
An Equivalence-Preserving CPS Translation
via Multi-Language Semantics ∗

Amal Ahmed
Indiana University

amal@cs.indiana.edu

Matthias Blume
Google

blume@google.com

Abstract
Language-based security relies on the assumption that all poten-
tial attacks follow the rules of the language in question. When pro-
grams are compiled into a different language, this is true only if the
translation process preserves observational equivalence.

To prove that a translation preserves equivalence, one must
show that if two program fragments cannot be distinguished by
any source context, then their translations cannot be distinguished
by any target context. Informally, target contexts must be no more
powerful than source contexts, i.e., for every target context there
exists a source context that “behaves the same.” This seems to
amount to being able to “back-translate” arbitrary target terms.
However, that is simply not viable for practical compilers where
the target language is lower-level and, thus, contains expressions
that have no source equivalent.

In this paper, we give a CPS translation from a less expressive
source language (STLC) to a more expressive target language (Sys-
tem F) and prove that the translation preserves observational equiv-
alence. The key to our equivalence-preserving compilation is the
choice of the right type translation: a source type σ mandates a set
of behaviors and we must ensure that its translation σ+ mandates
semantically equivalent behaviors at the target level. Based on this
type translation, we demonstrate how to prove that for every target
term of type σ+, there exists an equivalent source term of type σ —
even when sub-terms of the target term are not necessarily “back-
translatable” themselves. A key novelty of our proof, resulting in
a pleasant proof structure, is that it leverages a multi-language se-
mantics where source and target terms may interoperate.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

General Terms Languages, Reliability, Security, Theory

Keywords full abstraction, equivalence-preserving compilation,
continuation-passing style, multi-language semantics, logical rela-
tions, back-translation

∗ In electronic versions of this paper, we use blue to typeset our source
language and red to typeset the target. The paper will be much easier to
read if viewed/printed in color.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

1. Introduction
Abstraction is a key tool for ensuring the reliability and secu-
rity of large, complex systems. We modularize such systems into
components, define interfaces between these components, and let
each component’s implementation depend only on the interfaces
of other components, not their implementation. With the advent of
languages like Java and C#, developers increasingly rely on pro-
gramming language techniques for enforcing abstraction.

Language-based security relies on an abstraction theorem [40]
which effectively states that no user of a component can observe
the difference between two different implementations of that com-
ponent (i.e., the two implementations are contextually equivalent)
if all manifestations of that difference in the interface are masked
by an abstract type. If we think of the context as the adversary, the
potential attacker, it becomes clear that language-based security re-
quires that the attacker obey the typing rules of the same language.

Most programs written in some language S (source) are com-
piled to another language T (target) from where they are then exe-
cuted. Thus, components eS and e′S might be compiled to eT and
e′T , which would then interact with a target context CT . But what
if there exists some CT that can observe a difference between eT
and e′T , even if eS and e′S are contextually equivalent? This is a
question that programmers should care about! It is critical for a
programmer writing code in language S be able to reason about the
properties of her code by thinking in S—that is, by only consid-
ering the behavior of other S components that may interact with
her code in a type-safe manner. (In particular, to reason about the
properties of an S component, she should not have to consider all
possible interactions with components written in a different lan-
guage, such as the target language T .) This can only be achieved if
compilation both preserves and reflects contextual equivalence and
is, therefore, fully abstract.

If the set of possible contexts in T is restricted to exactly those
that can be obtained by translating S contexts, then it would be
easy to show that no CT can distinguish between code fragments
not distinguishable by S contexts. However, this is usually not the
case. For instance, Microsoft’s Common Language Runtime (CLR)
was specifically designed to be the target of compilers for multiple
source languages, and most traditional compilers generate machine
code that can then be linked with other machine code, possibly
obtained by compiling code written in other source languages. In
these situations, it is possible that the target language contains
features that have no source-level equivalent, leading to T contexts
that are too powerful in the sense that they can make observations
that S contexts cannot. In fact, Kennedy [26] describes a number of
ways in which abstractions were broken in the process of compiling
C# to the CLR intermediate language. Similar problems with Java
have been previously examined by Abadi [1].

There are three approaches to repairing failures of full abstrac-
tion. First, we could add features to the source language so that
every target-level observation has a source-level counterpart. But
this is hardly a desirable solution as it amounts to weakening the
abstraction facilities of the source language. Second, we could re-
move features from the target language until it becomes, in some
sense, merely an alternative notation for source programs, thereby
guaranteeing that the only expressible target contexts trivially cor-
respond to source contexts. This might work in some specialized
situations, but it does not apply to foreign-function interfaces, plu-
gin architectures, or multi-language frameworks such as .NET. (As
we discuss in Section 9, much of the existing work on proving full
abstraction resorts to one of these two approaches.)

The third approach is to change the translation. Specifically, we
advocate engineering the translation so that it uses target-level ab-
straction facilities in a clever enough fashion so that well-typed
target contexts have no choice but to respect the original abstrac-
tions. Put another way, instead of removing features from the target
language, engineer the type translation to use types at the target
level to restrict the set of contexts that a compiled source compo-
nent can interact (or be linked) with. Of course, this assumes the
presence of a rich enough type system at the target language. For-
tunately, JVM bytecode, the CLR, and Typed Assembly Language
(TAL) [36] may already provide most of the necessary features.

Assuming that the translation can be engineered in this way, it
is still not clear how to prove that the result really is fully abstract.
Full abstraction for a full-fledged C#-to-CLR is currently too hard
a problem to tackle. A nontrivial first step would be to attempt full
abstraction for a more idealized compiler such as that from System
F to TAL [36] (which was mentioned in that paper as future work).

In prior work [4], we proved that typed closure conversion as
defined by Morrisett et al. [36] is fully abstract. For typed closure
conversion the key target language feature required was existential
types, while the particular way the translation assigns existential
types to closure records is what makes full abstraction work.

An interesting aspect of our earlier proof—which, unfortu-
nately, significantly limits the situations where that proof strategy
may be used—is that it takes advantage of a setup where source lan-
guage S and target language T are the same language. Of course,
source and target languages are rarely the same in practice, but we
argued there that as long as the “real” target language is less ex-
pressive than the source language (i.e., if the compiler “compiles
away” certain high-level source features), there is no loss of gen-
erality. Simply speaking, if contexts in the more expressive target
language T (where T = S) cannot distinguish between two tar-
get language expressions, then contexts in the less expressive “real”
target language cannot make the distinction either. Thus, our earlier
proof methodology suffices when the source language is at least as
expressive as the target, but not when the latter is more expressive.

However, there are usually some features in typical target lan-
guages that have no source equivalent. A common example for this
is control: low-level languages tend to have explicit representations
of the program counter and the program’s control stack. In this set-
ting the assumption of having equally powerful source and target
languages does not work. To prove full abstraction when it holds, a
different proof technique is required.

In this paper we investigate the full abstraction problem for CPS
translation from a less expressive source language to a more ex-
pressive target language. Since CPS conversion makes continua-
tions explicit, it represents the above-mentioned situation of a target
language with explicit control. Next, we show that the “standard”
typed CPS translation is not fully abstract, after which we discuss
the specific contributions of this paper.

“Standard” CPS Conversion is Not Fully Abstract As we have
discussed, full abstraction is at least as much a property of the

translation as it is one of the target language. Therefore, a particular
translation scheme can fail to be fully abstract even if the source-
and target languages are identical. Consider the simply-typed λ-
calculus. In this setting, it is easy to see that the following two terms
A and B are contextually equivalent:

A = λ(f : int→ int, g : int→ int).(f 0; g 0; 0)

B = λ(f : int→ int, g : int→ int).(g 0; f 0; 0).

When applied to concrete arguments, the results of calling f and g
are ignored in either case, and the overall answer is always 0.

Now consider A′ and B′, which are the results of translating
A and B using the standard typed CPS-conversion approach (see,
e.g., [20]) which makes use of a global abstract answer type ans.
(We omit the type annotation int× (int→ ans)→ ans on f , g):

A′ = λ(f, g, k : int→ ans).f(0, λ . g(0, λ . k 0))

B′ = λ(f, g, k : int→ ans).g(0, λ . f(0, λ . k 0))

The following context C distinguishes between A′ and B′:
C = λk. [·] (λ(,). k 1, λ(,). k 2, k)

Substituting A′ for the hole applies k to 1, while plugging in B′

applies k to 2. The problem is that the values given for f and g
take advantage of the explicit representation of continuations. They
do something that our non-CPS functions cannot do: they ignore
their own continuation and directly invoke a different one, thereby
exposing the previously invisible difference in evaluation order
within the bodies ofA andB. Thus, this particular CPS-translation
is not fully abstract.

The difference could be observed by source contexts if we
added more powerful control operators to our source language,
such as call/cc or even just exceptions. But we want a fully ab-
stract translation without enriching the source language and weak-
ening its abstractions to make more observations possible. The key
idea is to take advantage of the target language type system in such
a way that it rules out any target contexts that could make observa-
tions that are not possible at the source. One option, that has been
studied extensively (e.g., Berdine et al. [10, 11]), is to ascribe lin-
ear types to continuations thus ensuring that they are used exactly
once. As we will explain, in this paper, we eschew adding linear (or
affine) types to the target and instead use polymorphism.

Contributions Our source language λS is the simply typed λ-
calculus, while our target calculus λT is System F. (Section 3).
We prove full abstraction for a CPS translation where each com-
putation term is locally polymorphic in its answer type (Section 4).
This translation has been studied before [48], but we are unaware of
any work on proving it fully abstract. Although our target type sys-
tem itself is not substructural, the locally polymorphic answer type
is sufficient to enforce that continuations be used at least once—
that is, continuations must be relevant in the terminology of sub-
structural logics. Intuitively, enforcing relevance of continuations
suffices in our setting because in a purely functional, terminating
language such as λT it is impossible to distinguish between a sin-
gle use and multiple uses of a continuation.

Our proof of full abstraction uses elementary operational tech-
niques; there is no use of sophisticated machinery such as domain
theory or game semantics. While the proof technique we used in
prior work [4] relied on the source and target language being iden-
tical, our current proof technique works even if the two languages
are different. To illustrate this point, we have picked a target (Sys-
tem F) that is more expressive than the source (STLC)—e.g., we
can encode arithmetic operations in System F but not in STLC.
In addition, like Morrisett et al.’s CPS target language [36], our
λT requires terms to be in CPS form (in the spirit of compilers
like SML/NJ [7, 45], Rabbit [47], Orbit [28], and more recently,
Kennedy’s SML.NET compiler [27], though our syntax is not as re-
strictive, e.g., we do not distinguish functions from continuations.)

Thus, neither language is a sub-language of the other. An inter-
esting aspect of our proof technique is that it draws upon work on
language interoperability. We define a combined language λST that
incorporates both λS, λT, and has two new boundary forms that let
us interface terms of one language with the other (Section 5). This
setup allows us to neatly decompose our proof into three parts (Sec-
tion 6).

We discuss the addition of recursion to both the source and
target in Section 8 but the details are beyond the scope of this paper.
We have elided most proofs here. Detailed proofs may be found in
the online technical appendix [5].

2. Main Ideas
Multi-language scenario and interoperability. Consider two
source terms eS and e′S and their corresponding translation terms
eT and e′T . To show full abstraction we need to establish equiva-
lence reflection and equivalence preservation. Reflection is closely
related to “compiler correctness” in the sense that we deem the
translation fundamentally broken if non-equivalent source terms
translate to equivalent target terms. The hard part of the proof,
however, is to establish preservation: terms that are equivalent at
source level should translate to equivalent target terms.

A natural way of proving equivalence preservation is to take
an indirect approach: assume that eT and e′T are not equivalent and
derive a contradiction. If eT and e′T are not contextually equivalent,
there has to be a target context CT that exposes the difference:
CT [eT] evaluates to trueT while CT [e′T] evaluates to falseT . The
idea is to show the existence of a source context CS such that
CS [eS] evaluates to trueS whileCS [e′S] evaluates to falseS . In our
previous work [4] we were able to construct CS directly from CT
with the help of “wrapper” terms. This technique does not apply
directly to the current setting of mutually incompatible source- and
target languages.

However, it is possible to apply the technique—at least in an
intuitive sense—if we take a page out of the work on interoperabil-
ity [31] and define a combined language in which S- and T -terms
can interoperate in a controlled way. The discriminating target con-
text CT gives rise to a discriminating context CST for eS and e′S .
What remains to be done now is to show that CST can be converted
to a context CS that is equally discriminating.

Relevant continuations via parametricity. Our version of typed
CPS-conversion differs from the “standard” account that uses a sin-
gle, globally abstract answer type. Our answer type is individually
abstract at each point where a continuation argument appears. In
essence, each computation term of type (τ → ans) → ans be-
comes ∀α . (τ → α) → α. The polymorphic type variable α
replaces the single answer type ans. As a result, the computation
has less freedom in how it can use its continuation. In particular, to
produce its own answer of type α, it has no choice but to invoke
its own continuation (which ensures that the continuation is used
at least once). It turns out that this typing of CPS code prevents
any “bad” target terms (for example those whose source equivalent
is a variant of call/cc) from being well typed. The technical un-
derpinnings of this intuition is a free theorem [50] that applies to
computation terms that are polymorphic in their answer type.

Back-translation. The remaining hurdle is to show that CPS-
typed target contexts can be “back-translated” to corresponding
source contexts. The difficulty lies in the fact that the type only
governs the interface of a term without preventing the presence of
arbitrary subterms, so for a term to have translation type does not
immediately imply that it can be back-translated. However, as we
will show, we are always able to eliminate occurrences of inconve-
nient subterms by partially reducing them. For instance, whenever

Types σ ::= bool | σ1→σ2

Values v ::= x | true | false | λx : σ. e

Terms e ::= v | if e then e1 else e2 | e1 e2

Eval. Contexts E ::= [·]S | if E then e1 else e2 | E e | v E

e 7−→ e′ if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

(λx : σ. e) v 7−→ e[v/x]

e 7−→ e′

E[e] 7−→ E[e′]

Figure 1. λS: Syntax and Dynamic Semantics

we have a term of the form v [τ] v1—application of a polymor-
phic function v to type τ and then to an argument v1—of transla-
tion type σ+, either v will have a translation type (σ1→σ2)+ (and
therefore can be related to a source term of type σ1→σ2), or it will
be a lambda term that can be applied to τ and v1, yielding a term
e of type σ+. The latter term can now be back-translated. This is
well-founded because the result term is “smaller” in that it will re-
duce to a value in fewer steps. The metric for well-foundedness
of our “back-translation” relation is a combination of length of
reduction sequence, structure of the type of the term being back-
translated, and the structure of the expression. We explain the de-
tails in Section 6.2.

3. The Source and Target Languages
We typeset the terms, types, and contexts of our source language
λS using a blue sans-serif font, and those of our target language
λT using a bold red font with serifs.

3.1 The Source Language (λS)
Our source language λS is the call-by-value simply-typed λ-
calculus with booleans. The syntax and dynamic semantics of λS

are shown in Figure 1. We define a small-step operational semantics
for λS, using evaluation contexts E to lift the primitive reductions
to a standard left-to-right call-by-value semantics for the language.
λS typing judgments have the form Γ ` e : σ, where the value

environment Γ tracks the set of free term variables in scope, along
with their types. The typing rules are entirely standard so we omit
them here. (They appear later as part of Figure 3 when we define
the CPS translation by induction on the structure of Γ ` e : σ.)

λS Contextual Equivalence A λS context C is an expression with
a single hole [·]S in it. Typing judgments for contexts have the form
` C : (Γ ` σ) ⇒ (Γ′ ` σ′), where (Γ ` σ) indicates the type of
the hole. Essentially, this judgment says that if e is an expression
such that Γ ` e : σ, then Γ′ ` C[e] : σ′. The typing rule for a hole
is as follows:

Γ ⊆ Γ′

` [·]S : (Γ ` σ)⇒ (Γ′ ` σ)

The other rules are straightforward (see our online appendix [5]).
We define contextual approximation (Γ ` e1 -ctx

S e2 : σ)
to mean that, for any well-typed program context C with a hole
of the type of e1 and e2, and result type bool, if C[e1] evaluates
to the boolean value v then so does C[e2]. Contextual equivalence
(Γ ` e1 ≈ctx

S e2 : σ) is then defined as contextual approximation
in both directions.

Definition 3.1 (λS Contextual Approximation & Equivalence)
Let Γ ` e1 : σ and Γ ` e2 : σ.

Γ ` e1 -ctx
S e2 : σ

def
=

∀C, v1. ` C : (Γ ` σ)⇒ (· ` bool) ∧ C[e1] ⇓ v1 =⇒
∃v2. C[e2] ⇓ v2 ∧ v1 = v2

Γ ` e1 ≈ctx
S e2 : σ

def
= Γ ` e1 -ctx

S e2 : σ ∧ Γ ` e2 -ctx
S e1 : σ

λS CIU equivalence Note that evaluation contexts E (Figure 1)
are a subset of general contexts C. Since only closed terms can be
placed in an evaluation context, the type of the hole always has the
form · ` σ.

We define the notion of ciu-equivalence (uses of closed instantia-
tions, first introduced by Mason and Talcott [30]) and show that it is
a consequence of contextual equivalence. Two closed terms of type
σ are ciu-equivalent if, in any evaluation context E with hole type
σ and result type bool, they evaluate to the same value. This no-
tion is often easier to work with than contextual equivalence since
it cuts down on the number of contexts under consideration. The
notion is extended to open terms by closing the terms with a value
substitution γ that maps variables x to values v; we write ` γ : Γ
when dom(γ) = dom(Γ) and for all x ∈ dom(Γ), ` γ(x) : Γ(x).

Definition 3.2 (λS CIU Approximation & Equivalence)
Let Γ ` e1 : σ and Γ ` e2 : σ.

Γ ` e1 -ciu
S e2 : σ

def
=

∀E, γ, v1. ` E : (· ` σ)⇒ (· ` bool) ∧ ` γ : Γ ∧ E[γ(e1)] ⇓ v1 =⇒
∃v2. E[γ(e2)] ⇓ v2 ∧ v1 = v2

Γ ` e1 ≈ciu
S e2 : σ

def
= Γ ` e1 -ciu

S e2 : σ ∧ Γ ` e2 -ciu
S e1 : σ

Lemma 3.3 (λS: Contextual Approx Implies CIU Approx)
If Γ ` e1 -ctx

S e2 : σ then Γ ` e1 -ciu
S e2 : σ.

3.2 The Target Language (λT)
Our CPS target language λT is call-by-value System F with
booleans and pairs. The λT syntax and dynamic semantics are
given in Figure 2 (top). Following Morrisett et al. [36], our CPS
target language syntactically enforces continuation-passing style.
λT code is nearly linear—consisting of a series of let bindings fol-
lowed by a function call—with the exception of the if construct
which forms a tree containing two subexpressions. Also following
Morrisett et al., we combine the types∀ and→ into∀ [α].τ1→τ2

and have only one abstraction mechanism (λ) which binds both
type and term variables. Finally, we have pairs in λT so we can ex-
press CPS conversion without the need to introduce more curried
functions.

We define a small-step, call-by-value operational semantics.
Notice that evaluation contexts in λT are redundant since the syn-
tactic restriction to CPS results in a unique order of evaluation; we
introduce them primarily to permit a more uniform treatment of λS

and λT when they are incorporated into the multi-language seman-
tics in Section 5.
λT typing judgments have the form ∆; Γ ` e : τ, where the

environments ∆ and Γ are defined in Figure 2. The type environ-
ment ∆ tracks the type variables in scope. The value environment
Γ tracks the term variables in scope along with their types τ which
must be well formed in environment ∆ (written ∆ ` τ and defined
as ftv(τ) ⊆ ∆, where ftv(τ) denotes the set of type variables that
appear free in type τ). The typing rules are standard, so we only
show a few rules in Figure 2 (middle).

Syntactic Sugar We abbreviate ∀ [α].τ1→τ2 as τ1→τ2 when
α /∈ (ftv(τ1)∪ ftv(τ2)); we similarly abbreviate λ [α] (x :τ1). e
to λ(x :τ1). e, when α does not appear free in τ1 or e; and we
abbreviate v [τ] v1 to v v1 when v has type τ1→τ2. We also use

Types τ ::= bool | τ1× τ2 | α | ∀ [α].τ1→ τ2

Values v ::= x | true | false | (v1,v2) | λ [α] (x : τ). e

Terms e ::= v | if v then e1 else e2 | let x = πiv in e | v1 [τ] v2

Eval. Ctxts E ::= [·]T

e 7−→ e′ if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

let x = πi(v1,v2) in e 7−→ e[vi/x]

(λ [α] (x : τ1). e) [τ] v 7−→ e[τ/α][v/x]

e 7−→ e′

E[e] 7−→ E[e′]

Type Environments ∆ ::= · | ∆,α
Value Environments Γ ::= · | Γ,x : τ

∆; Γ ` e : τ
x : τ ∈ Γ

∆; Γ ` x : τ
. . .

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆; Γ ` (v1,v2) : τ1× τ2

∆; Γ ` v : τ1× τ2 ∆; Γ,x : τi ` e : τ

∆; Γ ` let x = πiv in e : τ

∆,α; Γ,x : τ1 ` e : τ2

∆; Γ ` λ [α] (x : τ1). e : ∀ [α].τ1→ τ2

∆; Γ ` v1 : ∀ [α].τ2→ τ ∆ ` τ′ ∆; Γ ` v2 : τ2[τ′/α]

∆; Γ ` v1 [τ′] v2 : τ[τ′/α]

Value Contexts Cv ::= [·]vT | (C
v,v2) | (v1,Cv) | λ [α] (x : τ).C

Contexts C ::= [·]T | Cv | if Cv then e1 else e2 |
if e then C else e2 | if e then e1 else C |
let x = πiC

v in e | let x = πiv in C |
Cv [τ] v2 | v1 [τ] Cv

Figure 2. λT: Syntax, Dynamic + Static Semantics, Contexts

the following shorthand (and in the first three cases below, we have
analogous shorthand for λS):

λx. e = λ(x : τ). e ; τ inferred from context
let x = v in e = (λx. e) v

id = λx. x
let (x1,x2) = z in e = let x1 = π1z in (let x2 = π2z in e)
λ [α] ((x1,x2) : τ1× τ2). e =

λ [α] (z : τ1× τ2). let (x1,x2) = z in e

λT Contextual Equivalence and CIU Equivalence The syntax
of λT contexts is given at the bottom of Figure 2. A λT context C
is an expression with a single hole in it, but the hole may be either of
the form [·]vT, a hole that expects a value, or of the form [·]T, a hole
that expects any term. We write Cv (respectively, C) for a context
that once filled, regardless of the kind of hole in it, yields a value
(respectively, a term). Typing rules for λT contexts are analogous to
those for λS contexts, except that typing judgments have the form
` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′). Hence, if e is a term such that
∆; Γ ` e : τ, then ∆′; Γ′ ` C[e] : τ′. The typing rules for holes
[·]vT and [·]T are identical so we show just one:

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]vT : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ)

The remaining rules are straightforward (see online appendix [5]).
The definition of contextual approximation and equivalence for λT

are analogous to those for λS, except that we now also have to
account for the environment ∆. Also, we must make sure that the
terms C[e1] and C[e2] are syntactically well formed λT terms. The

extra checks are needed because the hole in a context C may be of
the form [·]T or [·]vT. If it’s of the form [·]T, then any well-typed
term e may be placed in C. However, if it’s of the form [·]vT, then
C[e] will not be a well-formed term unless e is a value.

Definition 3.4 (λT Contextual Approximation & Equivalence)
Let ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ.

∆; Γ ` e1 -ctx
T e2 : τ

def
=

∀C,v1. ` C : (∆; Γ ` τ)⇒ (·; · ` bool) ∧ ·; · ` C[e1] : bool ∧
·; · ` C[e2] : bool ∧ C[e1] ⇓ v1 =⇒
∃v2.C[e2] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ctx
T e2 : τ

def
= ∆; Γ ` e1 -ctx

T e2 : τ ∧∆; Γ ` e2 -ctx
T e1 : τ

λT evaluation contexts are essentially degenerate. Nonetheless
we define ciu-equivalence for λT since the notion will later be more
convenient to work with than contextual equivalence. As before,
closed terms of closed type τ are ciu-equivalent if, in any evaluation
context E with hole type τ and result type bool, they evaluate to
the same value. The notion is extended to open terms by closing
the type τ and the terms with substitutions δ and γ. The type
substitution δ is a finite map from type variables α to closed types
τ; we write δ |= ∆ whenever dom(δ) = ∆. The value substitution
γ now maps variables x to values v and ` γ : Γ means that γ maps
variables to values that are well-typed according to Γ.

Definition 3.5 (λT CIU Approximation & Equivalence)
Let ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ.

∆; Γ ` e1 -ciu
T e2 : τ

def
=

∀E, δ, γ,v1. ` E : (·; · ` δ(τ))⇒ (·; · ` bool) ∧
δ |= ∆ ∧ ` γ : δ(Γ) ∧ E[δ(γ(e1))] ⇓ v1 =⇒
∃v2. E[δ(γ(e2))] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ciu
T e2 : τ

def
= ∆; Γ ` e1 -ciu

T e2 : τ ∧∆; Γ ` e2 -ciu
T e1 : τ

Lemma 3.6 (λT: Contextual Approx Implies CIU Approx)
If ∆; Γ ` e1 -ctx

T e2 : τ then ∆; Γ ` e1 -ciu
T e2 : τ.

4. Typed CPS Translation
CPS translation maps source values of type σ to target values of
type σ+. The type translation is given in Figure 3 (top).

As mentioned earlier, our version of typed CPS-conversion dif-
fers from the “standard” account. Instead of using a single, globally
abstract answer type, we make the answer type individually abstract
at each point where a continuation argument appears. As shown in
Figure 3 (top left), each function of type σ1→σ2 acquires a type
parameter α and an additional term parameter of type σ2

+→α
representing the continuation. The polymorphic type variable α
acts as the answer type. The consequence of this is that a function
of CPS type has less freedom in how it can use continuations. In
particular, to produce its own answer of type α, it has no choice but
to invoke its own continuation. Of course, the function can invoke
its continuation multiple times, but in a purely functional setting it
is impossible to tell the difference between one use of the contin-
uation and multiple uses. As discussed earlier, this typing of CPS
code prevents any “bad” target terms from being well typed. The
polymorphic type of each continuation lets us take advantage of a
free theorem [50] that captures the above intuitions and plays a key
role in our proof; see discussion of Lemma 6.10 in Section 6.3.

Figure 3 (bottom) shows the rules for CPS translation in combi-
nation with declarative typing rules for the source language λS. To
this end, the typing judgment Γ ` e : σ is extended to a translation
judgment Γ ` e : σ ; v, where v describes a CPS computa-
tion of type ∀ [α].(σ+→α)→α (which we abbreviate as σ÷).
A computation is a suspended term awaiting its continuation. It is
polymorphic in the answer type of the continuation and, like func-

Types ϕ ::= σ | τ
Terms e ::= . . . | σST e

e ::= . . . | let x = (TS σ e) in e
e ::= e | e

Values v ::= v | v
Eval. Contexts E ::= . . . | σST E

E ::= . . . | let x = (TS σ E) in e
E ::= E | E

e 7−→ e′

boolST true 7−→ true
boolST false 7−→ false
σ1→σ2ST v 7−→ λx : σ1. σ2ST (let z = (TS σ1 x) in (v [σ2

+] (z, id)))

let y = (TS bool true) in e 7−→ e[true/y]

let y = (TS bool false) in e 7−→ e[false/y]

let y = (TS σ1→σ2 v) in e 7−→ e[v/y]

where v = λ [α] ((x,k) :σ1
+× (σ2

+→α)).
let z = (TS σ2 (v (σ1ST x))) in k z

e 7−→ e′

E[e] 7−→ E[e′]

Type Environments ∆ ::= · | ∆,α
Value Environments Γ ::= · | Γ, x : σ | Γ,x : τ

∆; Γ ` e : ϕ

. . .
∆; Γ ` e : σ+

∆; Γ ` σST e : σ

∆; Γ ` e : σ ∆; Γ,x : σ+ ` e : τ

∆; Γ ` let x = (TS σ e) in e : τ

Contexts C ::= . . . | σST C

C ::= . . . | let x = (TS σ C) in e | let x = (TS σ e) in C

C ::= C | C

Figure 4. λST: Syntax, Dynamic + Static Semantics, Contexts

tions, it will be forced to invoke its own continuation to produce its
answer of type α.

Note that for v to have the type σ÷, it has to be considered under
the translated environment Γ+ (defined in Figure 3, top right).
Therefore, notice that variables x in the source term are replaced
by variables x in the target term. For instance, in the variable
translation rule, the source variable x changes to x in the target.
Also, in the function rule, note that v in the premise may contain
a free occurrence of x : σ1

+. This x is captured in the conclusion
by a binding occurrence of x. We could parametrize our translation
with a mapping from source variables to target variables and use
that to perform renaming. To avoid this unnecessary complication,
we work with a fixed a-priori mapping and adopt the convention
that for each x, y, z, etc., there exists a unique x, y, z, respectively,
that we can use in the translated term.

The rules are designed with clarity, not optimality, in mind.
A translation term v will usually contain many “administrative”
redexes that can easily be eliminated with subsequent optimization.

5. Multi-Language Semantics
In this section, we present the language λST designed for interop-
erability of terms from the source and target languages λS and λT

and give a definition of contextual equivalence (written ≈ctx
ST) for

the language.
The λST multi-language system, presented in Figure 4, embeds

the source and target languages λS and λT so that both languages
have natural access to foreign values (i.e., values from the other

σ+
(bool)+ = bool

(σ1→σ2)+ = ∀ [α].(σ1
+× (σ2

+→α))→α

Γ+
(·)+ = ·

(Γ, x : σ)+ = Γ+,x : σ+

Γ ` e : σ ; v where · ; Γ+ ` v : σ÷ and we define σ÷ = ∀ [α].(σ+→α)→α

Γ ` true : bool ; λ [α] (k : bool+→α). k true Γ ` false : bool ; λ [α] (k : bool+→α). k false

Γ ` e : bool ; v Γ ` e1 : σ ; v1 Γ ` e2 : σ ; v2

Γ ` if e then e1 else e2 : σ ; λ [α] (k :σ+→α). v [α] (λ(x : bool). if x then (v1 [α] k) else (v2 [α] k))

x : σ ∈ Γ

Γ ` x : σ ; λ [α] (k :σ+→α). k x

Γ, x : σ1 ` e : σ2 ; v

Γ ` λx : σ1. e : σ1→σ2 ; λ [α] (k : (σ1→σ2)+→α). k (λ [β] ((x,k′) :σ1
+× (σ2

+→β)). (v [β] k′))

Γ ` e1 : σ2→σ ; v1 Γ ` e2 : σ2 ; v2

Γ ` e1 e2 : σ ; λ [α] (k :σ+→α). v1 [α] (λ(x1 : (σ2→σ)+). v2 [α] (λ(x2 :σ2
+). x1 [α] (x2,k)))

Figure 3. CPS: Type and Environment Translation (top); Term Translation (bottom)

language). They receive foreign boolean values as native values,
and can call foreign functions as native functions. The design is in-
spired by Matthews and Findler’s multi-language system for (pared
down) ML and Scheme [31], but crafted with the CPS translation
in mind.

To the original core languages, we add new syntax, evaluation
contexts, and reduction rules that define syntactic boundaries, writ-
ten σST and TS σ to allow cross-language communication. The
term σST e (target inside, source outside) allows a term e of tar-
get type σ+ to be used as a term of source type σ, while TS σ e
(source inside, target outside) allows a term of source type σ to be
used as a term of target type σ+. Since code in our CPS target lan-
guage is (nearly) linear, we let-bind TS σ e instead of simply adding
TS σ e to the grammar for terms. (Here, we do not require e to be a
value since, informally, e lives on the source side of the boundary
and the source language does not mandate the linear code structure
of the target.) In the interest of brevity, we will often abbreviate
let z = (TS σ e) in C[z] to just C[TS σ e] even if C requires a
value.

We define reduction rules for boundaries annotated bool that
convert boolean values from one language to the other. To convert
functions across languages, we use native proxy functions. We
represent a target function v in the source at type σ1→σ2 by a
new function that takes an argument of type σ1, converts it to its
equivalent in the target, passes that and the identity continuation
as an argument to the original target function v (instantiated with
the result type σ2

+), and converts the result back to source at type
σ2. Converting source functions to target functions is a little more
involved. We represent a source function v in the target at type
(σ1→σ2)+ by a new function that takes type parameter α, an
argument x : σ1

+ and a continuation k : σ2
+→α, converts the

argument x to its equivalent in the source, passes that to the original
source function v, converts the result back to target at type σ2

+, and
finally passes that to the continuation k. In both cases, notice that
the direction of the conversion (and the boundary used) reverses for
function arguments.

Typing judgments for λST have the form ∆; Γ ` e : ϕ, where
the environments ∆ and Γ are defined in Figure 4. Note that the
environment Γ now tracks both source variables of type σ and
target variables of type τ. The typing rules include all the λS typing
rules, but augmented with the additional environment ∆; all the λT

typing rules, unchanged; and rules for the two boundary constructs,
shown in Figure 4.

λST Contextual Equivalence and CIU Equivalence The gram-
mar for contexts from λS and λT is augmented to define λST con-
texts as shown in Figure 4 (bottom). The typing rules for contexts
are straightforward (see online appendix [5]), largely following the
ideas discussed before for λT. The definition of contextual equiv-
alence for λST is similar to that for λT and is given below. In the
definition below, we could equivalently have chosen the context
C’s result type to be bool instead of bool. As is usually the case
for contextual equivalence in a terminating language, any base type
of the language would suffice.

Definition 5.1 (Contextual Approximation & Equivalence)
Let ∆; Γ ` e1 : ϕ and ∆; Γ ` e2 : ϕ.

∆; Γ ` e1 -ctx
ST e2 : ϕ

def
=

∀C, v1. ` C : (∆; Γ ` ϕ)⇒ (·; · ` bool) ∧ ·; · ` C[e1] : bool ∧
·; · ` C[e2] : bool ∧ C[e1] ⇓ v1 =⇒
∃v2. C[e2] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ctx
ST e2 : ϕ

def
= ∆; Γ ` e1 -ctx

ST e2 : ϕ ∧∆; Γ ` e2 -ctx
ST e1 : ϕ

We define ciu-equivalence for λST below. It is analogous to the
definition of ciu-equivalence for λT. As before, the substitution δ
maps type variables α to closed types τ. The substitution γ now
maps both source variables (to values v) and target variables (to
values v) in Γ.

Definition 5.2 (λST CIU Approximation & Equivalence)
Let ∆; Γ ` e1 : ϕ and ∆; Γ ` e2 : ϕ.

∆; Γ ` e1 -ciu
ST e2 : ϕ

def
=

∀E, δ, γ, v1. ` E : (·; · ` δ(ϕ))⇒ (·; · ` bool) ∧
δ |= ∆ ∧ ` γ : δ(Γ) ∧ E[δ(γ(e1))] ⇓ v1 =⇒
∃v2. E[δ(γ(e2))] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ciu
ST e2 : ϕ

def
= ∆; Γ ` e1 -ciu

ST e2 : ϕ ∧∆; Γ ` e2 -ciu
ST e1 : ϕ

Lemma 5.3 (λST: Contextual Approx Implies CIU Approx)
If ∆; Γ ` e1 -ctx

ST e2 : ϕ then ∆; Γ ` e1 -ciu
ST e2 : ϕ.

6. Equivalence Preservation
Having defined λST for source-language interoperability, the proof
of equivalence preservation can be decomposed into three parts:

1. if Γ ` e1 ≈ctx
S e2 : σ then Γ ` e1 ≈ctx

ST e2 : σ (Section 6.2);

2. if Γ ` e1 ≈ctx
ST e2 : σ then ·; Γ+ ` v1 ≈ctx

ST v2 : σ÷, where
Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2 (Section 6.3); and

Atom[ϕ1, ϕ2] = { (e1, e2) | ·; · ` e1 : ϕ1 ∧ ·; · ` e2 : ϕ2 }

Rel[τ1, τ2] = {R ∈P(Atomval[τ1, τ2]) | ∀(v1, v2) ∈ R.
∀v′2. v2 -ciu

ST v′2 : τ2 =⇒ (v1, v′2) ∈ R }

Shorthand: Atom[ϕ]ρ = Atom[ρ1(ϕ), ρ2(ϕ)]

V JboolK ρ = { (v, v) ∈ Atom[bool]ρ | v = true ∨ v = false }

V Jσ→σ′K ρ = { (λx : σ. e1, λx : σ. e2) ∈ Atom[σ→σ′]ρ |
∀(v1, v2) ∈ V JσK ρ. (e1[v1/x], e2[v2/x]) ∈ E Jσ′K ρ }

V JαK ρ = R where ρ(α) = (τ1, τ2, R)

V JboolK ρ = { (v,v) ∈ Atom[bool]ρ | v = true ∨ v = false }

V Jτ× τ′K ρ = { ((v1,v1
′), (v2,v2

′)) ∈ Atom[τ× τ′]ρ |
(v1,v2) ∈ V JτK ρ ∧ (v1

′,v2
′) ∈ V Jτ′K ρ }

V J∀ [α].τ→ τ′K ρ =
{ (λ [α] (x : ρ1(τ)). e1,λ [α] (x : ρ2(τ)). e2) ∈ Atom[∀ [α].τ→ τ′]ρ |
∀τ1, τ2, R ∈ Rel[τ1, τ2].
∀(v1,v2) ∈ V JτK ρ[α 7→ (τ1, τ2, R)].

(e1[τ1/α][v1/x], e2[τ2/α][v2/x]) ∈ E Jτ′K ρ[α 7→ (τ1, τ2, R)] }

E JϕK ρ = { (e1, e2) ∈ Atom[ϕ]ρ | ∀v1. e1 7−→∗ v1 =⇒
∃v2. e2 7−→∗ v2 ∧ (v1, v2) ∈ V JϕK ρ }

D J·K = { ∅ }
D J∆,αK = { ρ[α 7→ (τ1, τ2, R)] | ρ ∈ D J∆K ∧ R ∈ Rel[τ1, τ2] }

G J·K ρ = { (∅, ∅) }
G JΓ, x : ϕK ρ = { (γ1[x 7→ v1], γ2[x 7→ v2]) |

(γ1, γ2) ∈ G JΓK ρ ∧ (v1, v2) ∈ V JϕK ρ }

∆; Γ ` e1 -log
ST e2 : ϕ

def
= ∆; Γ ` e1 : ϕ ∧ ∆; Γ ` e2 : ϕ ∧
∀ρ, γ1,γ2. ρ ∈ D J∆K ∧ (γ1, γ2) ∈ G JΓK ρ =⇒

(ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E JϕK ρ

∆; Γ ` e1 ≈log
ST e2 : ϕ

def
= ∆; Γ ` e1 -log

ST e2 : ϕ ∧ ∆; Γ ` e2 -log
ST e1 : ϕ

Figure 5. Combined Language (λST): Logical Relation

3. if ·; Γ+ ` v1 ≈ctx
ST v2 : σ÷ then ·; Γ+ ` v1 ≈ctx

T v2 : σ÷

(Section 6.4).

We shall see that parts (1) and (2) are the nontrivial parts of the
proof. Informally, part (1) says that embedding λS into λST pre-
serves λS equivalences, while part (2) says that the translation pre-
serves equivalences within λST. Once we have proved (1), (2), and
(3), our main result is immediate:

Theorem 6.1 (CPS Translation is Equivalence Preserving)
If Γ ` e1 : σ ; v1, Γ ` e2 : σ ; v2, and
Γ ` e1 ≈ctx

S e2 : σ, then ·; Γ+ ` v1 ≈ctx
T v2 : σ÷.

We start in Section 6.1 by setting up some machinery for our
proof. We define a logical relation for λST and prove that it coin-
cides with contextual equivalence. Proving contextual equivalence
directly can be hard or even intractable due to the quantification
over all contexts C in the definition of ≈ctx

ST . The logical relation
provides us with a convenient method for carrying out proofs of
contextual equivalence. Next, in Sections 6.2-6.4, we present the
three parts of the proof.

6.1 Logical Relation for λST and Two Key Lemmas
The basic idea of logical relations is to define an equivalence
(or approximation) relation on program terms by induction on
the structure of their types. For instance, we would say that two
functions are logically related at the type σ1→σ2 iff, when applied
to arguments that are logically related at σ1, they yield results that
are logically related at σ2. To take the example of product types, we
would say that two pairs are logically related at the type τ1×τ2 iff
their first and second components are pairwise related at the types
τ1 and τ2, respectively.

Figure 5 presents the definition of the logical relation for λST.
The big picture is that we define a relation V JϕK that relates closed
values at type ϕ and a relation E JϕK that relates closed terms at
type ϕ, and then generalize the definition of relatedness to open
terms (written ∆; Γ ` e1 -

log
ST e2 : ϕ). So far these relations

define logical approximation and are intended to capture the notion
of contextual approximation; we define logical equivalence (written
∆; Γ ` e1 ≈log

ST e2 : ϕ) as logical approximation in both directions.
In more detail, the value relation V JϕK is parametrized by a

parameter ρ that provides relational interpretations R for the free
type variables in ϕ. We must make sure that these relations R
satisfy certain requirements (enforced by requiring thatR belong to
Rel[τ1,τ2], which we explain momentarily). The first requirement
is that R should relate only well-typed closed values. To this end,
we first define Atom[ϕ1, ϕ2] to be the set of all pairs of well-typed
closed terms e1 and e2 of types ϕ1 and ϕ2, respectively. We write
Atomval to restrict the above set to pairs of values. The second
requirement is that R must be equivalence-respecting. The latter
means that R must be closed under equivalence (or more precisely
under approximation): if (v1, v2) ∈ R (where v2 : τ2) and v2 -ciu

ST

v′2 : τ2, then (v1, v
′
2) ∈ R. Both of these requirements are enforced

by Rel[τ1,τ2], which we define as the set of all relations R that
contain values of types τ1 and τ1 with the additional requirement
that these relations must be equivalence-respecting. (Note that the
equivalence-respecting requirement is needed to prove that our
logical relation is complete with respect to contextual equivalence.)

The parameter ρ is a finite map from type variables α to
triples (τ1,τ2, R), where τ1 and τ2 are closed types and R ∈
Rel[τ1,τ2]. We define abbreviations for projecting the type com-
ponents of the triple as follows. If ρ(α) = (τ1,τ2, R), then
ρ1(α) = τ1 and ρ2(α) = τ2.

The rest of the definition of the logical relation is essentially
standard. All value relations V JϕK ρ consist of pairs (v1, v2) where
·; · ` v1 : ρ1(ϕ) and ·; · ` v2 : ρ2(ϕ) (and similarly for term
relations E JϕK ρ). Two values are related at the type α if they are
in the relation R in ρ(α). Two values are related at the type bool
(similarly, bool) if they are equal. Two functions are related at
σ→σ′ if, when applied to arguments related at σ, they beta reduce
to terms related at σ′—i.e., the latter must be terms that belong
to the term relation E Jσ′K. The term relation E JϕK ρ relates terms
e1 and e2 if, when e1 evaluates to v1, then e2 evaluates to some
v2 such that v1 and v2 are related in V JϕK ρ. Finally, the relation
V J∀ [α].τ→τ′K ρ, relates polymorphic functions. As expected, it
considers arbitrary types τ1, τ2, together with an arbitrary relation
R ∈ Rel[τ1,τ2], and two arguments v1 and v2 related at τ (with
ρ extended to map α to (τ1,τ2, R), since α may appear free in τ).
Then, the two polymorphic functions are considered related at type
∀ [α].τ→τ′ if, when applied, respectively, to the type arguments
τ1 and τ2, and the value arguments v1 and v2, they beta reduce to
terms that are related at type τ′ (again, with ρ[α 7→ (τ1,τ2, R)]).

The definitions of logical approximation and equivalence for
open terms (at the bottom of Figure 5) rely on the relational se-
mantics ascribed to the contexts ∆ and Γ. We say that ρ belongs
to the relational interpretation of ∆ if dom(ρ) = ∆, and whenever

ρ(α) = (τ1,τ2, R), R is a well-formed relational interpretation
(i.e., R ∈ Rel[τ1,τ2]). We say the value substitutions γ1 and γ2

are related at Γ if they map variables in dom(Γ) to related values.
The definition of the logical relation for open terms, ∆; Γ `

e1 -
log
ST e2 : ϕ (pronounced “e1 logically approximates e2”), is

also standard. It says that given a relational interpretation ρ for
∆ and value substitutions γ1, γ2 related at Γ, the closed terms
ρ1(γ1(e1)) and ρ2(γ2(e2)) are related at the type ϕ. Finally, we
say that e1 and e2 are logically equivalent, ∆; Γ ` e1 ≈log

ST e2 : ϕ,
if they logically approximate each other.

Properties of the Logical Relation We prove the fundamental
property of logical relations, which says that if a term is well typed,
then it is related to itself. This follows from the proofs of a series
of compatibility lemmas (e.g., see [38]). The proofs of most of
these lemmas are standard, exactly as for any logical relation for
System F. The two that are interesting are the compatibility lemmas
for boundaries, which we state below. These require the following
“bridge” lemma. (Further details and proofs are given in the online
technical appendix [5].)

Lemma 6.2 (Bridge Lemma)
1. If (e1, e2) ∈ E

q
σ+

y
∅ then (σST e1,

σST e2) ∈ E JσK ∅.
2. If (e1, e2) ∈ E JσK ∅

and (λ(x :σ+). e1
′,λ(x :σ+). e2

′) ∈ V
q
σ+→τ

y
ρ, then

(let x=(TS σ e1) in e1
′, let x=(TS σ e2) in e2

′) ∈ E JτK ρ.

Lemma 6.3 (Compatibility ST)
If ∆; Γ ` e1 -

log
ST e2 : σ+ then ∆; Γ ` σST e1 -

log
ST

σST e2 : σ.

Lemma 6.4 (Compatibility T S)
If ∆; Γ ` e1 -

log
ST e2 : σ and ∆; Γ,x : σ+ ` e1 -

log
ST e2 : τ then

∆; Γ ` let x= (TS σ e1) in e1 -
log
ST let x= (TS σ e2) in e2 : τ.

Theorem 6.5 (λST Fundamental Property)
If ∆; Γ ` e : ϕ then ∆; Γ ` e -log

ST e : ϕ.

Proof By induction on the derivation ∆; Γ ` e : ϕ. Each case
follows from the corresponding compatibility lemma.

Next, we prove that the λST logical relation is sound and com-
plete with respect to contextual equivalence. The key thing here
is that the following lemmas (along with the property that -ctx

ST

implies -ciu
ST , Lemma 5.3), together establish that logical approxi-

mation -log
ST, ciu-approximation -ciu

ST , and contextual approxima-
tion -ctx

ST all coincide. Therefore, in subsequent sections, when
proving contextual equivalence properties, we are free to switch to
whichever definition is most convenient to work with for proving
the property at hand.

Theorem 6.6 (λST: Soundness w.r.t. Contextual Approx)
If ∆; Γ ` e1 -

log
ST e2 : ϕ then ∆; Γ ` e1 -ctx

ST e2 : ϕ.

Lemma 6.7 (λST: CIU Approx Implies Logical Approx)
If ∆; Γ ` e1 -ciu

ST e2 : ϕ then ∆; Γ ` e1 -
log
ST e2 : ϕ.

Theorem 6.8 (λST: Completeness w.r.t. Contextual Approx)
If ∆; Γ ` e1 -ctx

ST e2 : ϕ then ∆; Γ ` e1 -
log
ST e2 : ϕ.

Proof Immediate from Lemmas 5.3 and 6.7.

Two Key Lemmas We use our logical relation to establish two
key properties that we will need repeatedly when proving parts (1)
and (2).

The first is boundary cancellation, which essentially says that if
you embed e into the source using ST , and then embed that into
the target using T S, the resulting term is contextually equivalent to
the original. Analogously, embedding e into the target via T S and
then embedding the latter into the source via ST , also results in a
term that is contextually equivalent to the original.

Lemma 6.9 (Boundary Cancellation)
• Let ∆; Γ ` e : σ. Then ∆; Γ ` e ≈log

ST
σST (TS σ e) : σ.

• Let ∆; Γ ` e : σ+. Then ∆; Γ ` e ≈log
ST TS

σ (σST e) : σ+.

Proof By induction on the structure of σ.
The second key property is a free theorem [50] regarding terms

of (computation) type ∀ [α].(σ+→α)→α. (We prove an analo-
gous free theorem for terms of type∀ [α].(σ1

+× (σ2
+→α))→α,

but we will not show that here.) This free theorem captures the
essence of what we gain from switching from a CPS type trans-
lation that makes use of a global answer type, to one that makes
each continuation’s answer type individually abstract: namely, that
a computation (or function) of the above type must invoke its con-
tinuation at least once, and that it does not matter (in our purely
functional setting) if it invokes it more than once. The free theorem
can be proved using our logical relation; a similar theorem is given
in Wadler [50]. We take a notational liberty in the statement of this
theorem, which we discuss next.

Lemma 6.10 (Free Theorem: Continuation Shuffling)
Let ∆; Γ ` vf : ∀ [α].(τ→α)→α, and ∆; Γ ` vk : τ→τk.
Then ∆; Γ ` vf [τk] vk ≈log

ST vk (vf [τ] id) : τk.

Notice that vk (vf [τ] id) is not a syntactically well-formed term
in λST! We use this essentially as shorthand to avoid a much longer
(and less intuitive) statement of the theorem. Strictly speaking, the
conclusion of the above lemma should be written as follows:

Then: ∀ρ ∈ D J∆K . ∀(γ1, γ2) ∈ G JΓK ρ.
if ρ2(γ2(vf [τ] id)) 7−→∗ v then

(ρ1(γ1(vf [τk] vk)), (ρ2(γ2(vk))) v) ∈ E JτkK ρ
and
if ρ1(γ1(vf [τ] id)) 7−→∗ v then

((ρ1(γ1(vk))) v, ρ2(γ2(vf [τk] vk))) ∈ E JτkK ρ

The intuition here is that we close off the expression vf [τ] id with
appropriate type and term substitutions and evaluate it to get a value
v that we then pass to the (appropriately closed) continuation vk.
The two clauses are required because our underlying relation E J·K
is an approximation while what we want here is equivalence.

6.2 Proving Part (1)
We start with the top layer of the proof of equivalence preservation.
Our goal here is to prove that if Γ ` e1 ≈ctx

S e2 : σ then
·; Γ ` e1 ≈ctx

ST e2 : σ. As discussed in Section 2, given an
arbitrary λST context C with a hole of type (·; Γ ` σ), we need
to “back-translate” C to an equivalent λS context C. The fact that
this can be done at all may seem surprising, since λST is a more
expressive language than λS. Specifically, λST includes System F
in which we can encode, e.g., Church numerals, and operations
like addition and multiplication; but natural numbers, addition and
multiplication cannot be encoded in our source language λS. As
another example, λST contains pairs (from λT), but pairs cannot
be encoded in our source language λS. Thus, we consider this
“back-translation” method and its accompanying insights to be a
significant contribution of this work.

“Back-translating” λST to λS As discussed above, we wish to
“back-translate” an arbitrary λST context C with a hole of type
(·; Γ ` σ). Such a context can simply be treated as an expression
λx : σ. C[x] which has type σ→ bool. This type is significant. In-
formally, the type represents the interface for this component and,
in this case, it tells us that the component behaves like a term of
source type (if we have our translation right, that is) and expects to
interact with terms that behave similarly (which, technically, will
mean terms of some source type σ or translation type σ+). Thus,
we have to be able to “back-translate” λST terms of source type.

·; Γ ` e : σ� e ·; Γ `+ e : σ+ � e

where Γ::= · | Γ, x : σ | y : σ+

and e ∈ λS and Γ� ` e : σ

and where Γ� is defined as (·)� = ·
(Γ, x : σ)� = Γ�, x : σ

(Γ,y : σ+)� = Γ�, y : σ

·; Γ ` true : bool� true ·; Γ ` false : bool� false

·; Γ ` e : bool� e′ ·; Γ ` e1 : σ� e′1 ·; Γ ` e2 : σ� e′2
·; Γ ` if e then e1 else e2 : σ� if e′ then e′1 else e′2

x : σ ∈ Γ

·; Γ ` x : σ� x

·; Γ, x : σ1 ` e : σ2 � e′

·; Γ ` λx : σ1. e : σ1→σ2 � λx : σ1. e
′

·; Γ ` e1 : σ2→σ� e′1 ·; Γ ` e2 : σ2 � e′2
·; Γ ` e1 e2 : σ� e′1 e′2

·; Γ `+ e : σ+ � e

·; Γ ` σST e : σ� e

·; Γ `+ true : bool+ � true ·; Γ `+ false : bool+ � false

·; Γ `+ v : bool+ � e ·; Γ `+ e1 : σ+ � e1 ·; Γ `+ e2 : σ+ � e2

·; Γ `+ if v then e1 else e2 : σ+ � if e then e1 else e2

y : σ+ ∈ Γ

·; Γ `+ y : σ+ � y

·; Γ,y : σ1
+ `+ e[σ2

+/α][id/k] : σ2
+ � e

·; Γ `+ λ [α] ((y,k) : (σ1
+× (σ2

+→α))). e : ∀ [α].(σ1
+× (σ2

+→α))→α� λy : σ1. e

·; Γ ` e1 : σ1 � e′1 ·; Γ,x : σ1
+ `+ e : σ+ � e

·; Γ `+ let x = (TS σ1 e1) in e : σ+ � let x = e′1 in e

·; Γ ` v : τ1× τ2 v = (v1,v2) ·; Γ `+ e[vi/x] : σ+ � e

·; Γ `+ let x = πiv in e : σ+ � e

·; Γ ` v1 : ∀ [α].τ2→ τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]
σ+ = τ[τ′/α] v1 = λ [α] (z : τ2). e ·; Γ `+ e[τ′/α][v2/z] : σ+ � e

·; Γ `+ v1 [τ′] v2 : σ+ � e
(@σ1. σ1

+ = ∀ [α].τ2→ τ)

τ′ = σ+ v2 = (va,λ(z :σ2
+). ek) ·; Γ `+ v1 : (σ1→σ2)+ � e1 ·; Γ `+ va : σ1

+ � ea ·; Γ, z : σ2
+ `+ ek : σ+ � ek

·; Γ `+ v1 [τ′] v2 : σ+ � let z = e1 ea in ek

Figure 6. “Back-translation”: Relating λST terms to λS terms

Translating all the λS terms embedded in λST is straightforward—
they remain unchanged—until we get to a boundary term σST e.
At this point, we have to be able to translate e which has type σ+.
As discussed before, e may contain subterms that are not “back-
translatable”. However, the whole term e has type σ+ so it should
be back-translatable. Intuitively, the idea here is to partially evalu-
ate e till you have a term whose subterms are all back-translatable
(of type σ or σ+). Of course, the result of partial evaluation will be
equivalent to the original e. The remaining issue is: can we always
partially evaluate till we get to such a point? We will show that this
is always the case.

With that in mind, we set up two judgments that “back-
translate” e to some e ∈ λS (see Figure 6). They have the form
·; Γ ` e : σ� e (for translating σ terms) and ·; Γ `+ e : σ+ � e
(for translating σ+ terms). Here Γ may only contain mappings of
the form x : σ or y : σ+—that is, Γ may only contain variables of
source type or translation type. (This is an important restriction as
we shall see.) Γ� denotes the environment Γ with all mappings of
the form y : σ+ replaced by y : σ. Γ� is the environment used to
type-check e.

The “back-translation” rules are given in Figure 6. The rules
for translating λST terms e : σ are straightforward, defined by
induction on the structure of the term. The only interesting case is
the boundary σST e. This is where we switch to the other judgment
(`+) which translates terms e that have type σ+. We translate target
boolean values by converting them to equivalent source booleans
and target if expressions are easy to translate because all of the
subterms are of translation type.

When translating λ terms of type σ1→σ2
+, which have a type

parameter α and two value parameters y : σ1
+ and k : σ2

+→α,
we can only add y : σ1

+ to the environment Γ; since k is not
of source type or translation type it cannot be added to Γ, and we
can never add type variables to the type environment ∆ (it always
remains empty). Hence, we substitute σ2

+ for α in the body of

the function and the identity continuation id for k. As a result, our
premise has a term of translation type σ2

+ that we can continue to
back-translate. The reason this rule is well founded is because the
type of the term (σ2

+) in the premise is smaller than the type of the
term in the conclusion.

Translating the (let form for) boundary TS σ e1 is straightfor-
ward, since the subterms have either source type or translation type.

The term let x = πiv in e is more interesting. Here v must
have type τ1×τ2. But since the latter is not a source type σ or
a translation type σ+, v cannot be a variable! (This is why the
restriction on the codomain of Γ is critical.) Therefore, v must be a
pair, which means partial evaluation is possible. We project the i-th
component and substitute it for x in the let body e. The resulting
term has type σ+ so we continue to back-translate. Note that this
rule is well founded because e[vi/x] will reduce in fewer steps
than let x = πiv in e.

The two rules for v1 [τ′] v2 are more involved but follow
similar reasoning. In the first of these rules the function v1 is not
of translation type. That means that it cannot be a variable. This
permits partial evaluation (by applying v1 to τ′ and v2), which
yields a term that can be back-translated (since it has type σ+) and
will reduce in fewer steps. In the second rule (last rule in Figure 6),
v1 is of type (σ1→σ2)+ (so it may be a variable), but that means
that v2 must be a pair so it cannot be a variable. Therefore, we
take apart the argument va and the continuation in that pair. The
continuation also is not of translation type, so it cannot be variable.
We then separately back-translate these and reassemble to get the
final back-translation for v1 [τ′]v2. This rule is well founded since
it only requires back-translation of subterms of the original term.

Our rules are exhaustive, in the sense that all possible terms of
type σ and σ+ have been covered.

Next we show that for every term of type σ and σ+, it is
possible to construct a finite back-translation derivation, and that
the back-translation e is equivalent to the original e. Note that for

the equivalence statement, on the left-hand side we have to replace
all target y variables with TS σ y since Γ� contains y : σ in place
of y : σ+.

Lemma 6.11 (From λST term : σ / σ+ to equivalent λS term)
Let Γ::= · | Γ, x : σ | y : σ+

1. If ·; Γ ` e : σ then there exists e ∈ λS s.t. ·; Γ ` e : σ� e and
·; Γ� ` e[(TS Γ�(y) y)/y] ≈log

ST e : σ.
2. If ·; Γ ` e : σ+ then there exists e ∈ λS s.t. ·; Γ `+ e : σ+ � e

and ·; Γ� ` σST (e[(TS Γ�(y) y)/y]) ≈log
ST e : σ.

Proof (1) and (2) are proved by simultaneous induction since the σ
and σ+ translation rules are mutually dependent. We then proceed
by induction on the length of the reduction sequence for e, nested
induction on the type σ, and innermost induction on the structure
of the term e.

Wrapping Up Proof of Part (1) Our desired lemma, that Γ `
e1 ≈ctx

S e2 : σ implies ·; Γ ` e1 ≈ctx
ST e2 : σ, follows as a corollary

from the lemma below.

Lemma 6.12 (Ciu-equiv in λS implies ciu-equiv in λST)
Let Γ be a λS environment, and let e1 and e2 be λS terms.
If Γ ` e1 -ciu

S e2 : σ then ·; Γ ` e1 -ciu
ST e2 : σ.

Proof Suppose E : (·; · ` σ ⇒ (·; · ` bool), and γst : Γ and
E[γst(e1)] ⇓ v where v : bool. Show: E[γst(e2)] ⇓ v.
We back-translate E (or, to be precise, λx : σ. E[x]) and γst to
eE and γs. By Lemma 6.11 these are equivalent to the original
E and γst. Hence, E[γst(e1)] ≈ctx

ST eE(γs(e1)) : bool. Hence,
the latter evaluates to v. Now, we instantate the premise with eE
(after morphing it into a valid evaluation context), and γs. Hence,
eE(γs(e2)) evaluates to v. Since eE(γs(e2)) ≈ctx

ST E[γst(e2)] :
bool, the latter evaluates to v.

6.3 Proving Part (2)
We now tackle the middle layer of the proof of equivalence preser-
vation. Our goal in this section is to prove that if e1 and e2 translate
to v1 and v2, then e1 ≈ctx

ST e2 at type σ implies that v1 ≈ctx
ST v2 at

type σ÷.
Below, we prove that our CPS translation is both semantics pre-

serving (typically referred to as compiler correctness) and seman-
tics reflecting. We use the logical relation for our multi-language
system to do these proofs. Our statements of semantics preserva-
tion and reflection are novel in that they rely on our multi-language
semantics. As we discuss in Section 8, as compared to work on
semantics-preserving compilation that uses cross-language logical
relations [8, 9, 17] (which relate source terms to target terms), it
seems simpler to understand how to set up the definitions and ma-
chinery for such proofs using a multi-language system and logical
relation.

Finally, we wrap up by showing the main result of this section
(Lemma 6.17), namely the proof that translation preserves equiv-
alence (within λST), which follows easily from the fact that CPS
translation preserves and reflects semantics.

Translation Preserves and Reflects Semantics With the bound-
ary cancellation and continuation-shuffling lemmas in hand, we can
prove that our CPS translation preserves and reflects semantics. In
the statement of these lemmas, we will have a λS term e on one
side and its translation, a λT term v, on the other side. Wherever e
contains a variable x : σ, v will have the variable x : σ+. There-
fore, we will need related (source and target) substitutions γS and
γT to obtain closed terms.

Definition 6.13 (Related Source-Target Substitutions)
Let Γ be a finite map from variables x to types σ. Let γS be a finite map

from variables x to (closed) values v. Let γT be a finite map from variables
x to (closed) values v.
We define Γ ` γS . γT as follows:

· ` ∅ . ∅ iff (unconditionally)
Γ, x : σ ` γS, x 7→ v . γT,x 7→ v iff Γ ` γS . γT

∧ ` v -log
ST

σST v : σ

We define Γ ` γS & γT as follows:

· ` ∅ & ∅ iff (unconditionally)
Γ, x : σ ` γS, x 7→ v & γT,x 7→ v iff Γ ` γS & γT

∧ ` σST v -log
ST v : σ

We define Γ ` γS ' γT as follows:

Γ ` γS ' γT iff Γ ` γS . γT ∧ Γ ` γS & γT

Notice that in the definition of Γ ` γS & γT, we require
` σST v -log

ST v : σ. Using boundary cancellation and the com-
patibility lemmas for boundaries, we can conclude that this is
equivalent to ` v -log

ST TS
σ v : σ+. (This observation might make

it slightly easier to understand the statement of Lemma 6.15.)
Informally, the following lemma says that if e evaluates to some

value v1, then its CPS translation, when applied to the identity
continuation will evaluate to some v2 : σ+ that can be converted
to a source value v2 such that v1 and v2 are related at σ.

Lemma 6.14 (CPS is semantics preserving)
If Γ ` e : σ ; v and Γ ` γS . γT

then ` γS(e) -log
ST

σST
`
γT (v) [σ+] id

´
: σ.

Proof By induction on the structure of e.
The statement that CPS translation is semantics reflecting is

a bit more involved. Informally, the following lemma says that
suppose that the computation v (which is the CPS translation of e),
when applied to a type τα and some continuation vk : σ+→τα,
evaluates to the value v1 : τα. Then if we convert e to a target value
v′ : σ+, and then invoke the continuation vk (or to be precise, a
continuation that’s related to vk) with v′, this will result in a value
v2 such that v1 and v2 are related at the type τα.

Lemma 6.15 (CPS is semantics reflecting)
If Γ ` e : σ ; v and Γ ` γS & γT then
` γT(v) -log

ST λ [α] (k :σ+→α). let z = (TS σ γS(e)) in k z : σ÷.

Proof By induction on the structure of e.
The following is a corollary of semantics preservation and re-

flection. Notice that by boundary cancellation, the conclusion is
equivalent to ` TS σ (γS(e)) ≈log

ST

`
γT (v) [σ+] id

´
: σ+. (This

explains why we call it “translation is equivalent to embedding.”)

Corollary 6.16 (Translation is Equivalent to Embedding)
Let Γ ` e : σ ; v and Γ ` γS ' γT.
Then ` γS(e) ≈log

ST
σST

`
γT (v) [σ+] id

´
: σ.

Lemma 6.17 (Translation Preserves Equivalence in λST)
Let e1 and e2 be λS terms. If Γ ` e1 : σ ; v1, Γ ` e2 : σ ; v2,
and ·; Γ ` e1 -

log
ST e2 : σ, then ·; Γ ` v1 -

log
ST v2 : σ÷.

Proof Follows from Lemmas 6.14 and 6.15 and the transitivity of
-log

ST.

6.4 Proving Part (3)
For the final (bottom) layer of our proof of equivalence preser-
vation, we must show that if ·; Γ+ ` v1 ≈ctx

ST v2 : σ÷ then
·; Γ+ ` v1 ≈ctx

T v2 : σ÷. The latter is immediate from the fol-
lowing more general lemma.

Lemma 6.18 (Equivalence in λST implies equivalence in λT)
Let e1 and e2 be λT terms.
If ∆; Γ ` e1 -ctx

ST e2 : τ then ∆; Γ ` e1 -ctx
T e2 : τ.

The proof is straightforward, intuitively, because λT contexts are
a subset of λST contexts. Given an arbitrary λT context C of
the appropriate type, we must show that if C[e1] evaluates to v
(which will be of type bool) then so does C[e2]. We can instantiate
the premise with the context boolST [C[·]]. The rest easily follows
from the fact that there is a one-to-one correspondence between the
evaluation of a λT expression in λST and in λT, and from noting
that the reduction rule for boolST · simply converts true to true
and false to false.

7. Equivalence Reflection
Equivalence reflection is a direct consequence of semantics preser-
vation. Semantics preservation states that source programs (closed
λS terms of base type, i.e., bool) and their translations in λT behave
analogously:

Lemma 7.1 (Semantics preservation)
Let · ` e : bool ; v. If e 7−→∗ true then v [bool] id 7−→∗ true
and if e 7−→∗ false then v [bool] id 7−→∗ false.

Proof Immediate from Lemma 6.16.
The next observation we need concerns the structural behavior

of the CPS translation:

Lemma 7.2 (Context translation)
Let Γ ` C[e1] : σ and Γ ` C[e2] : σ. Then there exist C, v1, v2

such that Γ ` C[e1] : σ ; C[v1] and Γ ` C[e2] : σ ; C[v2].

Proof By induction on the structure of C, using the definition of
the CPS translation relation.

Equivalence reflection now follows almost immediately from
Lemmas 7.1 and 7.2:

Theorem 7.3 (Equivalence reflection)
Let Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2. If ·; Γ+ ` v1 ≈ctx

T

v2 : σ÷ then Γ ` e1 ≈ctx
S e2 : σ.

Proof Indirect: Suppose the conclusion does not hold, which
means there exists some C such that · ` C[e1] : bool and · `
C[e2] : bool where (w.l.o.g.) C[e1] 7−→∗ true while C[e2] 7−→∗
false. By Lemma 7.2 there must exist a C such that · ` C[e1] :
bool ; C[v1] and · ` C[e2] : bool ; C[v2]. At this point
Lemma 7.1 tells us that (C[v1]) [bool] id 7−→∗ true while
(C[v2]) [bool] id 7−→∗ false. Thus, (C[·]) [bool] id is a context
that discriminates between v1 and v2, which is a contradiction.

8. Discussion and Future Work
Supporting Additional Language Features For this paper, we
chose simply-typed λ-calculus and System F as our source and tar-
get languages so that we could highlight the main ideas underlying
our proof technique, in particular, the use of multi-language seman-
tics and how back-translation can leverage partial evaluation given
the right type translation. We now sketch how to extend our the-
orem and its proof to source and target langauges with more ad-
vanced features.

If the source and target language have non-terminating terms,
then we are faced with two difficulties: ensuring well-foundedness
of the back-translation (which affects Lemma 6.11) and proving the
continuation-shuffling lemma (Lemma 6.10).

To address the first problem, ensuring well-foundedness of
the back-translation relation, we add a new case wherever back-
translation performs computation steps: if the term to be partially
evaluated is non-terminating (i.e., contextually equivalent to a term
that diverges), simply make its translation a non-terminating source
term of appropriate type. Notice that this definition does not yield
an algorithm for back-translation but merely a relation. However,
since back-translation is merely a proof device, it does not need to

be an algorithm. We explain this is greater detail in the technical
appendix [5] (see §1.1): we add divergent terms to both λS and λT

and present the changes required to the back-translation rules.
The second problem, proving the continuation-shuffling lemma,

is more difficult to deal with: in the presence of non-termination,
Lemma 6.10 cannot be proved by parametricity alone; parametric-
ity only gives us an approximation relation and not an equivalence
relation. However, there is an alternative, syntactic proof for the
continuation-shuffling lemma in this case. The details are beyond
the scope of the current work; we will present that result in a future
paper.

Recursive types give rise to non-termination, so everything said
above applies here as well. In particular, though, recursive types
make it somewhat trickier to define the semantics of our multi-
language boundary terms. However, the technique for defining
“wrapper” terms in our full abstraction proof for closure conver-
sion [4] can be adapted to deal with this issue. Also, in the presence
of recursive types we will need to switch to a step-indexed logical
relation [3] for λST to ensure well-foundedness of the logical rela-
tion. Thus, all parts of the proof that make use of the λST logical
relation will become more involved. Again, we plan to report on
this result in a future paper.

Adding polymorphism to the source language is not difficult to
deal with. The main idea is for boundary terms to not “peek under”
abstraction barriers but to simply leave abstract things abstract. We
have successfully applied this idea before in our work on fully
abstract closure conversion [4] and do not foresee any difficulties
when adapting it to the case of CPS translation.

Our longer-term goal is to show that a compiler from System F
(with recursion, and later, with state) to typed assembly language
is equivalence preserving. Thus far we have considered two phases
of compilation, namely CPS (this paper) and typed closure con-
version [4], where the type translations were precisely the key to
ensuring that the target terms that compiled code interacts with
are sufficiently well behaved. Thus, the type translations were the
key to proving that the translations were equivalence preserving.
To formulate an equivalence-preserving translation from CPS-and-
closure-converted code down to assembly, we will need a target-
level type system rich enough to be able to express invariants about
local state, separation of state, and so on. We believe that an as-
sembly language based on Hoare Type Theory [37] can provide the
features needed for imposing the necessary well-behavedness con-
straints on target contexts.

Finally, the reader may have wondered if we can prove that our
CPS translation is fully abstract when the target language is Sys-
tem F without the syntactic restriction that enforces continuation-
passing style. In the online technical appendix (see §1.3) we show
that this is, in fact, the case. The main change to the proof is that the
back-translation from this unrestricted System F to STLC becomes
more complicated, intuitively, since a target language without the
CPS restriction contains many more terms than λT.

Compiler Correctness Proofs Let us compare the statement of
“CPS is Semantics Preserving” (Lemma 6.14) to roughly what one
would expect in a semantics-preservation (compiler correctness)
proof that uses a cross-language logical relation (e.g., [8, 9, 17])
relating source terms of type σ to target terms of type σ+ (though,
relating to σ÷ is a valid choice as well). In the absence of a com-
bined language, the statement there cannot mention ST . Instead it
says that v1 must be related to v1 in the cross-language relation at
the type σ (which would mean that v1 would have type σ+).

That means that to understand the definition of “relatedness”
at each type, one would have to have a precise understanding of
the cross-language relation. In the presence of features like recur-
sive types (and eventually state), these logical relations get rather
complicated, for instance using step-indexing and/or biorthogonal-

ity (e.g., [8, 9]), or advanced denotational models. Thus, it can be
difficult for someone who simply wants to understand the statement
of the semantics-preservation theorem, and not the mathematical
machinery underlying the logical relation, to decipher exactly what
that statement says. On the other hand, with the multi-language ap-
proach, to understand the statement of the theorem, one simply has
to examine the reduction rules for boundaries. The details of the
λST logical relation are not important at this level; all one needs to
know is that it is sound with respect to contextual equivalence.

Finally, defining the multi-language logical relation seems more
straightforward than the cross-language logical relation. The multi-
language logical relation is simply a combination of the logical
relations for source and target; the desired relationship between
source and target semantics is specified separately by defining
the dynamic semantics for boundaries. The cross-language logical
relation, meanwhile, must simultaneously provide a proof method
and specify the desired relationship between source and target
terms.

9. Related Work
Fully Abstract Denotational Models The earliest work on full
abstraction was done in the context of denotational models of
languages (e.g., [2, 16, 25, 33]). The denotation function can be
thought of as a translation from a syntactic/operational calculus into
a mathematical domain. The goal there is to ensure that the deno-
tational semantics does not expose differences that are not opera-
tionally observable [35]. As typified by parallel OR in PCF [39], in
a lot of this work, full abstraction is achieved by adding certain be-
haviors that are possible in the denotational semantics (target) to the
operational semantics of the language being modeled (source). Our
work differs somewhat from that on denotational models in that
we are interested in proving full abstraction of translations (mostly
compilers); here the target language also comes with an opera-
tional semantics. In particular, we focus on type-directed and type-
preserving compilation and critically require a sufficiently “clever”
type translation such that the types of compiled terms can impose
well-behavedness constraints on any target-level term that might
interact with the result of the translation, thus ensuring that target
contexts cannot violate source-level abstractions.

Translation to Continuation-Passing Style CPS has been studied
extensively in the literature. Here we only discuss work that seems
most closely related to ours.

A number of papers have investigated full abstraction for CPS
translation, but there is no prior full abstraction result for a CPS
translation that uses a locally polymorphic answer type. Meyer and
Riecke [32] pointed out that standard (untyped) CPS translation
does not preserve observational equivalence and conjectured as to
how this could be repaired.

Several papers have looked at the use of linear types to en-
sure that a function calls its continuation exactly once. Zdancewic
and Myers [51] present a security-typed CPS target language with
higher-order, imperative features where linear continuations are
needed to ensure noninterference. They also give a translation from
a security-typed, direct-style language into the afore-mentioned
target language using linear typing of CPS and prove that the
translation preserves well-typedness. Berdine et al. [10, 11] show
that continuations are used linearly in a variety of situations, in-
cluding procedure call/return, exception raising/handling, labelled
jumps (goto statements) and process switching (coroutines). Nei-
ther Zdancewic and Myers [51] nor Berdine et al. [10, 11] present
any full abstraction results for their CPS translation.

Berdine, O’Hearn, and Thielecke [12] use affine typing of CPS
to extract the range of CPS for a call-by-value λ-calculus. Specifi-
cally, they restrict the grammar of types in the target to only those
forms exercised by the CPS translation. They then define the gram-

mar for target terms so that there is one syntactic category for terms
of each type. This allows them to give a precise characterization of
the range of CPS by showing that all terms in the target come from
some term in the source—that is, they prove a “no junk” lemma
(also known as full completeness) that states that for each term M
in the target, there exists a term N in the source such that M is βη-
equivalent to the CPS translation of N . The proof of this “no junk”
lemma requires back-translating M to get N . The critical differ-
ence between Berdine et al.’s work [12] and ours that their target
language is exactly as expressive as the source (i.e., every target
term can be back-translated), while our target language is more ex-
pressive than the source (i.e., there exist well-typed target terms that
cannot be back-translated, specifically, terms of type τ where τ is
not a translation type.) Consequently, our proof framework allows
for one target language to serve as the target for different source
languages and compilers, and allows components written in these
different source languages to interoperate at the target level (assum-
ing the compilation strategies rely on similar representation invari-
ants at the target level). As a concrete example, we could define a
CPS translation from a second source language, System F, to our
target language λT. Now source code written in λS can interoperate
with source code written in System F after CPS translation to λT,
as long as we have a well-typed program after “linking” the two
compiled components in λT. This would not be possible if we had
resorted to a strategy like Berdine et al.’s where back-translation
requires that the target language be no more expressive than the
source.

Sabry and Felleisen [43] study equational completeness of CPS
based on βη-equality rather than observational equivalence. They
present a CPS transformation and an inverse mapping (or “back-
translation”). From the CPS transformation, they extract the pre-
cise language of CPS terms closed under βη-equality, arriving at
almost exactly the same syntax (modulo “administrative” redexes)
as Berdine et al. [12]. Sabry and Felleisen analyze the syntax of the
output of CPS while Berdine et al. analyze the types of the output
of CPS to arrive as almost exactly the same target language syntax.
Hence, Berdine et al.’s back-translation is essentially Sabry and
Felleisen’s inverse mapping (from CPS to direct style).

Hasegawa [21] has proved a full completeness result for the lin-
ear CPS transformation in the setting of a simply typed λ-calculus
using syntactic methods based on long βη-normal forms. Like
Sabry and Felleisen [43], he considers only βη-equivalence, not
observational equivalence.

Using categorical game semantics, Laird [29] showed that for
call-by-value PCF one can recover full abstraction of CPS transla-
tion by imposing an affine typing discipline on continuations, es-
sentially employing the idea of “linearly-used continuations” pre-
sented by Berdine et al. [11]. We feel that with proofs based on
game semantics, it is hard for non-experts to understand even the
statements of the main lemmas required for the proof. Therefore,
a primary objective of our work has been to come up with an op-
erational proof technique that’s simpler to understand and could
(plausibly) be used throughout all the stages of a compiler. The
proof techniques described in this paper, combined with recent ad-
vances in step-indexed logical relations [3, 6] seem like they would
scale when applied to richer languages and successive compilation
phases.

Thielecke [48] seems to have been the first to study CPS trans-
formation with a locally polymorphic answer type, though his work
focuses on the role of answer type polymorphism in a language
with control effects. He uses parametricity reasoning to observe the
connection between linear typing of CPS and answer type polymor-
phism in a pure call-by-value setting, showing that functions with-
out control effects do not impose any constraints on the answer
type and so can have a locally polymorphic answer type. He essen-

tially proves the equivalent of our continuation-shuffling lemma, a
property that he calls naturality. He has also studied answer type
polymorphism for the call-by-name CPS transform and used it to
show that the latter satisfies the eta-law [49]. He does not, however,
discuss full abstraction of CPS translations.

Danvy [18] presents a translation from CPS programs into
direct-style (DS) programs in an untyped setting. His technique
relies on syntactically characterizing CPS terms that can be trans-
lated back to DS. Specifically, to be back-translatable, a CPS term
must satisfy certain occurrence conditions (see Danvy [18], Fig. 2)
that ensure that the CPS term encodes a call-by-value left-to-right
evaluation order, checked essentially by parsing the CPS term us-
ing a stack that holds the formal parameters of continuations. We,
on the other hand, use types to semantically characterize terms that
can be translated back to our direct-style λS, without requiring that
all of their subterms also have back-translatable types. As a re-
sult, we can back-translate more terms. Finally, our CPS grammar
does not distinguish between ordinary λ’s and continuation λ’s as
Danvy’s does, while he does not make use of partial evaluation
as we do, i.e., to deal with subterms that are not, on their own,
back-translatable.

Several researchers have investigated back-and-forth transla-
tions between direct-style and CPS semantics following Meyer and
Wand’s [34] work on retractions. An embedding-retraction pair
(i, j) is a pair of functions such that j ◦ i is the identity function.
Meyer and Wand work with the typed λ-calculus and use the “stan-
dard” type translation for CPS that we showed is not fully abstract
in Section 1. They write σ′ to denote their type translation of σ; let
σ∗ = (σ′ → ans) → ans. They show that there exist embedding-
retraction pairs (iσ, jσ) and (Iσ, Jσ)—definable in call-by-name
λ-calculus (CBN)—where iσ : σ → σ′, jσ : σ′ → σ, Iσ : σ′ →
σ∗, and Jσ : σ∗ → σ′. Their main result is the Retraction The-
orem which says that (jσ ◦ Jσ) is the inverse of the CPS trans-
form, i.e., M =CBN jσ(Jσ(M)), where M is the CPS transform
of M . The boundary terms TS σ and σST in our multi-language
semantics are similar in spirit to iσ and jσ, respectively; the prop-
erty that (jσ ◦ iσ) = id is analogous to (part 1) of our boundary
cancellation property (Lemma 6.9); and their Retraction Theorem,
which says that the retraction of a translation is equivalent to the
original term, is analogous to our “translation is equivalent to em-
bedding” lemma (Corollary 6.16). 1 But there are also important
technical differences since our target language (System F) is more
expressive than theirs (STLC), and due to the fact that we make use
of a multi-language semantics. In particular, our boundary terms
are “built-in” with an appropriate operational semantics; thus our
embedding-retraction pairs do not have to be definable in the target
language as is the case with retractions, and this makes our multi-
language technique more general. With retractions, the source lan-
guage is generally assumed to be a strict subset of the target and the
Retraction Theorem proves equivalence with respect to the (larger)
target language. Note that our λS is not a strict subset of λT since
the latter syntactically enforces continuation-passing style. Meyer
and Wand’s Retraction Theorem is essentially analogous to our
proof of Part (2). There is no analog to our Part (1) and no proof of
full abstraction. In particular, Meyer and Riecke [32] subsequently
showed that if we replace CBN βη-equational reasoning with call-
by-value observational equivalence, then the embedding-retraction
pairs defined in Meyer-Wand no longer suffice. In fact, Meyer and
Riecke failed to prove a Retraction Theorem in this setting.

1 In technical terms, our previous work on typed closure conversion seems
closer to the work on retractions since there we do not use a multi-language
semantics; instead the source and target are the same language and in this
language we define wrapper functionsW+ andW− that are analogous to
i and j, respectively, and we prove a theorem similar to Meyer and Wand’s
(except that it’s for closure conversion, not CPS conversion).

Later Riecke [41] and Riecke and Viswanathan [41] investigated
a semantic variation of the retraction approach with the goal of iso-
lating side-effects in sequential programs. Also, Filinski [19] gen-
eralized Meyer and Wand’s Retraction Theorem to a CPS transform
for the monadic metalanguage. Like Meyer-Wand, Filinski’s tech-
nique does not generalize to a language with divergence.

Berger, Honda, and Yoshida have studied fully abstract trans-
lations from various languages (with recursion [13], polymor-
phism [14, 15], control [23], state [22], and concurrency [22]) to
linear or affinely typed—and in some cases polymorphic [14, 15]—
π-calculus. They prove their translations fully abstract in the case
of recursion (with source language PCF) [13], polymorphism (with
source language System F) [14, 15], and control [23], but only
speculate about full abstraction in the case of state and concur-
rency [22]. Since the usual translation of the λ-calculus into the
π-calculus can be seen as a form of CPS translation, it may be
useful to further investigate the connections between translations
into the π-calculus and translations to continuation-passing style.
Like us, Berger et al. rely on typing in the π-calculus to ensure
that the translations are fully abstract. Unlike us, they rely on game
semantics to prove their translations fully abstract. In this paper,
we have shown that terms of translation type are back-translatable.
Analogously, Berger et al. show that terms of translation type are
definable. Definability says that for every π-calculus term P of
translation type σ•, there exists a well-typed source term M : σ
(where they write σ• to denote the translation of a source type σ).
Like us, they note that one reason definability is difficult to estab-
lish is because subterms of P may not be of translation type, which
means that the proof cannot be carried out simply by induction
on typing derivations. Our strategy for dealing with subterms that
are not of translation type was to show that it is always possible
to perform some partial evaluation that gets rid of the problematic
subterm, leaving only subterms that are of translation type. Their
strategy is to show that every finite target term P of translation type
can be represented by a finite innocent function that can be turned
into a finite canonical form, which in turn is easily transformed into
some source term M such that P is equivalent to the translation of
M . Thus, they use the notion of innocence [24] from game seman-
tics to establish, in essence, that translation types at the target level
are inhabited by only well-behaved computations. They are, thus,
able to perform induction on the size of the corresponding innocent
functions. This approach is similar to that of Laird’s [29] whose
proof of full abstraction also relies on game semantics. Our proof
method is more elementary as it relies on operational/syntactic
techniques (coupled with typing) for back-translatability; expertise
in game semantics is not required to follow the details.

Full Abstraction of Other Translations Most work on prov-
ing that translations preserve equivalence has typically resorted
to adding precisely those target behaviors that are problematic to
the source language. For instance, Riecke [42] investigates fully ab-
stract translations between CBN, CBV, and lazy PCF, using denota-
tional models of the languages that include the parallel conditional.
This is needed to make the models fully abstract. Also, Sanjabi and
Ong [44] investigate a translation from a core calculus of additive
aspects to a target language with higher-order store in the style of
ML references. After showing that their original translation is not
fully abstract, they weaken the source language by endowing it
with the power to construct “bad labels”—the analogue of the bad
references at the target that were responsible for the failure of full
abstraction.

Shikuma and Igarashi [46] prove full abstraction of a translation
from STLC with seal and unseal operators to STLC with base types
for each sealing authority. They use a syntactic proof method, but
their back-translation is only applicable to terms all of whose sub-

terms are of translation type. Our back-translation is more general
precisely because it does not impose this restriction.

Acknowledgments
The first author would like to thank Greg Morrisett for suggesting
the problem of fully abstract compilation to her in Spring 2005. We
thank Kyle Ross who helped us with this work in Spring 2010. We
are also grateful to Amr Sabry and several anonymous reviewers
for their many helpful suggestions on earlier versions of this paper.

References
[1] M. Abadi. Protection in programming-language translations. In

ICALP, 1998.
[2] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for

PCF. Inf. Comput., 163(2):409–470, 2000.
[3] A. Ahmed. Step-indexed syntactic logical relations for recursive and

quantified types. In ESOP, 2006.
[4] A. Ahmed and M. Blume. Typed closure conversion preserves

observational equivalence. In ICFP, 2008.
[5] A. Ahmed and M. Blume. An equivalence-preserving CPS translation

via multi-language semantics (technical appendix). Available at
http://www.cs.indiana.edu/∼amal/papers/epc/, July 2011.

[6] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-
tion independence. In POPL, 2009.

[7] A. W. Appel. Compiling with Continuations. Cambridge University
Press, 1992.

[8] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In ICFP, 2009.

[9] N. Benton and C.-K. Hur. Realizability and compositional compiler
correctness for a polymorphic language. Technical Report MSR-TR-
2010-62, Microsoft Research, Apr. 2010.

[10] J. Berdine. Linear and affine typing of continuation-passing style.
Technical Report RR-04-04, Queen Mary, Univ. of London, Jan.
2004.

[11] J. Berdine, P. O’Hearn, U. Reddy, and H. Thielecke. Linear
continuation-passing. Higher Order Symbol. Comput., 15(2-3):181–
208, 2002.

[12] J. Berdine, P. O’Hearn, and H. Thielecke. Extracting the range of cps
from affine typing: Extended abstract. In Workshop on Linear Logic,
2002.

[13] M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-
calculus. In TLCA, 2001.

[14] M. Berger, K. Honda, and N. Yoshida. Genericity and the π-calculus.
In FOSSACS, 2003.

[15] M. Berger, K. Honda, and N. Yoshida. Genericity and the π-calculus.
Acta Informatica, 42:83–141, November 2005.

[16] R. Cartwright and M. Felleisen. Observable sequentiality and full
abstraction. In POPL, 1992.

[17] A. Chlipala. A certified type-preserving compiler from lambda
calculus to assembly language. In PLDI, 2007.

[18] O. Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[19] A. Filinski. Representing monads. In POPL, 1994.
[20] R. Harper and M. Lillibridge. Explicit polymorphism and CPS

conversion. In POPL, 1993.
[21] M. Hasegawa. Linearly used effects: Monadic and CPS transforma-

tions into the linear lambda calculus. In FLOPS, 2002.
[22] K. Honda and N. Yoshida. A uniform type structure for secure

information flow. In POPL, 2002.
[23] K. Honda, N. Yoshida, and M. Berger. Control in the π-calculus. In

Fourth ACM-SIGPLAN Continuations Workshop (CW ’04), Jan. 2004.
[24] J. M. E. Hyland and C. H. L. Ong. On full abstraction for PCF: I, II,

and III. Information and Computation, 163(2):285–408, 2000.

[25] A. Jeffrey. A fully abstract semantics for a concurrent functional
language with monadic types. In LICS, 1995.

[26] A. Kennedy. Securing the .NET programming model. Theoretical
Computer Science, 364(3):311–317, 2006.

[27] A. Kennedy. Compiling with continuations, continued. In ICFP,
2007.

[28] D. A. Kranz, R. A. Kelsey, J. A. Rees, P. Hudak, and J. Philbin.
ORBIT: an optimizing compiler for Scheme. In Proceedings of the
ACM Symposium on Compiler Construction, June 1986.

[29] J. Laird. Game semantics and linear CPS interpretation. Theor.
Comput. Sci., 333(1-2):199–224, 2005.

[30] I. A. Mason and C. L. Talcott. Equivalence in functional languages
with effects. J. Functional Programming, 1(3):287–327, 1991.

[31] J. Matthews and R. B. Findler. Operational semantics for multi-
language programs. In POPL, Nice, France, pages 3–10, Jan. 2007.

[32] A. Meyer and J. G. Riecke. Continuations may be unreasonable. In
Conf. on LISP and functional programming, LFP, 1988.

[33] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local
variables. In POPL, 1988.

[34] A. R. Meyer and M. Wand. Continuation semantics in typed lambda-
calculi. In R. Parikh, editor, Logics of Programs (Brooklyn, June,
1985), volume 193 of LNCS, pages 219–224. Springer-Verlag, 1985.

[35] R. Milner. Fully abstract models of typed lambda calculi. Theoretical
Computer Science, 4(1), 1977.

[36] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. Transactions on Programming Languages
and Systems, 21(3):527–568, May 1999.

[37] A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract
predicates and mutable adts in hoare type theory. In ESOP, 2007.

[38] A. M. Pitts. Typed operational reasoning. In B. C. Pierce, editor,
Advanced Topics in Types and Programming Languages. MIT Press,
2005.

[39] G. D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223–255, 1977.

[40] J. C. Reynolds. Types, abstraction, and parametric polymorphism.
Information Processing, pages 513–523, 1983.

[41] J. Riecke and R. Viswanathan. Isolating side effects in sequential
languages. In POPL, 1995.

[42] J. G. Riecke. Fully abstract translations between functional languages.
In POPL, 1991.

[43] A. Sabry and M. Felleisen. Reasoning about programs in continuation-
passing style. In Conf. on LISP and functional programming, LFP,
1992.

[44] S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive
aspects by translation. In Proceedings of the 6th international
conference on Aspect-oriented software development (AOSD), 2007.

[45] Z. Shao and A. W. Appel. A type-based compiler for Standard ML.
In PLDI, 1995.

[46] N. Shikuma and A. Igarashi. Proving noninterference by a fully
complete translation to the simply typed lambda-calculus. Logical
Methods in Computer Science, 4(3:10):1–31, 2008.

[47] G. L. Steele. RABBIT: A compiler for SCHEME. Technical Report
AI-TR-474, MIT, May 1978.

[48] H. Thielecke. From control effects to typed continuation passing. In
POPL, 2003.

[49] H. Thielecke. Answer type polymorphism in call-by-name continua-
tion passing. In ESOP, 2004.

[50] P. Wadler. Theorems for free! In ACM Symposium on Functional
Programming Languages and Computer Architecture (FPCA), 1989.

[51] S. Zdancewic and A. C. Myers. Secure information flow and CPS. In
ESOP, 2001.

