same position is reducible
in the translation – both properties are checked by direct
induction, on values and evaluation contexts.
Furthermore, the translation was carefully chosen (espe-
cially for the store operations) so that there is a redex in
the translated term if and only if there is a redex in the
original term, and the reduction of the translation is also
the translation of the reduction. For example, we have

(ς [` 7→ ·] | box 〈`,v〉)
L
↪→ ([` 7→ (ς | v)] | `)

J(ς [` 7→ ·] | box 〈`,v〉)K
= Jbox K 〈〈〉,v [ς /ς]〉
= 〈〈〉,π2 〈〈〉,v [ς /ς]〉〉
L
↪→ 〈〈〉,v [ς /ς]〉
= 〈〈〉,J(ς | v)K〉
= J([` 7→ (ς | v)] | `)K

where [ς /ς] denotes the composed substitution [〈〈〉,J(ς ′ | v)K〉/x`]
for each [` 7→ (ς ′ | v)] in ς .

Proof (Theorem 3.11 (Full Abstraction))

To show that two λU terms e , e′ are contextually equiv-
alent in λUL, we are given a context C in λUL and must
prove that C [e], C [e] are equi-terminating.
From Theorem 3.10 (Termination equivalence) we know
that C [e] and JC [e]K are equi-terminating, and from
Theorem 3.8 (Compositionality) that JC [e]K is equal
to JCK[JeK], which is equal to JCK[e] by Theorem 3.9
(Projection). Similarly, C [e′] and JCK[e′] are equi-terminating.
Because JCK is a context in λU, we can use our assump-
tion that e ≈ctx

U e′ to conclude that JCK[e] and JCK[e′] are
equi-terminating.

14 2016/11/23

	Introduction
	Motivation: multi-languages against complexity
	Formal design of multi-language systems

	The U and L languages
	The core of L
	Linear memory in L
	Extended terms syntax typing
	Reduction of extended terms

	Multi-language semantics
	Lump type and language boundaries
	Interaction semantics: static semantics
	Interaction semantics: dynamic semantics
	Multi-languages and parametricity
	Full abstraction from U into UL

	Hybrid program examples
	In-place transformations
	Typestate protocols

	Conclusion
	Related Work

	Proof outlines

