
Fully Abstract Compilation via Universal Embedding ∗

Max S. New

Northeastern University, USA

maxnew@ccs.neu.edu

William J. Bowman

Northeastern University, USA

wjb@williamjbowman.com

Amal Ahmed

Northeastern University, USA

amal@ccs.neu.edu

Abstract

A fully abstract compiler guarantees that two source components
are observationally equivalent in the source language if and only if
their translations are observationally equivalent in the target. Full
abstraction implies the translation is secure: target-language attack-
ers can make no more observations of a compiled component than a
source-language attacker interacting with the original source compo-
nent. Proving full abstraction for realistic compilers is challenging
because realistic target languages contain features (such as control
effects) unavailable in the source, while proofs of full abstraction
require showing that every target context to which a compiled com-
ponent may be linked can be back-translated to a behaviorally
equivalent source context.

We prove the first full abstraction result for a translation whose
target language contains exceptions, but the source does not.
Our translation—specifically, closure conversion of simply typed
λ-calculus with recursive types—uses types at the target level to
ensure that a compiled component is never linked with attackers
that have more distinguishing power than source-level attackers. We
present a new back-translation technique based on a shallow embed-
ding of the target language into the source language at a dynamic
type. Then boundaries are inserted that mediate terms between the
untyped embedding and the strongly-typed source. This technique
allows back-translating non-terminating programs, target features
that are untypeable in the source, and well-bracketed effects.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Security, Theory

Keywords Secure compilation, fully abstract compilation, univer-
sal embedding, universal domain, parametricity, logical relations,
multi-language semantics, back-translation.

1. Introduction

When building secure software systems, programmers rely on
language-provided abstractions and on the assumption that any

∗ In electronic versions of this paper, we use a blue sans-serif font to typeset
our source language and a bold red serif font to typeset the target. The paper
will be much easier to read if viewed/printed in color.

attacker—i.e., any code that their software component might be
linked with—will be bound by the rules of the programming
language. However, after the component is compiled, it may be
linked with arbitrary target-level attackers that violate source-level
abstractions, thus invalidating source-level security guarantees.
Target attackers may be able to do things impossible in the source,
such as read the compiled component’s private data, modify the
component’s control flow, and even modify code implementing the
component’s methods.

To guarantee that target attackers respect source-language rules,
a compiler must be fully abstract—that is, it should preserve and
reflect observational equivalence [1, 21, 7, 16, 30, 11, 14]. We use
the standard notion of observational equivalence, also known as
contextual equivalence: two components are contextually equivalent
if they are indistinguishable in any valid (appropriately typed)
program context. Fully abstract compilation ensures that when a
source component e compiles to a target component e a valid target-
language context C (attacker) does not have the power to observe
anything more from interacting with e than a source-language
context C interacting with e. Note that ensuring fully abstract
compilation is only important when compiling components (not
whole programs) since it is a property that ensures a component is
protected from an attacker context (but whole programs have no
context).

Achieving Secure Compilation There are three complementary
techniques that one could use to achieve secure compilation. The
first and most basic is to change the source program’s notion of
program equivalence to be exactly the equivalence of compiled code.
In this way all compilers can be seen to be secure, but at the cost
of introducing extra-linguistic reasoning. A good example of this
is programming in low-level languages like C where one reasons
about programs by understanding their compilation.

The second way is to introduce mediating constructs such as
dynamic checks or encodings that coerce low-level attackers into
behaving like high-level code. This comes at the cost of runtime
overhead in time and space. This is the approach taken in much of
the literature (e.g., [16, 3, 29, 30, 12]).

The final way is to statically ensure that low-level program
interfaces are secure, i.e., low-level programs operating at the
specified interface must be in some way verified to act like high-
level programs. This comes at the cost of disallowing linking with
unverified/untyped code.

In this paper we focus on the final approach. In particular, we use
types to statically verify that the target-language contexts that a com-
piled component is linked with have no more observational power
than source-language contexts. Of course, taking this statically-
enforced secure compilation approach in a realistic compiler will re-
quire designing statically sound (e.g., typed) intermediate languages
for the compiler, as described in Ahmed [5]. Since fully abstract
compilation is only important when compiling components, as noted
above, we only need to perform type-preserving compilation until

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ICFP’16, September 18–24, 2016, Nara, Japan

ACM. 978-1-4503-4219-3/16/09...

http://dx.doi.org/10.1145/2951913.2951941

103

the intermediate language in the compiler where linking happens,
yielding a whole program. Having type information available at
link time is important in order to rule out linking with contexts that
can attack the component in a way that no source context could
have. However, after that point in the compilation pipeline, we can
erase types and do whole-program compiler correctness—i.e., there
is no further need for types or for proving full abstraction for the
remaining passes of the compiler.

There are currently significant performance costs to existing
dynamically-enforced secure compilers, and reducing these costs
requires reliance on specialized hardware support—for instance, in
the form of protected memory architectures (PMAs) as shown by
Patrignani et al. [30]. Our work focuses on type-enforced secure
compilation to ensure that dynamic checks can be avoided, without
reliance on any specialized hardware, when low-level code is
verified and to do this we need to ensure the compiler is secure
when linking against a certain class of low-level programs.

Moreover, even if one were only to link against unverified low-
level code, in order to minimize dynamic enforcement overhead we
should use statically sound intermediate compiler passes. For exam-
ple, recent work by Devriese et al. [12] showed full abstraction for
a dynamically-protected type erasure pass for simply typed lambda
calculus. The protection mechanism introduces deep checks to en-
sure safety for the compiler which would have to be compounded by
further checks when compiling to lower-level languages. If multiple
passes of the compiler are introducing deep semantic checks then the
compiler will produce highly inefficient code. Thus, to minimize the
cost of dynamic checks one should preserve high-level information
(e.g., via types) as long as possible in a secure compiler.

Correct and Secure Compilation We start with specifications of
correctness and security of our compiler. We give these specifi-
cations in terms of relations that we explain intuitively here, and
formally define later.

We write Γ ⊢ e : σ ❀e e when a source component e of type
σ (under environment Γ) compiles to the target component e of
translation type σ÷ (under the translated environment Γ+). We use
the relations ≈ctx

S and ≈ctx
T

to denote source and target contextual
equivalence, respectively.

Theorem 1.1 (Semantics Preservation)
If Γ ⊢ e : σ ❀e e, then Γ ⊢ e S≃T e : σ.

Semantics preservation, Theorem 1.1, states that the translation
of a source component correctly preserves the behavior of the
original source component, for a given specification S≃T of related
behavior. We specify related behavior by a cross-language relation
that can be seen as a specification for the calling convention and
encoding of source values. In other words, it specifies when a source
component e : σ is behaviorally equivalent to a target component
e : σ÷ (where e may or may not be an output of the compiler).

We define this cross-language relation in §3 by defining inter-
operability between source and target as a single “multi-language”
as in [7, 31]. Then the cross-language relation is defined using
contextual equivalence in the multi-language.

Theorem 1.1 gives us compositional compiler correctness, i.e.,
correctness for components rather than for only whole programs [7,
31, 39, 27, 41]. In the special case that Γ = ·, we recover whole-
program correctness.

Theorem 1.2 (Equivalence Reflection)
If Γ ⊢ e1 : σ ❀e e1, Γ ⊢ e2 : σ ❀e e2 and ·; Γ+ ⊢ e1 ≈ctx

T
e2 : σ÷,

then Γ ⊢ e1 ≈ctx
S e2 : σ.

Equivalence reflection, Theorem 1.2, states that if compiling two
different source components results in two target components that
are contextually equivalent in the target language, then the original
source components must be contextually equivalent in the source

language. This is perhaps clearer if viewed as its contrapositive:
if two source components are distinguishable, then so are their
translations. Viewed in this way it can be seen as a weak form
of semantics preservation that can be stated independent of the
specification S≃T . We prove this as a corollary of the stronger
semantics preservation theorem in §4.

Theorem 1.3 (Equivalence Preservation)
If Γ ⊢ e1 : σ ❀e e1, Γ ⊢ e2 : σ ❀e e2 and Γ ⊢ e1 ≈ctx

S e2 : σ, then
·; Γ+ ⊢ e1 ≈ctx

T
e2 : σ÷.

Equivalence preservation, Theorem 1.3, ensures a secure com-
piler. It states that two observationally equivalent source components
will be compiled to observationally equivalent target components.
Viewed as a modularity property, this says that the abstraction barri-
ers of the source language are preserved by compilation. Viewed as a
security property, it says that attackers in the target language can be
emulated by attackers in the source, so any reasoning about security
of source programs can be done entirely in the source language. We
prove equivalence preservation by back-translating target contexts
to the source to show that they can make no more observations than
source contexts in §5.

While equivalence preservation and reflection may at first glance
seem to subsume the semantics-preservation theorem, note that nei-
ther mentions any notion of cross-language equivalence. Just prov-
ing full abstraction cannot guarantee that you use the correct calling
convention or encoding. For instance, a compiler that compiled
true to false, false to true and swapped branches of ifs preserves
and reflects equivalences, but would not be semantics-preserving
if the specification says that true should be encoded as true. Es-
sentially, the abstract properties of equivalence preservation and
reflection can’t tell if you agree with a concrete, “arbitrary”, choice
of encoding.

Contributions The key to proving Theorem 1.3 is showing that for
every well-behaved target context—i.e., context of translation type—
there exists a behaviorally equivalent source context. This essentially
requires back-translating a more expressive target language to
a less expressive source language. Prior full abstraction results
targeting typed languages performed back-translation by partial
evaluation [7, 11, 37], a technique that does not seem to scale to
nonterminating languages, which we discuss in §7.

We demonstrate a new back-translation technique, universal
embedding. This technique is to first translate the target language
into the source at a universal—i.e., dynamic—source type and
then mediate between the universal type and each source type
with functions that perform the encoding at run-time. Whereas
previous work back-translates to types that precisely encode only
target programs, we instead back-translate to a type that is overly
large: it contains all the target behaviors but many other undesirable
behaviors. This enables us to back-translate when the target is
capable of finer type distinctions than the source, exemplified in our
paper by the polymorphism of the target language.

This universal embedding demonstrates equivalence between
an embedded interpreter and a multi-language semantics, two
apparently similar techniques that have never been studied together
before.

We apply this technique to prove full abstraction of typed closure
conversion from a simply-typed λ-calculus with recursive types
to a polymorphic λ-calculus with recursive types and exceptions.
Our technique allows back-translating non-terminating programs,
target-language features that are untypeable in the source, and well-
bracketed/delimited effects. Ours is the first full-abstraction result
that targets a typed, non-terminating target language with features
unavailable in the source.

We provide complete definitions and proofs in our online techni-
cal appendix [28].

104

2. Closure Conversion

Our source and target languages are both call-by-value. They are
also in monadic normal form—constructors and eliminators are
only applied to syntactic values [10]—meant to represent compiler
intermediate languages.

Types σ ::= α | 1 | σ1 + σ2 | σ1 × σ2 | σ1 → σ2 | µα.σ

Values v ::= x | ⟨⟩ | inji v | ⟨v1, v2⟩ | λ(x :σ). e | foldµα.σ v

Expressions e ::= v | case v of x1. e1 | x2. e2 | πi v | v1 v2 |
unfold v | let x= e1 in e2

Eval. Contexts K ::= [·] | let x= K in e2

General Contexts C ::= [·] | case C of x1. e1 | x2. e2
case e of x1.C | x2. e2
case e of x1. e1 | x2.C
πi C | λ(x :σ).C | · · ·

e (−→ e′
· · ·

K[(λ(x :σ). e) v] (−→ K[e[v/x]]

K[unfold (foldµα.σ v)] (−→ K[v]

Γ ⊢ e : σ

· · ·
x : σ ∈ Γ · ⊢ Γ

Γ ⊢ x : σ

Γ, x : σ1 ⊢ e : σ2

Γ ⊢ λ(x :σ1). e : σ1 → σ2

Γ ⊢ v : σ[µα.σ/α]

Γ ⊢ foldµα.σ v : µα.σ

Γ ⊢ v : µα.σ

Γ ⊢ unfold v : σ[µα.σ/α]

Figure 1. λ
S: Syntax + Semantics (excerpts)

Source Language Our source language λ
S is a simply-typed

lambda calculus with unit, sums, pairs, and recursive types. Figure 1
presents the syntax and excerpts of the semantics. We present the
dynamic semantics (e (−→ e′) using evaluation contexts K [15]
to define a standard left-to-right call-by-value semantics. Since
our language is in a normal form, the only non-trivial evaluation
contexts are let-bindings. We elide most of the reduction rules and
typing rules (Γ ⊢ e : σ) as they are completely standard. The typing
environment Γ maps term variables x to their types σ.

Figure 1 also presents an excerpt of the syntax for general
contexts which are expressions with a single hole in them. We
omit some of the details caused by the monadic syntax; for instance,
some contexts can only be plugged with values. Context typing
(⊢ C : (Γ ⊢ σ) ⇒ (Γ′ ⊢ σ′)), ensures that for any expression e such
that Γ ⊢ e : σ, we can conclude that Γ′ ⊢ C[e] : σ′.

We define contextual equivalence (Γ ⊢ e1 ≈ctx
S e2 : σ) for λS

as follows. Informally, two components e1 and e2 are contextually
equivalent if either can be replaced by the other in any appropriately
typed program context C without affecting the program’s observable
behavior. As it is a simple, functional language, we take termination
(written e ⇓) as our notion of observable behavior. We write e1 ⇕ e2
when e1 ⇓ if and only if e2 ⇓.

Definition 2.1 (λS Contextual Equivalence)

Γ ⊢ e1 ≈ctx
S e2 : σ

def
= Γ ⊢ e1 : σ ∧ Γ ⊢ e2 : σ ∧

∀σ′,C. ⊢ C : (Γ ⊢ σ) ⇒ (· ⊢ σ′) =⇒ (C[e1] ⇕ C[e2])

Target Language Our target language λ
T is a polymorphic λ-

calculus with the empty type, sums, n-ary tuples, existential types,
recursive types, and exceptions tracked by a modal type system.
Figure 2 presents the syntax and excerpts of the dynamic and static
semantics.

The target language has three syntactic categories for terms: v is
a value, e is a computation that may have effects and r is a result,
i.e. a normalized computation: either a returned value return v or
a raised exception raise v.

The let-form of the λS is subsumed in λ
T by a combined let and

try-catch form called handle in the style of Benton and Kennedy [9].
On a successful computation, i.e., a return, it continues with the
left branch:

handle return v with (x. e1) (y. e2) (−→ e1[v/x]

On an exception it continues with the right branch:

handle raise v with (x. e1) (y. e2) (−→ e2[v/y]

We define let-forms as syntactic sugar for a handle that imme-
diately re-raises any exception it encounters. We similarly define a
more traditional try-catch by doing the opposite:

let x = e in e′
def
= handle e with (x. e′) (y. raise y)

catch y = e in e′
def
= handle e with (x. return x) (y. e′)

We use a modal type system to track exceptions: τ is a value
type (for values v) and θ is a computation type (for computations e).
If e has type θ = E τexn τ then type soundness for this language
means that if e reduces to a normal form it will either be a return v
where v has type τ , or a raise v′ where v′ has type τexn. Crucially
for our compiler, we can use the empty type 0 as the exception type
to enforce that a computation does not throw an exception.

Context typing and contextual equivalence are defined analo-
gously to λ

S.

Definition 2.2 (λT Contextual Equivalence)

∆;Γ ⊢ e1 ≈ctx
T

e2 : θ
def
= ∆;Γ ⊢ e1 : θ ∧ ∆;Γ ⊢ e2 : θ ∧

∀θ′,C. ⊢ C : (∆;Γ ⊢ θ) ⇒ (·; · ⊢ θ′) =⇒ (C[e1] ⇕ C[e2])

Closure Conversion Closure conversion is a standard internal
compiler pass translating a substitution-based language into one
that can be implemented with all values being passed by specified
registers or memory locations. The pass translates functions with
references to free variables, i.e. variables from the local environment,
to be closed so that all variables references are bound by the
functions parameters. We collect the values of free variables used
in a function definition into a closure environment that is stored
with the function, where the function itself is modified to take the
environment as an additional input. We face two challenges in typing
this translation to ensure full abstraction.

First, different terms of the same function type may have differ-
ently typed closure environments. To see why, consider two func-
tions e1 = λx. x and e2 = λx. z of type bool → bool, where z is a
free variable of type bool. The function part of the translation of
e1 would have type ⟨⟨⟩, bool⟩ → bool while the translation of e2
would have type ⟨⟨bool⟩, bool⟩ → bool. Furthermore, there is no
way to access the closure environment in the source language, so
if the interface to the environment is too liberal then equivalence
can’t possibly be preserved. Both of these problems are solved in
Minamide et al. [26] by using existential types to hide the type of
the environment, as described below.

Second, to preserve equivalence when compiling to a target lan-
guage with exceptions, we must ensure target contexts cannot use
exceptions to make additional observations of translated terms. Con-
sider e1 = λf. (f true; f false; ⟨⟩) and e2 = λf. (f false; f true; ⟨⟩).
In a language with just non-termination, these terms are con-
textually equivalent. However, if the argument f can raise an
exception, a context can distinguish these terms. The context
catch y = ([·] (λx. raise x)) in y returns true when given e1 and
false when given e2. We use our checked exception type to ensure
an exception cannot propagate into source code.

Our closure conversion pass extends the typed closure conversion
in Minamide et al. [26] to accommodate our modal type system.
Figure 4 presents the type translation which is split into the value
type translation σ+ and computation type translation σ÷. A value
of type σ is translated to a value of some value type τ = σ+. Non-
trivial expressions of type σ are translated to some computation type

105

Value Types τ ::= α | τ1 + τ2 | ⟨τ⟩ | ∀[α]. τ → θ | µα. τ | 0 | ∃α. τ

Computation Types θ ::= E τ1 τ2

Values v ::= x | inj1 v1 | inj2 v2 | ⟨v⟩ | λ[α](x : τ). e | foldµα.τ v | pack (τ ,v)

Results r ::= return v | raise v

Computations e ::= r | casev of x1. e1 | x2. e2 | v.i | v1 [τ] v2 | unfoldv |
unpack (α,x) = v in e | handle e with (x. e1) (y. e2)

Evaluation Contexts K ::= [·] | handle Kwith (x. e1) (y. e2)

e (−→ e′ · · ·
K[(λ[α](x : τ). e) [τ ′] v] (−→ K[e[τ ′/α][v/x]]

K[unpack (α,x) = (pack (τ ,v)) in e] (−→ K[e[τ/α][v/x]]

K[handle (return v)with (x. e1) (y. e2)] (−→ K[e1[v/x]]

K[handle (raise v)with (x. e1) (y. e2)] (−→ K[e2[v/y]]

∆ ⊢ τ

· · ·
α ∈ ∆

∆ ⊢ α

∆,α ⊢ τ ∆,α ⊢ θ

∆ ⊢ ∀[α]. τ → θ

∆,α ⊢ τ

∆ ⊢ µα. τ

∆,α ⊢ τ

∆ ⊢ ∃α. τ

∆;Γ ⊢ v : τ

· · ·
∆;Γ ⊢ vi : τ i

∆;Γ ⊢ ⟨v⟩ : ⟨τ⟩

∆ ⊢ Γ α;x : τ ⊢ e : θ

∆;Γ ⊢ λ[α](x : τ). e : ∀[α]. τ → θ

∆;Γ ⊢ v : τ [τ ′/α] ∆ ⊢ τ ′

∆;Γ ⊢ pack (τ ′,v) : ∃α. τ

∆;Γ ⊢ e : θ

· · ·
∆;Γ ⊢ v : τ ∆ ⊢ τexn

∆;Γ ⊢ return v : E τexn τ

∆;Γ ⊢ v : τexn ∆ ⊢ τ

∆;Γ ⊢ raise v : E τexn τ

∆;Γ ⊢ v : ∃α. τ ∆,α;Γ,x : τ ⊢ e : E τexn τ ′
∆ ⊢ τ ′

∆ ⊢ τexn

∆;Γ ⊢ unpack (α,x) = v in e : E τexn τ ′

∆;Γ ⊢ e : E τ ′
exn τ ′ ∆;Γ,x : τ ′ ⊢ e1 : E τexn τ ∆;Γ,y : τ ′

exn ⊢ e2 : E τexn τ

∆;Γ ⊢ handle e with (x. e1) (y. e2) : E τexn τ

Figure 2. λ
T: Syntax + Semantics (excerpts)

Γ ⊢ v : σ ❀v v

· · ·
x : σ ∈ Γ

Γ ⊢ x : σ ❀v x

(y1, . . . , yn) = fv(λ(x :σ′). e) Γ ⊢ yi : σi τenv = ⟨σ1
+, . . . ,σn

+⟩ Γ, x : σ ⊢ e : σ′
❀e e

Γ ⊢ λ(x :σ). e : σ→ σ′
❀v pack (τenv, ⟨λ(z : ⟨τenv,σ

+⟩).
let xenv = return z.1 in
let yi = return xenv.i in
· · ·
let x = return z.2 in e

, ⟨y1, . . . ,yn⟩⟩)

Γ ⊢ e : σ ❀e e

· · ·
Γ ⊢ v : σ ❀v v

Γ ⊢ v : σ ❀e return v

Γ ⊢ v1 : σ1 → σ2 ❀v v1 Γ ⊢ v2 : σ1 ❀v v2

Γ ⊢ v1 v2 : σ2 ❀e unpack (α, z) = v1 in
let y1 = return z.1 in
let y2 = return z.2 in
y1 ⟨y2,v2⟩

Γ ⊢ e1 : σ1 ❀e e1 Γ, x : σ1 ⊢ e2 : σ2 ❀e e2

Γ ⊢ let x= e1 in e2 : σ2 ❀e let x = e1 in e2

Figure 3. Closure Conversion: Term Translation (excerpts)

σ÷ = E0σ+

α+ = α
1+ = ⟨⟩

(σ1 + σ2)
+ = σ1

+ + σ2
+

(σ1 × σ2)
+ = ⟨σ1

+,σ2
+⟩

(σ1 → σ2)
+ = ∃α. ⟨(⟨α,σ1

+⟩→ σ2
÷),α⟩

(µα.σ)+ = µα.σ+

(·)+ = ·
(Γ, x : σ)+ = Γ+,x : σ+

Figure 4. Closure Conversion: Type Translation

θ = σ÷, where σ÷ = E0σ+, indicating that if this computation
terminates it will result in a value of type σ+. The value type
translation σ+ is defined by structural recursion in all cases except
for functions. A function of type σ1 → σ2 is compiled to a closure,
i.e., a pair of the function and its environment: ∃α. ⟨(⟨α,σ1

+⟩→
σ2

÷),α⟩. The type of the environment is existentially quantified so
that functions of the same type but with different environments

are translated to functions of the same type. Parametricity of
the language ensures that (standard) typed closure conversion
is equivalence preserving. The existential types ensures that the
function component of a closure can only ever be called with the
environment it is packaged with, and ensures the environment can
only be used as an argument to the function it is pacakged with.
Furthermore the output type of the function is σ2

÷ = E0σ2
+,

guaranteeing that when the function is called, it does not raise an
exception. Viewed instead as a restriction on target programs, this
means a target context cannot pass a closure that raises uncaught
exceptions to compiled source code. Thus, target contexts cannot
use exceptions to make additional observations.

The term translation is given in Figure 3. We define a value
translation Γ ⊢ v : σ ❀v v and an expression translation Γ ⊢ e :
σ ❀e e. Note that since we translate open terms, we translate a free
variable x to x—the same variable name but in the target language. In
the expression translation, we translate values by first translating the

106

value according to the value translation, then wrapping the translated
value in a return. We translate functions to an existential package,
where all free variables referenced in the body of the function are put
in the environment part of the package, and the function part of the
package first introduces the free variables via let before executing
the translated function body. We translate function application by
first unpacking the closure and then applying the underlying function
to the pair of the argument and the environment. We verify that this
translation is type preserving.

Theorem 2.3 (Closure Conversion is Type Preserving)
1. If Γ ⊢ v : σ and Γ ⊢ v : σ ❀v v, then ·; Γ+ ⊢ v : σ+.

2. If Γ ⊢ e : σ and Γ ⊢ e : σ ❀e e, then ·; Γ+ ⊢ e : σ÷.

3. Multi-Language Semantics

We use multi-language semantics [24, 7, 31] to define interoperabil-
ity between source and target components. The multi-language λST

provides a natural, operational, specification for semantics preserva-
tion, given in §3.1.

Value Types τ ::= σ | τ

Comp. Types θ ::= σ | θ

All Types ϕ ::= τ | θ

∆ ::=∆
Γ ::= · | Γ, x : σ | Γ,x : τ
K ::= . . . | σST K
K ::= . . . | TS σ K
K ::= K | K

v ::= v | v
r ::= v | r
e ::= e | e
e ::= . . . | σST e
e ::= . . . | TS σ e

C ::= . . . | σST C
C ::= . . . | TS σ C
C ::= C | C

∆;Γ ⊢ e : θ

· · ·
∆;Γ ⊢ e : σ÷

∆;Γ ⊢ σST e : σ

∆;Γ ⊢ e : σ

∆;Γ ⊢ TS σ e : σ÷

Figure 5. λ
ST: Syntax and Static Semantics (excerpts)

In Figure 5, we define the syntax for λST by extending the syntax
of λS and λT. For instance, we extend the source and target terms to
include boundary terms, and extend expression contexts to include
the boundary contexts.

Boundary terms allow embedding a term from one language into
the other language, and their operational semantics define how the
source language should interact with the target when compiled. The
σST e boundary embeds the target expression e of type σ÷ into the
source at type σ, and the TS σ e embeds a source expression e of
type σ into the target at type σ÷. We define syntactic categories e
for all terms, ϕ for all types, τ for value types, and so on.

We also define typing rules for boundaries in Figure 5. The two
boundaries mediate between the source types σ and their translation
types σ÷. This ensures that source (resp. target) components can
only be plugged into target (resp. source) contexts if their types
are compatible according to the type translation. Other typing rules
for the multi-language are inherited from the source and target
languages with the environments for all the rules changed to ∆;Γ.

Henceforth, when we refer to a “source term” (e) in λST, we
mean a multi-language term that has type σ. Analogously, a “target
term” (e) in λST, is a multi-language term of type θ.

The operational semantics for the multi-language, defined in
Figure 6, inherits reductions from the source and target languages.
Note that we evaluate under a boundary TS until we reach a value
v, and under a boundaryST until we reach a result r.

The reduction rules for boundary terms perform a runtime en-
coding of values that corresponds to the closure conversion pass, di-
rected by the type annotation σ on the boundary. Unlike our compiler
which translates based on program syntax, this boundary translation
is entirely extensional and only wraps values. For instance, TS 1 ⟨⟩
evaluates to return ⟨⟩. Since TS σ v boundaries are computations,

the encoding of v is injected into the exception monad in the target
language. For either boundary around a fold, the value is unfolded
in one language, then that value is translated and refolded in the
other.

The function cases are most interesting because they correspond
to the actual work of closure conversion.

To translate a source function, we have to construct a closure
in the target. Since at runtime a source function will be closed by
substitution, the closure has the empty environment. Additionally,
the input and output of the function have to first be translated in order
to call the original function. Translating a target closure to a source
function is easier: the source function just unpacks the closure,
translates the input, calls the target function with the translated input
and its packed environment, and translates the output.

Contextual equivalence in the multi-language is defined in the
same way as in the source and target languages.

Definition 3.1 (λST Contextual Equivalence)

∆;Γ ⊢ e1 ≈ctx
ST e2 : θ

def
= ∆;Γ ⊢ e1 : θ ∧ ∆;Γ ⊢ e2 : θ ∧

∀θ′, C. ⊢ C : (∆;Γ ⊢ θ) ⇒ (·; · ⊢ θ′) =⇒ C[e1] ⇕ C[e2]

Finally, we state Lemma 3.2, which provides a simple correctness
property of our multi-language semantics, and implies Corollary 3.3.
The latter is important as it justifies stating cross-language theorems
with an arbitrary choice of placing the boundary on the source or
target term.

Lemma 3.2 (Boundary Cancellation)

1. If ∆;Γ ⊢ e : σ, then ∆;Γ ⊢ e ≈ctx
ST

σST TS σ e : σ.

2. If ∆;Γ ⊢ e : σ÷, then ∆;Γ ⊢ e ≈ctx
ST TS σ σST e : σ÷.

Corollary 3.3
∆;Γ ⊢ e ≈ctx

ST
σST e : σ iff ∆;Γ ⊢ TS σ e ≈ctx

ST e : σ÷.

3.1 Cross-Language Equivalence

Now that we have defined an interoperability semantics for the
two languages, we have a natural way to define when a target term
accurately simulates the behavior of a source term. This gives us a
clear and concise definition of compiler correctness.

First we consider closed terms. Since our multi-language seman-
tics defines embedding of a source component in a target context,
we will consider a source component e : σ and a target component
e : σ÷ to be “equivalent” when TS σ e and e are contextually equiv-
alent in λ

ST. We define cross-language equivalence on closed terms
as follows.

Definition 3.4 (Cross-Lang. Equiv. S≃T : Closed Terms)

· ⊢ e S≃T e : σ
def
= ·; · ⊢ TS σ e ≈ctx

ST e : σ÷

Recall that we wish to prove compositional semantics preserva-
tion for closure conversion—that is, that compilation of components,
not just whole programs, is semantics preserving. Since our notion
of component is an open term, next we define cross-language equiv-
alence for open terms, which in the special case of closed terms
yields the equivalence above.

For cross-language equivalence for open terms, we have an open
source term Γ ⊢ e : σ that we want to relate to an open target term
·; Γ+ ⊢ e : σ÷—in particular, for compiler correctness we will be
interested in the case where e is the compilation of e. The multi-
language semantics again gives us a natural definition in terms of
boundaries. With closed terms we used boundaries to translate the
output of the programs. With open terms we will use boundaries to
additionally translate the inputs, that is, the free variables.

To do this we introduce new syntactic sugar that acts like the
boundary on free variables.

107

e (−→ e′
K[TS 1 v] (−→ K[return ⟨⟩]

K[1ST return v] (−→ K[⟨⟩]
K[σ1+σ2ST return (inji v)] (−→ K[let x= σiST return v in inji x]

K[TS σ1+σ2 inji v] (−→ K[let x = TS σi v in return inji x]
K[σ1×σ2ST return v] (−→ K[let x1 = σ1ST v.1 in let x2 = σ2ST v.2 in ⟨x1, x2⟩]

K[TS σ1×σ2 v] (−→ K[let x1 = TS σ1 π1 v in let x2 = TS σ2 π2 v in return ⟨x1,x2⟩]

K[σ1→σ2ST return v] (−→ K[λ(x :σ1). σ2ST

⎛

⎝

unpack (α, z) = v in let xf = return z.1 in
let xenv = return z.2 in
let x = TS σ1 x in xf [α] ⟨xenv,x⟩

⎞

⎠]

K[TS σ1→σ2 v] (−→ K[return (pack (⟨⟩, ⟨λ(z : ⟨⟨⟩,σ1
+⟩). TS σ2 (let x= σ1ST return z.2 in v x), ⟨⟩⟩))]

K[µα.σST return v] (−→ K[let x= σ[µα.σ/α]ST return (unfoldv) in foldµα.σ x]

K[TS µα.σ v] (−→ K[let v = TS σ[µα.σ/α] unfold v in return (fold(µα.σ)+ v)]

Figure 6. λ
ST: Dynamic Semantics

Definition 3.5 (Boundaries on Free Variables)
For a term Γ ⊢ e : σ, where Γ = x1 : σ1, . . . , xn : σn, we define

e ΓST
def
= let x1 = σ1ST return x1 in

.

.

.
let xn = σnST return xn in e.

Note that ·; Γ+ ⊢ e ΓST : σ. We define e T SΓ+ analogously.

We now define a source term e to be equivalent to a target term e
when the latter is contextually equivalent to the source term with its
input and output suitably translated:

Definition 3.6 (Cross-Lang. Equiv. S≃T : Closed Terms)

Γ ⊢ e S≃T e : σ
def
= ·; Γ+ ⊢ TS σ e ΓST ≈ctx

ST e : σ÷

4. Correctness and Equivalence Reflection

Direct proofs of contextual equivalence are intractable due to the
universal quantification over contexts in the definition of ≈ctx

ST . As is
standard, we define a logical relation that is sound and complete with
respect to contextual equivalence. We conclude this section with
proofs of semantics preservation (Theorem 1.1) and equivalence
reflection (Theorem 1.2) using the logical relation.

In Figure 7 we define a logical relation for λ
ST. We use a

step-indexed, biorthogonal logical relation [13]. Biorthogonality
is a standard technique [22, 32] to ensure that a logical relation is
complete with respect to contextual equivalence. Step-indexing is a
standard technique to provide an induction metric in the presence of
unrestricted recursive types [4]—the logical relation is defined by
nested induction on the step-index and types ϕ. As step-indices are
not critical to understanding the definitions, we largely ignore them
in our explanation.

The structure of the λ
ST logical relation is as follows: O relates

programs that yield the same observations; V !τ" relates values
at type τ ; R!τ" related results at type τ ; K !θ" relates evaluation
contexts that, when given related results of type θ, yield related
observations; E !θ" relates expressions of type θ that, when plugged
into related evaluation contexts, yield related observations. Each
relation is restricted to contain only well-typed members (elided
for brevity). Each of these relations is indexed by a type ϕ and a
relational interpretation ρ that provides mappings for the free type
variables in ϕ.

The observation relation O defines when two terms yield the
same observation. As is standard for non-total languages, we take
termination to be a sufficient notion of observation. Accounting for
the index k, O says that two terms yield the same observations if
they both take k steps or if they both terminate.

The value relation V !σ" is the standard inductive definition for
an effectful call-by-value language. At type 1 the unit value ⟨⟩ is

related to itself. Functions are related at type σ1 → σ2 when, given
arguments related in V !σ1", they produce related results in E !σ2".

The relation for polymorphic functions is standard for parametric
polymorphism: for arbitrary types and admissible relations on
those types, the bodies of the functions must be related under an
extended relational interpretation. The dual relation for existential
types is also standard: existential packages are related if some
relational interpretation of the existential type variable relates
them. The parametricity these rules ensure is crucial to the full
abstraction proof. We write ρ[α (→ (τ1, τ2, R)] to be the relational
interpretation ρ extended with types τ1 and τ2 and relation R for
the type variable α. At type α two terms are related if they are in
the relation for α in ρ, written ρR(α).

The relation K !θ" is slightly non-standard to account for our
modal type system. Specifically, two evaluation contexts are related
in K !θ" if, when plugged with related results–rather than the
standard related values–yield related observations. Results, related
by R!τ" are just values in the source language, but are either return
or raise of a value in the target language. In other words, results are
what terms evaluate to.

In Figure 8, we lift our logical relation to open terms.
To close a term we first choose relational interpretations for all

of the types (D !∆"). Then related substitutions are just substitutions
whose values are all related (G !Γ" ρ). We write γ1(e) to close the
term variables with the first component of the relational substitution
γ, and similarly write γ2(e) to use the second component. We write
ρ1(e) to substitute all type variables in e with the first component
type in ρ and similarly ρ2(e) to use the second component type.

We prove the fundamental property of this logical relation,
Theorem 4.1: every well-typed term is related to itself. The proof is
by induction on typing derivations.

Theorem 4.1 (Fundamental Property)
If ∆;Γ ⊢ e : θ, then ∆;Γ ⊢ e ≈log

E
e : θ.

The cases for boundary terms are most complex and require a
proof by mutual induction on source types. We will use this case
later (§5) and so specify it as a separate lemma Lemma 4.2.

Lemma 4.2 (Bridge Lemma)

1. If ∆;Γ ⊢ e1 ≈log
E

e2 : σ÷ then ∆;Γ ⊢ σST e1 ≈log
E

σST e2 : σ.

2. If ∆;Γ ⊢ e1 ≈log
E

e2 : σ then ∆;Γ ⊢ TS σ e1 ≈log
E

TS σ e2 : σ÷.

Finally, we prove that the logical relation and contextual equiv-
alence for the multi-language coincide. The proof is completely
standard [4], using CIU equivalence as an intermediate step.

Theorem 4.3 (ctx ≡ log)
∆;Γ ⊢ e1 ≈ctx

ST e2 : θ if and only if ∆;Γ ⊢ e1 ≈log
E

e2 : θ.

108

Note: all relations are restricted to well-typed members.

Rel[τ1, τ2]
def
= {R | ∀(k,v1,v2) ∈ R. ·; · ⊢ v1 : τ1 ∧ ·; · ⊢ v2 : τ2 ∧ ∀j < k. (j,v1,v2) ∈ R }

running(k, e)
def
= ∃e′. e (−→k e′

O
def
= { (k, e1, e2) | (e1 ⇓ ∧ e2 ⇓) ∨ (running(k, e1) ∧ running(k, e2)) }

V !1" ρ
def
= { (k, ⟨⟩, ⟨⟩) }

V !σ1 + σ2" ρ
def
=

{

(k, inji v1, inji v2) | i ∈ {1, 2} ∧ (k, v1, v2) ∈ V !σi" ρ
}

V !σ× σ′" ρ
def
=

{

(k, ⟨v1, v′1⟩, ⟨v2, v
′
2⟩) | (k, v1, v2) ∈ V !σ" ρ ∧ (k, v′1, v

′
2) ∈ V !σ′" ρ

}

V !σ→ σ′" ρ
def
= { (k, λ(x : ρ1(σ)). e1, λ(x : ρ2(σ)). e2) |

∀j ≤ k. ∀v1, v2. (j, v1, v2) ∈ V !σ" ρ =⇒ (j, e1[v1/x], e2[v2/x]) ∈ E !σ′" ρ }

V !µα.σ" ρ
def
= {(0, v1, v2)} ∪ {(k + 1, foldρ1(µα.σ) v1, foldρ1(µα.σ) v2) | ∀j < k + 1. (j, v1, v2) ∈ V !σ[µα.σ/α]" ρ }

V !α" ρ
def
= ρR(α)

V !τ1 + τ2" ρ
def
= { (k, inji v1, inji v2) | i ∈ {1,2} ∧ (k,v1,v2) ∈ V !τ i" ρ}

V !⟨τ1, . . . , τn⟩" ρ
def
= { (k, ⟨v1, . . . ,vn⟩, ⟨v′

1
, . . . ,v′

n⟩) | ∀i ∈ {1 . . . n}. (k,vi,v′
i
) ∈ V !τ i" ρ }

V !∀[α]. τ →E τexn τ ′" ρ
def
= { (k,λ[α](x : ρ1(τ)). e1,λ[α](x : ρ2(τ)). e2) |

∀τ1, τ2, R ∈ Rel[τ1, τ2]. ∀j ≤ k. ∀(j,v1,v2) ∈ V !τ " ρ[α (→ (τ1, τ2, R)].
(j, e1[τ1/α][v1/x], e2[τ2/α][v2/x]) ∈ E !E τexn τ ′" ρ[α (→ (τ1, τ2, R)] }

V !µα. τ " ρ
def
= {(0,v1,v2)} ∪ { (k + 1, foldρ1(µα.τ) v1, foldρ2(µα.τ) v2) | ∀j < k + 1. (j,v1,v2) ∈ V !τ [µα. τ/α]" ρ }

V !0" ρ
def
= ∅

V !∃α. τ " ρ
def
= { (k,pack (τ1,v1),pack (τ2,v2)) | ∃R ∈ Rel[τ1, τ2]. (k,v1,v2) ∈ V !τ " ρ[α (→ (τ1, τ2, R)] }

R!σ"ρ
def
= V !σ" ρ

R!E τexn τ "ρ
def
= { (k, return v1, return v2) | (k,v1,v2) ∈ V !τ " ρ }
∪ { (k, raise v1, raise v2) | (k,v1,v2) ∈ V !τexn" ρ }

E !θ" ρ
def
= { (k, e1, e2) | ∀K1,K2. (k,K1,K2) ∈ K !θ" ρ =⇒ (k,K1[e1],K2[e2]) ∈ O}

K !θ" ρ
def
= { (k,K1,K2) | ∀j ≤ k, r1, r2. (j, r1, r2) ∈ R!θ"ρ =⇒ (j,K1[r1],K2[r2]) ∈ O}

D !·"
def
= { ∅ }

D !∆,α"
def
= { ρ[α (→ (τ1, τ2, R)] | · ⊢ τ1 ∧ · ⊢ τ2 ∧ ρ ∈ D !∆" ∧ R ∈ Rel[τ1, τ2] }

G !·" ρ
def
= { (k, ∅) | k ∈ N }

G !Γ, x : τ" ρ
def
= { (k, γ[x (→ (v1, v2)]) | (k, γ) ∈ G !Γ" ρ ∧ (k, v1, v2) ∈ V !τ" ρ }

Figure 7. λ
ST: Logical Relation for Closed Terms

∆;Γ ⊢ e1 ≈log
E

e2 : θ
def
= ∆;Γ ⊢ e1 : θ ∧ ∆;Γ ⊢ e2 : θ ∧

∀k ≥ 0. ∀ρ, γ. ρ ∈ D !∆" ∧
(k, γ) ∈ G !Γ" ρ =⇒
(k, ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E !θ" ρ

∆;Γ ⊢ v1 ≈log
V

v2 : τ
def
= · · · =⇒

(k, ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ V !τ" ρ

Figure 8. λ
ST: Logical Relation for Open Terms

Semantics Preservation To model the cross-language contextual
equivalence we defined in §3.1, we define a “cross-language” log-
ical relation using our multi-language logical relation. The cross-
language relation, defined in Figure 9, relates source terms of type σ

to target terms of type σ÷, and similarly source values of type σ to
target values of type σ+. The relation is defined from the perspective
of the source language and places boundaries on the target language;
again, this arbitrary choice is justified by Corollary 3.3.

We then prove the semantics preservation theorem, restated
below, by using the logical relation instead of contextual equivalence.
Unwrapping the definition, the theorem says that the syntactic
closure conversion translation produces equivalent results as placing
the multi-language boundaries.

Theorem 1.1 (Semantics Preservation)
If Γ ⊢ e : σ ❀e e, then Γ ⊢ e S≃T e : σ.

V+!σ"
def
= {(k, v1,v2) |

∃v2. σST v2 (−→∗ v2 ∧ (k, v1, v2) ∈ V !σ" ∅}

E÷!σ"
def
= {(k, e, e) | (k, e, σST e) ∈ E !σ" ∅}

G+!·"
def
= {(k, ∅, ∅) | k ∈ N}

G+!Γ, x : σ"
def
= {(k, γ[x (→ v],γ[x (→ v]) |

(k, γ,γ) ∈ G+!Γ" ∧ (k, v,v) ∈ V+!σ"}

Γ ⊢ v ≈+ v : σ
def
= v ∈ λS ∧ v ∈ λT ∧ Γ ⊢ v : σ ∧ ·; Γ+ ⊢ v : σ+∧

∀(k, γ,γ) ∈ G+!Γ".
(k, γ(v),γ(v)) ∈ V+!σ"

Γ ⊢ e ≈÷ e : σ
def
= e ∈ λS ∧ e ∈ λT ∧ Γ ⊢ e : σ ∧ ·; Γ+ ⊢ e : σ÷∧

∀(k, γ,γ) ∈ G+!Γ".
(k, γ(e),γ(e)) ∈ E÷!σ"

Figure 9. Cross-Language Logical Relation for λST

Proof Sketch It suffices to show Γ ⊢ e ≈÷ e : σ by Theorem 4.3.
The proof is by induction on the translation judgment. Most cases
follow trivially by the induction hypothesis. The case for application
requires some expected parametric reasoning about the closure
environment.

Equivalence Reflection Equivalence reflection is a simple corol-
lary of semantics preservation, after noting that the compositional
nature of the translation allows us to easily define closure-conversion
for contexts:

109

Lemma 4.5 (Context Translation)
If ⊢ C : (Γ ⊢ σ) ⇒ (Γ′ ⊢ σ′), Γ ⊢ e : σ and Γ ⊢ e : σ ❀e e,
then there exists C such that Γ′ ⊢ C[e] : σ ❀e C[e].
Furthermore, if Γ ⊢ e′ : σ and Γ ⊢ e′ : σ ❀e e′,
then Γ′ ⊢ C[e′] : σ ❀e C[e′].

Theorem 1.2 (Equivalence Reflection)
If Γ ⊢ e1 : σ ❀e e1, Γ ⊢ e2 : σ ❀e e2 and ·; Γ+ ⊢ e1 ≈ctx

T
e2 : σ÷,

then Γ ⊢ e1 ≈ctx
S e2 : σ.

Proof Let C ∈ λS be an appropriately typed context. We need
to show that C[e1] ⇕ C[e2]. First by Lemma 4.5, we compile
· ⊢ C[e1] : σ′

❀e C[e1] and · ⊢ C[e2] : σ′
❀e C[e2]. Then

by Theorem 1.1, C[e1] ⇕ C[e1] and C[e2] ⇕ C[e2]. Finally since
·; Γ+ ⊢ e1 ≈ctx

T
e2 : σ÷, C[e1] ⇕ C[e2] giving:

C[e1] ⇕ C[e1] ⇕ C[e2] ⇕ C[e2].

5. Back-Translation and Equivalence
Preservation

To prove equivalence preservation, it is sufficient to be able to
“back-translate” a target context to an equivalent source context. To
see why, suppose that Γ ⊢ e1 : σ ❀e e1, Γ ⊢ e2 : σ ❀e e2 and
Γ ⊢ e1 ≈ctx

S e2 : σ and that we want to show ·; Γ+ ⊢ e1 ≈ctx
T

e2 : σ÷.
Given a target context C such that C[e1] ⇓, we want to come up
with a source context C such that C[e1] ⇕ C[e1] and C[e2] ⇕ C[e2].
Since e1 and e2 are equivalent we know that C[e1] ⇕ C[e2], so we
can conclude that C[e2] ⇓.

However, there are several differences between the source and
target languages that make this difficult. First, the target has excep-
tions while the source does not. Second, the target has polymorphic
functions, while the source language has a simple type system.

While the target language has features that are untypeable in the
source language, we can still encode the target language into the
source “loosely”.

In fact, we first back-translate to a single type of “untyped” terms
that encodes all values of the source and target languages: unit, sum,
product, function and recursive type:

U
def
= µα. 1+ (α+ α) + (α× α) + (α→ R(α)) + α

R(α)
def
= α+ α

The type R(α) is the parameterized type of results in the target
language, i.e., either a successful or exceptional value. We write R

to mean the closed version of this type, R(α)[U/α].
This encoding allows us to back-translate target terms into the

source language, but it is not enough to ensure full abstraction. Note
that back-translating a term of type σ÷ produces a term of type R,
not a term of type σ.

However, R is not just a type of untyped terms, but a universal
type for the source language as in Scott [36] (see Longley [23] for
a more accessible introduction). By this we mean every type σ can
be embedded in R via a function we denote EMBED(σ) and there
is a partial function that selects the elements of σ from R which
we denote PROJECT(σ). These two form a retract which means that
PROJECT(σ)(EMBED(σ)x) ≈ctx

S x. This suffices to make our encoding
at translation type “tight” though our translation at other types was
“loose” (i.e., not even equivalence preserving).

This property is perfectly analogous with one case of Lemma 3.2,
that is σST TS σ x ≈ctx

S x, and indeed our full abstraction proof re-
lies on a formal correspondence between the embedding-projection
pairs and the multi-language boundaries.

More precisely, when we want to prove that equivalence is
preserved, we start with a target context C interacting with the
translation of a source term e, which is equivalent under the multi-
language semantics to a target context interacting with the source
term, mediated by the language boundaries (ST , TS).

·!
def
= ·

(Γ, x : σ)!
def
= Γ!, x : σ

(Γ,y : τ)!
def
= Γ!, y : U

If ∆;Γ ⊢ e : σ, then Γ! ⊢ e! : σ

x!
def
= x

(let x= e in e′)!
def
= let x= e! in e′!
.
.
.

(σST e)!
def
= let x= e! in PROJECT(σ) x

If ∆;Γ ⊢ v : τ , then Γ! ⊢ v! : U

y!
def
= y

inji v
!

def
= IN(i,v!)

⟨⟩!
def
= UNIT

⟨v1, . . . ,vn⟩
! def

= CONS(v1
!, ⟨ . . . ,vn⟩

!)

(λ[α](y : τ). e)!
def
= LAMBDA(λ(y :U). e!)

(foldµα.τ v)!
def
= FOLD(v!)

(pack (τ ′,v))!
def
= v!

If ∆;Γ ⊢ e : θ, then Γ! ⊢ e! : R

(return v)!
def
= RETURN(v!)

(raise v)!
def
= RAISE(v!)

(v.i)!
def
= let x= PRJ(i,v!) in RETURN(x)

(v1 v2)!
def
= let x= TOFUN(v1

!) in x v2
!

(unfoldv)!
def
= let x= TOFOLD(v!) in RETURN(x)

(unpack (α,y) = v in e)!
def
= let y = v! in e

(handle e with
(x1. e1)
(x2. e2))!

def
= let xr = e! in case xr of

x1 . e1!

x2 . e2!

.

.

.

(TS σ e)!
def
= let x= e! in EMBED(σ) x

Figure 10. Back-Translation (excerpts)

We want a source context C whose interaction with e is the
same as that of C. To this end we backtranslate the target con-
text to a source context at universal type and replace the lan-
guage boundaries (TS ,ST) with the universal type boundaries
(EMBED(σ), PROJECT(σ)).

The crucial detail is then a proof of correspondence between
these two types of boundaries: Formally stated in Lemma 5.4 and
Lemma 5.5, we essentially prove that if a context C with hole of
type σ÷ and return type σ′÷ is back translated to C with hole of type
R and return type σ′÷, then

PROJECT(σ′) (C[EMBED(σ) [·]]) ≈ σ
′

ST (C[TS σ [·]]).

5.1 Back-Translation, Formally

We present a portion of the back-translation in Figure 10. To
enhance readability, we define metafunctions that construct terms of
universal type via the appropriate application of foldU and inji. For
instance, UNIT = foldU (inj1 ⟨⟩). The elimination metafunctions and
PROJECT() also handle failure since the sub-language is untyped. The
metafunction TOLHS() is one such metafunction which returns the
expected value if back-translation succeeds, and fails otherwise. For
example, in the metafunction TOFUN(e′), if the term e′ represents a
function, it is applied, otherwise it results in failure:

let x= TOFUN(LAMBDA(λ(y :U). e)) in x v (−→∗ e[v/y]

110

let x= TOFUN(UNIT) in x v (−→∗
!

where ! represents undefined behavior. Since our back-translation
only produces well-behaved terms, our development is independent
of what ! means. 1

We back-translate source terms to themselves, target terms to
constructors for the universal type, and boundaries to EMBED() and
PROJECT(). While some types, like sums, can be directly simulated
in the source, others must be encoded. For instance, tuples are back-
translated to cons-lists. Crucially, all polymorphism is erased, using
dynamic typing to encode the behavior of the polymorphic terms
of the target language. Finally, we preserve the fold constructor for
formal convenience.

In Figure 11, we define EMBED() and PROJECT() for each type.
The code is fairly ugly since we are programming in a bare-bones
calculus in monadic normal form, but its meaning is straightforward
and follows the multi-language boundaries.

At the top level we have EMBED(σ) and PROJECT(σ) which trans-
late between R and σ. These deal with the exception mechanisms
of the target language. As in the multi-language boundary, no ex-
ception should be thrown from target to source or vice-versa. Thus,
EMBED(σ) uses the RETURN() function to return a successful value
and PROJECT(σ) uses the TOLHS() function to handle any possible
exceptions. If it is a successful value of type R then this is further
projected but if it is an exception then TOLHS() diverges.

These functions are defined in terms of EMBED(δ,σ) and
PROJECT(δ,σ), which mediate between σ and U, the type of val-
ues in the target language.

Since we have higher-order recursive types, we must define
EMBED(δ,σ) and PROJECT(δ,σ) mutually recursively. This is the
purpose of the δ parameter. It maps free type variables to the
recursive type that they represent and the recursive binding to a thunk
of the embedding-projection pair for that type. We use the notation
δσ to denote the associated closing type substitution and δx to denote
the map from type variables to term variables of the associated
closed type. In the definition, σ’s free type variables are always in
δ’s domain, and the definition of EMBED(), PROJECT() is structurally
decreasing in σ. The key recursive step is in Figure 12 which uses a
standard call-by-value fixed point combinator (definition elided) to
simultaneously define embedding and projection at recursive type.

For function types, EMBED(δ,σ1 → σ2) packs a function with an
empty environment and PROJECT(δ,σ1 → σ2) unpacks a closure and
applies the function to its environment.

Pairs are straightforward, handling the fact that a two-tuple in
the target is a cons list of length two. Sums and the unit type are
even more straightforward so we elide them.

5.2 Correctness of Back-Translation

The correctness theorem for the back-translation mirrors Theo-
rem 1.1 (semantics preservation)—that is, back-translation of e
is equivalent to placing appropriate boundaries around e. However
the back-translation thus far uses the universal type, since we back-
translate all target language terms and not just those that are of
translation type. So we get a more refined theorem, one that says
that a target term and its back-translation are indistinguishable in
their interactions with source programs.

Programs of universal type interact with programs of source
type mediated by EMBED() and PROJECT() just as multi-language
interactions are mediated by boundaries. For closed programs, we
prove that they satisfy the following equivalence:

1 In our proofs, we model failure via divergence since it can be defined
uniformly for any type.

δ ::= ∅ | δ[α (→ σ, x]

∅Γ
def
= ·

(δ[α (→ σ, x])Γ
def
= δΓ, x : 1→ ((σ→ U)× (U→ σ))

· ⊢ EMBED(σ) : σ→ R δΓ ⊢ EMBED(δ,σ) : δσ(σ)→ U

EMBED(σ)
def
= λ(x :σ). let xu = EMBED(∅,σ) x in

RETURN(xu)

PROJECT(σ)
def
= λ(xr :R). let xu = TOLHS(xr) in

PROJECT(∅,σ) xu

EMBED(δ,α)
def
= λ(x : δσ(α)).

let xep = δx(α) ⟨⟩ in
let xembed = π1 xep in xembed x

EMBED(δ,σ1 × σ2)
def
= λ(x : δσ(σ1 × σ2)).

let x1 =π1 x in
let x2 =π2 x in
let x′1 = EMBED(δ,σ1) x1 in
let x′2 = EMBED(δ,σ2) x2 in

CONS(x′1, CONS(x′2, UNIT))

EMBED(δ,σ1 → σ2)
def
= λ(xf : δσ(σ1 → σ2)).

let x′f =
λ(xu :U).
let x′u = PRJ(2, xu) in
let x= PROJECT(δ,σ1) x′u in
let y= xf x in
let x′′u = EMBED(δ,σ2) y in
RETURN(x′′u)

in CONS(x′f , CONS(UNIT, UNIT))

EMBED(δ,µα.σ)
def
= λ(x : δσ(µα.σ)).

let xep = EP(δ,µα.σ) ⟨⟩ in
let xembed = π1 xep in xembed x

· ⊢ PROJECT(σ) : R→ σ δΓ ⊢ PROJECT(δ,σ) : U→ δσ(σ)

PROJECT(δ,α)
def
= λ(xu :U). let x= δx(α) ⟨⟩ in

let xf = π2 x in x
′ x

PROJECT(δ,σ1 × σ2)
def
= λ(xu :U). let x= TOPAIR(xu) in

let x1 =π1 x in
let x′1 = PROJECT(δ,σ1) x1 in
let y=π2 x in
let y′ = TOPAIR(y) in
let x2 =π1 y

′ in
let x′2 = PROJECT(δ,σ2) x2 in
⟨x′1, x

′
2⟩

PROJECT(δ,σ1 → σ2)
def
= λ(xu :U). let x′u = TOPAIR(xu) in

let xf = PRJ(1, x′u) in
let xenv = PRJ(2, x′u) in
λ(y : δσ(σ1)).
let yu = EMBED(δ,σ1) y in
let x= CONS(xenv ,

CONS(yu, UNIT))
in

let xr = xf x in
let x′′u = TOLHS(xr) in
PROJECT(δ,σ2) x′′u

PROJECT(δ,µα.σ)
def
= λ(xu :U). let x= EP(δ,µα.σ) ⟨⟩ in

let xf = π2 x in xf xu

Figure 11. Embedding and Projection Functions

Definition 5.1 (Universal Type Equivalence for Closed Pro-
grams)
If ·; · ⊢ e : σ÷ and · ⊢ eu : R, then

· ⊢ eu U≃T e : σ
def
= ·; · ⊢ PROJECT(σ) ◦ eu ≈ctx

ST
σST e : σ

where PROJECT(σ) ◦ eu
def
= let xu = eu in PROJECT(σ) xu.

111

δΓ ⊢ EP(δ,µα.σ) : 1→ ((δσ(µα.σ)→ U)× (U→ δσ(µα.σ)))

EP(δ,µα.σ)
def
=

FIX1→((δσ(µα.σ)→U)×(U→δσ(µα.σ)))
λ(xµα.σ : 1→ ((δσ(µα.σ)→ U)× (U→ δσ(µα.σ)))).

λ(xunit : 1).
let xembed =
λ(x : δσ(µα.σ)).

let y= unfold x in
let yu = EMBED(δ[α (→ µα.σ, xµα.σ],σ) y in
FOLD(yu)

in let xproject =
λ(xu :U).

let yu = TOFOLD(xu) in
let y= PROJECT(δ[α (→ µα.σ, xµα.σ],σ) yu in
foldµα.σ y

in ⟨xembed, xproject⟩

Figure 12. Embedding-Projection Pair at Recursive Type

To define equivalence for open programs, we need to define how
to embed all the free variables from source to universal type just
as we had to extend the boundary to act on the free variables. Note
that here we use the version of EMBED() whose return type is U. The
asymmetry here is because we are in a call-by-value language. We
then arrive at the following definition for open programs

Definition 5.2 (Universal Type Equivalence)
If ·; Γ+ ⊢ e : σ÷ and Γ+

!

⊢ eu : R, and Γ = x1 : σ1, . . . , xn : σn,
we define

Γ ⊢ eu U≃T e : σ
def
=

·; Γ ⊢ PROJECT(σ) ◦ eu ◦ EMBED(Γ) ≈ctx
ST

σST e T SΓ : σ

where eu ◦ EMBED(Γ)
def
= let xu1 = EMBED(∅,σ1) x1 in

.

.

.
let xn = EMBED(∅,σn) xn in eu.

In order to have an inductive invariant strong enough to prove
back-translation is correct, we define a cross-language logical
relation to formalize when a term of universal type represents an
arbitrary target term, rather than just a target term of translation
type.

Crucially, we cannot reuse the original logical relation’s case
for the universal type because each target type corresponds to a
different “subset” of the universal type. Furthermore, since these
subsets are not syntactic types but purely logical, we have to restrict
the continuations linked against to be well-behaved.

In Figure 13 we define a step-indexed biorthogonal cross-
language logical relation that relates the typed target language
to the untyped embedding in the source language. As usual, we lift
the relation on closed terms to a relation on open terms via closing
substitution. However, recall that we define the back-translation for
the entire multi-language and not just the target language. While
the logical relation on closed terms only relates source terms to
target terms, we must extend the relation on open terms to relate
source terms to source terms. The definition for source terms merely
appeals to the multi-language logical relation defined in §4.

The fundamental property of this logical relation, Theorem 5.3,
gives us that every term is related to its back-translation. As in §4,
we require a form of bridge lemma, Lemma 5.4, which also connects
our two notions of logical equivalence, namely the embedding
interpretation and the multi-language interoperability semantics.

Theorem 5.3 (Fundamental Property)

1. If ∆;Γ ⊢ e : σ then ∆;Γ ⊢ e! ≈log

EU e : σ.

2. If ∆;Γ ⊢ e : θ then ∆;Γ ⊢ e! ≈log

EU e : θ.

Lemma 5.4 (Interpret = Interoperate)
For brevity, some cases are elided

1. If ∆;Γ ⊢ vu ≈log

VU v : σ+, then for any appropriate k, ρU, γU

∃v1, v2, PROJECT(σ) ◦ ρU(γU(vu)) (−→n1 v1,
σST return ρU(γU(v)) (−→n2 v2 and either n1, n2 > k or
(k, v1, v2) ∈ VU!σ"ρU.

2. If ∆;Γ ⊢ eu ≈log

EU e : σ÷, then

∆;Γ ⊢ PROJECT(σ) ◦ eu ≈log

EU
σST e : σ.

3. If ∆;Γ ⊢ e ≈log

EU e′ : σ, then

∆;Γ ⊢ EMBED(σ) ◦ e ≈log

EU TS σ e′ : σ÷.

As a corollary, we have the correctness theorem for our back-
translation.

Corollary 5.5 (Back-Translation Correctness)
If ·; Γ+ ⊢ e : σ÷, then Γ ⊢ e! U≃T e : σ.

Proof Let (k, γ) ∈ G !Γ" ∅ and vi = γ(xi).
Using Lemma 5.4, for each xi : σi ∈ Γ, we define vi, vui to be the
unique values satisfying:

TS σi vi (−→
∗ return vi

EMBED(∅,σi) vi (−→
∗ vui

If these take more than k steps we’re done, otherwise by Lemma 5.4,we
define γU such that γU(xui) = vui and γU(xi) = vi, so (k, γU) ∈
GU!Γ+". Then we have

γ(σST e T SΓ) (−→∗ σST γU(e)

γ(PROJECT(σ) ◦ e! ◦ EMBED(Γ)) (−→∗
PROJECT(σ) ◦ γU(e!)

and the result follows from Theorem 5.3, Lemma 5.4 and closure of
relatedness under anti-reduction.

5.3 Equivalence Preservation

We prove equivalence preservation as a consequence of the correct-
ness of the back-translation.

In fact, we present two proofs, one syntactic based on translation
of contexts and the other algebraic based on rewriting. The latter
proof especially highlights the benefits of multi-language seman-
tics, crucially using “mixed” equations to derive single-language
equivalences.

For our first proof, we extend the back-translation to contexts. We
exploit the fact that our back-translation is compositional, i.e., we
have that (C[e])! = C![e!], which simplifies our first equivalence
preservation proof.

Theorem 1.3 (Equivalence Preservation)
If Γ ⊢ e1 : σ ❀e e1, Γ ⊢ e2 : σ ❀e e2 and Γ ⊢ e1 ≈ctx

S e2 : σ, then
·; Γ+ ⊢ e1 ≈ctx

T
e2 : σ÷.

Proof Suppose C ∈ λT. We proceed in two steps. First we use
the compiler semantics preservation theorem to construct a multi-
language context for the source terms:

·; Γ+ ⊢ e1 ≈ctx
ST TS σ e1

ΓST : σ÷.

Let C = C[TS σ [·] ΓST]. Then we have C[e1] ⇕ C[e1] and similarly
C[e2] ⇕ C[e2].
We now have a context for the source terms, however the source
terms are equivalent in the source language but C is a multi-
language context. To arrive at a fully source context, we back-
translate:

(C[e1])
! = C![e1

!] = C![e1]
and

(C[e2])
! = C![e2].

Then by Theorem 5.3 we get C[e1] ⇕ C![e1] and C[e2] ⇕ C![e2] .
Finally, since Γ ⊢ e1 ≈ctx

S e2 : σ and C! ∈ λS, C![e1] ⇕ C![e2].
This completes the chain of iffs giving us C[e1] ⇕ C[e2]:
C[e1] ⇕ C[e1] ⇕ C![e1] ⇕ C![e2] ⇕ C[e2] ⇕ C[e2].

112

Note: all relations are restricted to well-typed members.

RelU[τ]
def
= {R | ∀(k, v,v) ∈ R. · ⊢ v : U ∧ ·; · ⊢ v : τ ∧ ∀j < k. (j, v,v) ∈ R}

VU!α"ρU
def
= ρUR(α)

VU!τ1 + τ2"ρU
def
= {(k, IN(i, vu), inji v) | (k, vu,v) ∈ VU!τ i"ρU}

VU!⟨⟩"ρU
def
= {(k, UNIT, ⟨⟩)}

VU!⟨τ1, τ2, . . . , τn⟩"ρU
def
= {(k, CONS(vu, v′u), ⟨v1,v2, . . . ,vn⟩) | (k, vu,v1) ∈ VU!τ1"ρU ∧ (k, v′u, ⟨v2, . . . ,vn⟩) ∈ VU!⟨τ2, . . . , τn⟩"ρU}

VU!∀[α]. τ → θ"ρU
def
=

{

(k, LAMBDA(λ(xu :U). eu),λ[α](x : ρU(τ)). e) | ∀τ ′, R ∈ RelU[τ ′], j ≤ k, (j, vu,v) ∈ VU!τ "ρU′.
(j, eu[vu/xu], e[τ ′/α][v/x]) ∈ EU!θ"ρU′ where ρU′ = ρU[α (→ τ ′, R]

}

VU!µα. τ "ρU
def
= {(0, vu,v)} ∪ {(k + 1, FOLD(vu), foldρU(µα.τ) v) | (k, vu,v) ∈ VU!τ [µα. τ/α]"ρU}

VU!0"ρU
def
= ∅

VU!∃α. τ "ρU
def
= {(k, vu,pack (τ ′,v)) | ∃R ∈ RelU[τ ′]. (k, vu,v) ∈ VU!τ "ρU[α (→ τ ′, R]}

RU!E τexn τ "ρU
def
= {(k, RETURN(vu), return v) | (k, vu,v) ∈ VU!τ "ρU} ∪ {(k, RAISE(vu), raise v) | (k, vu,v) ∈ VU!τexn"ρU}

EU!θ"ρU
def
= { (k, eu, e) | ∀j ≤ k,K1,K2. (j,K1,K2) ∈ KU!θ"ρU =⇒ (j,K1[eu],K2[e]) ∈ O}

KU!θ"ρU
def
= { (k,K1,K2) | ∀j ≤ k, vu, r. (j, vu, r) ∈ RU!θ"ρU =⇒ (j,K1[vu],K2[r]) ∈ O}

DU!·"
def
= { ∅ }

DU!∆,α"
def
= { ρU[α (→ τ , R] | · ⊢ τ ∧ ρU ∈ D !∆" ∧ R ∈ RelU[τ] }

GU!·"ρU
def
= { (k, ∅) | k ∈ N }

GU!Γ, x : σ"ρU
def
= { (k, γU[x (→ v1, v2]) | (k, γU) ∈ GU!Γ"ρU ∧ (k, v1, v2) ∈ V !σ" ∅ }

GU!Γ,x : τ "ρU
def
= {(k, γU[x (→ v][xu (→ vu]) | (k, γU) ∈ GU!Γ"ρU ∧ (k, vu,v) ∈ VU!τ "ρU}

∆;Γ ⊢ v′ ≈log

VU v : σ
def
= v′ ∈ λS ∧ ∀ρU ∈ DU!∆", (k, γU) ∈ GU!Γ"ρU. (k, γU(v′), ρU(γU(v))) ∈ V !σ" ∅

∆;Γ ⊢ e′ ≈log

EU e : σ
def
= e′ ∈ λS ∧ ∀ρU ∈ DU!∆", (k, γU) ∈ GU!Γ"ρU. (k, γU(e′), ρU(γU(e))) ∈ E !σ" ∅

∆;Γ ⊢ vu ≈log

RU r : θ
def
= vu ∈ λS ∧ ∀ρU ∈ DU!∆", (k, γU) ∈ GU!Γ"ρU. (k, γU(vu), ρU(γU(r))) ∈ RU!θ"ρU

∆;Γ ⊢ eu ≈log

EU e : θ
def
= eu ∈ λS ∧ ∀ρU ∈ DU!∆", (k, γU) ∈ GU!Γ"ρU. (k, γU(eu), ρU(γU(e))) ∈ EU!θ"ρU

Figure 13. Universal Type Logical Relation

Our second proof is more abstract, but also succinct. First, we
define some simplifying notation. For Γ ⊢ e : σ we define

!e"
def
= e where Γ ⊢ e : σ ❀e e

For ·; Γ+ ⊢ e : σ÷,

#e$
def
= PROJECT(σ) ◦ e! ◦ EMBED(Γ).

These theorems give us that, up to equivalence, the back transla-
tion is a post-inverse to the compiler.

Lemma 5.7 (There and Back is Identity)
For all Γ ⊢ e : σ,

Γ ⊢ e ≈ctx
S #!e"$: σ

Proof By Theorem 1.1, Lemma 5.5, and Lemma 3.2 (eliding
obvious types):

#!e"$ ≈ctx
ST ST !e" T S

≈ctx
ST ST TS e ST T S

≈ctx
ST e

Now we have #!e"$ ≈ctx
ST e, which is sufficient to prove that

#!e"$ ≈ctx
S e, since ≈ctx

ST ⊂≈ctx
S .

Note the simplicity of this proof using multi-language semantics.
By providing a framework in which source and target programs
can be freely mixed, we enable direct equational reasoning between
programs and their compilation. Since multi-language equivalence
is trivially sound with respect to source or target equivalence, a chain
of equations using intermediate multi-language terms can be used
to prove purely source or purely target programs are equivalent.

As an obvious corollary, the composition of compiler and back-
translation is fully abstract. However we only use that it preserves
equivalence, since we can already easily prove that it reflects
equivalence.

Lemma 5.8 (There and Back is Fully Abstract)

Γ ⊢ e ≈ctx
S e′ : σ iff Γ ⊢ #!e"$ ≈ctx

S #!e′"$: σ

Finally, we have that the back-translation is equivalence reflect-
ing.

Lemma 5.9 (Back Translation is Equivalence Reflecting)
If Γ ⊢ #e$ ≈ctx

S #e′$: σ then ·; Γ+ ⊢ e ≈ctx
T

e′ : σ′÷.

Proof Analogous to proof of Theorem 1.2, using Lemma 5.5.
We conclude with the proof of equivalence preservation as an

obvious consequence. This part of the proof is highly general and
completely elementary. Its content is that if the composition of two
translations (!·" and #·$) is equivalence preserving and the second
(#·$) is equivalence reflecting, then the first (!·") is equivalence
preserving.
Proof Assume Γ ⊢ e ≈ctx

S e′ : σ.
By Lemma 5.8, Γ ⊢ #!e"$ ≈ctx

S #!e′"$: σ.
By Lemma 5.9, ·; Γ+ ⊢ !e" ≈ctx

T
!e′" : σ÷.

6. Related Work

Interest in fully abstract translation has a long history [25, 34, 17,
40, 37, 35, 6, 7, 2, 18, 3, 16, 29, 30], with several authors pointing
out that failures of full abstraction can be turned into security
exploits [1, 21, 14].

Until recently, most results on fully abstract translations have
strategically used source and target languages that are in close
correspondence, either (1) picking syntactically identical source and
target languages [6, 16] or (2) adding problematic target-language
features to the source language [34, 35, 16]. This can be attributed
to the lack of back-translation techniques for settings where the

113

target is more expressive than the source. Our Universal Embedding
technique offers a solution to this problem, discussed further in §7.

Protection via Types Ahmed and Blume [6] (AB08) were first to
prove that typed closure conversion of System F with recursive types
is fully abstract. Since their source and target languages coincide,
they define type-directed wrappers in the same language to coerce
terms from type τ to τ+, and vice versa, instead of a back-translation.
Our work, with different source and target languages (even without
exceptions), provides one significant advantage over theirs: our
target language’s type system guarantees that function bodies are
closed, as they should be after closure conversion.

Later, Ahmed and Blume [7] (AB11) developed a typed CPS
translation from simply typed λ-calculus to System F and proved
it fully abstract using a multi-language semantics and Back-
Translation by Partial Evaluation. To back-translate a term of
translation type, the technique uses partial evaluation to eliminate
all subterms of non-translation type.

Bowman and Ahmed [11] define a noninterference-preserving
translation from DCC to Fω , both terminating languages. Like
contextual equivalence, noninterference is a relational property.
Their proof, like AB11, uses back-translation by partial evaluation,
but also requires a complex well-foundedness argument as their
back-translation is not inductively defined.

Glew [17] presents closure conversion for an object calculus
and proves it fully abstract. He notes, however, that object closure
conversion is simpler than functional closure conversion. In partic-
ular, the latter can be encoded as the composition of (1) encoding
functions as objects, (2) object closure conversion, and (3) an object
encoding. Glew only shows that step (2) is fully abstract. Hence,
for full abstraction of functional closure conversion, one would also
need to prove encodings (1) and (3) fully abstract.

Protection via Dynamic Checks Fournet et al. [16] prove full
abstraction of a translation from monomorphic ML-like language to
js∗. While their actual compiler implementation produces JavaScript,
their proof of full abstraction is for the translation to js∗, which is not
actual JavaScript, but rather an encoding of JavaScript in their source
language. Their proof technique, like AB08’s, relies on the source
and target languages being identical, hence they added exceptions
and fatal errors to their source. Our work is the first full abstraction
result where the target language contains exceptions but the source
does not. Like AB08, Fournet et al. use type-based invariants to
prove full abstraction. However, unlike AB08, they use type-directed
wrappers to dynamically protect translated components from target
contexts.

Agten, Patrignani, et al. [3, 29, 30] give a fully abstract trans-
lation from an object-based language—Java Jr. [19] extended with
exceptions—to a protected module architecture—an untyped assem-
bly language extended with a hardware-supported isolation mecha-
nism. Their translation relies on hardware-provided memory access
protection to ensure full abstraction. They use fully abstract trace
semantics for Java Jr. [19] so they can prove their theorems in terms
of trace equivalence.

Universal Type In Scott [36], types are given manifest compu-
tational meaning by being defined as idempotent functions on a
universal domain, or equivalently, the embedding-projection pair
(retract) of the domain that compose to that idempotent. In this
paper, we construct a universal type in the source language and de-
fine explicit retracts for all source types. We never explicitly prove
this property, but it is a simple consequence of Lemma 5.4 and
Lemma 4.2.

The types of the target language, as it is encoded by back-
translation into the source, need not be retracts for our technique
to work. For example, we do nothing to enforce parametricity
conditions on terms of polymorphic type, and it seems unlikely

that it could be enforced in our source language. In this way our
technique uses a mix of computational types given by retracts and
purely logical types as encoded by our back-translation logical
relation.

Embedded Interpreters and Multi-Language Semantics The
concept of type-indexed embedding-projection pairs for mediating
between a typed source language and an embedded untyped lan-
guage draws directly from Benton [8] and Ramsey [33], where they
use this as an implementation technique for embedding a script-
ing language communicating with a host language. Here we use
their implementation technique as a formal tool to prove secure
compilation.

Multi-language semantics was first developed in Matthews and
Findler [24] as a general technique to describe interacting languages
operationally. While the connection to embedded interpreters was
noted from the start, this paper is the first to prove a precise
correspondence between the two techniques.

Approximate Back-Translation In recent work, Devriese et al.
[12] showed how to prove full abstraction of a translation from
simply typed λ-calculus with recursive functions (but not recursive
types) to the untyped λ-calculus. Since their target is untyped, they
back-translate to a universal type in the source language. However,
the difficulty in that work is in the fact that the appropriate universal
type cannot be constructed in the source (due to a lack of recursive
types). Thus they show that the full universal type is not actually
necessary, as long as arbitrarily large approximations of it exist. We
discuss a potential use of this in §7.

In comparison, our work—done independently of theirs—-
tackles a nontrivial program transformation, and demonstrates
universal embedding for a more richly typed target language with
exceptions. Also, since the universal type can be constructed in our
source language, we are able to separate the core of the technique—
universal embedding—from the use of approximate back-translation,
making our presentation more elementary. We view their indepen-
dent discovery and use of (approximate) back-translation to univer-
sal type in a fairly different setting to be evidence for the generality
of the technique.

Compositional Compiler Correctness While the central focus of
this paper has been on using full abstraction to ensure security of
compiled components with respect to source-language reasoning, we
have also proved compositional compiler correctness (Theorem 1.1),
a topic that has been the focus of several recent papers. Note that
none of the results discussed below tackle fully abstract compilation.

Perconti and Ahmed [31] showed how to compile components
correctly while allowing interoperability with target components
that have no equivalent in the source. This allows linking with
components that are inexpressible in the source, but requires extra-
language reasoning to achieve security. Like us, Perconti and
Ahmed [31] use multi-language semantics to specify interoperability
between source and target components, and prove compositional
compiler correctness of a multi-pass compiler from System F to
a low-level language with mutable references. They allow linking
with any well-typed target component of translation type, but unlike
our work, their type translation does not restrict the target language
to make only the same observations as the source language.

Stewart et al. [39] use interaction semantics, which provide an
abstract specification of interoperability between source and target
components, to prove compositional correctness of the CompCert C
compiler. This work allows linking with any target component that
respects restrictions imposed by CompCert’s memory model via a
specified interaction semantics.

Neis et al. [27] prove compositional correctness of a compiler for
an ML-like language to an assembly-like language. They allow link-
ing with only those target components that are related to some source

114

component via a parametric inter-language simulation (PILS), a
relation that specifies equivalence between source-language and
target-language code. In practical terms, this means that code pro-
duced by a PILS-verified compiler can only be linked with target
code produced either by the same compiler, or by a different verified
compiler from the same source language to the same target language
using the same PILS specification.

Recent work by Kang et al. [20] demonstrates that if one makes
the pragmatic choice to restrict linking to only those components
produced by the same verified compiler—i.e., supporting separate
compilation—that significantly eases the proof effort. In particular,
they prove correctness of SepCompCert which permits linking
only with other components produced by their modified version
of CompCert.

7. Discussion

With much recent work, we can begin to classify different techniques
for proving full abstraction. Some techniques are subsumed by
others, but offer a trade-off of power vs. simplicity. Here we focus
on comparing back-translation-based techniques, though there are
other techniques for proving full abstraction, such as those that make
use fully abstract trace semantics [3, 29, 30] as mentioned in §6.

The first technique may be called Back Translation by Partial
Evaluation as used in Ahmed and Blume [7], Bowman and Ahmed
[11], Shikuma and Igarashi [38]. Back-translation by partial evalua-
tion relies on the fact that in some languages, if a term has translation
type, then any uses of non-translation type in a subterm are inessen-
tial and can therefore be eliminated by partial evaluation. However,
this is not a realistic assumption for non-terminating languages
or languages with information hiding. For instance, a diverging
program may do arbitrary computation using non-translation type
that cannot be eliminated by partial evaluation. Furthermore, this
technique alone will not work when both languages have state or
existential types since programs of target type can use values of
non-translation type in their closure or as the existential witness.
For this reason, back translation by partial evaluation has only been
applied to purely functional, normalizing languages. However, it has
the benefit of being fairly systematic when it is applicable.

The second technique may be called Back Translation by Embed-
ding as used in Ahmed and Blume [6], Fournet et al. [16], Devriese
et al. [12], and this paper.

This technique translates all target code, not just those at transla-
tion type. The translation type code is not translated directly to the
source type, but instead wrapped with a semantic boundary.

In Ahmed and Blume [6] and Fournet et al. [16], the target and
source are the same so the back-translation is the identity and the
boundaries are called “wrappers”. These wrappers are witness to a
type isomorphism and consequently the translation is fully abstract.
We say that this back-translation is precise because the embedding
of the target language is into isomorphic types.

In this paper, we back-translate to a universal type and the
boundaries are retractions, that is PROJECT(σ) EMBED(σ) e ≈ctx

S e.
We say our back-translation is over-approximating in that it embeds
the target language at types which include many more behaviors
(full untyped lambda calculus), but due to the boundaries the code is
only run on “good” values, i.e., those that represent source values.

Finally, in Devriese et al. [12], they back-translate an untyped
language to a simply typed language without recursive types, so
they cannot construct the universal type as in this work. However,
they can construct arbitrarily large approximations to the universal
type, and a family of increasingly precise approximations to it. They
show that due to the finitary nature of observation, i.e. that observing
termination only takes a finite number of steps, they can find a large
enough approximation to show that equivalence is preserved for
any particular program and context. We say their back-translation is

under-approximating since it embeds the target language at types
which include only a subset of the behaviors of the target.

It seems likely to be fruitful to combine the last two embedding
approaches, to construct a sequence of under-approximations to an
over-approximating type (like a universal type).

Candidates for such a technique would include embedding
languages into intermediate languages with richer type systems
where a precise universal type for the source cannot be constructed.
For instance, proving that embedding a non-terminating System
F-like language into an Fω-like or dependently-typed language
would require simulating the more flexible typed terms of the target
language.

What should a universal type for an F-like language be? In
addition to being able to encode all of the base types it should also
encode all terms of abstract types that are in scope, so we need not
one U, but an indexed family:

U∆
∼= (U∆ → U∆) + (∀α. U∆,α) + Σ(∆)

where Σ(α1, . . . ,αn) = α1 + · · ·+ αn. Since the universal type
includes polymorphic types, it depends on the definition of the
universal type with one type parameter. Clearly recursive types
alone are not enough to construct such a type so it seems that a
sequence of under-approximations is necessary.

This source-target combination may seem strange but this sce-
nario would arise if one were to construct a reusable compiler back-
end for fully abstract compilation. Since the backend would have
to have typing features of the most richly typed source language
it supports, then using it as a fully abstract backend would require
proving that embedding less richly typed languages into more richly
typed languages is secure.

We now have a spectrum of embedding techniques, and as a
practical matter one should use the simplest one necessary for
the job. For instance, a precise encoding is fairly simple to prove
fully abstract using wrappers. However, if the target has programs
untypeable precisely in the source then an over-approximation seems
necessary. Finally, if the source is too weak to express the intended
back-translation type, then a sequence of approximations may be
used.

Effects Our technique should be effective in back-translating other
well-bracketed/delimited effects. For instance, if compiling a purely
functional language to a stateful language that ensures that the
compiled terms only link with pure code, target terms can be
back-translated to store-passing style, changing the result type to
something like R = S → (S × U). Similarly, if the target contains
delimited continuations (protecting source code with delimiters),
it can be back-translated to continuation-passing style, with R =
(U→ U)→ U.

Information Hiding The technique should easily handle informa-
tion hiding, such as state and existential types. As an example if the
source and target have existential types, then a term of type ∃α.σ+

must be back-translated to a source term of existential type. An exis-
tential package may instantiate α with a target type not in the image
of the back-translation, meaning we must be able to simulate the
behavior of a target term of non-translation type using a source term.
With our technique this is simple, because the witness type can be
back-translated to dynamic type. On the other hand, back-translation
by partial evaluation, as explained above, could not be used.

Acknowledgments

This research was supported in part by the National Science Foun-
dation (grants CCF-1422133 and CCF-1453796).

References
[1] M. Abadi. Protection in programming-language translations. In

International Colloquium on Automata, Languages and Programming

115

(ICALP), pages 868–883, 1998.

[2] M. Abadi and G. Plotkin. On protection by layout randomization. ACM
Transactions on Information and Systems Security, 15(2), July 2012.

[3] P. Agten, R. Strackx, B. Jacobs, and F. Piessens. Secure compilation
to modern processors. In Computer Security Foundations Symposium
(CSF), pages 171–185, 2012.

[4] A. Ahmed. Step-indexed syntactic logical relations for recursive and
quantified types. In European Symposium on Programming (ESOP),
pages 69–83, Mar. 2006.

[5] A. Ahmed. Verified Compilers for a Multi-Language World. In
T. Ball, R. Bodik, S. Krishnamurthi, B. S. Lerner, and G. Morrisett,
editors, 1st Summit on Advances in Programming Languages (SNAPL
2015), volume 32 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 15–31, 2015. URL http://drops.dagstuhl.de/
opus/volltexte/2015/5013.

[6] A. Ahmed and M. Blume. Typed closure conversion preserves ob-
servational equivalence. In International Conference on Functional
Programming (ICFP), Victoria, British Columbia, Canada, pages 157–
168, Sept. 2008.

[7] A. Ahmed and M. Blume. An equivalence-preserving CPS transla-
tion via multi-language semantics. In International Conference on
Functional Programming (ICFP), Tokyo, Japan, pages 431–444, Sept.
2011.

[8] N. Benton. Embedded interpreters. Journal of Functional Program-
ming, 15(04):503–542, 2005.

[9] N. Benton and A. Kennedy. Exceptional syntax. Journal of Functional
Programming, 11(04):395–410, 2001.

[10] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to
Java bytecodes. In International Conference on Functional Program-
ming (ICFP), Baltimore, Maryland, USA, pages 129–140, 1998. URL
http://doi.acm.org/10.1145/289423.289435.

[11] W. J. Bowman and A. Ahmed. Noninterference for free. In Inter-
national Conference on Functional Programming (ICFP), Vancouver,
British Columbia, Canada, 2015. URL http://dx.doi.org/10.
1145/2784731.2784733.

[12] D. Devriese, M. Patrignani, and F. Piessens. Fully-abstract compilation
by approximate back-translation. In ACM Symposium on Principles
of Programming Languages (POPL), St. Petersburg, Florida, page To
appear, 2016.

[13] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. Journal of Functional
Programming, 22(4&5):477–528, 2012.

[14] V. D’Silva, M. Payer, and D. Song. The correctness-security gap in
compiler optmization. In Language-theoretic Security IEEE Security
and Privacy Workshop (LangSec), 2015.

[15] M. Felleisen and R. Hieb. A revised report on the syntactic theories
of sequential control and state. Theor. Comput. Sci., 103(2):235–271,
1992.

[16] C. Fournet, N. Swamy, J. Chen, P.-E. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In ACM Sympo-
sium on Principles of Programming Languages (POPL), Rome, Italy,
pages 371–384, 2013.

[17] N. Glew. Object closure conversion. In Higher-Order Operational
Techniques in Semantics (HOOTS ’99), Sept. 1999.

[18] R. Jagadeesan, C. Pitcher, J. Rathke, and J. Riely. Local memory via
layout randomization. In Computer Security Foundations Symposium
(CSF), pages 161–174, 2011.

[19] A. Jeffrey. A fully abstract semantics for a concurrent functional
language with monadic types. In IEEE Symposium on Logic in
Computer Science (LICS), San Diego, California, 1995.

[20] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis. Lightweight
verification of separate compilation. In ACM Symposium on Principles
of Programming Languages (POPL), St. Petersburg, Florida, pages
178–190. ACM, 2016.

[21] A. Kennedy. Securing the .NET programming model. Theoretical
Computer Science, 364(3):311–317, 2006.

[22] J.-L. Krivine. Classical logic, storage operators and second-order
lambda-calculus. Annals of Pure and Applied Logic, 68(1):53–78,
1994.

[23] J. R. Longley. Universal types and what they are good for. In Domain
theory, logic and computation, pages 25–63. Springer, 2003.

[24] J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. In ACM Symposium on Principles of Programming
Languages (POPL), Nice, France, pages 3–10, Jan. 2007.

[25] A. Meyer and J. G. Riecke. Continuations may be unreasonable. In
Conf. on LISP and functional programming, LFP ’88, pages 63–71,
1988.

[26] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In ACM Symposium on Principles of Programming Languages (POPL),
St. Petersburg Beach, Florida, pages 271–283, Jan. 1996.

[27] G. Neis, C.-K. Hur, J.-O. Kaiser, C. McLaughlin, D. Dreyer, and
V. Vafeiadis. Pilsner: A compositionally verified compiler for a higher-
order imperative language. In International Conference on Functional
Programming (ICFP), Vancouver, British Columbia, Canada, Aug.
2015.

[28] M. New, W. J. Bowman, and A. Ahmed. Fully abstract compilation via
universal embeddding (technical appendix). July 2016. URL https:
//williamjbowman.com/resources/fabcc-techrpt.pdf.

[29] M. Patrignani, D. Clarke, and F. Piessens. Secure compilation of object-
oriented components to protected module architectures. In Proceedings
of the 11th Asian Symposium on Programming Languages and Systems
(APLAS), Melbourne, Australia, Dec. 2013.

[30] M. Patrignani, P. Agten, R. Strackx, B. Jacobs, D. Clarke, and
F. Piessens. Secure compilation to protected module architectures.
ACM Transactions on Programming Languages and Systems, 37(2):
6:1–6:50, Apr. 2015.

[31] J. T. Perconti and A. Ahmed. Verifying an open compiler using multi-
language semantics. In European Symposium on Programming (ESOP),
Apr. 2014.

[32] A. M. Pitts and I. D. Stark. Operational reasoning for functions with
local state. Higher order operational techniques in semantics, pages
227–273, 1998.

[33] N. Ramsey. Embedding an interpreted language using higher-order
functions and types. Journal of Functional Programming, 21(06):
585–615, 2011.

[34] J. G. Riecke. Fully abstract translations between functional languages.
In ACM Symposium on Principles of Programming Languages (POPL),
Orlando, Florida, pages 245–254, 1991.

[35] S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive
aspects by translation. In Proceedings of the 6th international confer-
ence on Aspect-oriented software development (AOSD), pages 135–148,
2007.

[36] D. Scott. Data types as lattices. Siam Journal on computing, 5(3):
522–587, 1976.

[37] N. Shikuma and A. Igarashi. Proving noninterference by a fully
complete translation to the simply typed λ-calculus. In Proceedings of
the 11th Asian computing science conference on Advances in computer
science: secure software and related issues, pages 301–315. Springer-
Verlag, 2007.

[38] N. Shikuma and A. Igarashi. Proving noninterference by a fully
complete translation to the simply typed λ-calculus. Logical Methods
in Computer Science, 4(3:10):1–31, 2008.

[39] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional
compcert. In ACM Symposium on Principles of Programming Lan-
guages (POPL), Mumbai, India, 2015.

[40] S. Tse and S. Zdancewic. Translating dependency into parametricity.
In International Conference on Functional Programming (ICFP),
Snowbird, Utah, pages 115–125. ACM, 2004.

[41] P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets
cross-language linking via data abstraction. In ACM Symposium on
Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA), Oct. 2014.

116

http://drops.dagstuhl.de/opus/volltexte/2015/5013
http://drops.dagstuhl.de/opus/volltexte/2015/5013
http://doi.acm.org/10.1145/289423.289435
http://dx.doi.org/10.1145/2784731.2784733
http://dx.doi.org/10.1145/2784731.2784733
https://williamjbowman.com/resources/fabcc-techrpt.pdf
https://williamjbowman.com/resources/fabcc-techrpt.pdf

	Introduction
	Closure Conversion
	Multi-Language Semantics
	Cross-language Equivalence

	Correctness and Equivalence Reflection
	Back-translation and Equivalence Preservation
	Back-translation, Formally
	Correctness of Back-translation
	Equivalence Preservation

	Related Work
	Discussion

