
An Equivalence-Preserving CPS Translation

via Multi-Language Semantics

(Technical Appendix)

Amal Ahmed Matthias Blume

Indiana University Google

amal@cs.indiana.edu blume@google.com

This appendix contains an extended discussion section (Section 1), an extended section on related work
(Section 2), the complete set of technical definitions (Sections 3 to 7), and the proofs (Sections 8 to 13). In
particular, in Section 1.3, we adopt System F without the CPS restriction as our target language and present
the changes needed—to the back-translation and the proofs—to establish full abstraction in this setting.

Contents

1 Discussion and Future Work 3
1.1 Supporting Additional Language Features . 3
1.2 Compiler Correctness Proofs . 4
1.3 An Alternate Target Language (without CPS Restriction) . 5

1.3.1 Proof: CPS Translation from λS to λA Preserves Equivalence 7
1.3.2 Proof: Equivalence in λA Implies Equivalence in λF 12

2 Related Work 15

3 Source Language λS 19

4 Target Language λT 21

5 CPS Translation 25

6 Combined Language λST 26

7 “Backtranslation” from λST to λS 32

8 λST Logical Relation Corresponds to Contextual Equivalence 33
8.1 λST Logical Relation: Fundamental Property . 33
8.2 λST Logical Relation: Soundness w.r.t. Contextual Equivalence 40
8.3 λST Logical Relation: Completeness w.r.t. Contextual Equivalence 41

9 Part (2): CPS Translation Preserves Equivalence in λST 43

10 Part (1): Equivalence in λS Implies Equivalence in λST 52

1

11 Part (3): Equivalence in λST Implies Equivalence in λT 54

12 CPS Translation is Equivalence Preserving 54

13 CPS Translation is Equivalence Reflecting 55

2

1 Discussion and Future Work

1.1 Supporting Additional Language Features

For this paper, we chose simply-typed λ-calculus and System F as our source and target languages so that
we could highlight the main ideas underlying our proof technique, in particular, the use of multi-language
semantics and how back-translation can leverage partial evaluation given the right type translation. We now
sketch how to extend our theorem and its proof to source and target langauges with more advanced features.

Nontermination If the source and target language have non-terminating terms, then we are faced with
two difficulties: ensuring well-foundedness of the back-translation (which affects Lemma 10.1) and proving
the continuation-shuffling lemma (Lemma 9.2).

To address the first problem, ensuring well-foundedness of the back-translation relation, we add a new
case wherever back-translation performs computation steps: if the term to be partially evaluated is non-
terminating (i.e., contextually equivalent to a term that diverges), simply make its translation a non-
terminating source term of appropriate type. Notice that this definition does not yield an algorithm for
back-translation but merely a relation. However, since back-translation is merely a proof device, it does not
need to be an algorithm.

Specifically, let us add divergence to the source and target languages by adding the non-value divergent
term Ω to λS as a constant, and similarly adding Ω to λT. The grammar for evaluation contexts remains
unchanged. We add the following reduction rules to the operational semantics for λS and λT, respectively:

Ω 7−→ Ω Ω 7−→ Ω

We add typing rules for Ω and Ω, such that the divergent terms have any type:

Γ ` Ω : σ ∆; Γ ` Ω : τ

We extend the CPS translation with the following:

Γ ` Ω : σ ; λ [α] (k :σ+→α). k Ω

We add an additional rule to the back-translation in Figure 24 (on page 32):

·; Γ `+ Ω : σ+ � Ω

In addition, there are two rules in Figure 24 (see page 32) where changes are needed: the let x = πiv in e
rule marked (†) and the v1 [τ′] v2 rule marked (‡). These are the rules where the back-translation performs
computation steps and well-foundedness relies on the fact that the term being back-translated in the premise
reduces to a value in fewer steps than the term in the conclusion.

• We add an additional premise to the rule in Figure 24 marked (†) so that we back-translate only if the
partially reduced term in the premise does not diverge. The new rule is as follows:

·; Γ ` v : τ1×τ2 v = (v1,v2) ·; Γ ` e[vi/x] ≈/ ctx
ST Ω : σ+ ·; Γ `+ e[vi/x] : σ+ � e

·; Γ `+ let x = πiv in e : σ+ � e

Also, we add an additional rule the applies when the partially reduced term in the premise diverges:

·; Γ ` v : τ1×τ2 v = (v1,v2) ·; Γ ` e[vi/x] ≈ctx
ST Ω : σ+

·; Γ `+ let x = πiv in e : σ+ � Ω

Since e[vi/x] diverges, we back-translate the entire expression to the λS term Ω.

3

• We similarly add an additional premise to the rule in Figure 24 marked (‡) so that we back-translate
only if the partially reduced term in the premise does not diverge. The new rule is as follows:

·; Γ ` v1 : ∀ [α].τ2→τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]

σ+ = τ[τ′/α] v1 = λ [α] (z :τ2). e

·; Γ ` e[τ′/α][v2/z] ≈/ ctx
ST Ω : σ+ ·; Γ `+ e[τ′/α][v2/z] : σ+ � e

·; Γ `+ v1 [τ′] v2 : σ+ � e
(@σ1. σ1

+ = ∀ [α].τ2→τ)

Also, we add an additional rule that applies when the partially reduced term in the premise diverges:

·; Γ ` v1 : ∀ [α].τ2→τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]

σ+ = τ[τ′/α] v1 = λ [α] (z :τ2). e ·; Γ ` e[τ′/α][v2/z] ≈ctx
ST Ω : σ+

·; Γ `+ v1 [τ′] v2 : σ+ � Ω
(@σ1. σ1

+ = ∀ [α].τ2→τ)

Since e[τ′/α][v2/z] diverges, we back-translate the entire expression to the λS term Ω.

The above changes to the back-translation rules in Figure 24 yield a well-founded back-translation relation
despite the presence of non-termination. The additional rules above simply amount to additional cases of the
proof of Lemma 10.1. In fact, these additional cases are trivial to prove: since we back-translate a diverging
λST term to a diverging λS term, they are clearly equivalent as required by part (2) of Lemma 10.1.

The second problem, proving the continuation-shuffling lemma, is more difficult to deal with: in the
presence of non-termination, Lemma 9.2 cannot be proved by parametricity alone; parametricity only gives
us an approximation relation and not an equivalence relation. However, there is an alternative, syntactic
proof for the continuation-shuffling lemma in this case. The details are beyond the scope of the current work;
we will present that result in a future paper.

Recursive types Recursive types give rise to non-termination, so everything said above applies here as
well. In particular, though, recursive types make it somewhat trickier to define the semantics of our multi-
language boundary terms. However, the technique for defining “wrapper” terms in our full abstraction proof
for closure conversion [4] can be adapted to deal with this issue. Also, in the presence of recursive types
we will need to switch to a step-indexed logical relation [2] for λST to ensure well-foundedness of the logical
relation. Thus, all parts of the proof that make use of the λST logical relation will become more involved.
Again, we plan to report on this result in a future paper.

Polymorphism Adding polymorphism to the source language is not difficult to deal with. The main idea
is for boundary terms to not “peek under” abstraction barriers but to simply leave abstract things abstract.
We have successfully applied this idea before in our work on fully abstract closure conversion [4] and do not
foresee any difficulties when adapting it to the case of CPS translation.

From System F to TAL Our longer-term goal is to show that a compiler from System F (with recursion,
and later, with state) to some typed assembly language is equivalence preserving. Thus far we have considered
two phases of compilation, namely CPS (this paper) and typed closure conversion [4], where the type
translations were precisely the key to ensuring that the target terms that compiled code interacts with
are sufficiently well behaved. Thus, the type translations were the key to proving that the translations were
equivalence preserving. To formulate an equivalence-preserving translation from CPS-and-closure-converted
code down to assembly, we will need a target-level type system rich enough to be able to express invariants
about local state, separation of state, and so on. We believe that an assembly language based on Hoare
Type Theory [32] can provide the features needed for imposing the necessary well-behavedness constraints
on target contexts.

1.2 Compiler Correctness Proofs

Let us compare the statement of “CPS is Semantics Preserving” (Lemma 9.4) to roughly what one would
expect in a semantics-preservation (compiler correctness) proof that uses a cross-language logical relation

4

(e.g., [7, 8, 16]) relating source terms of type σ to target terms of type σ+ (though, relating to σ÷ is a valid
choice as well). In the absence of a combined language, the statement of the lemma there cannot mention
ST . Instead it says that the source term e must be related to its translation v in the cross-language relation
at the type σ (which would mean that v would have type σ+).

That means that to understand the definition of “relatedness” at each type, one would have to have a
precise understanding of the cross-language relation. In the presence of features like recursive types (and
eventually state), these logical relations get rather complicated, for instance using step-indexing and/or
biorthogonality (e.g., [7, 8]), or advanced denotational models. Thus, it can be difficult for someone who
simply wants to understand the statement of the semantics-preservation theorem, and not the mathematical
machinery underlying the logical relation, to decipher exactly what that statement says. On the other hand,
with the multi-language approach, to understand the statement of the theorem, one simply has to examine
the reduction rules for boundaries. The details of the λST logical relation are not important at this level; all
one needs to know is that it is sound with respect to contextual equivalence.

Finally, defining the multi-language logical relation seems more straightforward than defining the cross-
language logical relation. The multi-language logical relation is simply a combination of the logical relations
for source and target; the desired relationship between source and target semantics is specified separately
by defining the dynamic semantics for boundaries. The cross-language logical relation, on the other hand,
must simultaneously provide a proof method and specify the desired relationship between source and target
terms.

1.3 An Alternate Target Language (without CPS Restriction)

For this paper, following Morrisett et al. [31]—and in the spirit of compilers like SML/NJ [6, 39], Rab-
bit [41], Orbit [25], and more recently, Kennedy’s SML.NET compiler [24]—we picked a target language
that syntactically enforces continuation-passing style. This also allowed us to demonstrate that our proof
technique works when neither the source language nor the target is a subset of the other. The reader may,
however, have wondered if our CPS translation is fully abstract when the target language is full System F
(i.e., without the CPS restriction). We now show that this is, in fact, the case.

Let λF denote System F without any syntactic restriction on terms. We wish to show that our CPS
translation from λS to λF, utilizing locally polymorphic answer types, is equivalence preserving. Now, let
λA denote System F with terms in A-normal form. We are interested in λA because it is convenient to do
the proof in two steps: we first show that CPS translation from λS to λA is equivalence-preserving and then
show that if two terms are equivalent in λA, then they are equivalent in λF.

Figures 1 and 2 present the syntax and operational semantics for λA (System F in A-normal form) and
λF (full System F without syntactic restrictions), respectively. We use a bold orange font with serifs for
λA and a bold green font with serifs for λF. We omit the typing rules for λA and λF as these are entirely
standard, as is the syntax of contexts.

The operational semantics for λA is slightly complicated due to the well-known fact that A-normal form
is not preserved under β-reduction. For instance, consider the λA term:

let x = (λy. let z = x1 x2 in x3) x4 in e.

Now, naive β-reduction produces
let x = (let z = x1 x2 in x3) in e.

which is not in A-normal form. The way to fix this is to define a more complex notion of β-reduction that
re-normalizes let constructs, in this case producing the normal form

let z = x1 x2 in (let x = x3 in e).

We define a function to do this re-normalization (middle of Figure 1): when applied to a λA term e surrounded
by the context E, the normalization function, written (E[e])#, produces a valid λA term—that is, a term in
A-normal form. With this re-normalization function in hand, we can define the λA reduction rules (bottom
of Figure 1). These are all standard except for the rule that performs β-reduction in a let-bound position;
the latter requires that we re-normalize the result of the naive β-reduction.

5

Types τ ::= bool | τ1×τ2 | α | ∀ [α].τ1→τ2

Values v ::= x | true | false | (v1,v2) | λ [α] (x :τ). e

Computations r ::= v | πiv | v1 [τ] v2

Terms e ::= r | let x = r in e | if v then e1 else e2

Eval. Contexts E ::= let x = [·]A in e

Re-normalization function: (E[e])#

(E[r])# = E[r]

(E[let x = r in e])# = let x = r in (E[e])#

(E[if v then e1 else e2])# = if v then (E[e1])# else (E[e2])#

e 7−→ e′

πi(v1,v2) 7−→ vi

E[πi(v1,v2)] 7−→ E[vi]

(λ [α] (x :τ1). e) [τ] v 7−→ e[τ/α][v/x]

E[(λ [α] (x :τ1). e) [τ] v] 7−→ (E[e[τ/α][v/x]])#

let x = v in e 7−→ e[v/x]

if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

Figure 1: Alternate Intermediate Target Language: System F in A-normal Form (λA)

The λF operational semantics is completely standard (see bottom of Figure 2). The statements of
contextual equivalence and ciu equivalence for both λA and λF are exactly as for λT modulo color, which
means that these statements involve λA (respectively λF) contexts, types, terms, and operational semantics.
As for λT, it is easy to prove that contextual approximation implies ciu approximation.

Lemma 1.1 (λA: Contextual Approx Implies CIU Approx)
If ∆; Γ ` e1 -ctx

A e2 : τ then ∆; Γ ` e1 -ciu
A e2 : τ.

Lemma 1.2 (λF: Contextual Approx Implies CIU Approx)
If ∆; Γ ` e1 -ctx

F e2 : τ then ∆; Γ ` e1 -ciu
F e2 : τ.

Note that λA is a subset of λF (assuming that we have some standard syntactic sugar defined for λF).
Therefore, whenever necessary, we will treat orange λA terms as if they were green λF terms. That is, we
will skip a proper translation from orange terms to green terms since, other than the color change, the
translation is simply the identity (again assuming that we have some obvious syntactic sugar for λF).

Next, we must define typed CPS translation from λS to λF. This is exactly the same as the CPS
translation to λT (see Figures 16 and 17), except that the red target terms should now be green. Note that
we can also color the target terms orange to highlight the fact that the translation only utilizes terms in
the λA subset of λF.

We wish to prove that the CPS translation from λS to λF is equivalence preserving, that is, the following
theorem.

Theorem 1.3
Let Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2. If Γ ` e1 ≈ctx

S e2 : σ then ·; Γ+ ` v1 ≈ctx
F v2 : σ÷.

6

Types τ ::= bool | τ1×τ2 | α | ∀ [α].τ1→τ2

Expressions e ::= x | true | false | if e then e1 else e2 | (e1, e2) | πie |
λ [α] (x :τ). e | e1 [τ] e2

Values v ::= x | true | false | (v1,v2) | λ [α] (x :τ). e

Eval. Contexts E ::= [·]F | if E then e1 else e2 | (E, e) | (v,E) | πiE |
E [τ] e | v [τ] E

e 7−→ e′

if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

πi(v1,v2) 7−→ vi

(λ [α] (x :τ1). e) [τ] v 7−→ e[τ/α][v/x]

e 7−→ e′

E[e] 7−→ E[e′]

Figure 2: Alternate Target Language: System F (λF)

In the above theorem, the λF terms v1 and v2 can also be written as λA terms v1 and v2 respectively, i.e.,
the respective terms are identical modulo color. We decompose the proof of Theorem 1.3 into two parts:

A. if Γ ` e1 ≈ctx
S e2 : σ then ·; Γ+ ` v1 ≈ctx

A v2 : σ÷, where Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2; and

B. if ·; Γ+ ` v1 ≈ctx
A v2 : σ÷, then ·; Γ+ ` v1 ≈ctx

F v2 : σ÷, where v1 = v1 and v2 = v2 modulo color.

To prove part (A)—that CPS translation from λS to λA is equivalence preserving—we proceed much
as we did for CPS translation to λT. That is, we define a multi-language semantics that allows λS terms
to interoperate with λA terms, and then split the proof into three parts as before. The proof of parts (2)
and (3) are essentially unchanged. The proof of part (1) requires the only interesting change, in particular,
because the back-translation from λA to λS is more involved than the back-translation from λT to λS. We
present this part of the proof and the modified back-translation in Section 1.3.1.

The proof of part (B)—that if two terms are equivalent in λA then they are equivalent in λF—is fairly
straightforward as we shall see. Since λA is a subset of λF, we will not need to make use of a multi-language
semantics. We will need a back-translation from λF to λA, but this back-translation is just A-normalization.
We describe this part of the proof in Section 1.3.2.

1.3.1 Proof: CPS Translation from λS to λA Preserves Equivalence

Our goal in this section is to prove that

(Part A) if Γ ` e1 ≈ctx
S e2 : σ then ·; Γ+ ` v1 ≈ctx

A v2 : σ÷, where Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2.

We start by defining the language λSA which permits λS terms and λA terms to interoperate. Figure 3
presents the λSA multi-language system which is essentially the same as λST except for a few minor changes.
Contextual and ciu equivalence for λSA are defined exactly as for λST, and we can similarly prove that
contextual approximation implies ciu approximation in λSA. We must also define a logical relation (-log

SA,

≈log
SA) for λSA, but the definition of this is identical to the logical relation (-log

ST, ≈log
ST) for λST, except we

change all occurrences of red to orange. The proof of the fundamental property for ≈log
SA is almost exactly

the same as the corresponding proof for ≈log
ST.

7

Types ϕ ::= σ | τ
Terms e ::= . . . | σSA e

r ::= . . . | AS σ e
e ::= . . .
e ::= e | e

Values v ::= v | v
Eval. Contexts E ::= . . . | σSAE

E ::= . . . | AS σ E
E ::= E | E

e 7−→ e′

boolSA true 7−→ true
boolSA false 7−→ false
σ1→σ2SAv 7−→ λx :σ1.

σ2SA (let z = (AS σ1 x) in (v [σ2
+] (z, id)))

AS bool true 7−→ true

AS bool false 7−→ false

AS σ1→σ2 v 7−→ λ [α] ((x,k) :σ1
+× (σ2

+→α)).
let z = (AS σ2 (v (σ1SAx))) in k z

e 7−→ e′

E[e] 7−→ E[e′]

Type Environments ∆ ::= · | ∆,α
Value Environments Γ ::= · | Γ, x : σ | Γ,x : τ

∆; Γ ` e : ϕ

. . .
∆; Γ ` e : σ+

∆; Γ ` σSA e : σ

∆; Γ ` e : σ

∆; Γ ` AS σ e : σ+

Contexts C ::= . . . | σSAC

C ::= . . . | AS σ C

C ::= C | C

Figure 3: λSA: Syntax, Dynamic Semantics, Static Semantics, and Contexts

Now, the proof of part (A), that CPS translation from λS to λA is equivalence preserving, can be
decomposed into three parts:

1. if Γ ` e1 ≈ctx
S e2 : σ then Γ ` e1 ≈ctx

SA e2 : σ;

2. if Γ ` e1 ≈ctx
SA e2 : σ then ·; Γ+ ` v1 ≈ctx

SA v2 : σ÷, where Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2; and

3. if ·; Γ+ ` v1 ≈ctx
SA v2 : σ÷ then ·; Γ+ ` v1 ≈ctx

A v2 : σ÷.

Once we have proved (1), (2), and (3), the proof of part (A) is immediate.
The proofs of parts (2) and (3) are essentially the same as the corresponding proofs for the translation

from λS to λT so we elide the details. As before, we need to prove the boundary cancellation and continuation
shuffling lemmas; the proofs are again essentially as before.

For the proof of part (1), we again need to be able to “back-translate” an arbitrary λSA context C with a
hole of type (·; Γ ` σ) to an equivalent λS context C. Such a context can simply be treated as an expression
λx :σ. C[x] which has type σ→ bool. Thus, we need to be able to “back-translate” λSA terms of source type.

8

·; Γ ` e : σ� e ·; Γ `+ e : σ+ � e

where Γ::= · | Γ, x : σ | y : σ+

and e ∈ λS and Γ� ` e : σ

and where Γ� is defined as (·)� = ·
(Γ, x : σ)� = Γ�, x : σ
(Γ,y : σ+)� = Γ�, y : σ

· ` Γ

·; Γ ` true : bool� true

· ` Γ

·; Γ ` false : bool� false

·; Γ ` e : bool� e′ ·; Γ ` e1 : σ� e′1 ·; Γ ` e2 : σ� e′2

·; Γ ` if e then e1 else e2 : σ� if e′ then e′1 else e′2

· ` Γ x : σ ∈ Γ

·; Γ ` x : σ� x

·; Γ, x : σ1 ` e : σ2 � e′

·; Γ ` λx :σ1. e : σ1→σ2 � λx :σ1. e
′

·; Γ ` e1 : σ2→σ� e′1 ·; Γ ` e2 : σ2 � e′2

·; Γ ` e1 e2 : σ� e′1 e′2

·; Γ `+ e : σ+ � e

·; Γ ` σSA e : σ� e

· ` Γ

·; Γ `+ true : bool+ � true

· ` Γ

·; Γ `+ false : bool+ � false

· ` Γ y : σ+ ∈ Γ

·; Γ `+ y : σ+ � y

· ` Γ ·; Γ,y : σ1
+ `+ e[σ2

+/α][id/k] : σ2
+ � e

·; Γ `+ λ [α] ((y,k) : (σ1
+× (σ2

+→α))). e : ∀ [α].(σ1
+× (σ2

+→α))→α� λy :σ1. e

·; Γ ` v : σ+×τ2 v = (v1,v2) ·; Γ `+ v1 : σ+ � e

·; Γ `+ π1v : σ+ � e

·; Γ ` v : τ1×σ+ v = (v1,v2) ·; Γ `+ v2 : σ+ � e

·; Γ `+ π2v : σ+ � e

·; Γ ` v1 : ∀ [α].τ2→τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]

σ+ = τ[τ′/α] v1 = λ [α] (z :τ2). e ·; Γ `+ e[τ′/α][v2/z] : σ+ � e

·; Γ `+ v1 [τ′] v2 : σ+ � e
(@σ1. σ1

+ = ∀ [α].τ2→τ)

τ′ = σ+ v2 = (va,λ(z :σ2
+). ek)

·; Γ `+ v1 : (σ1→σ2)+ � e1 ·; Γ `+ va : σ1
+ � ea ·; Γ, z : σ2

+ `+ ek : σ+ � ek

·; Γ `+ v1 [τ′] v2 : σ+ � let z = e1 ea in ek

·; Γ ` e : σ� e′

·; Γ `+ AS σ e : σ+ � e′

·; Γ `+ v : bool+ � e ·; Γ `+ e1 : σ+ � e1 ·; Γ `+ e2 : σ+ � e2

·; Γ `+ if v then e1 else e2 : σ+ � if e then e1 else e2

·; Γ `+ r : σ1
+ � er ·; Γ,x : σ1

+ `+ e : σ+ � e

·; Γ `+ let x = r in e : σ+ � let x = er in e

Figure 4: “Back-translation”: Relating λSA terms to λS terms (part I)

The latter includes boundary terms σSA e, which means that we also have to be able to “back-translate”
the λSA term e which has translation type σ+.

We present the complete set of back-translation rules from λSA terms to λS terms in Figures 4 and 5. This
back-translation is more involved than the back-translation from λST to λS, essentially since λA contains
more terms than λT. As before, we set up two judgments to back-translate the λSA term e to some e ∈ λS.

9

·; Γ ` v : τ ·; Γ `+ e[v/x] : σ+ � e

·; Γ `+ let x = v in e : σ+ � e
(@σr. σr

+ = τ)

·; Γ ` v : τ1×τ2 v = (v1,v2) ·; Γ `+ e[vi/x] : σ+ � e

·; Γ `+ let x = πiv in e : σ+ � e
(@σr. σr

+ = τi)

·; Γ ` v1 [τ′] v2 : τr ·; Γ ` v1 : ∀ [α].τ2→τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]
τr = τ[τ′/α] v1 = λ [α] (z :τ2). e1

·; Γ `+ (let x = [e1[τ′/α][v2/z]] in e)# : σ+ � e

·; Γ `+ let x = v1 [τ′] v2 in e : σ+ � e
(@σr. σr

+ = τr

@σ1. σ1
+ = ∀ [α].τ2→τ)

·; Γ ` v1 [τ′] v2 : τr τr = τ′ v2 = (va,λ(z :σ2
+). ek) ·; Γ, z : σ2

+ ` ek : τ′

·; Γ `+ v1 : (σ1→σ2)+ � e1 ·; Γ `+ va : σ1
+ � ea

·; Γ, z : σ2
+ `+ (let x = [ek] in e)# : σ+ � e

·; Γ `+ let x = v1 [τ′] v2 in e : σ+ � let z = e1 ea in e
(@σr. σr

+ = τr)

Figure 5: “Back-translation”: Relating λSA terms to λS terms (part II)

These have the form ·; Γ ` e : σ � e (for translating σ terms) and ·; Γ `+ e : σ+ � e (for translating σ+

terms). Here Γ may only contain mappings of the form x : σ or y : σ+—that is, Γ may only contain variables
of source type or translation type. Γ� denotes the environment Γ with all mappings of the form y : σ+

replaced by y : σ. Γ� is the environment used to type-check e.
The rules for translating λSA terms e : σ are again straightforward, defined by induction on the structure

of the term. The only interesting case is the boundary σSA e where we switch to the other judgment (`+)
which translates terms e that have type σ+. Translating target boolean values (true, false), target variables
y, and λ terms of type σ1→σ2

+ proceeds exactly as before.
The back-translation of terms πiv is interesting. When translating π1v of type σ+, v must have type

σ+×τ2. But since the latter is neither a source type nor a translation type, v cannot be a variable. (This is
again where the restriction on the codomain of Γ plays a critical role.) Therefore, v must be a pair (v1,v2),
which means partial evaluation is possible. We extract the first component of the pair v1—which has type
σ+—and back-translate it. Note that this rule is well founded because in the premise we only back-translate
a subterm of the original term. The back-translation of π2v is analogous.

The two rules for v1 [τ′] v2 are exactly as before: in the first of these, v1 is not of translation type, while
in the second, v1 is of translation type. Back-translating the boundary term AS σ e is straightforward as
the subterm e has source type σ. The back-translation of if expressions is easy as before since all of the
subterms are of translation type.

At this point we have discussed back-translation of all target terms of translation type except for terms
of the form let x = r in e. For such terms there are two different situations we must consider, namely the
case where r is of translation type and the case where it is not.

First, consider the case where r is of translation type σ1
+ (last rule in Figure 4). This case is straight-

forward since we can back-translate r and also back-translate the body of the let with x added to Γ. We
then use the results of these back-translations to assemble the final back-translation for let x = r in e.

Next, consider the back-translation of let x = r in e where r does not have translation type. All the
rules relevant to this scenario are collected in Figure 5: we have rules for the case when r is a value v, when
r is a projection πiv, and when r is an application v1 [τ′] v2. Note that we do not have a rule for when r is
of the form AS σ1 e since the latter would have to have the type σ1

+ which contradicts the fact that r does
not have translation type. Let us consider each of the Figure 5 rules in turn.

First, when r is a value v, we can perform partial evaluation: we simply substitute v for x in the body
of the let and then back-translate the resulting term e[v/x] which has translation type σ+. This rule is well

10

founded because e[v/x] will reduce in fewer steps than let x = v in e.
Next, when r is of the form πiv, the value v has type τ1×τ2 which is not a translation type. Hence, v

cannot be a variable. Thus it must be of the form (v1,v2) which means that partial evaluation is possible.
We now extract the i-th component and substitute it for x in the body of the let. The resulting term is
of translation type σ+ so we can continue to back-translate. This rule is well founded because e[vi/x] will
reduce in fewer steps than let x = πiv in e.

Finally, when r is of the form v1 [τ′] v2, we have two rules, one where v1 is not of translation type
(third rule in Figure 5) and one where v1 is of translation type (last rule in Figure 5). These two rules are
essentially analogous to their non-let-bound counterparts (i.e., the rules for v1 [τ′] v2 in Figure 4) except
for the fact that there we finally back-translate the terms e[τ′/α][v2/z] and ek, respectively, whereas here
we must back-translate let-bindings of these terms. The only subtlety is that we must re-normalize these
let-bound terms before we can back-translate.

As before, our rules are exhaustive, in the sense that all possible terms of type σ and σ+ have been
covered.

At this point, we can explain why we decided to decompose the equivalence preservation proof into two
parts, going from λS to λA and then to λF. Had we done a direct proof from λS to λF, we would have had
to back-translate λF terms (actually, to be precise, terms of the multi-language system λSF) to λS. Since
there are many more λF terms than λA terms, we would have had to consider a significantly larger number
of cases, resulting in an extremely large and unwieldy set of back-translation rules. We think that such a
strategy muddles the essence of the back-translation and makes it hard for one to easily have confidence
that all cases have been covered by the back-translation rules. We chose λA as an intermediate point in our
proof because it seems to provide a sweet spot in terms of overall proof effort while keeping the necessary
back-translation rules still fairly easy to follow.

Next we show that for every term of type σ and σ+, it is possible to construct a finite back-translation
derivation, and that the back-translation e is equivalent to the original e. For the equivalence statement, on
the right-hand side, we have to replace all target y variables with AS σ y since Γ� contains y : σ in place of
y : σ+.

Lemma 1.4 (From λSA term : σ / σ+ to equivalent λS term)

Let Γ::= · | Γ, x : σ | y : σ+

1. If ·; Γ ` e : σ then there exists e ∈ λS s.t. ·; Γ ` e : σ� e and ·; Γ� ` e[(AS Γ�(y) y)/y] ≈log
ST e : σ.

2. If ·; Γ ` e : σ+ then there exists e ∈ λS s.t. ·; Γ `+ e : σ+ � e and ·; Γ� ` σSA (e[(AS Γ�(y) y)/y]) ≈log
ST

e : σ.

Proof (1) and (2) are proved by simultaneous induction since the typing rules for terms of type σ and σ+

are mutually dependent. We then proceed, as before by induction on the length of the reduction sequence
for e, nested induction on the type σ, and innermost induction on the structure of the term e.

Finally, our desired lemma, that Γ ` e1 ≈ctx
S e2 : σ implies ·; Γ ` e1 ≈ctx

A e2 : σ, follows as a corollary
from the lemma below.

Lemma 1.5 (Ciu-equiv in λS implies ciu-equiv in λSA)
Let Γ be a λS environment, and let e1 and e2 be λS terms.
If Γ ` e1 -ciu

S e2 : σ then ·; Γ ` e1 -ciu
A e2 : σ.

Proof Suppose E : (·; · ` σ ⇒ (·; · ` bool), and γsa : Γ and E[γsa(e1)] ⇓ v where v : bool. Show:
E[γsa(e2)] ⇓ v.
We back-translate E (or, to be precise, λx :σ. E[x]) and γsa to eE and γs. By Lemma 1.4 these are equivalent
to the original E and γsa. Hence, E[γsa(e1)] ≈ctx

SA eE(γs(e1)) : bool. Hence, the latter evaluates to v. Now, we
instantiate the premise with eE (after morphing it into a valid evaluation context), and γs. Hence, eE(γs(e2))
evaluates to v. Since eE(γs(e2)) ≈ctx

SA E[γsa(e2)] : bool, the latter evaluates to v.

11

1.3.2 Proof: Equivalence in λA Implies Equivalence in λF

Our goal in this section is to prove that

(Part B) if ·; Γ+ ` v1 ≈ctx
A v2 : σ÷, then ·; Γ+ ` v1 ≈ctx

F v2 : σ÷.

Note that it suffices to prove the following:

(B’) if ∆; Γ ` e1 : τ, ∆; Γ ` e2 : τ, and ∆; Γ ` e1 ≈ctx
A e2 : τ, then ∆; Γ ` e1 ≈ctx

F e2 : τ.

The rest of this section focuses on proving (B’).

Logical relation for λF We start by defining a logical relation for λF—see Figure 6—and proving the fun-
damental property of the logical relation. We then prove that this logical relation corresponds to contextual
and ciu equivalence.

Theorem 1.6 (λF Fundamental Property)

If ∆; Γ ` e : τ then ∆; Γ ` e -log
F e : τ.

Proof By induction on the derivation ∆; Γ ` e : τ. Each case follows from the corresponding compatibility
lemma.

Next, we prove that the λF logical relation is sound and complete with respect to contextual equivalence.
Note that the following lemmas (along with the property that -ctx

F implies -ciu
F , Lemma 1.2), together

establish that logical approximation -log
F , ciu-approximation -ciu

F , and contextual approximation -ctx
F all

coincide. Therefore, for subsequent lemmas, when proving contextual equivalence properties, we will be free
to switch to whichever definition is most convenient to work with for proving the property at hand.

Theorem 1.7 (λF: Soundness w.r.t. Contextual Approx)

If ∆; Γ ` e1 -
log
F e2 : τ then ∆; Γ ` e1 -ctx

F e2 : τ.

Lemma 1.8 (λF: CIU Approx Implies Logical Approx)

If ∆; Γ ` e1 -ciu
F e2 : τ then ∆; Γ ` e1 -

log
F e2 : τ.

Theorem 1.9 (λF: Completeness w.r.t. Contextual Approx)

If ∆; Γ ` e1 -ctx
F e2 : τ then ∆; Γ ` e1 -

log
F e2 : τ.

Proof Immediate from Lemmas 1.2 and 1.8.

Back-translation from λF to λA To prove that if two terms e1 and e2 are equivalent in λA then they are
equivalent in λF we need to be able to back-translate an arbitrary λF term to a λA term. Figure 7 presents
the back-translation; notice that this is simply A-normalization. We prove that for every λF term e of type
τ, it is possible to back-translate (or A-normalize) to some λA term e that is equivalent to the original λF

term e.

Lemma 1.10 (From λF term to equivalent λA term)

If ∆; Γ ` e : τ then there exists e ∈ λA s.t. (e)A = e and ∆′; Γ′ ` e ≈log
F e : τ (where ∆′ and Γ′ are

identical to ∆ and Γ, respectively, except that the color of type variables in ∆′ and the color of term variables
and their types in Γ′ is orange instead of green).

Proof By induction on the structure of the term e. The proof requires an auxiliary lemma that the
re-normalization function (·)# preserves equivalence—i.e., that ∆; Γ ` E[e] ≈log

F (E[e])# : τ.

12

Atom[τ1,τ2] = { (e1, e2) | ·; · ` e1 : τ1 ∧ ·; · ` e2 : τ2 }

Rel[τ1,τ2] = {R ∈P(Atomval[τ1,τ2]) |
∀(v1,v2) ∈ R. ∀v2

′. v2 -ciu
ST v2

′ : τ2 =⇒ (v1,v2
′) ∈ R }

V JαK ρ = R where ρ(α) = (τ1,τ2, R)

V JboolK ρ = { (v,v) ∈ Atom[bool,bool] | v = true ∨ v = false }

V Jτ×τ′K ρ = { ((v1,v1
′), (v2,v2

′)) ∈ Atom[ρ1(τ×τ′), ρ2(τ×τ′)] |
(v1,v2) ∈ V JτK ρ ∧ (v1

′,v2
′) ∈ V Jτ′K ρ }

V J∀ [α].τ→τ′K ρ = { (λ [α] (x :τ). e1,λ [α] (x :τ). e2) ∈ Atom[ρ1(∀ [α].τ→τ′), ρ2(∀ [α].τ→τ′)] |
∀τ1,τ2, R ∈ Rel[τ1,τ2].
∀(v1,v2) ∈ V JτK ρ[α 7→ (τ1,τ2, R)].

(e1[τ1/α][v1/x], e2[τ2/α][v2/x]) ∈ E Jτ′K ρ[α 7→ (τ1,τ2, R)] }

E JτK ρ = { (e1, e2) ∈ Atom[ρ1(τ), ρ2(τ)] |
∀v1. e1 7−→∗ v1 =⇒ ∃v2. e2 7−→∗ v2 ∧ (v1,v2) ∈ V JτK ρ }

D J·K = { ∅ }
D J∆,αK = { ρ[α 7→ (τ1,τ2, R)] | ρ ∈ D J∆K ∧ R ∈ Rel[τ1,τ2] }

G J·K ρ = { ∅ }
G JΓ, x : τK ρ = { γ[x 7→ (v1,v2)] | γ ∈ G JΓK ρ ∧ (v1,v2) ∈ V JτK ρ }

∆; Γ ` e1 -
log
ST e2 : τ

def
= ∆; Γ ` e1 : τ ∧ ∆; Γ ` e2 : τ ∧

∀ρ, γ. ρ ∈ D J∆K ∧ γ ∈ G JΓK ρ =⇒ (ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E JτK ρ

∆; Γ ` e1 ≈log
ST e2 : τ

def
= ∆; Γ ` e1 -

log
ST e2 : τ ∧ ∆; Γ ` e2 -

log
ST e1 : τ

Figure 6: System F (λF): Logical Relation

Wrapping up proof of B’ Finally, our desired lemma (B’), that ∆; Γ ` e1 ≈ctx
A e2 : τ implies ∆; Γ `

e1 ≈ctx
F e2 : τ, follows as a corollary from the lemma below.

Lemma 1.11 (Ciu-equivalence in λA implies ciu-equivalence in λF)
Let ∆ and Γ be λA type and value environments, respectively. Let ∆′ and Γ′ be λF type and value envi-
ronments that are identical to ∆ and Γ, except that the color of type variables in ∆′ and the color of term
variables and types in Γ′ is green instead of orange. Finally, let e1 and e2 be λA terms and let τ be a λA

type. (Note that these are also valid terms and types in λF.)
If ∆; Γ ` e1 -ciu

A e2 : τ then ∆′; Γ′ ` e1 -ciu
F e2 : τ.

Proof Suppose E : (·; · ` δf(τ) ⇒ (·; · ` bool), δf |= ∆′, γf : δf(Γ
′) and E[δf(γf(e1))] ⇓ v where v : bool.

We are required to show: E[δf(γf(e2))] ⇓ v.
Let δf be identical to δa except that the color of type variables and types in δf is green instead of orange.
We back-translate E (or, to be precise, λ(x : δf(τ)).E[x]) and γf to E and γa, respectively, using the back-
translation (A-normalization) in Figure 7. By Lemma 1.10 E and γa are equivalent to the original E and γf .
Hence, E[δf(γf(e1))] ≈ctx

F E(δa(γa(e1)) : bool. Hence, it follows that E(δa(γa(e1)) ⇓ v. Next, we instantate
the premise with E (after morphing it into a valid evaluation context), δa, and γa. Hence, E[δa(γa(e2))] ⇓ v.
Since E(δa(γa(e2)) ≈ctx

F E[δf(γf(e2))] : bool, it follows that E[δf(γf(e2))] ⇓ v.

13

A-normalization function: (e)A

(x)A = x

(true)A = true

(false)A = false

(if e then e1 else e2)A = (let x = [(e)A] in (if x then (e1)A else (e2)A))#

((e1, e2))A = (let x1 = [(e1)A] in (let x2 = [(e2)A] in (x1,x2))#)#

(πie)A = (let x = [(e)A] in πix)#

(λ [α] (x :τ). e)A = λ [α] (x :τ). (e)A

(e1 [τ] e2)A = (let x1 = [(e1)A] in (let x2 = [(e2)A] in x1 [τ] x2)#)#

Figure 7: “Back-translation”: A-normalizing λF terms to λA terms

14

2 Related Work

Fully Abstract Denotational Models The earliest work on full abstraction was done in the context
of denotational models of languages (e.g., [27, 15, 23, 1]). The denotation function can be thought of as a
translation from a syntactic/operational calculus into a mathematical domain. The goal there is to ensure
that the denotational semantics does not expose differences that are not operationally observable [30]. As
typified by parallel OR in PCF [34], in a lot of this work, full abstraction is achieved by adding certain
behaviors that are possible in the denotational semantics (target) to the operational semantics of the language
being modeled (source). Our work differs somewhat from that on denotational models in that we are
interested in proving full abstraction of translations (mostly compilers); here the target language also comes
with an operational semantics. In particular, we focus on type-directed and type-preserving compilation and
critically require a sufficiently “clever” type translation such that the types of compiled terms can impose
well-behavedness constraints on any target-level term that might interact with the result of the translation,
thus ensuring that target contexts cannot violate source-level abstractions.

Translation to Continuation-Passing Style CPS has been studied extensively in the literature. Here
we only discuss work that seems most closely related to ours. A number of papers have investigated full
abstraction for CPS translation, but there is no prior full abstraction result for a CPS translation that
uses a locally polymorphic answer type. Meyer and Riecke [28] pointed out that standard (untyped) CPS
translation does not preserve observational equivalence and conjectured as to how this could be repaired.

Several papers have looked at the use of linear types to ensure that a function calls its continuation exactly
once. Zdancewic and Myers [45] present a security-typed CPS target language with higher-order, imperative
features where linear continuations are needed to ensure noninterference. They also give a translation from
a security-typed, direct-style language into the afore-mentioned target language using linear typing of CPS
and prove that the translation preserves well-typedness. Berdine et al. [9, 11] show that continuations are
used linearly in a variety of situations, including procedure call/return, exception raising/handling, labelled
jumps (goto statements) and process switching (coroutines). Neither Zdancewic and Myers [45] nor Berdine
et al. [9, 11] present any full abstraction results for their CPS translation.

Berdine, O’Hearn, and Thielecke [10] use affine typing of CPS to extract the range of CPS for a call-by-
value λ-calculus. Specifically, they restrict the grammar of types in the target to only those forms exercised
by the CPS translation. They then define the grammar for target terms so that there is one syntactic
category for terms of each type. This allows them to give a precise characterization of the range of CPS by
showing that all terms in the target come from some term in the source—that is, they prove a “no junk”
lemma (also known as full completeness) that states that for each term M in the target, there exists a term N
in the source such that M is βη-equivalent to the CPS translation of N . The proof of this “no junk” lemma
requires back-translating M to get N . The critical difference between Berdine et al.’s work [10] and ours that
their target language is exactly as expressive as the source (i.e., every target term can be back-translated),
while our target language is more expressive than the source (i.e., there exist well-typed target terms that
cannot be back-translated, specifically, terms of type τ where τ is not a translation type.) Consequently,
our proof framework allows for one target language to serve as the target for different source languages and
compilers, and allows components written in these different source languages to interoperate at the target
level (assuming the compilation strategies rely on similar representation invariants at the target level). As
a concrete example, we could define a CPS translation from a second source language, System F, to our
target langauge λT. Now source code written in λS can interoperate with source code written in System
F after CPS translation to λT, as long as we have a well-typed program after “linking” the two compiled
components in λT. This would not be possible if we had resorted to a strategy like Berdine et al.’s where
back-translation requires that the target language be no more expressive than the source.

Sabry and Felleisen [37] study equational completeness of CPS based on βη-equality rather than obser-
vational equivalence. They present a CPS transformation and an inverse mapping (or “back-translation”).
From the CPS transformation, they extract the precise language of CPS terms closed under βη-equality,
arriving at almost exactly the same syntax (modulo “administrative” redexes) as Berdine et al. [10]. Sabry

15

and Felleisen analyze the syntax of the output of CPS while Berdine et al. analyze the types of the output
of CPS to arrive as almost exactly the same target language syntax. Hence, Berdine et al.’s back-translation
is essentially Sabry and Felleisen’s inverse mapping (from CPS to direct style).

Hasegawa [19] has proved a full completeness result for the linear CPS transformation in the setting
of a simply typed λ-calculus using syntactic methods based on long βη-normal forms. Like Sabry and
Felleisen [37], he considers only βη-equivalence, not observational equivalence.

Using categorical game semantics, Laird [26] showed that for call-by-value PCF one can recover full
abstraction of CPS translation by imposing an affine typing discipline on continuations, essentially employing
the idea of “linearly-used continuations” presented by Berdine et al. [9]. We feel that with proofs based on
game semantics, it is hard for non-experts to understand even the statements of the main lemmas required for
the proof. Therefore, a primary objective of our work has been to come up with an operational proof technique
that’s simpler to understand and could (plausibly) be used throughout all the stages of a compiler. The proof
techniques described in this paper, combined with recent advances in step-indexed logical relations [2, 5] seem
like they would scale when applied to richer languages and successive compilation phases.

Thielecke [42] seems to have been the first to study CPS transformation with a locally polymorphic answer
type, though his work focuses on the role of answer type polymorphism in a language with control effects.
He uses parametricity reasoning to observe the connection between linear typing of CPS and answer type
polymorphism in a pure call-by-value setting, showing that functions without control effects do not impose
any constraints on the answer type and so can have a locally polymorphic answer type. He essentially proves
the equivalent of our continuation-shuffling lemma, a property that he calls naturality. He has also studied
answer type polymorphism for the call-by-name CPS transform and used it to show that the latter satisfies
the eta-law [43]. He does not, however, discuss full abstraction of CPS translations.

Danvy [17] presents a translation from CPS programs into direct-style (DS) programs in an untyped
setting. His technique relies on syntactically characterizing CPS terms that can be translated back to DS.
Specifically, to be back-translatable, a CPS term must satisfy certain occurrence conditions (see Danvy [17],
Fig. 2) that ensure that the CPS term encodes a call-by-value left-to-right evaluation order, checked essen-
tially by parsing the CPS term using a stack that holds the formal parameters of continuations. Hence, the
term

λk1. k1 (λx. λk2. g x (λv2. f x (λv1. v1 v2 (λv3. k v3)))) (1)

does not satisfy Danvy’s occurrence conditions over formal parameters because (g x) is computed before
(f x), but its result v2 is used before the result v1 of (f x). Danvy explains that (1) must be rewritten to
an equivalent term, essentially by doing an η-expansion in CPS:

λk1. k1 (λx. λk2. g x (λv2. (λv. λk3. f x (λv1. v1 v (λv4. k3v4))) v2 (λv3. k v3))) (2)

The above term (2) does satisfy the occurrence conditions and therefore can be back-translated, using Danvy’s
translation to DS, to λx. (λ v. f x) (g x). We, on the other hand, use types to semantically characterize terms
that can be translated back to our direct-style λS, without requiring that all of their subterms also have
back-translatable types. As a result, we can back-translate more terms; in particular, we can back-translate
an appropriately typed version of (1) without first rewriting it to (2) as Danvy does. Finally, our CPS
grammar does not distinguish between ordinary λ’s and continuation λ’s as Danvy’s does. He does not make
use of partial evaluation as we do, i.e., to deal with subterms that are not, on their own, back-translatable.

Several researchers have investigated back-and-forth translations between direct-style and CPS semantics
following Meyer and Wand’s [29] work on retractions. An embedding-retraction pair (i, j) is a pair of functions
such that j◦i is the identity function. Meyer and Wand work with the typed λ-calculus and use the “standard”
type translation for CPS that we showed is not fully abstract in Section 1. They write σ′ to denote their type
translation of σ; let σ∗ = (σ′ → ans)→ ans. They show that there exist embedding-retraction pairs (iσ, jσ)
and (Iσ, Jσ)—definable in call-by-name λ-calculus (CBN)—where iσ : σ → σ′, jσ : σ′ → σ, Iσ : σ′ → σ∗,
and Jσ : σ∗ → σ′. Their main result is the Retraction Theorem which says that (jσ ◦ Jσ) is the inverse
of the CPS transform, i.e., M =CBN jσ(Jσ(M)), where M is the CPS transform of M . The boundary
terms TS σ and σST in our multi-language semantics are similar in spirit to iσ and jσ, respectively; the
property that (jσ ◦ iσ) = id is analogous to (part 1) of our boundary cancellation property (Lemma 9.1); and

16

their Retraction Theorem, which says that the retraction of a translation is equivalent to the original term,
is analogous to our “translation is equivalent to embedding” lemma (Corollary 9.6).1 But there are also
important technical differences since our target language (System F) is more expressive than theirs (STLC),
and due to the fact that we make use of a multi-language semantics. In particular, our boundary terms
are “built-in” with an appropriate operational semantics; thus our embedding-retraction pairs do not have
to be definable in the target language as is the case with retractions, and this makes our multi-language
technique more general. With retractions, the source language is generally assumed to be a strict subset
of the target and the Retraction Theorem proves equivalence with respect to the (larger) target language.
Note that our λS is not a strict subset of λT since the latter syntactically enforces continuation-passing
style. Meyer and Wand’s Retraction Theorem is essentially analogous to our proof of Part (2). There is no
analog to our Part (1) and no proof of full abstraction. In particular, Meyer and Riecke [28] subsequently
showed that if we replace CBN βη-equational reasoning with call-by-value observational equivalence, then
the embedding-retraction pairs defined in Meyer-Wand no longer suffice. In fact, Meyer and Riecke failed to
prove a Retraction Theorem in this setting.

Later Riecke [35] and Riecke and Viswanathan [35] investigated a semantic variation of the retraction
approach with the goal of isolating side-effects in sequential programs. Also, Filinski [18] generalized Meyer
and Wand’s Retraction Theorem to a CPS transform for the monadic metalanguage. Like Meyer-Wand,
Filinski’s technique does not generalize to a language with divergence.

Berger, Honda, and Yoshida have studied fully abstract translations from various languages (with recur-
sion [12], polymorphism [13, 14], control [21], state [20], and concurrency [20]) to linear or affinely typed—and
in some cases polymorphic [13, 14]—π-calculus. They prove their translations fully abstract in the case of
recursion (with source language PCF) [12], polymorphism (with source language System F) [13, 14], and con-
trol [21], but only speculate about full abstraction in the case of state and concurrency [20]. Since the usual
translation of the λ-calculus into the π-calculus can be seen as a form of CPS translation, it may be useful to
further investigate the connections between translations into the π-calculus and translations to continuation-
passing style. Like us, Berger et al. rely on typing in the π-calculus to ensure that the translations are fully
abstract. Unlike us, they rely on game semantics to prove their translations fully abstract. In this paper, we
have shown that terms of translation type are back-translatable. Analogously, Berger et al. show that terms
of translation type are definable. Definability says that for every π-calculus term P of translation type σ•,
there exists a well-typed source term M : σ (where they write σ• to denote the translation of a source type
σ). Like us, they note that one reason definability is difficult to establish is because subterms of P may
not be of translation type, which means that the proof cannot be carried out simply by induction on typing
derivations. Our strategy for dealing with subterms that are not of translation type was to show that it is
always possible to perform some partial evaluation that gets rid of the problematic subterm, leaving only
subterms that are of translation type. Their strategy is to show that every finite target term P of translation
type can be represented by a finite innocent function that can be turned into a finite canonical form, which
in turn is easily transformed into some source term M such that P is equivalent to the translation of M .
Thus, they use the notion of innocence [22] from game semantics to establish, in essence, that translation
types at the target level are inhabited by only well-behaved computations. They are, thus, able to perform
induction on the size of the corresponding innocent functions. This approach is similar to that of Laird’s [26]
whose proof of full abstraction also relies on game semantics. Our proof method is more elementary as it
relies on operational/syntactic techniques (coupled with typing) for back-translatability; expertise in game
semantics is not required to follow the details.

Full Abstraction of Other Translations Most work on proving that translations preserve equivalence
has typically resorted to adding precisely those target behaviors that are problematic to the source language.
For instance, Riecke [36] investigates fully abstract translations between CBN, CBV, and lazy PCF, using

1In technical terms, our previous work on typed closure conversion seems closer to the work on retractions since there we
do not use a multi-language semantics; instead the source and target are the same language and in this language we define
wrapper functions W+ and W− that are analogous to i and j, respectively, and we prove a theorem similar to Meyer and
Wand’s (except that it’s for closure conversion, not CPS conversion).

17

denotational models of the languages that include the parallel conditional. This is needed to make the
models fully abstract. Also, Sanjabi and Ong [38] investigate a translation from a core calculus of additive
aspects to a target language with higher-order store in the style of ML references. After showing that their
original translation is not fully abstract, they weaken the source language by endowing it with the power to
construct “bad labels”—the analogue of the bad references at the target that were responsible for the failure
of full abstraction.

Shikuma and Igarashi [40] prove full abstraction of a translation from STLC with seal and unseal operators
to STLC with base types for each sealing authority. They use a syntactic proof method, but their back-
translation is only applicable to terms all of whose subterms are of translation type. Our back-translation is
more general precisely because it does not impose this restriction.

18

3 Source Language λS

Types σ ::= bool | σ1→σ2

Values v ::= x | true | false | λx :σ. e

Expressions e ::= v | if e then e1 else e2 | e1 e2

Eval. Contexts E ::= [·]S | if E then e1 else e2 | E e | v E

e 7−→ e′

if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

(λx :σ. e) v 7−→ e[v/x]

e 7−→ e′

E[e] 7−→ E[e′]

Figure 8: Source Language (STLC): Syntax and Operational Semantics

Value Environment Γ ::= · | Γ, x : σ

Γ ` e : σ

x : σ ∈ Γ

Γ ` x : σ Γ ` true : bool Γ ` false : bool

Γ ` e : bool Γ ` e1 : σ Γ ` e2 : σ

Γ ` if e then e1 else e2 : σ

Γ, x : σ1 ` e : σ2

Γ ` λx :σ1. e : σ1→σ2

Γ ` e1 : σ2→σ Γ ` e2 : σ2

Γ ` e1 e2 : σ

Figure 9: Source Language (STLC): Static Semantics

19

Contexts C ::= [·]S | if C then e1 else e2 | if e then C else e2 | if e then e1 else C |
λx :σ.C | C e | e C

Figure 10: Source Language (STLC) Syntax - Contexts

` C : (Γ ` σ)⇒ (Γ′ ` σ′)

Γ ⊆ Γ′

` [·]S : (Γ ` σ)⇒ (Γ′ ` σ)

` C : (Γ ` σ)⇒ (Γ′ ` bool) Γ′ ` e1 : σ′ Γ′ ` e2 : σ′

` if C then e1 else e2 : (Γ ` σ)⇒ (Γ′ ` σ′)

Γ′ ` e : bool ` C : (Γ ` σ)⇒ (Γ′ ` σ′) Γ′ ` e2 : σ′

` if e then C else e2 : (Γ ` σ)⇒ (Γ′ ` σ′)

Γ′ ` e : bool Γ′ ` e1 : σ′ ` C : (Γ ` σ)⇒ (Γ′ ` σ′)

` if e then e1 else C : (Γ ` σ)⇒ (Γ′ ` σ′)

` C : (Γ ` σ)⇒ (Γ′, x : σ1 ` σ2)

` λx :σ1.C : (Γ ` σ)⇒ (Γ′ ` σ1→σ2)

` C : (Γ ` σ)⇒ (Γ′ ` σ2→σ′) Γ′ ` e2 : σ2

` C e2 : (Γ ` σ)⇒ (Γ′ ` σ′)

Γ′ ` e1 : σ2→σ′ ` C : (Γ ` σ)⇒ (Γ′ ` σ2)

` e1 C : (Γ ` σ)⇒ (Γ′ ` σ′)

Figure 11: Source Language (STLC) Static Semantics - Contexts

Definition 3.1 (Contextual Approximation & Equivalence)
Let Γ ` e1 : σ and Γ ` e2 : σ.

Γ ` e1 -ctx
S e2 : σ

def
= ∀C, v1. ` C : (Γ ` σ)⇒ (· ` bool) ∧ C[e1] ⇓ v1 =⇒

∃v2. C[e2] ⇓ v2 ∧ v1 = v2

Γ ` e1 ≈ctx
S e2 : σ

def
= Γ ` e1 -ctx

S e2 : σ ∧ Γ ` e2 -ctx
S e1 : σ

Definition 3.2 (CIU Approximation & Equivalence)
Let Γ ` e1 : σ and Γ ` e2 : σ.

Γ ` e1 -ciu
S e2 : σ

def
= ∀E, γ, v1. ` E : (· ` σ)⇒ (· ` bool) ∧

` γ : Γ ∧ E[γ(e1)] ⇓ v1 =⇒
∃v2. E[γ(e2)] ⇓ v2 ∧ v1 = v2

Γ ` e1 ≈ciu
S e2 : σ

def
= Γ ` e1 -ciu

S e2 : σ ∧ Γ ` e2 -ciu
S e1 : σ

20

4 Target Language λT

Types τ ::= bool | τ1×τ2 | α | ∀ [α].τ1→τ2

Values v ::= x | true | false | (v1,v2) | λ [α] (x :τ). e

Expressions e ::= v | if v then e1 else e2 | let x = πiv in e | v1 [τ] v2

Eval. Contexts E ::= [·]T

e 7−→ e′

if true then e1 else e2 7−→ e1

if false then e1 else e2 7−→ e2

let x = π1(v1,v2) in e 7−→ e[v1/x]

let x = π2(v1,v2) in e 7−→ e[v2/x]

(λ [α] (x :τ1). e) [τ] v 7−→ e[τ/α][v/x]

e 7−→ e′

E[e] 7−→ E[e′]

Figure 12: Target Language (System F): Syntax and Operational Semantics

21

Type Context ∆ ::= · | ∆,α
Value Context Γ ::= · | Γ,x : τ

∆ ` τ

α ∈ ∆

∆ ` α ∆ ` bool

∆ ` τ1 ∆ ` τ2

∆ ` τ1×τ2

∆,α ` τ1 ∆,α ` τ2

∆ ` ∀ [α].τ1→τ2

∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` τ

∆ ` Γ,x : τ

∆; Γ ` e : τ

∆ ` Γ x : τ ∈ Γ

∆; Γ ` x : τ

∆ ` Γ

∆; Γ ` true : bool

∆ ` Γ

∆; Γ ` false : bool

∆; Γ ` v : bool ∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` if v then e1 else e2 : τ

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆; Γ ` (v1,v2) : τ1×τ2

∆; Γ ` v : τ1×τ2 ∆; Γ,x : τ1 ` e : τ

∆; Γ ` let x = π1v in e : τ

∆; Γ ` v : τ1×τ2 ∆; Γ,x : τ2 ` e : τ

∆; Γ ` let x = π2v in e : τ

∆ ` Γ ∆,α; Γ,x : τ1 ` e : τ2

∆; Γ ` λ [α] (x :τ1). e : ∀ [α].τ1→τ2

∆; Γ ` v1 : ∀ [α].τ2→τ ∆ ` τ′ ∆; Γ ` v2 : τ2[τ′/α]

∆; Γ ` v1 [τ′] v2 : τ[τ′/α]

Figure 13: Target Language (System F): Static Semantics

22

Value Contexts Cv ::= [·]vT | (Cv,v2) | (v1,C
v) | λ [α] (x :τ).C

Contexts C ::= [·]T | Cv | if Cv then e1 else e2 | if e then C else e2 | if e then e1 else C |
let x = πiC

v in e | let x = πiv in C | Cv [α] v2 | v1 [α] Cv

Figure 14: Target Language (System F) Syntax - Contexts

` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]vT : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ)

` Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ1) ∆′; Γ′ ` v2 : τ2

` (Cv,v2) : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ1×τ2)

∆′; Γ′ ` v1 : τ1 ` Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ2)

` (v1,C
v) : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ1×τ2)

` C : (∆; Γ ` τ)⇒ (∆′,α; Γ′,x : τ1 ` τ2)

` λ [α] (x :τ1).C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` ∀ [α].τ1→τ2)

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]T : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ)

` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` bool) ∆′; Γ′ ` e1 : τ′ ∆′; Γ′ ` e2 : τ′

` if C then e1 else e2 : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` e : bool ` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′) ∆′; Γ′ ` e2 : τ′

` if e then C else e2 : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` e : bool ∆′; Γ′ ` e1 : τ′ ` C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

` if e then e1 else C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

` Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ1×τ2) ∆′; Γ′,x : τi ` e : τ′

` let x = πiC
v in e : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` v : τ1×τ2 ` C : (∆; Γ ` τ)⇒ (∆′; Γ′,x : τi ` τ′)

` let x = πiv in C : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′)

` Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` ∀ [α].τ2→τ′) ∆′; Γ′ ` v2 : τ2[τ1/α]

` Cv [τ1] v2 : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′[τ1/α])

∆′; Γ′ ` v1 : ∀ [α].τ2→τ′ ` Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ2[τ1/α])

` v1 [τ1] Cv : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ′[τ1/α])

Figure 15: Target Language (System F) Static Semantics - Contexts

23

In the definition of contextual equivalence below, we must make sure that the terms C[e1] and C[e2]
are syntactically well-formed target terms. This extra check in needed because the hole in a context C may
be of the form [·]T or [·]vT. If the hole in context C is of the form [·]T, then any well-typed term e may be
placed in C. However, if the hole in C is of the form [·]vT, then C[e] will not be a well-formed term unless e
is a value.

Definition 4.1 (Contextual Approximation & Equivalence)
Let ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ.

∆; Γ ` e1 -ctx
T e2 : τ

def
= ∀C,v1. ` C : (∆; Γ ` τ)⇒ (·; · ` bool) ∧

·; · ` C[e1] : bool ∧ ·; · ` C[e2] : bool ∧ C[e1] ⇓ v1 =⇒
∃v2. C[e2] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ctx
T e2 : τ

def
= ∆; Γ ` e1 -ctx

T e2 : τ ∧ ∆; Γ ` e2 -ctx
T e1 : τ

Below δ is a finite map from type variables α to closed λT types τ. We write δ |= ∆ whenever dom(δ) = ∆.

Definition 4.2 (CIU Approximation & Equivalence)
Let ∆; Γ ` e1 : τ and ∆; Γ ` e2 : τ.

∆; Γ ` e1 -ciu
T e2 : τ

def
= ∀E, δ, γ,v1. ` E : (·; · ` δ(τ))⇒ (·; · ` bool) ∧

δ |= ∆ ∧ ` γ : δ(Γ) ∧ E[δ(γ(e1))] ⇓ v1 =⇒
∃v2. E[δ(γ(e2))] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ciu
T e2 : τ

def
= ∆; Γ ` e1 -ciu

T e2 : τ ∧ ∆; Γ ` e2 -ciu
T e1 : τ

24

5 CPS Translation

(bool)+ = bool

(σ1→σ2)+ = ∀ [α].(σ1
+× (σ2

+→α))→α

σ÷ = ∀ [α].(σ+→α)→α

(·)+ = ·
(Γ, x : σ)+ = Γ+,x : σ+

Figure 16: CPS: Type Translation

Γ ` e : σ ; v where · ; Γ+ ` v : σ÷

Γ ` true : bool ; λ [α] (k : bool+→α). k true Γ ` false : bool ; λ [α] (k : bool+→α). k false

Γ ` e : bool ; v Γ ` e1 : σ ; v1 Γ ` e2 : σ ; v2

Γ ` if e then e1 else e2 : σ ; λ [α] (k :σ+→α).
v [α] (λ(x : bool). if x then (v1 [α] k) else (v2 [α] k))

x : σ ∈ Γ

Γ ` x : σ ; λ [α] (k :σ+→α). k x

Γ, x : σ1 ` e : σ2 ; v

Γ ` λx :σ1. e : σ1→σ2 ; λ [α] (k : (σ1→σ2)+→α).

k (λ [β] ((x,k′) :σ1
+× (σ2

+→β)). (v [β] k′))

Γ ` e1 : σ2→σ ; v1 Γ ` e2 : σ2 ; v2

Γ ` e1 e2 : σ ; λ [α] (k :σ+→α).

v1 [α] (λ(x1 : (σ2→σ)+). v2 [α] (λ(x2 :σ2
+). x1 [α] (x2,k)))

Figure 17: CPS: Term Translation

25

6 Combined Language λST

Types ϕ ::= σ | τ

Expressions e ::= . . . | σST e
e ::= . . . | let x = (TS σ e) in e
e ::= e | e

Values v ::= v | v

Eval. Contexts E ::= . . . | σST E
E ::= . . . | let x = (TS σ E) in e
E ::= E | E

e 7−→ e′

boolST true 7−→ true

boolST false 7−→ false
σ1→σ2ST v 7−→ λx :σ1.

σ2ST (let z = (TS σ1 x) in (v [σ2
+] (z, id)))

let y = (TS bool true) in e 7−→ e[true/y]

let y = (TS bool false) in e 7−→ e[false/y]

let y = (TS σ1→σ2 v) in e 7−→ e[v/y]

where v = λ [α] ((x,k) :σ1
+× (σ2

+→α)).
let z = (TS σ2 (v (σ1ST x))) in k z

e 7−→ e′

E[e] 7−→ E[e′]

Figure 18: Combined Language (λST): Syntax and Operational Semantics

26

Type Context ∆ ::= · | ∆,α
Value Context Γ ::= · | Γ, x : σ | Γ,x : τ

∆ ` ϕ

∆ ` bool

∆ ` σ1 ∆ ` σ2

∆ ` σ1→σ2

α ∈ ∆

∆ ` α ∆ ` bool

∆ ` τ1 ∆ ` τ2

∆ ` τ1×τ2

∆,α ` τ1 ∆,α ` τ2

∆ ` ∀ [α].τ1→τ2

∆ ` Γ

∆ ` ·
∆ ` Γ ∆ ` σ

∆ ` Γ, x : σ

∆ ` Γ ∆ ` τ

∆ ` Γ,x : τ

∆; Γ ` e : ϕ

∆ ` Γ x : σ ∈ Γ

∆; Γ ` x : σ

∆ ` Γ

∆; Γ ` true : bool

∆ ` Γ

∆; Γ ` false : bool

∆; Γ ` e : bool ∆; Γ ` e1 : σ ∆; Γ ` e2 : σ

∆; Γ ` if e then e1 else e2 : σ

∆; Γ, x : σ1 ` e : σ2

∆; Γ ` λx :σ1. e : σ1→σ2

∆; Γ ` e1 : σ2→σ ∆; Γ ` e2 : σ2

∆; Γ ` e1 e2 : σ

∆ ` Γ x : τ ∈ Γ

∆; Γ ` x : τ

∆ ` Γ

∆; Γ ` true : bool

∆ ` Γ

∆; Γ ` false : bool

∆; Γ ` v : bool ∆; Γ ` e1 : τ ∆; Γ ` e2 : τ

∆; Γ ` if v then e1 else e2 : τ

∆; Γ ` v1 : τ1 ∆; Γ ` v2 : τ2

∆; Γ ` (v1,v2) : τ1×τ2

∆; Γ ` v : τ1×τ2 ∆; Γ,x : τ1 ` e : τ

∆; Γ ` let x = π1v in e : τ

∆; Γ ` v : τ1×τ2 ∆; Γ,x : τ2 ` e : τ

∆; Γ ` let x = π2v in e : τ

∆ ` Γ ∆,α; Γ,x : τ1 ` e : τ2

∆; Γ ` λ [α] (x :τ1). e : ∀ [α].τ1→τ2

∆; Γ ` v1 : ∀ [α].τ2→τ ∆ ` τ′ ∆; Γ ` v2 : τ2[τ′/α]

∆; Γ ` v1 [τ′] v2 : τ[τ′/α]

∆; Γ ` e : σ+

∆; Γ ` σST e : σ

∆; Γ ` e : σ ∆; Γ,x : σ+ ` e : τ

∆; Γ ` let x = (TS σ e) in e : τ

Figure 19: Combined Language (λST): Static Semantics

27

Contexts C ::= . . . | σST C
C ::= . . . | let x = (TS σ C) in e | let x = (TS σ e) in C
C ::= C | C

Figure 20: Combined Language (λST) Syntax - Contexts

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′)

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]S : (∆; Γ ` σ)⇒ (∆′; Γ′ ` σ)

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` bool) ∆′; Γ′ ` e1 : σ′ ∆′; Γ′ ` e2 : σ′

` if C then e1 else e2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

∆′; Γ′ ` e : bool ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′) ∆′; Γ′ ` e2 : σ′

` if e then C else e2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

∆′; Γ′ ` e : bool ∆′; Γ′ ` e1 : σ′ ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

` if e then e1 else C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′, x : σ1 ` σ2)

` λx :σ1.C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ1→σ2)

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ2→σ′) ∆′; Γ′ ` e2 : σ2

` C e2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

∆′; Γ′ ` e1 : σ2→σ′ ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ2)

` e1 C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ′)

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ+)

` σST C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ)

Figure 21: Combined Language (λST) Static Semantics - Contexts I

28

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′) (contd.)

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]vT : (∆; Γ ` τ)⇒ (∆′; Γ′ ` τ)

` Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ1) ∆′; Γ′ ` v2 : τ2

` (Cv,v2) : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ1×τ2)

∆′; Γ′ ` v1 : τ1 ` Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ2)

` (v1,C
v) : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ1×τ2)

` C : (∆; Γ ` ϕ)⇒ (∆′,α; Γ′,x : τ1 ` τ2)

` λ [α] (x :τ1).C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ∀ [α].τ1→τ2)

∆ ⊆ ∆′ Γ ⊆ Γ′

` [·]T : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ)

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` bool) ∆′; Γ′ ` e1 : τ′ ∆′; Γ′ ` e2 : τ′

` if C then e1 else e2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` e : bool ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′) ∆′; Γ′ ` e2 : τ′

` if e then C else e2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` e : bool ∆′; Γ′ ` e1 : τ′ ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

` if e then e1 else C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

` Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ1×τ2) ∆′; Γ′,x : τi ` e : τ′

` let x = πiC
v in e : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

∆′; Γ′ ` v : τ1×τ2 ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′,x : τi ` τ′)

` let x = πiv in C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′)

` Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ∀ [α].τ2→τ′) ∆′; Γ′ ` v2 : τ2[τ1/α]

` Cv [τ1] v2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′[τ1/α])

∆′; Γ′ ` v1 : ∀ [α].τ2→τ′ ` Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ2[τ1/α])

` v1 [τ1] Cv : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ′[τ1/α])

` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` σ) ∆′; Γ′,x : σ+ ` e : τ

` let x = (TS σ C) in e : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ)

∆′; Γ′ ` e : σ ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′,x : σ+ ` τ)

` let x = (TS σ e) in C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` τ)

Figure 22: Combined Language (λST) Static Semantics - Contexts II

29

Definition 6.1 (Contextual Approximation & Equivalence)
Let ∆; Γ ` e1 : ϕ and ∆; Γ ` e2 : ϕ.

∆; Γ ` e1 -ctx
ST e2 : ϕ

def
= ∀C, v1. ` C : (∆; Γ ` ϕ)⇒ (·; · ` bool) ∧

·; · ` C[e1] : bool ∧ ·; · ` C[e2] : bool ∧ C[e1] ⇓ v1 =⇒
∃v2. C[e2] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ctx
ST e2 : ϕ

def
= ∆; Γ ` e1 -ctx

ST e2 : ϕ ∧ ∆; Γ ` e2 -ctx
ST e1 : ϕ

Below δ is a finite map from type variables α to closed λST types τ. We write δ |= ∆ whenever
dom(δ) = ∆.

Definition 6.2 (CIU Approximation & Equivalence)
Let ∆; Γ ` e1 : ϕ and ∆; Γ ` e2 : ϕ.

∆; Γ ` e1 -ciu
ST e2 : ϕ

def
= ∀E, δ, γ, v1. ` E : (·; · ` δ(ϕ))⇒ (·; · ` bool) ∧

δ |= ∆ ∧ ` γ : δ(Γ) ∧ E[δ(γ(e1))] ⇓ v1 =⇒
∃v2. E[δ(γ(e2))] ⇓ v2 ∧ v1 = v2

∆; Γ ` e1 ≈ciu
ST e2 : ϕ

def
= ∆; Γ ` e1 -ciu

ST e2 : ϕ ∧ ∆; Γ ` e2 -ciu
ST e1 : ϕ

30

Atom[ϕ1, ϕ2] = { (e1, e2) | ·; · ` e1 : ϕ1 ∧ ·; · ` e2 : ϕ2 }

Rel[τ1,τ2] = {R ∈P(Atomval[τ1,τ2]) |
∀(v1, v2) ∈ R. ∀v′2. v2 -ciu

ST v′2 : τ2 =⇒ (v1, v
′
2) ∈ R }

V JboolK ρ = { (v, v) ∈ Atom[bool, bool] | v = true ∨ v = false }

V Jσ→σ′K ρ = { (λx :σ. e1, λx :σ. e2) ∈ Atom[σ→σ′,σ→σ′] |
∀(v1, v2) ∈ V JσK ρ. (e1[v1/x], e2[v2/x]) ∈ E Jσ′K ρ }

V JαK ρ = R where ρ(α) = (τ1,τ2, R)

V JboolK ρ = { (v,v) ∈ Atom[bool,bool] | v = true ∨ v = false }

V Jτ×τ′K ρ = { ((v1,v1
′), (v2,v2

′)) ∈ Atom[ρ1(τ×τ′), ρ2(τ×τ′)] |
(v1,v2) ∈ V JτK ρ ∧ (v1

′,v2
′) ∈ V Jτ′K ρ }

V J∀ [α].τ→τ′K ρ = { (λ [α] (x :τ). e1,λ [α] (x :τ). e2) ∈ Atom[ρ1(∀ [α].τ→τ′), ρ2(∀ [α].τ→τ′)] |
∀τ1,τ2, R ∈ Rel[τ1,τ2].
∀(v1,v2) ∈ V JτK ρ[α 7→ (τ1,τ2, R)].

(e1[τ1/α][v1/x], e2[τ2/α][v2/x]) ∈ E Jτ′K ρ[α 7→ (τ1,τ2, R)] }

E JϕK ρ = { (e1, e2) ∈ Atom[ρ1(ϕ), ρ2(ϕ)] |
∀v1. e1 7−→∗ v1 =⇒ ∃v2. e2 7−→∗ v2 ∧ (v1, v2) ∈ V JϕK ρ }

D J·K = { ∅ }
D J∆,αK = { ρ[α 7→ (τ1,τ2, R)] | ρ ∈ D J∆K ∧ R ∈ Rel[τ1,τ2] }

G J·K ρ = { ∅ }
G JΓ, x : ϕK ρ = { γ[x 7→ (v1, v2)] | γ ∈ G JΓK ρ ∧ (v1, v2) ∈ V JϕK ρ }

∆; Γ ` e1 -log
ST e2 : ϕ

def
= ∆; Γ ` e1 : ϕ ∧ ∆; Γ ` e2 : ϕ ∧

∀ρ, γ. ρ ∈ D J∆K ∧ γ ∈ G JΓK ρ =⇒ (ρ1(γ1(e1)), ρ2(γ2(e2))) ∈ E JϕK ρ

∆; Γ ` e1 ≈log
ST e2 : ϕ

def
= ∆; Γ ` e1 -log

ST e2 : ϕ ∧ ∆; Γ ` e2 -log
ST e1 : ϕ

Figure 23: Combined Language (λST): Logical Relation

31

7 “Backtranslation” from λST to λS

(·)� = ·
(Γ, x : σ)� = Γ�, x : σ
(Γ,y : σ+)� = Γ�, y : σ

·; Γ ` e : σ� e ·; Γ `+ e : σ+ � e

where Γ::= · | Γ, x : σ | y : σ+

and e ∈ λS and Γ� ` e : σ

· ` Γ

·; Γ ` true : bool� true

· ` Γ

·; Γ ` false : bool� false

·; Γ ` e : bool� e′ ·; Γ ` e1 : σ� e′1 ·; Γ ` e2 : σ� e′2

·; Γ ` if e then e1 else e2 : σ� if e′ then e′1 else e′2

· ` Γ x : σ ∈ Γ

·; Γ ` x : σ� x

·; Γ, x : σ1 ` e : σ2 � e′

·; Γ ` λx :σ1. e : σ1→σ2 � λx :σ1. e
′

·; Γ ` e1 : σ2→σ� e′1 ·; Γ ` e2 : σ2 � e′2

·; Γ ` e1 e2 : σ� e′1 e′2

·; Γ `+ e : σ+ � e

·; Γ ` σST e : σ� e

· ` Γ

·; Γ `+ true : bool+ � true

· ` Γ

·; Γ `+ false : bool+ � false

·; Γ `+ v : bool+ � e ·; Γ `+ e1 : σ+ � e1 ·; Γ `+ e2 : σ+ � e2

·; Γ `+ if v then e1 else e2 : σ+ � if e then e1 else e2

· ` Γ y : σ+ ∈ Γ

·; Γ `+ y : σ+ � y

· ` Γ ·; Γ,y : σ1
+ `+ e[σ2

+/α][id/k] : σ2
+ � e

·; Γ `+ λ [α] ((y,k) : (σ1
+× (σ2

+→α))). e : ∀ [α].(σ1
+× (σ2

+→α))→α� λy :σ1. e

(†)
·; Γ ` v : τ1×τ2 v = (v1,v2) ·; Γ `+ e[vi/x] : σ+ � e

·; Γ `+ let x = πiv in e : σ+ � e

(‡)

·; Γ ` v1 : ∀ [α].τ2→τ · ` τ′ ·; Γ ` v2 : τ2[τ′/α]

σ+ = τ[τ′/α] v1 = λ [α] (z :τ2). e ·; Γ `+ e[τ′/α][v2/z] : σ+ � e

·; Γ `+ v1 [τ′] v2 : σ+ � e
(@σ1. σ1

+ = ∀ [α].τ2→τ)

τ′ = σ+ v2 = (va,λ(z :σ2
+). ek)

·; Γ `+ v1 : (σ1→σ2)+ � e1 ·; Γ `+ va : σ1
+ � ea ·; Γ, z : σ2

+ `+ ek : σ+ � ek

·; Γ `+ v1 [τ′] v2 : σ+ � let z = e1 ea in ek

·; Γ ` e1 : σ1 � e′1 ·; Γ,x : σ1
+ `+ e : σ+ � e

·; Γ `+ let x = (TS σ1 e1) in e : σ+ � let x = e′1 in e

Figure 24: Relating λST terms to λS terms

32

8 λST Logical Relation Corresponds to Contextual Equivalence

In this section, we layout the framework for proving that the λST logical relation (-log
ST) is sound and complete

with respect to contextual equivalence (-ctx
ST). We first prove the Fundamental Property of the logical relation

(Section 8.1), then prove that the logical relation is sound (Section 8.2) and complete (Section 8.3) w.r.t.
contextual equivalence.

8.1 λST Logical Relation: Fundamental Property

The Fundamental Property of a logical relation says that if a term is well-typed in the language, then it
is logically related to itself. Following Pitts [33], we prove a series of compatibility lemmas from which the
Fundamental Property immediately follows.

The interesting compatibility lemmas are the ones involving boundaries—i.e., σST e and TS σ e (page 39).
These cases require proving a “Bridge Lemma” which says that embedding (using boundaries) preserves
equivalence (Lemma 8.16, page 35).

Proofs of the remaining compatibility lemmas are standard (as for any logical relation for System F), so
we simply state the lemmas without proof.

Lemma 8.1 (Compatibility Source Var)

If x : σ ∈ Γ then ∆; Γ ` x -log
ST x : σ.

Lemma 8.2 (Compatibility Source True)

∆; Γ ` true -log
ST true : bool.

Lemma 8.3 (Compatibility Source False)

∆; Γ ` false -log
ST false : bool.

Lemma 8.4 (Compatibility Source If)

If ∆; Γ ` e1 -
log
ST e2 : bool and ∆; Γ ` e′1 -

log
ST e′2 : σ and ∆; Γ ` e′′1 -

log
ST e′′2 : σ

then ∆; Γ ` if e1 then e′1 else e′′1 -
log
ST if e2 then e′2 else e′′2 : σ.

Lemma 8.5 (Compatibility Source Abs)

If ∆; Γ, x : σ ` e1 -
log
ST e2 : σ′

then ∆; Γ ` λx :σ. e1 -
log
ST λx :σ. e2 : σ→σ′.

Lemma 8.6 (Compatibility Source App)

If ∆; Γ ` e1 -
log
ST e2 : σ→σ′ and ∆; Γ ` e′1 -

log
ST e′2 : σ

then ∆; Γ ` e1 e2 -
log
ST e′1 e′2 : σ′.

Lemma 8.7 (Compatibility Target Var)

If x : τ ∈ Γ then ∆; Γ ` x -log
ST x : τ.

Lemma 8.8 (Compatibility Target True)

∆; Γ ` true -log
ST true : bool.

Lemma 8.9 (Compatibility Target False)

∆; Γ ` false -log
ST false : bool.

Lemma 8.10 (Compatibility Target If)

If ∆; Γ ` v1 -
log
ST v2 : bool and ∆; Γ ` e1 -

log
ST e2 : τ and ∆; Γ ` e1

′ -log
ST e2

′ : τ

then ∆; Γ ` if v1 then e1 else e1
′ -log

ST if v2 then e2 else e2
′ : τ.

Lemma 8.11 (Compatibility Target Pair)

If ∆; Γ ` v1 -
log
ST v2 : τ and ∆; Γ ` v1

′ -log
ST v2

′ : τ′

then ∆; Γ ` (v1,v1
′) -log

ST (v2,v2
′) : τ×τ′.

33

Lemma 8.12 (Compatibility Target Fst)

If ∆; Γ ` v1 -
log
ST v2 : τ×τ′ and ∆; Γ,x : τ ` e1 -

log
ST e2 : τ′′

then ∆; Γ ` let x = π1v1 in e1 -
log
ST let x = π1v2 in e2 : τ′′.

Lemma 8.13 (Compatibility Target Snd)

If ∆; Γ ` v1 -
log
ST v2 : τ×τ′ and ∆; Γ,x : τ′ ` e1 -

log
ST e2 : τ′′

then ∆; Γ ` let x = π2v1 in e1 -
log
ST let x = π2v2 in e2 : τ′′.

Lemma 8.14 (Compatibility Target Abs)

If ∆,α; Γ,x : τ ` e1 -
log
ST e2 : τ′

then ∆; Γ ` λ [α] (x :τ). e1 -
log
ST λ [α] (x :τ). e2 : ∀ [α].τ→τ′.

Lemma 8.15 (Compatibility Target App)

If ∆ ` τ′′ and ∆; Γ ` v1 -
log
ST v2 : ∀ [α].τ→τ′ and ∆; Γ ` v1

′ -log
ST v2

′ : τ[τ′′/α]

then ∆; Γ ` v1 [τ′′] v1
′ -log

ST v2 [τ′′] v2
′ : τ′[τ′′/α].

34

Lemma 8.16 (Bridge Lemma)

(I) If (e1, e2) ∈ E Jσ+K ∅
then (σST e1,

σST e2) ∈ E JσK ∅.

(II) If (e1, e2) ∈ E JσK ∅
and (λ(x :σ+). e1

′,λ(x :σ+). e2
′) ∈ V Jσ+→τK ρ

then (let x = (TS σ e1) in e1
′, let x = (TS σ e2) in e2

′) ∈ E JτK ρ.

Proof

We prove parts I and II simultaneously, by induction on the structure of σ.

Proof of Part I:

Case σ = bool:

(1) Have: (e1, e2) ∈ E JboolK ∅.
• Must show: (boolST e1,

boolST e2) ∈ E JboolK ∅:

(2) Consider arbitrary vf1 such that boolST e1 7−→∗ vf1 .

• Must show: ∃vf2 .
boolST e2 7−→∗ vf2 and (vf1 , v

f
2) ∈ V JboolK ∅:

• Have: e1 7−→∗ v1 by (2) and operational semantics.

• Instantiating (1) with v1:

• Have: v2 such that e2 7−→∗ v2 and (v1,v2) ∈ V JboolK ∅ .

• Have: v1 = v2 = true or v1 = v2 = false by definition of V JboolK ·.
Case v1 = v2 = true:

• Have: boolST e1 7−→∗ boolST true 7−→ true by operational semantics.

• Therefore: vf1 = true.

• Take vf2 = true; we must show boolST e2 7−→∗ vf2 , which follows from:

• Have: boolST e2 7−→∗ boolST true 7−→ true by operational semantics.

• Observe that: (true, true) ∈ V JboolK ∅.
Case v1 = v2 = false:

(Similar to true case.)

Case σ = σ→σ′:

(3) Have: (e1, e2) ∈ E
r
∀ [α].σ+× (σ′

+→α)→α
z
∅.

• Must show: (σ→σ′ST e1,
σ→σ′ST e2) ∈ E Jσ→σ′K ∅:

(4) Consider arbitrary vf1 such that σ→σ′ST e1 7−→∗ vf1 .

• Must show: ∃vf2 .
σ→σ′ST e2 7−→∗ vf2 and (vf1 , v

f
2) ∈ V Jσ→σ′K ∅:

• Have: e1 7−→∗ v1 by (4) and operational semantics.

• Instantiating (3) with v1:

(5) Have: v2 such that e2 7−→∗ v2 and (v1,v2) ∈ V
r
∀ [α].σ+× (σ′

+→α)→α
z
∅ .

• Have: σ→σ′ST e1 7−→∗ σ→σ′ST v1 7−→ λx :σ. σ
′ST let z = (TS σ x) in v1 [σ′

+
] (z, id)

by operational semantics.

35

• Therefore: vf1 = λx :σ. σ
′ST let z = (TS σ x) in v1 [σ′

+
] (z, id).

• Take
vf2 = λx :σ. σ

′ST let z = (TS σ x) in v2 [σ′
+

] (z, id); we must show σ→σ′ST e2 7−→∗ vf2
and (vf1 , v

f
2) ∈ V Jσ→σ′K ∅ , which follows from:

• Have:
σ→σ′ST e2

7−→∗ σ→σ′ST v2

7−→ λx :σ. σ
′ST let z = (TS σ x) in v2 [σ′

+
] (z, id)

by operational semantics.

• Must show: (vf1 , v
f
2) ∈ V Jσ→σ′K ∅:

• Consider arbitrary v′1 and v′2 such that (v′1, v
′
2) ∈ V JσK ∅.

• Must show:
(σ

′ST let z = (TS σ v1
′) in v1 [σ′

+
] (z, id),

σ′ST let z = (TS σ v2
′) in v2 [σ′

+
] (z, id)) ∈ E JσK ∅:

(6) Now we will show:
(let z = (TS σ v1

′) in v1 [σ′
+

] (z, id),

let z = (TS σ v2
′) in v2 [σ′

+
] (z, id)) ∈ E Jσ+K ∅:

(7) Now we will show:
(λ(z :σ+). v1 [σ′

+
] (z, id),λ(z :σ+). v2 [σ′

+
] (z, id)) ∈ E Jσ+K ∅:

• Consider arbitrary v1
′′ and v2

′′ such that (v1
′′,v2

′′) ∈ V Jσ+K ∅.

• Must show: (v1 [σ′
+

] (v1
′′, id),v2 [σ′

+
] (v2

′′, id)) ∈ E
r
σ′

+
z
∅:

• Instantiating (5) with σ′
+

, σ′
+

, and R = V
r
σ′

+
z
∅:

• Now we will show:
((v1

′′, id), (v2
′′, id)) ∈ V

r
σ+×σ′

+→α
z

[α 7→ (σ′
+
,σ′

+
, R)]:

• (Definition of V J·× ·K ·.)

• Let v1 = λ [α] (y :σ+×σ′
+→α). e1

′.

• Let v2 = λ [α] (y :σ+×σ′
+→α). e2

′.

• Have:
(e1

′[σ′
+
/α][(v1

′′, id)/y],

e2
′[σ′

+
/α][(v2

′′, id)/y]) ∈ E JαK [α 7→ (σ′
+
,σ′

+
, R)]

by definition of V J∀ [·].·→ ·K ·.
• Have: (e1

′[σ′
+
/α][(v1

′′, id)/y], e2
′[σ′

+
/α][(v2

′′, id)/y]) ∈ E JαK ∅.

• Have:
(let z = (TS σ v1

′) in v1 [σ′
+

] (z, id),

let z = (TS σ v2
′) in v2 [σ′

+
] (z, id)) ∈ E Jσ+K ∅

by induction hypothesis Part II applied to (5) and (7).

• Have: (vf1 , v
f
2) ∈ V Jσ→σ′K ∅ by induction hypothesis Part I applied to and (6).

36

Proof of Part II:

Case σ = bool:

(8) Have: (e1, e2) ∈ E JboolK ∅.
(9) Have: (λ(x : bool). e1

′,λ(x : bool). e2
′) ∈ V Jbool→τK ρ.

• Must show: (let x = (TS bool e1) in e1
′, let x = (TS bool e2) in e2

′) ∈ E JτK ρ:

(10) Consider arbitrary vf
1 such that let x = (TS bool e1) in e1

′ 7−→∗ vf
1 .

• Must show: ∃vf
2 .let x = (TS bool e2) in e2

′ 7−→∗ vf
2 and (vf

1 ,v
f
2) ∈ V JτK ρ:

• Have: e1 7−→∗ v1 by (10) and operational semantics.

• Instantiating (8) with v1:

• Have: v2 such that e2 7−→∗ v2 and (v1, v2) ∈ V JboolK ∅ .

• Have: v1 = v2 = true or v1 = v2 = false by definition of V JboolK ·.
Case v1 = v2 = true:

• Have:
let x = (TS bool e1) in e1

′

7−→∗ let x = (TS bool true) in e1
′

7−→ e1
′[true/x] 7−→∗ vf

1

by operational semantics.

• Have: let x=(TS bool e2) in e2
′ 7−→∗ let x=(TS bool true) in e2

′ 7−→ e1
′[true/x]

by operational semantics.

• Instantiating (9) with true and true:

(11) Have: (e1
′[true/x], e2

′[true/x]) ∈ E JτK ρ.

• Observe that: e1
′[true/x] 7−→∗ vf

1 .

• Have: vf
2 such that e2

′[true/x] 7−→∗ vf
2 and (vf

1 ,v
f
2) ∈ E JτK ρ by (11).

Case v1 = v2 = false:

(Similar to true case.)

Case σ = σ→σ′:

(12) Have: (e1, e2) ∈ E Jσ→σ′K ∅.
(13) Have:

(λ(x :∀ [α].σ+× (σ′
+→α)→α). e1

′,

λ(x :∀ [α].σ+× (σ′
+→α)→α). e2

′) ∈ V Jσ+→τK ρ.

.

• Must show: (let x = (TS σ→σ′
e1) in e1

′, let x = (TS σ→σ′
e2) in e2

′) ∈ E JτK ρ:

• Consider arbitrary vf
1 such that let x = (TS σ→σ′

e1) in e1
′ 7−→∗ vf

1 .

• Must show: ∃vf
2 .let x = (TS σ→σ′

e2) in e2
′ 7−→∗ vf

2 and (vf
1 ,v

f
2) ∈ V JτK ρ:

• Have: e1 7−→∗ v1 by operational semantics.

• Instantiating (12) with v1:

• Have: v2 such that e2 7−→∗ v2 and (v1, v2) ∈ V Jσ→σ′K ∅ .

• Let v1
′′ = λ [α] ((y,k) :σ+× (σ′

+→α)). let z = (TS σ′
(v1

σST y)) in k z.

• Let v2
′′ = λ [α] ((y,k) :σ+× (σ′

+→α)). let z = (TS σ′
(v2

σST y)) in k z.

• Have:
let x = (TS σ→σ′

e1) in e1
′ 7−→∗ let x = (TS σ→σ′

v1) in e1
′ 7−→ e1

′[v1
′′/x] 7−→∗ vf

1

by operational semantics.

37

• Have: let x = (TS σ→σ′
e2) in e2

′ 7−→∗ let x = (TS σ→σ′
v2) in e2

′ 7−→ e2
′[v2

′′/x] by
operational semantics.

(14) Now we will show: (v1
′′,v2

′′) ∈ V
r
∀ [α].σ+× (σ′

+→α)→α
z
ρ:

• Consider arbitrary τ1, τ2, and R such that R ∈ Rel[τ1,τ2].

(15) Consider arbitrary vy1
, vy2

, vk1, and vk2 such that

((vy1 ,vk1), (vy2 ,vk2)) ∈ V
r
σ+× (σ′

+→α)
z

[α 7→ (τ1,τ2, R)] .

(16) Consider arbitrary vf
1
′ such that let z = (TS σ′

v1 (σST vy1)) in vk1 z 7−→∗ vf
1
′.

(17) Must show: ∃vf
2
′.let z=(TS σ′

vf
2
′ (σST vy2

)) in vk2 z 7−→∗ vf
2
′ and (vf

1
′,vf

2
′) ∈

V JαK [α 7→ (τ1,τ2, R)]:

(18) Now we will show: (v1 (σST vy1), v2 (σST vy2)) ∈ E Jσ′K ∅:

• Must show: (v1 (σST vy1
), v2 (σST vy2

)) ∈ E Jσ′K ∅:

• Have: v′y1
such that σST vy1

7−→∗ v′y1
by operational semantics on (16).

(19) Must show: (vy1
,vy2

) ∈ V Jσ+K ∅:

• Have: (vy1 ,vy2) ∈ V Jσ+K ∅ ≡ (vy1 ,vy2) ∈ V Jσ+K [α 7→ (τ1,τ2, R)]
by α /∈ ftvσ+.

• Have: (v1 (σST vy1
), v2 (σST vy2

)) ∈ E JσK ∅ by induction hypothesis
Part I applied to (19).

(20) Now we will show: (λ(z :σ′
+

). vk1 z,λ(z :σ′
+

). vk2 z) ∈ V
r
σ′

+→α
z

[α 7→ (τ1,τ2, R)]:

• Consider arbitrary vz1 and vz2 such that (vz1,vz2) ∈ V Jσ+K [α 7→ (τ1,τ2, R)].

• Must show: (vk1 vz1,vk2 vz2) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• (Immediate from (15).)

• Have: (e1
′[v1

′′/x], e2
′[v2

′′/x]) ∈ E JτK ρ by (14) and (13).

• Have: vf
2 such that e2

′[v2
′′/x] 7−→∗ vf

2 and (vf
1 ,v

f
2) ∈ V JτK ρ .

• Have: ∃vf
2
′.let z = (TS σ′

vf
2
′ (σST vy2

)) in vk2 z 7−→∗ vf
2
′

and (vf
1
′,vf

2
′) ∈ V JαK [α 7→ (τ1,τ2, R)] by induction hypothesis Part II applied to (18)

and (20).

• (This is (17)—what we are meant to show.)

38

Lemma 8.17 (Compatibility Source Embed)

If ∆; Γ ` e1 -
log
ST e2 : σ+

then ∆; Γ ` σST e1 -
log
ST

σST e2 : σ.

Proof

Follows from the Part (I) of the Bridge Lemma (Lemma 8.16).

Lemma 8.18 (Compatibility Target Embed)

If ∆; Γ ` e1 -
log
ST e2 : σ and ∆; Γ,x : σ+ ` e1 -

log
ST e2 : τ

then ∆; Γ ` let x = (TS σ e1) in e1 -
log
ST let x = (TS σ e2) in e2 : τ.

Proof

Follows from Part (II) of the Bridge Lemma (Lemma 8.16).

Theorem 8.19 (λST Fundamental Property)

If ∆; Γ ` e : ϕ then ∆; Γ ` e -log
ST e : ϕ.

Proof

By induction on the derivation ∆; Γ ` e : ϕ.

Each case follows from the corresponding compatibility lemma.

39

8.2 λST Logical Relation: Soundness w.r.t. Contextual Equivalence

Note: The proof of soundness w.r.t. contextual equivalence is fairly straightforward. It follows the same
structure as the proofs in Ahmed’s earlier work on step-indexed logical relations [2, 3], except that here the
logical relations are not step-indexed so the proofs are even easier. Here we only give an outline of the proof.
For all the details of how the proof proceeds, we refer the reader to Ahmed’s earlier technical report [3],
Section C.10 (pages 123 to 130).

To prove that our logical relation (-log
ST) is sound with respect to contextual equivalence (-ctx

ST), we first
define what it means for two contexts to be logically related as follows:

Definition 8.20 (Logically Related Contexts)

` C1 -
log
ST C2 : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′) def

= ∀e1, e2. ∆; Γ ` e1 -
log
ST e2 : ϕ =⇒

∆′; Γ′ ` C1[e1] -log
ST C2[e2] : ϕ′

Next, we prove that if a context is well typed, then it is logically related to itself.

Lemma 8.21
If ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′), then ` C -log

ST C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′).

Proof

By induction on the derivation of ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′).
Each case follows from the appropriate compatibility lemmas in Section 8.1 (i.e., Lemmas 8.1 to 8.15
plus Lemmas 8.17 and 8.18).

Theorem 8.22 (Soundness wrt Contextual Equivalence (-log
ST ⊆ -ctx

ST))

If ∆; Γ ` e1 -
log
ST e2 : ϕ then ∆; Γ ` e1 -ctx

ST e2 : ϕ.

Proof

Straightforward. Follows from Lemma 8.21.
See [3] Section C.10 (page 130) for details.

40

8.3 λST Logical Relation: Completeness w.r.t. Contextual Equivalence

Note: The proof of completeness w.r.t. contextual equivalence is also quite straightforward. It follows
the same structure as the proofs in Ahmed’s earlier work on step-indexed logical relations [2, 3], except that
here the logical relations are not step-indexed so the proofs are much simpler. Here we only sketch the main
lemmas required for the proof. For all the details of how the proof proceeds, we refer the reader to Ahmed’s
earlier technical report [3], Sections E.2 and E.3 (pages 151 to 164).

Lemma 8.23 (-log
ST is Equivalence Respecting)

Let ρ ∈ D J∆K and ∆ ` ϕ.
If (v1, v2) ∈ V JϕK ρ and v2 -ciu

ST v3 : ρ2(ϕ),
then (v1, v3) ∈ V JϕK ρ.

Proof

By induction on the structure of the derivation ∆ ` ϕ.
When ϕ = α, the proof follows from the definition of Rel (since V JαK ρ = R, where we have that
R ∈ Rel[ρ1(α), ρ2(α)]).
The rest of the cases are entirely straightforward.

Lemma 8.24 (-ctx
ST Congruence)

If ∆; Γ ` e1 -ctx
ST e2 : ϕ and ` C : (∆; Γ ` ϕ)⇒ (∆′; Γ′ ` ϕ′),

then ∆′; Γ′ ` C[e1] -ctx
ST C[e2] : ϕ′.

Proof

Easy, standard proof. See [3] Section E.3 (page 160) for details.

Now, the proof proceeds in two parts. First we prove that if two terms are contextually related, then
they are ciu related. Then we prove that if two terms are ciu-related, then they are logically related.

Lemma 8.25 (-ctx
ST ⊆-ciu

ST)
If ∆; Γ ` e1 -ctx

ST e2 : ϕ then ∆; Γ ` e1 -ciu
ST e2 : ϕ.

Proof

Straightforward. Follows from Lemma 8.24 and the fact that every evaluation context E is a program
context.
See [3] Section E.3 (page 161) for details.

Lemma 8.26 (-ciu
ST ⊆-

log
ST)

If ∆; Γ ` e1 -ciu
ST e2 : ϕ then ∆; Γ ` e1 -

log
ST e2 : ϕ.

Proof

Follows easily from Lemmas 8.19 (Fundamental Property) and 8.23.
See [3] Section E.3 (page 162-164) for details.

41

Theorem 8.27 (Completeness wrt Contextual Equivalence (-ctx
ST ⊆-

log
ST))

If ∆; Γ ` e1 -ctx
ST e2 : ϕ then ∆; Γ ` e1 -

log
ST e2 : ϕ.

Proof

Immediate from Lemmas 8.25 and 8.26 above.

42

9 Part (2): CPS Translation Preserves Equivalence in λST

In this section, we prove that if two terms are equivalent in λST, then their CPS translations are equivalent
in λST.
The bulk of the work involves showing that CPS translation is equivalent to embedding using boundaries.
Essentially, this follows from the proof that that CPS translation is semantics preserving (correct) and
semantics reflecting.

Before we can prove that CPS translation is semantics preserving and reflecting, we need to establish
two key properties.

The first is boundary cancellation, which essentially says that if you embed e into the source using ST ,
and then embed that into the target using T S, the resulting term is contextually equivalent to the original.
Analogously, embedding e into the target via T S and then embedding the latter into the source via ST , also
results in a term that is contextually equivalent to the original.

Lemma 9.1 (Boundary Cancellation)

• Let ∆; Γ ` e : σ. Then ∆; Γ ` e ≈log
ST

σST (TS σ e) : σ.

• Let ∆; Γ ` e : σ+. Then ∆; Γ ` e ≈log
ST TS

σ (σST e) : σ+.

Proof

By induction on the structure of σ.

The second key property is a free theorem [44] regarding terms of (computation) type ∀ [α].(σ+→α)→α.
The following free theorem captures the essence of what we gain from switching from a CPS type translation
that makes use of a global answer type, to one that makes each continuation’s answer type individually
abstract: namely, that a computation (or function) of the above type must invoke its continuation at least
once, and that it does not matter (in our purely functional setting) if it invokes it more than once. A similar
theorem is given in Wadler [44]. We take a notational liberty in the initial statement of this theorem, which
we discuss next.
Free Theorem: Continuation Shuffling
Let ∆; Γ ` vf : ∀ [α].(τ1× (τ2→α))→α, ∆; Γ ` v1 : τ1, and ∆; Γ ` vk : τ2→τ.

Then ∆; Γ ` vf [τ] (v1,vk) ≈log
ST vk (vf [τ2] (v1, id)) : τ.

Notice that vk (vf [τ] id) is not a syntactically well-formed term in λST! We use this essentially as
shorthand to avoid a much longer (and less intuitive) statement of the theorem. Strictly speaking, the
above “lemma” should be stated as follows. The intuition here is that we close off the expression vf [τ] id

with appropriate type and term substitutions and evaluate it to get a value v that we then pass to the
(appropriately closed) continuation vk. The two clauses are required because our underlying relation E J·K
is an approximation while what we want here is equivalence.

Lemma 9.2 (Free Theorem: Continuation Shuffling)
Let ∆; Γ ` v : ∀ [α].(τ1× (τ2→α))→α, ∆; Γ ` v1 : τ1, and ∆; Γ ` k : τ2→τ.

Then: ∀ρ ∈ D J∆K . ∀(γ1, γ2) ∈ G JΓK ρ.
if ρ2(γ2(vf [τ] id)) 7−→∗ v then

(ρ1(γ1(vf [τk] vk)), (ρ2(γ2(vk))) v) ∈ E JτkK ρ
and
if ρ1(γ1(vf [τ] id)) 7−→∗ v then

((ρ1(γ1(vk))) v, ρ2(γ2(vf [τk] vk))) ∈ E JτkK ρ.

See Wadler [44], Section 3.8.

43

With the boundary cancellation and continuation-shuffling (free) theorem in hand, we can prove that our
CPS translation preserves and reflects semantics. In the statement of these lemmas, we will have a λS term
e on one side and its translation, a λT term v, on the other side. Wherever e contains a variable x : σ, v
will have the variable x : σ+. Therefore, we will need related (source and target) substitutions γS and γT to
obtain closed terms.

Definition 9.3
Let Γ be a mapping from variables x to types σ. Let γS be a substitution mapping variables x to (closed)
values v. Let γT be a substitution mapping variables x to (closed) values v.
We define Γ ` γS . γT as follows:

· ` ∅ . ∅ iff (unconditionally)

Γ, x : σ ` γS, x 7→ v . γT,x 7→ v iff Γ ` γS . γT ∧ ` v -log
ST

σST v : σ

We define Γ ` γS & γT as follows:

· ` ∅ & ∅ iff (unconditionally)

Γ, x : σ ` γS, x 7→ v & γT,x 7→ v iff Γ ` γS & γT ∧ ` σST v -log
ST v : σ

We define Γ ` γS ' γT as follows:

Γ ` γS ' γT iff Γ ` γS . γT ∧ Γ ` γS & γT

Notice that in the definition of Γ ` γS & γT, we require ` σST v -log
ST v : σ. Using boundary cancellation

and the compatibility lemmas for boundaries, we can conclude that this is equivalent to ` v -log
ST TS

σ v : σ+.
(This observation might make it slightly easier to understand the statement of Lemma 9.5.)

Informally, the following lemma says that if e evaluates to some value v1, then its CPS translation, when
applied to the identity continuation will evaluate to some v2 : σ+ that can be converted to a source value
v2 such that v1 and v2 are related at σ.

Lemma 9.4 (CPS is semantics preserving)
If Γ ` e : σ ; v and Γ ` γS . γT

then ` γS(e) -log
ST

σST (γT (v) [σ+] id) : σ.

Proof

Proof by induction on the structure of e.

Case e = true:

• Must show: ` γS(true) -log
ST γT

(
boolST (λ [α] (k : bool→α). k true) [bool] id

)
: bool:

• Observe that: γS(true) = true.

• Have:
γT(boolST (λ [α] (k : bool→α). k true) [bool] id)bool

= boolST (λ [α] (k : bool→α). k true) [bool] id
7−→∗ boolST true
7−→ true

by operational semantics.

Case e = false:

(Similar to true case.)

44

Case e = if e then e1 else e2:

• Have: Γ ` e1 : bool ; v1.

• Have: Γ ` e′1 : σ ; v2
′.

• Have: Γ ` e′′1 : σ ; v2
′′.

(1) Have: ` γS(e1) -log
ST γT(boolST v2 [bool] id) : bool.

(2) Have: ` γS(e′1) -log
ST γT(boolST v2

′ [σ+] id) : σ.

• Have: ` γS(e′′1) -log
ST γT(boolST v2

′′ [σ+] id) : σ.

• Must show:
` γS(if e1 then e′1 else e′′1)

-log
ST γT(σST (λ [α] (k : bool→α). v2 [α] (λ(x : bool).

if x then v2
′ [α] k else v2

′′ [α] k [σ+] id))) : σ

• Have: γS(if e1 then e′1 else e′′1) 7−→∗ vf1 .

• Must show:
∃vf2 .γT(σST (λ [α] (k : bool→α). v2 [α] (λ(x : bool).

if x then v2
′ [α] k else v2

′′ [α] k))) [σ+] id

7−→∗ vf2 :

• Have: ∃v1.e1 7−→∗ v1 by operational semantics.

• Observe that: v1 = true or v1 = false.

• Proceed by cases of v1:

Case v1 = true:

• Have: γT(v2) [bool] id 7−→∗ true by (1).

• Have:
γT(σST ((λ [α] (k : bool→α). v2 [α] λ(x : bool).

if x then v2
′ [α] k else v2

′′ [α] k) [σ+] id))
7−→ σST (λ(x : bool). if x then γT(v2

′) [σ+] id else γT(v2
′′) [σ+] id)true

7−→∗ σST γT(v2
′) [σ+] id

by operational semantics.

• Have: ∃vf2 .
σST γT(v2

′) [σ+] id 7−→∗ vf2 and (vf1 , v
f
2) ∈ V JσK ∅ by (2).

Case v1 = false:

• (Similar to v1 = true case.)

Case e = x:

• Have: Γ ` x : σ ; λ [α] (k :σ+→α). k x.

• Must show: ` γS(x) -log
ST

σST ((λ [α] (k :σ+→α). k (γT(x))) [σ+] id) : σ:

• Observe that: γS(x) is a value.

• Have: σST ((λ [α] (k :σ+→α). k (γT(x))) [σ+] id) 7−→∗ σST γT(x) by operational seman-
tics.

• Have: ` γS(x) -log
ST

σST (γT(x)) : σ by construction of γS and γT.

Case e = λx :σ. e:

• Let Γ′ = Γ, x : σ.

• Have: Γ′ ` e1 : σ′ ; v2.

(3) Have: ∀γ′S, γ′T.Γ′ ` γ′S . γ′T implies ` γ′S(e1) -log
ST

σ′ST ((γ′T(v1)) [σ′
+

] id) : σ′ .

45

• Must show:
` λx :σ. γS(e1)

-log
ST

σ→σ′ST (λ [α] (k : (σ→σ′)
+

).

k (λ [β] ((x,k′) :σ+× (σ′
+→β)). v2 [β] k′) [(σ→σ′)

+
] id) : σ→σ′:

• Observe that: λx :σ. γS(e1) = vf1 is a value.

• Must show:
∃vf2 .
σ→σ′ST (λ [α] (k : (σ→σ′)

+
). k (λ [β] ((x,k′) :σ+× (σ′

+→β)). v2 [β] k′) [(σ→σ′)
+

] id)

7−→∗ vf2
and (vf1 , v

f
2) ∈ V Jσ→σ′K ∅:

• Have:
σ→σ′ST (λ [α] (k : (σ→σ′)

+
). k (λ [β] ((x,k′) :σ+× (σ′

+→β)). v2 [β] k′) [(σ→σ′)
+

] id)

7−→ σ→σ′ST id (λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′)

7−→ σ→σ′ST (λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′)

7−→ λy :σ. σ
′ST let z = (TS σ y) in

(λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′) [σ′

+
] (z, id)

= vf2

.

• Must show: (vf1 , v
f
2) ∈ V Jσ→σ′K ∅:

• Consider arbitrary v′1 and v′2 such that (v′1, v
′
2) ∈ V JσK ∅.

• Must show:
(γS(e)[v′1/x],

(σ
′ST let z = (TS σ y) in (λ [β] ((x,k′) :σ+× (σ′

+→β).

(γT(v2)) [β] k′ [σ′
+

] (z, id))[v′2/y]) ∈ E Jσ′K ∅:

• Have: γS(e)[v′1/x] = (γS[x 7→ v′1])(e) 7−→∗ vf ′1 .

• Must show:
∃vf ′2 .(

σ′ST let z = (TS σ y) in (λ [β] ((x,k′) :σ+× (σ′
+→β).

(γT(v2)) [β] k′ [σ′
+

] (z, id))[v′2/y])

7−→∗ vf ′2
and (vf ′1 , v

f ′
2) ∈ V Jσ′K ∅:

• Have: ∃v̂2
′.TS σ v′2 7−→ v̂2

′ by operational semantics.

• Have:
(σ

′ST let z = (TS σ y) in (λ [β] ((x,k′) :σ+× (σ′
+→β).

(γT(v2)) [β] k′ [σ′
+

] (z, id))[v′2/y])

7−→∗ vf ′2

.

• Have:
(σ

′ST let z = (TS σ y) in (λ [β] ((x,k′) :σ+× (σ′
+→β).

(γT(v2)) [β] k′ [σ′
+

] (z, id))[v′2/y])

= σ′ST let z = (TS σ v′2) in

(λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′) [σ′

+
] (z, id)

7−→ σ′ST ((λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′) [σ′

+
] (z, id))[v̂2

′/z]

= σ′ST ((λ [β] ((x,k′) :σ+× (σ′
+→β)). (γT(v2)) [β] k′) [σ′

+
] (v̂2

′, id))

7−→ (γT(v2[v̂2
′/x])) [σ′

+
] id

= (γT[x 7→ v̂2
′])(v2) [σ′

+
] id

.

• Let γ′S = γS[x 7→ v′1].

46

• Let γ′T = γT[x 7→ v̂2
′].

• Observe that: Γ′ ` γ′S . γ′T.

• Instantiating (3) with γ′S and γ′T:

• Have: ` γ′S(e1) -log
ST

σ′ST ((γ′T(v1)) [σ′
+

] id) : σ′.

Case e = e1 e2:

• Have: Γ ` e1 : σ→σ′ ; v2.

• Have: Γ ` e′1 : σ ; v2
′.

• Have: ` γS(e1) -log
ST

σ→σ′ST (γT(v2)) [(σ→σ′)
+

] id : σ→σ′.

• Have: ` γS(e′1) -log
ST

σ→σ′ST (γT(v2
′)) [σ+] id : σ.

• Have:
v = λ [α] (k :σ′

+→α). v2 [α] (λ(x1 : (σ→σ′)
+

). v2
′ [α] (λ(x2 :σ+). x1 [α] (x2,k))).

• Must show: ` γS(e1 e′1) -log
ST

σ′ST γT(v) [σ′
+

] id : σ′:

• Rewriting the right hand side:
σ′ST γT(λ [α] (k :σ′

+→α). v2 [α] (λ(x1 : (σ→σ′)
+

).

v2
′ [α] (λ(x2 :σ+). x1 [α] (x2,k)))) [σ′

+
] id

≡ σ′ST (λ [α] (k :σ′
+→α). γT(v2) [α] (λ(x1 : (σ→σ′)

+
).

γT(v2
′) [α] (λ(x2 :σ+). x1 [α] (x2,k)))) [σ′

+
] id

≡ σ′ST γT(v2) [σ′
+

] (λ(x1 : (σ→σ′)
+

).

γT(v2
′) [σ′

+
] (λ(x2 :σ+). x1 [σ′

+
] (x2, id)))

(beta)

≡ σ′ST γT(v2) [σ′
+

] (λ(x1 : (σ→σ′)
+

).

x1 [σ′
+

] (γT(v2
′) [σ+] id, id))

(free cont. theorem, beta)

≡ σ′ST (γT(v2) [(σ→σ′)
+

] id) [σ′
+

] (γT(v2
′) [σ+] id, id) (free cont. theorem, beta)

≡ σ′ST (γT(v2) [(σ→σ′)
+

] id) [σ′
+

]
TS σ (σST (γT(v2

′) [σ+] id, id))

(cancellation lemma)

≡ (λx :σ. σ
′ST (let z = (TS σ x) in

(γT(v2) [(σ→σ′)
+

] id) [σ′
+

] (z, id))
(σST γT(v′2) [σ+] id)

(beta)

≡ σ→σ′ST γT(v2) [(σ→σ′)
+

] id σST γT(v2
′) [σ+] id (operational semantics)

• Have: ` γS(e1) γS(e′1) -log
ST

σ→σ′ST γT(v2) [(σ→σ′)
+

] id σST γT(v′2) [σ+] id : σ′

=` γS(e1 e′1) -log
ST

σ′ST γT(v) [σ′
+

] id : σ′ by rewriting.

47

Lemma 9.5 (CPS is semantics reflecting)
If Γ ` e : σ ; v and Γ ` γS & γT

then ` γT(v) -log
ST λ [α] (k :σ+→α). let z = (TS σ γS(e)) in k z : σ÷.

Proof

• Consider arbitrary τ1, τ2, R, k1, and k2 such that R ∈ Rel[τ1,τ2]
and (k1,k2) ∈ V Jσ+→αK [α 7→ (τ1,τ2, R)].

• Must show: (γT(v) [τ1] k1, let z = (TS σ γS(e)) in k2 z) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Proceed by induction on the structure of e:

Case e = true:

• Observe that: v = λ [α] (k : bool→α). k true.

• Must show: (k1 γT(true), let z = (TS bool true) in k2 z) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Rewriting:
k1 γT(true)
≡ k1 true (subst. on closed term)

• Rewriting:
let z = (TS bool true) in k2 z
≡ k2 true (subst. on closed term; beta)

• Observe that: Related continuations applied to related arguments are related.

Case e = false:

• (Similar to true case)

Case e = if e2 then e′2 else e′′2 :

• Observe that:
v = λ [α] (k :σ+→α). v1 [α] λ(x : bool). if x then v1

′ [α] k else v1
′′ [α] k.

• Have: Γ ` e2 : bool ; v1.

• Have: Γ ` e′2 : σ ; v1
′.

• Have: Γ ` e′′2 : σ ; v1
′′.

(1) Have: ` γT(v1) -log
ST λ [α] (k : bool→α). let z = (TS bool γS(e2)) in k z : bool÷.

(2) Have: ` γT(v1
′) -log

ST λ [α] (k :σ+→α). let z = (TS σ γS(e′2)) in k z : σ÷.

• Have: ` γTv1
′′ -log

ST λ [α] (k :σ+→α). let z = (TS σ γS(e′′2)) in k z : σ÷.

• Must show:
(γT(v1) [τ1] λ [x] (bool : if x then γT(v1

′) [τ1] k1 else γT(v1
′′) [τ1] k1). ,

let z = (TS σ if γS(e2) then γS(e′2) else γS(e′′2)) in) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Rewriting:
γT(v1) [τ1] (λ(x : bool).)
if x then γT(v1

′) [τ1] k1 else γT(v1
′′) [τ1] k1

≡ (λ(x : bool).
if x then γT(v1

′) [τ1] k1 else γT(v1
′′) [τ1] k1)

(γT(v1) [bool] id)

(free cont. theorem)

• Have: (γT(v1) [bool] id, let z = (TS bool γS(e2)) in id z) ∈ E JboolK ∅ by (1).

• Consider arbitrary vf
1 such that γT(v1) [bool] id 7−→∗ vf

1 .

Proceed by cases of vf
1 :

48

Case vf
1 = true:

(3) Have: γS(e2) 7−→∗ true by operational semantics.

• Rewriting:
γT(v1) [τ1] (λ(x : bool).

if x then γT(v1
′) [τ1] k1 else γT(v1

′′) [τ1] k1)
≡ γT(v2

′) [τ1] k1 (operational semantics)

• Rewriting:
let z = (TS σ if γS(e2) then γS(e′2) else γS(e′′2)) in k2 z
≡ let z = (TS σ γS(e′2)) in k2 z (operational semantics; (3))
≡ (λ [α] (k :σ+→α). let z = (TS σ γS(e′2)) in k z) [τ2] k2 (beta)

• (By (2), these are related as required.)

Case vf
1 = false:

• (Similar to true case)

Case e = x:

• Observe that: v = λ [α] (k :σ+→α). k x.

• Must show: (k1 (γT(x)), TS σ γS(x)) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Observe that: γS(x) is a value of type σ.

(4) Have: ∃v1.TS σ γS(x) 7−→ v1 by operational semantics.

(5) Have: (σST γT(x), γS(x)) ∈ E JσK [α 7→ (τ1,τ2, R)] from Γ ` γS & γT.

• Have: (γT(x),v1) ∈ V Jσ+K [α 7→ (τ1,τ2, R)] from (5), (4) and cancellation lemma.

• Must show: (k1 (γT(x)),k2 v2
′) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Observe that: Related continuations applied to related arguments are related.

Case e = λx :σ. e2:

• Observe that:
v = λ [α] (k : (σ→σ′)

+→α). k (λ [β] ((x,k′) :σ+× (σ′
+→β)). v1 [β] k′).

• Let Γ′ = Γ, x : σ.

• Have: Γ′ ` e2 : σ′ ; v1.

(6) Have:
∀γ′S, γ′T.Γ′ ` γ′S & γ′T
implies ` γ′T(v1) -log

ST λ [α] (k :σ′
+→α). let z = (TS σ′

γ′S(e2)) in k z : σ′
÷

.

• Must show:
(k1 (λ [β] ((x,k′) :σ+× (σ′

+→β)). γT(v1) [β] k′),

let z = (TS σ→σ′
λx :σ. γS(e2)) in k2 tz) ∈ E JαK [α 7→ (τ1,τ2, R)]

• Rewriting:

let z = (TS σ→σ′
λx :σ. γS(e2)) in k2 tz

≡ k2 (λ [β] ((x,k) :σ+× (σ′
+→β)).

let z = (TS σ′
(λx :σ. γS(e)) (σST x)) in k z)

(beta)

• Consider arbitrary τ′
1, τ′

2, R′ such that R′ ∈ Rel[τ′
1,τ

′
2].

• Consider arbitrary v̂1, v̂1
′, v̂2, and v̂2

′ such that

((v̂1, v̂1
′), (v̂2, v̂2

′)) ∈ V
r
σ+× (σ′

+→β)
z

[α 7→ (τ1,τ2, R),β 7→ (τ′
1,τ

′
2, R

′)].

• Have: ∃vf2 .
σST v̂2 7−→ vf2 by operational semantics.

49

• Have: (v̂1, TS σ vf2) ∈ V Jσ+K [α 7→ (τ1,τ2, R)] by cancellation lemma.

• Must show:
(γT[x 7→ v̂1](v1) [τ′

1] v̂1
′,

let z = (TS σ′
(λx :σ. γS(e)) (σST v̂2)) in v̂2

′ z)
∈ V JβK [α 7→ (τ1,τ2, R),β 7→ (τ′

1,τ
′
2, R

′)]:

• Rewriting:

let z = (TS σ′
(λx :σ. γS(e)) (σST v̂2)) in v̂2

′ z

≡ let z = (TS σ′
γS[x 7→ v̂2](e)) in v̂2

′ z (operational semantics)

≡ λ [α] (k :σ′
+→α).

let z = (TS σ′
γS[x 7→ v̂2](e)) in k z [τ′

2] v̂2
′

(beta)

• Must show:
(γT[x 7→ v̂1](v1) [τ′

1] v̂1
′,

(λ [α] (k :σ′
+
α). let z = (TS σ′

γS[x 7→ v̂2](e)) in k z) [τ′
2] v̂2

′)
∈ V JβK [α 7→ (τ1,τ2, R),β 7→ (τ′

1,τ
′
2, R

′)]:

• Observe that: Γ′ ` γS[x 7→ v̂2] & γT[x 7→ v̂1].

• (This follows from (6).)

Case e = e2 e′2:

• Observe that:
v = λ [α] (k :σ′

+→α). v1 [α] (λ(x1 : (σ→σ′)
+

). v1
′ [α] (λ(x2 :σ+). x1 [α] (x2,k))).

• Have: Γ ` e2 : σ→σ′ ; v1.

• Have: Γ ` e′2 : σ ; v1
′.

(7) Have:

(γT(v1),λ [α] (k : (σ→σ′)
+→α). let z = (TS σ γS(e2)) in k z) ∈ V

r
(σ→σ′)

÷
z
∅.

(8) Have: (γT(v1
′),λ [α] (k :σ+→α). let z = (TS σ γS(e′2)) in k z) ∈ V Jσ÷K ∅.

• Must show:
(γT(v1) [τ1] (λ(x1 : (σ→σ′)

+
). γT(v1

′) [τ1] (λ(x2 :σ+). x1 [τ1] (x2,k1))),

let z = (TS σ′
γS(e2) γS(e′2)) in k2 z) ∈ E JαK [α 7→ (τ1,τ2, R)]:

• Rewriting the left-hand side:
γT(v1) [τ1] (λ(x1 : (σ→σ′)

+
).

γT(v1
′) [τ1] (λ(x2 :σ+). x1 [τ1] (x2,k1)))

≡ (λ(x1 : (σ→σ′)
+

). γT(v1
′) [τ1]

(λ(x2 :σ+). x1 [τ1] (x2,k1)) (γT(v1) [(σ→σ′)
+

] id)

(free cont. theorem)

≡ γT(v1
′) [τ1] (λ(x2 :σ+).)

(γT(v1) [(σ→σ′)
+

] id) [τ1] (x2,k1)
(beta)

≡ (λ(x2 :σ+). (γT(v1) [(σ→σ′)
+

] id) [τ1] k1)
(γT(v1

′) [σ+] id)
(free cont. theorem)

≡ (γT(v1) [(σ→σ′)
+

] id) [τ1] (γT(e1) [(σ→σ′)
+

] id,k1) (beta)

• Rewriting the right-hand side:

let z = (TS σ′
γS(e2) γS(e′2)) in k2 z

≡ let z = (TS σ′
γS(e2) (σST (TS σ γS(e′2)))) in k2 z (cancellation lemma)

≡ (λ [α] ((x,k) :σ+× (σ′
+→α)).

let z = (TS σ′
γS(e2) (σST x)) in k z)

(TS σ γS(e′2),k2)

(beta)

≡ (TS σ→σ′
γS(e2)) [τ2] (TS σ γS(e2

′),k2) (operational semantics)

50

• Now we will show:
(γT(v1) [(σ→σ′)

+
] id, TS σ→σ′

γS(e2)) ∈ E
r

(σ→σ′)
+
z

[α 7→ (τ1,τ2, R)]:

• Rewriting:

TS σ→σ′
γS(e2)

≡ (λ [α] (k : (σ→σ′)
+→α).

let z = (TS σ→σ′
γS(e2)) in k z) [(σ→σ′)

+
] id

(beta)

• (This follows from (7).)

• Now we will show: (γT(v1
′) [σ+] id, TS σ γS(e2

′)) ∈ E Jσ+K [α 7→ (τ1,τ2, R)]:

• Rewriting:
TS σ γS(e2

′)
≡ (λ [α] (k :σ+→α). let z = (TS σ γS(e′2)) in k z) [σ+] id (beta)

• (This follows from (8).)

• (This follows from the definition of V J∀ [·].·→ ·K ·)

The following is a corollary of semantics preservation and reflection. Notice that by boundary cancellation,
the conclusion is equivalent to ` TS σ (γS(e)) ≈log

ST (γT (v) [σ+] id) : σ+. (This explains why we call it
“translation is equivalent to embedding.”)

Corollary 9.6 (Translation is Equivalent to Embedding)
Let Γ ` e : σ ; v and Γ ` γS ' γT.
Then ` γS(e) ≈log

ST
σST (γT (v) [σ+] id) : σ.

Proof

Immediate from Lemmas 9.4 (CPS is semantics preserving), 9.5 (CPS is semantics reflecting), and 9.1
(boundary cancellation).

Theorem 9.7 (Translation Preserves Equivalence in λST)
Let e1 and e2 be λS terms.
If Γ ` e1 -

log
ST e2 : σ, Γ ` e1 : σ ; v1, and Γ ` e2 : σ ; v2, then Γ ` v1 -

log
ST v2 : σ÷.

Proof

• (Follows from Lemma 9.4, Lemma 9.5, and transitivity of · -log
ST ·).

51

10 Part (1): Equivalence in λS Implies Equivalence in λST

Lemma 10.1 (λST term of type σ/σ+ to equivalent λS term)

Let Γ::= · | Γ, x : σ | y : σ+

1. If ·; Γ ` e : σ

then ∃e ∈ λS. ·; Γ ` e : σ� e ∧ ·; Γ� ` e[(TS Γ�(y) y)/y] ≈log
ST e : σ.

2. If ·; Γ ` e : σ+

then ∃e ∈ λS. ·; Γ `+ e : σ+ � e ∧ ·; Γ� ` σST (e[(TS Γ�(y) y)/y]) ≈log
ST e : σ.

Proof

The proof is relatively straightforward. (1) and (2) are proved by simultaneous induction since the σ
and σ+ translation rules are mutually dependent. We then proceed by induction on the length of the
reduction sequence for e, nested induction on the type σ, and innermost induction on the structure of
the term e.
Proving all the cases for (1) is especially straightforward: the results follow trivially or from the
induction hypotheses.
Some of the cases for (2) are a bit more involved.
When e = true and when e = false, the proof is immediate from the reduction rules for boolST · and
TS bool ·.
When e = if v then e1 else e2, the proof simply follows from the induction hypotheses.
When e = y, we need to make use of the boundary cancellation lemma.
When e is a lambda term, the proof follows easily from the reduction rule for σ1→σ2ST · together with
the induction hypothesis.
When projecting from a pair, the proof follows easily from the induction hypothesis after applying a
single reduction step to e.
The case for application, where the function being applied is not of translation type, also follows easily
from the induction hypothesis after applying a single reduction step to e.
The case for application where the function being applied is of translation type requires use of the
continuation shuffling free theorem together with the induction hypotheses.

Theorem 10.2 (Ciu-equiv in λS implies ciu-equiv in λST)
If Γ ` e1 -ciu

S e2 : σ then ·; Γ ` e1 -ciu
ST e2 : σ.

Proof

Suppose E : (·; · ` σ⇒ (·; · ` bool), and γst : Γ and E[γst(e1)] ⇓ v where v : bool. Show: E[γst(e2)] ⇓ v.
We back-translate E (or, to be precise, λx :σ. E[x]) and γst to eE and γs. By Lemma 10.1 these are
equivalent to the original E and γst. Hence, E[γst(e1)] ≈ctx

ST eE(γs(e1)) : bool. Hence, the latter
evaluates to v. Now, we instantate the premise with eE (after morphing it into a valid evaluation
context), and γs. Hence, eE(γs(e2)) evaluates to v. Since eE(γs(e2)) ≈ctx

ST E[γst(e2)] : bool, the latter
evaluates to v.

52

Note that contextual approximation implies ciu approximation in λS:

Lemma 10.3
If Γ ` e1 -ctx

S e2 : σ then Γ ` e1 -ciu
S e2 : σ.

Proof

Straightforward. Follows from the fact that -ctx
S is a congruence, and the fact that every evaluation

context E is a program context.
See [3] Section E.3 (page 161) for details.

Our desired lemma now easily follows:

Theorem 10.4 (Equivalence in λS implies equivalence in λST)
If Γ ` e1 -ctx

S e2 : σ then ·; Γ ` e1 -ctx
ST e2 : σ.

Proof

Immediate from Lemmas 10.2, 10.3, and the fact that -ciu
ST implies -ctx

ST (which in turn follows from
Lemmas 8.26 and 8.22).

53

11 Part (3): Equivalence in λST Implies Equivalence in λT

For the final (bottom) layer of our proof of equivalence preservation, we must show that if ·; Γ+ ` v1 ≈ctx
ST

v2 : σ÷ then ·; Γ+ ` v1 ≈ctx
T v2 : σ÷. The latter is immediate from the following more general lemma.

Lemma 11.1 (Equivalence in λST implies equivalence in λT)
Let e1 and e2 be λT terms.
If ∆; Γ ` e1 -ctx

ST e2 : τ then ∆; Γ ` e1 -ctx
T e2 : τ.

Proof

The proof is straightforward, intuitively, because λT contexts are a subset of λST contexts.
Given an arbitrary λT context C of the appropriate type, we must show that if C[e1] evaluates to v
(which will be of type bool) then so does C[e1].
We can instantiate the premise with the context boolST [C[·]].
The rest easily follows from the fact that there is a one-to-one correspondence between the evaluation of
a λT expression in λST and in λT, and from noting that the reduction rule for boolST · simply converts
true to true and false to false.

12 CPS Translation is Equivalence Preserving

Theorem 12.1 (CPS Translation is Equivalence Preserving)
If Γ ` e1 : σ ; v1, Γ ` e2 : σ ; v2, and Γ ` e1 -ctx

S e2 : σ, then ·; Γ+ ` v1 -ctx
T v2 : σ÷.

Proof

Immediate from Lemmas 10.4 (part 1), 9.7 (part 2), and 11.1 (part 3).

54

13 CPS Translation is Equivalence Reflecting

Equivalence reflection is a direct consequence of semantics preservation. Semantics preservation states that
source programs (closed λS terms of base type, i.e., bool) and their translations in λT behave analogously:

Lemma 13.1 (Semantics preservation)
Let · ` e : bool ; v. If e 7−→∗ true then v[bool] id 7−→∗ true and if e 7−→∗ false then v[bool] id 7−→∗ false.

Proof

Immediate from Lemma 9.6.

The next observation we need concerns the structural behavior of the CPS translation:

Lemma 13.2 (Context translation)
Let Γ ` C[e1] : σ and Γ ` C[e2] : σ. Then there exist C, v1, v2 such that Γ ` C[e1] : σ ; C[v1] and
Γ ` C[e2] : σ ; C[v2].

Proof

By induction on the structure of C, using the definition of the CPS translation relation.

Equivalence reflection now follows almost immediately from Lemmas 13.1 and 13.2:

Theorem 13.3 (Equivalence reflection)
Let Γ ` e1 : σ ; v1 and Γ ` e2 : σ ; v2. If ·; Γ+ ` v1 ≈ctx

T v2 : σ÷ then Γ ` e1 ≈ctx
S e2 : σ.

Proof

By contradiction: Suppose the conclusion does not hold, which means there exist some C such that
· ` C[e1] : bool and · ` C[e2] : bool where (w.l.o.g.) C[e1] 7−→∗ true while C[e2] 7−→∗ false. By
Lemma 13.2 there must exist a C such that · ` C[e1] : bool ; C[v1] and · ` C[e2] : bool ; C[v2]. At
this point Lemma 13.1 tells us that (C[v1]) [bool] id 7−→∗ true while (C[v2]) [bool] id 7−→∗ false.
Thus, (C[·]) [bool] id is a context that discriminates between v1 and v2, which is a contradiction.

55

Acknowledgements

The first author would like to thank Greg Morrisett for suggesting the problem of fully abstract compilation
to her in Spring 2005. We thank Kyle Ross for helping with the proofs of Lemmas 8.16, 8.17, 8.18, 9.4, and
9.5 in Spring 2010. We are also grateful to Amr Sabry and several anonymous reviewers for many helpful
suggestions on earlier versions of this paper.

References

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for PCF. Inf. Comput.,
163(2):409–470, 2000.

[2] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In European
Symposium on Programming (ESOP), pages 69–83, March 2006.

[3] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. Technical Re-
port TR-01-06, Harvard University, January 2006. Available at http://www.cs.indiana.edu/∼amal/
papers/lr-recquant-techrpt.pdf.

[4] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equivalence. In
International Conference on Functional Programming (ICFP), Victoria, British Columbia, Canada,
pages 157–168, September 2008.

[5] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation independence. In
ACM Symposium on Principles of Programming Languages (POPL), Savannah, Georgia, January 2009.

[6] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[7] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correctness. In Interna-
tional Conference on Functional Programming (ICFP), Edinburgh, Scotland, September 2009.

[8] Nick Benton and Chung-Kil Hur. Realizability and compositional compiler correctness for a polymorphic
language. Technical Report MSR-TR-2010-62, Microsoft Research, April 2010.

[9] Josh Berdine, Peter O’Hearn, Uday Reddy, and Hayo Thielecke. Linear continuation-passing. Higher
Order Symbol. Comput., 15(2-3):181–208, 2002.

[10] Josh Berdine, Peter O’Hearn, and Hayo Thielecke. Extracting the range of cps from affine typing:
Extended abstract. In Workshop on Linear Logic, 2002.

[11] Joshua Berdine. Linear and affine typing of continuation-passing style. Technical Report RR-04-04,
Queen Mary, Univ. of London, January 2004.

[12] Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the π-calculus. In Proceedings of
the 5th international conference on Typed lambda calculi and applications, TLCA’01, pages 29–45, 2001.

[13] Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the π-calculus. In Proceedings of
the 6th International conference on Foundations of Software Science and Computation Structures and
joint European conference on Theory and practice of software, FOSSACS’03/ETAPS’03, pages 103–119,
2003.

[14] Martin Berger, Kohei Honda, and Nobuko Yoshida. Genericity and the π-calculus. Acta Informatica,
42:83–141, November 2005.

[15] Robert Cartwright and Matthias Felleisen. Observable sequentiality and full abstraction. In ACM
Symposium on Principles of Programming Languages (POPL), Albuquerque, New Mexico, pages 328–
342, 1992.

56

[16] Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly language. In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), San Diego,
California, June 2007.

[17] Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–195, 1994.

[18] Andrzej Filinski. Representing monads. In ACM Symposium on Principles of Programming Languages
(POPL), Portland, Oregon, January 1994.

[19] Masahito Hasegawa. Linearly used effects: Monadic and CPS transformations into the linear lambda
calculus. In International Symposium on Functional and Logic Programming (FLOPS), Aizu, Japan,
pages 167–182, 2002.

[20] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure information flow. In ACM
Symposium on Principles of Programming Languages (POPL), Portland, Oregon, January 2002.

[21] Kohei Honda, Nobuko Yoshida, and Martin Berger. Control in the π-calculus. In Fourth ACM-SIGPLAN
Continuations Workshop (CW ’04), January 2004.

[22] J. M. E. Hyland and C. H. Luke Ong. On full abstraction for PCF: I, II, and III. Information and
Computation, 163(2):285–408, 2000.

[23] Alan Jeffrey. A fully abstract semantics for a concurrent functional language with monadic types. In
IEEE Symposium on Logic in Computer Science (LICS), San Diego, California, 1995.

[24] Andrew Kennedy. Compiling with continuations, continued. In International Conference on Functional
Programming (ICFP), Freiburg, Germany, October 2007.

[25] David A. Kranz, Richard A. Kelsey, Jonathan A. Rees, Paul Hudak, and James Philbin. ORBIT: an
optimizing compiler for Scheme. In Proceedings of the ACM Symposium on Compiler Construction,
pages 219–233, June 1986.

[26] J. Laird. Game semantics and linear CPS interpretation. Theor. Comput. Sci., 333(1-2):199–224, 2005.

[27] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables. In ACM Symposium
on Principles of Programming Languages (POPL), San Diego, California, pages 191–203, 1988.

[28] Albert Meyer and Jon G. Riecke. Continuations may be unreasonable. In Conf. on LISP and functional
programming, LFP ’88, pages 63–71, 1988.

[29] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-calculi. In R. Parikh,
editor, Logics of Programs (Brooklyn, June, 1985), volume 193 of Lecture Notes in Computer Science,
pages 219–224. Springer-Verlag, 1985.

[30] Robin Milner. Fully abstract models of typed lambda calculi. Theoretical Computer Science, 4(1), 1977.

[31] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly language.
ACM Transactions on Programming Languages and Systems, 21(3):527–568, May 1999.

[32] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars Birkedal. Abstract predicates and muta-
ble adts in hoare type theory. In European Symposium on Programming (ESOP), pages 189–204, March
2007.

[33] Andrew M. Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages. MIT Press, 2005.

[34] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223–
255, 1977.

57

[35] Jon Riecke and Ramesh Viswanathan. Isolating side effects in sequential languages. In ACM Symposium
on Principles of Programming Languages (POPL), San Francisco, California, January 1995.

[36] Jon G. Riecke. Fully abstract translations between functional languages. In ACM Symposium on
Principles of Programming Languages (POPL), Orlando, Florida, pages 245–254, 1991.

[37] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style. In Conf.
on LISP and functional programming, LFP ’92, 1992.

[38] S. B. Sanjabi and C.-H. L. Ong. Fully abstract semantics of additive aspects by translation. In Pro-
ceedings of the 6th international conference on Aspect-oriented software development (AOSD), pages
135–148, 2007.

[39] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), La Jolla, California, pages
116–129. ACM Press, 1995.

[40] Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully complete translation to the
simply typed lambda-calculus. Logical Methods in Computer Science, 4(3:10):1–31, 2008.

[41] Guy L. Steele. RABBIT: A compiler for SCHEME. Technical Report AI-TR-474, MIT, May 1978.

[42] Hayo Thielecke. From control effects to typed continuation passing. In ACM Symposium on Principles
of Programming Languages (POPL), New Orleans, Louisiana, 2003.

[43] Hayo Thielecke. Answer type polymorphism in call-by-name continuation passing. In European Sym-
posium on Programming (ESOP), March 2004.

[44] Philip Wadler. Theorems for free! In ACM Symposium on Functional Programming Languages and
Computer Architecture (FPCA), September 1989.

[45] Steve Zdancewic and Andrew C. Myers. Secure information flow and CPS. In European Symposium on
Programming (ESOP), pages 46–61, April 2001.

58

