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1 Introduction

Computer systems must manage various resources to behave correctly, in particular regarding
security and privacy. However, doing so is nontrivial, especially when resources are shared by
components that might interfere with each other. For example, if a networked system uses a
cryptographic protocol and private keys are not shared with care, a security breach might result.
A great tool for ruling out such resource conflicts is separation logic [Brookes 2007; O’Hearn
2007; Reynolds 2002]. Assertions denote the ownership of resources, and if a program meets a
specification, it is guaranteed not to affect any resources disjoint from its pre- or postconditions.
What constitutes a resource depends on the application. Originally, resources were data structures
in memory, and being disjoint meant avoiding aliasing. This has since been generalized to other
types of resources, such as the state of a concurrent protocol [Hinrichsen, Bengtson, et al. 2020] or
sources of randomness [Bao et al. 2022; Barthe, Hsu, et al. 2020; Li et al. 2023].

By describing precisely what resources are used, and how they are used, separation logic brought
a key advancement to program verification: compositionality. We can verify each component in
isolation, without knowing exactly what resources are used elsewhere. Later, we can argue that the
entire system is correct, provided that the resources used by each component are kept separate.
This allows the logic to scale to large systems, including many that were challenging to handle
with prior techniques, such as concurrent or distributed ones. And thanks to its rich specification
language, the logic can be used to reason about a wide range of components with diverse purposes.
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Individual proofs of correctness can be composed in a unified formalism, thus ruling out bugs due
to possible mismatches between the guarantees of one component and the requirements of another.
Due to the relative novelty of separation logic, however, this power remains underexplored
in many domains. Among many examples, we can mention cryptographic protocols. To illustrate,
suppose we want to verify a distributed application that serves multiple clients. Many frameworks
have been introduced for tackling this task under increasingly realistic assumptions [Hinrichsen,
Bengtson, et al. 2020; Krogh-Jespersen et al. 2020; Sergey et al. 2018]. For example, Gondelman
et al. [2023] showed how to verify a remote procedure call (RPC) library and a key-value store in
Aneris [Krogh-Jespersen et al. 2020], which assumes that messages can be dropped or duplicated,
but not tampered with. It would be desirable to extend these results to a weaker model, where
messages might be forged or tampered with, and where reliable communication must be enforced
cryptographically. However, while there are several techniques for verifying protocols [Arquint
et al. 2023; Bhargavan, Bichhawat, Do, et al. 2021b; Blanchet 2001; Datta et al. 2011; Meier et al.
2013; Vanspauwen and Jacobs 2015], they have never been applied to reason about application-level
guarantees, such as proving that a client only receives correct responses from the server.

The goal of this paper is to connect these two lines of work. We introduce a new separation logic,
Cryptis, which extends Iris [Jung, Krebbers, Jourdan, et al. 2018] with the Dolev-Yao symbolic model
of cryptography [Dolev and Yao 1983]. Cryptis allows us to reuse proofs of protocol correctness to
verify application-level specifications, which hold even in the presence of powerful adversaries
that control the network. Proof reuse is enabled by several Iris features, including its support for
concurrency, higher-order ghost state and invariants. These features are orthogonal to other parts
of Cryptis, so it is possible to compose protocols with other concurrent programs and reason about
their behavior without compromising soundness.

Core Features. To reason in the Dolev-Yao model, Cryptis follows prior work and uses a special
predicate to overapproximate the set of messages known to the attacker [Arquint et al. 2023;
Bhargavan, Bichhawat, Do, et al. 2021b; Vanspauwen and Jacobs 2015]. When a message is built
using cryptographic primitives, such as encryption or digital signatures, we can define which
properties must hold of the contents of the message on a per-protocol basis. Upon receipt, these
properties allow us to prove that protocols meet their desired specifications.

To enable proof reuse, Cryptis associates terms such as nonces or cryptographic keys with
tokens—resources that allow us to bind a term to metadata or other resources. For example, when
clients and servers authenticate, they can use metadata associated with a session key to track
how many messages have been exchanged through the connection, which allows them to transfer
resources via messages using the escrow pattern [Kaiser et al. 2017; Turon et al. 2014], similar to
what is done in Aneris [Gondelman et al. 2023; Krogh-Jespersen et al. 2020]. Because the connections
are authenticated, a server can assume that the exchanged resources pertain to a specific client,
which provides the capability to modify that client’s data without interfering with other clients.

Evaluation. We evaluate Cryptis by verifying a key-value store that guarantees that clients
always receive the correct response from the server. The store is built on top of several modules:
RPC, reliable connections, and authentication, where each component is verified solely based on
the specifications of the others. To our knowledge, this is the first correctness proof for such an
application running on a Dolev-Yao network. Including protocols in the model of a system also
allows us to analyze how its behavior is affected when honest agents can be compromised—a
common concern in modern protocols [Cohn-Gordon et al. 2016]. For example, we prove that
our store behaves correctly even when the long-term keys are leaked, provided that the client
communicates with the server using a session key that was exchanged before the leak.
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Game-Based Specifications. It is common to define the security of a cryptographic protocol via
a game—a piece of code where honest agents aim to achieve some goal, such as exchanging an
unguessable session key, even in the presence of an attacker. The protocol is secure, by definition,
if the attacker cannot win the game and prevent the agents from achieving their goal. Games are
one of the main paradigms of specification in the computational model of cryptography, where
messages are bit vectors and adversaries are probabilistic algorithms. They provide an intuitive
way to formulate concepts such as “secrecy” that would be otherwise difficult to define. Despite
their appeal, reasoning about games in the computational model is notoriously difficult, because
it requires intricate probabilistic arguments and often involves reductions (“given an adversary
against this protocol P, I can build an adversary against some hard problem P"”).

By contrast, Cryptis specifications are easier to prove than their computational analogues, but it
might not be clear what protection they provide. To clarify this point, we advocate for a methodology
based on symbolic security games. Like games for the computational model, symbolic games are
simply code where honest agents interact with an attacker. Their proofs of security, however,
are simpler than those in the computational model, since they can be carried within Cryptis. The
adequacy of the logic allows us to translate such proofs to self-contained trace properties, which can
be assessed independently of Cryptis. While symbolic games have appeared in prior works [Bohl
and Unruh 2016], ours is the first to show how we can reason about them via a logic.

Trace-Based Specifications. Dolev-Yao tools often define correctness in terms of a trace of events—
ghost data that describes the belief or the intent of agents at various points [Arquint et al. 2023;
Bhargavan, Bichhawat, Do, et al. 2021b; Blanchet 2002; Lowe 1997; Meier et al. 2013]. For example,
when an agent authenticates, they might emit an event to record the exchanged keys and who they
believe the other participant is. We can rule out various bugs by forcing such events to match. To
prevent a man-in-the-middle attack, we can verify that the event marking the end of a handshake
is matched by an earlier event marking that an agent accepted the connection; to prevent replay
attacks, we can also require that acceptance occur at most once for a given combination of keys.

Cryptis follows a different approach. Rather than relying on a baked-in trace, users can verify a
protocol by plugging in their own ghost state—typically, using term metadata. An authentication
protocol, as we will see, is simply a means for the agents to agree on a secret shared key and
establish ghost resources to coordinate their actions. We could use ghost state to store an event
trace, in which case it would be possible to adapt the classical notions of authentication into Cryptis.
Nevertheless, we have not found a reason to do so: our specifications are capable of preventing
bugs similar to those based on event traces, without the need for detailed temporal reasoning.

Secrecy as a Resource. Extending separation logic with symbolic cryptography provides novel
idioms for reasoning about security, by treating secrecy as a resource secret k. While this resource
is available, the term k is guaranteed to be secret, but the resource can be consumed at any point to
make k available to the attacker. This enables a new model of dynamic compromise. Systems based
on an event trace often feature an attacker API with functions for compromising agents or sessions.
Operationally, this has the effect of creating a special event indicating when the compromise
occurred and allowing the attacker to access private data. But because a compromise can occur
anytime, it is difficult to reason about the behavior of a protocol under a specific compromise
scenario (e.g., where a key is compromised only after a certain event takes place). Cryptis, on
the other hand, allows us to model compromise in security games, by adding a command to
leak a sensitive cryptographic term k in a specific step of the game. If we keep secret t until the
compromise, we can argue that any actions that take place earlier are unaffected by it.
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Contributions. In sum, our contributions are:

o Cryptis, a separation logic for symbolic cryptography with a trace-less semantics (Section 2).

e A new model of key compromise that treats the secrecy of a key as a separation-logic resource.

o Novel authentication specifications for coordinating agents via resources tied to cryptographic
material (Sections 4 and 5).

e Connecting Cryptis proofs to security results phrased with symbolic security games.

e Case studies showing that protocol specifications can be reused in application-level proofs.

e A formalization of our results in Rocq [Team 2025] using Iris [Jung, Krebbers, Jourdan, et al.
2018] and the Iris proof mode [Krebbers et al. 2017].

Structure of the Paper. Section 2 gives a comprehensive overview of Cryptis. Section 3 presents the
specification and the architecture of a modular key-value store cloud application, whose components
we describe and verify in the rest of the paper. First, we show how to verify authentication protocols,
which allow agents to exchange keys for encrypting sessions. We verify the classic Needham-
Schroeder-Lowe protocol [Lowe 1996; Needham and Schroeder 1978] (Section 4), which uses
asymmetric encryption, and the ISO protocol [Krawczyk 2003] (Section 5), which uses Diffie-
Hellman key exchange and digital signatures. For the latter, we prove forward secrecy: session
keys remain secret even after long-term keys are compromised. These protocols can be reused to
verify authenticated, reliable channels (Section 6) which, in turn, can be used to implement an RPC
mechanism (Section 7). This mechanism guarantees the security of the key-value store and allows
us to prove its correctness (Section 8). In Section 9, we discuss details of our formalization and of
the model of Cryptis. Section 10 discusses related work and Section 11 concludes.

Data-Availability Statement. The implementation and the case studies are included in the accom-
panying artifact [Azevedo de Amorim et al. 2025].

2 Core Cryptis

Cryptis is a logic for reasoning about networked programs in a typical functional imperative
language. The logic and the language are summarized in Figure 1. Most features are inherited
from Iris, so we focus on our extensions and refer readers to Jung, Krebbers, Jourdan, et al. [2018]
for more background on other features. The » symbol refers to the later modality, which enables
recursive definitions while avoiding paradoxes. The assertion [J P means that P holds persistently,
without holding ephemeral resources. The assertion P = g Q means that we can make Q hold by
consuming P, modifying ghost state and accessing invariants under any namespace N € &.

Semantics and Networking. The operational semantics follows other Iris developments [Jung,
Krebbers, Jourdan, et al. 2018]. A program configuration comprises a heap, a thread pool, the network
state and a set of generated nonces. A per-thread reduction relation specifies how each thread can step
and interact with its environment, possibly modifying objects on the heap, sending and receiving
messages, and forking off new threads. There are two primitive networking functions, send and
recv. These functions are restricted to terms t, a subset of values that excludes anything that cannot
be meaningfully sent over the network, such as pointers or closures. The network state in Cryptis is
modeled as a set of messages that can be observed by the attacker. In the protocol analysis literature,
this set is sometimes known as the attacker knowledge. The attacker knowledge grows whenever
an agent sends a message. To receive a message, the semantics chooses a message from the attacker
knowledge nondeterministically and returns it to the calling agent. The message is not removed
from the knowledge, so it could be received multiple times, even by different agents. As usual
in the symbolic model, messages do not include their sender or recipient, since this information
is unreliable. The per-thread reduction relation is lifted to whole configurations by choosing an
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Key types u := aenc | adec | sign | verify | senc
Functionalities F = aenc | sign | senc
Terms t,sk,pkk:=n| N | (t1,t2) | {t}@k | key, t | t"(t1--tn) | -+~
Expressions e:=sende | recv | {e}@e | key, e | openej ey | pkey e | e; “ez | mk_nonce
Assertions P,Q:=| Fon @ |t nx|publict |tokenF& | tokent& | ---
Term equations Private keys Opening keys
tA() =t (keYaenc t)sec 2 keYadec ¢ (keYaenc t)open 2 keYadec t

£t tn) "t tm) = (1 tm) (keySign Dsec = keySign t (keYSign t)open = keYVerify t

t(t1tz) =t (t2t1) (keYSenc sec = keYSenc t (keYSenc t)open = keYSenc t

Public terms

public n, public N &= True
public (t1,t2) <= public t; A public t;
public {(N,t)}@k <= public t A public k V 3¢, F, = n @ A O ¢ ksec t * O(public kopen —+ public t1)
public (key, t) &= public t V public_key u
public (t"t") & True (when t does not begin with *)
public (t"(t1---tn)) <= 3i,public (t"(t1---ti—1ti+1 - tn)) A public t;
Operational semantics Public keys
open ({t1}@k) kopen — Some t; u € {aenc, verify}
open t k — None (in all other cases) public_key u

Program logic
{> public t} send ¢ {True} {True} recv () {t, public t}

{ovet',t' e T(t) =t = t'} mk_nonce () {t,O(publict & »O¢t)* >k tokent’ T
t'eT(t)

Metadata rules (for both terms and message predicates)

a—n prrary fate(fr =) arpy frtokenaE TN ¢ &
TN CExtokenaE = arn f token a (81 W &) + token a &1 * token a &

Fig. 1. The Cryptis logic and programming language. The highlighted assertions are persistent.

active thread nondeterministically and allowing it to take a step. These steps are interleaved with
attacker actions, which read some number of channel messages, combine these messages using a
cryptographic operation (see “Attacker model” below), and add the result to the knowledge.

Cryptographic Operations. Terms can be manipulated with several cryptographic primitives:
sealing ({t}@k), Diffie-Hellman exponentiation (") and nonce generation (mk_nonce). Sealing is an
umbrella primitive that encodes various encryption-like functionalities. In {¢} @k, the term ¢ is the
sealed message, and k is the sealing key. We use k to range over key terms, and reserve sk for private
keys and pk for public keys. Keys are terms of the form key,, t, where ¢ is the seeding material
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used to generate it and u is its type. We distinguish between keys for asymmetric encryption
(u € {aenc, adec}), digital signatures (u € {sign, verify}) and symmetric encryption (u = senc). We
can unseal a term by calling open, which succeeds only if the key used for sealing matches the
one used for unsealing. The expression pkey sk computes the public key corresponding to some
secret key sk. The (partial) operations ksec and kopen map a key k to its corresponding private key
and opening key. In a Diffie-Hellman term ¢ “(¢; - - - t,,), the terms t4, . . ., t,, represent the exponents.
We quotient terms to validate useful properties of exponentiation; in particular, exponents can
be freely permuted, and we have the familiar identity t “t; " t, = t " t, " t;, which allows agents to
compute a shared Diffie-Hellman secret based on their key shares t " t; and t " ¢,. A call to mk_nonce
nondeterministically chooses a nonce that does not occur in the set of generated nonces stored in
the program configuration. It returns that value and adds it to the set of generated nonces.

Attacker Model. In Cryptis’ Dolev-Yao model, cryptographic operations behave as black boxes. It
is impossible to manipulate messages as bit strings, to guess nonces or keys out of thin air, or to
extract the contents of an encrypted message without its key. On the other hand, we assume that the
attacker can invoke any cryptographic operation on terms they know—encrypting or decrypting
terms using known keys, generating nonces, extracting values from a tuple, etc. By running attacker
actions nondeterministically, the semantics overapproximates any sequence of interactions with
a Dolev-Yao attacker. Of course, real-life attackers might not abide by the Dolev-Yao restrictions,
so Cryptis might miss some attacks. Nevertheless, the model is rich enough to rule out several
critical, real attacks, such as Lowe’s attack on the NS protocol (Section 4.3). (In our implementation,
attacker actions are separate threads that must be explicitly initialized; cf. Section 9.)

Public Terms. To allow agents to communicate securely in the presence of such a powerful
attacker, Cryptis forces every message traveling through the network to satisfy a special public
predicate. Accordingly, the specification of the networking functions says that send takes in a
public term, whereas recv is guaranteed to return a public term. The definition of public balances
between two needs: capturing the capabilities of the attacker, on the one hand, and allowing honest
agents to reason about their communication, on the other. To model the attacker, the definition
ensures that public terms are preserved by all term operations (pairing two terms, sealing a term
with a key, etc.), hence by all attacker actions. To make it possible to reason about communication,
the public predicate allows us to impose predicates on sealed messages, as it is done in similar
tools [Backes et al. 2011, 2014; Bhargavan, Bichhawat, Do, et al. 2021b]. Suppose we want to send a
message of the form m = {(N, t)}@pk, where pk = key,.,,. t’ is an encryption key. In typical uses
of encryption, the contents of the message, t, are not public. Nevertheless, the definition says that
we can prove that m is public provided that ¢ satisfies a certain predicate ¢ attached to the tag N.
The assertion F +— n ¢ means that the tag N is associated with the predicate ¢ for sealed messages
under the functionality F. Each tag can be associated with at most one ¢ under a given F. The
protocol verifier chooses which predicates to use by consuming a token F & resource, which states
that no tags in & have had any predicates assigned to them. (Initially, & is set to T, which contains
every tag.) Cryptis focuses on tagged messages to make reasoning modular: if two protocols use
different tags, their proofs can be automatically composed. We represent tags with Iris namespaces,
which are similar to strings, but can be organized hierarchically. For example, if a protocol P has
three messages, we might tag them using the namespaces $P.m1, $P.m2 and $P.m3 (we will use $ to
distinguish namespaces from other identifiers). To set up their predicates, we can expose a lemma
that consumes a token of the form token F (T$P), where the set T$P contains any namespace that
has $P as a prefix. Thus, a user of a protocol does not need to know exactly which tags it uses.

The clause for encrypted terms also includes O(public kopen = public t), which allows the
attacker to conclude that the contents of the message are public if they are ever able to decrypt it
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with a public (compromised) decryption key. If u = sign, then the antecedent of this implication is
trivial, which means that we can only sign messages when the contents are public. Notice that both
this implication and the message predicate ¢ are guarded by the persistence modality [: since a
Dolev-Yao attacker can duplicate messages arbitrarily, public must be persistent.

Dually, when another agent receives a sealed message, the definition says that we must consider
two cases: either the sealing key and the contents of the message are public, or the corresponding
sealing predicate holds. The first case typically occurs when reasoning about communication with
an attacker or compromised agent, which cannot be expected to enforce non-trivial properties,
whereas the second one arises when communicating with another honest agent. This type of case
analysis is reminiscent of the use of union types in protocol analysis [Backes et al. 2011, 2014].

Keys can be shared according to common usage patterns. For asymmetric encryption, the sealing
key (u = aenc) is always considered public, whereas the unsealing key (v = adec) is public if and
only the seed is. For signatures, it’s the opposite. A symmetric key is public if and only if its seed is.

The definition of public for exponentials allows agents to freely exchange key shares t " t'. When
there is more than one exponent, the term is public if and only if it can be obtained by combining
two smaller public terms via exponentiation. If ¢ is not a DH term, then public (¢ " t1t;) <
public t; V public ;. The specification for mk_nonce says, among other things, that the result ¢ is
such that public t can be any predicate ¢ t chosen. The » modality is required for soundness: if
we had public t &= O ¢ t, we could get a contradiction by choosing ¢ ¢t = —public t. We can
choose ¢ t = True to generate a public nonce, or ¢ ¢t = False to generate a secret.

Term Metadata. The last feature that we need to cover is term metadata. The assertion t > 5 x
says that the term ¢ has been permanently associated with the metadata item x under the namespace
N, where x ranges over elements from arbitrary countable types. Like sealing predicates, we can
create metadata by consuming a resource token t €. Each term is associated to at most one metadata
item under a given N. Tokens are created during nonce generation. As shown in the specification
for mk_nonce, the post-condition contains tokens for any term ¢’ € T(t), where T(t) is a finite set
such that t is a subterm of any ¢’ € T(t) (written ¢ < t’). Intuitively, if t < ¢’ and ¢ is fresh, then ¢’
cannot have been used by the program, which means that we are allowed to obtain a token for it.

Metadata in Cryptis serves multiple purposes. One use is to reason about term freshness: if a set
of terms T is such that every term has metadata under some namespace N, any term ¢ that still has
a token containing N must not belong to T. We can also use metadata to attach ghost state to a
term. The assertion a ' v = Aty ‘a'” says that t is associated with an element a drawn
from some resource algebra. This idiom is useful to track ghost state that is associated with an
agent, when ¢t is their public key, or with a session, when ¢ is the corresponding session key. Most
rules that apply to the Iris ghost ownership assertion carry over to this connective.

1

Adequacy. Cryptis satisfies an adequacy result that relates specifications to more elementary
properties stated in terms of the operational semantics of its language. The formulation of adequacy
is similar to the one of Iris, but it also provides tokens that are needed to carry out the proofs.
To invoke the adequacy theorem, we must decide which predicates will be associated with each
cryptographic functionality and each tag, and consume the tokens to set up these predicates, as
shown in Figure 1. Any combination of predicates can be used, provided that they are associated
with separate tags and functionalities.

THEOREM 2.1. Suppose that P v is a meta-level proposition such that we have a Cryptis proof of

{token aenc T * token senc T * token sign T} e {v.P v}. Ife terminates in a value v when running in
the initial configuration, then P v holds. Moreover, the initial configuration cannot reach a stuck state.
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pending y * O(public t &= »shoty 1) - secret ¢ secret t = public t
secret t = O(public t - > False) secret t * public t - > False

secret t = (public t - » False) A (True = public t) A (True = (public t - > False))

Fig. 2. Secrecy resource. The shot y n proposition is persistent.

[@laenc skt = public t V O¢ skt A O(public sk = public t) aenc pk N t = {(N,t)}@pk

Some ¢’ if open sk t = Some (N, t)

. mk_aenc_key () = key, 4o (mk_nonce ())
None otherwise

adecsth%{

{True} mk_aenc_key () {sk, 3t, sk = key,e. t * token sk T = secret sk}
{aenc > n @ * [@]aenc sk t} aenc (pkey sk) N t {t, public ¢’}

{aenc >y ¢ = public t} adec sk Nt {v,0 = None v 3¢/, = Some t’ * [¢]aenc sk t'}

Fig. 3. Derived constructions for asymmetric encryption. We assume that sk ranges over decryption keys.

2.1 Derived Constructions

Cryptis includes several convenience features derived from the core elements presented above.

Secrecy Resources. Besides being public or private, the secrecy of nonce can behave as a resource.
This pattern is useful to model dynamic compromise, when an attacker does not have access to
some key at first, but eventually compromises it. Consider an ephemeral resource pending y stating
that y has not been tied to any value yet, whereas the persistent resource shot y n means that y is
tied to the integer n and no other value. Such resources are commonplace and can be defined using
various ghost state constructions [Timany et al. 2024]. If public ¢ is equivalent to > shot y n, we
can use pending y to create a resource secret ¢ (Figure 2), which means that ¢ can become public or
private at any point, by exchanging pending y for shot y 1 or shot y 0. Moreover, because pending y
and shot y 1 contradict each other, we can guarantee that ¢ is secret as long as secret t is available.

Specialized Cryptographic Primitives. Though sealing comprises several functionalities, in prac-
tice, it is useful to expose separate functions for each one of them. Figure 3 shows the interface
for programming with asymmetric encryption. The function mk_aenc_key is a wrapper around
mk_nonce that uses the nonce to generate a decryption key. The functions aenc and adec are
wrappers around sealing and opening. Because Cryptis works with tagged messages, it is more con-
venient for these functions to take the tag as a separate argument. We implement digital signatures
and symmetric encryption in a similar way. Note that verify, the function that verifies a signed
message, outputs the contents of the signed message, instead of a success bit. To prove the specifi-
cation of mk_aenc_key, we allocate a resource pending y and use the specification of mk_nonce to
generate a nonce t so that public t <= »shot y 1. Since public (key,4.. t) &= public t, we
can create a resource secret (keyadec t), as shown in Figure 2. Moreover, since ¢ < keyadec t, we
can use the mk_nonce rule to create a token for the key. The specifications for encryption and
decryption mention the predicate [¢]aenc sk ¢, which describes what holds of the contents of the
message t if we know that aenc — 5 ¢ holds.
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Authenticated Reliable Remote Client Data
key exchange — connections —> procedure calls Wrabppers ata
(Sections 4 and 5) (Section 6) (Section 7) PP structures

Fig. 4. Structure of key-value store. Arrows denote dependencies, circles denote internal components, and
squares denote the key-value store itself.

3 Motivating Application: A Key-Value Store

In the rest of the paper, we will illustrate the expressiveness of Cryptis by verifying the correctness
of a simple key-value store. This case study demonstrates how we can reason modularly about
a high-level application that provides non-trivial integrity guarantees even in the presence of
arbitrary Dolev-Yao attackers, and how these guarantees are affected when long-term keys are
compromised. In this section, we content ourselves with an overview of the architecture of the
key-value store and its specification. Later, we will dive into its individual components.

Figure 4 summarizes the structure of the application. A server stores client data in internal data
structures, and clients performs API calls to retrieve and manipulate their data. The communication
between clients and the server is implemented by a remote procedure call (RPC) component, which
sits on top of a connection abstraction that preserves the ordering and contents of messages. To
create a connection, a client must initiate an authentication handshake with the server, which
allows the two parties to exchange a session key and confirm each other’s identities. Since our focus
is on how such distinct components can be developed and verified modularly, the functionality of
each verified component will be rather minimal. For example, the store server provides sequential
consistency, runs on a single machine, and stores the client data using an association list. Because
of the modular design and the expressiveness of separation logic, it should be possible to make
each component more realistic without changing fundamentally how they are connected.

Figure 5 shows the specification of the client API To interact with the server, the client must
first call the connect function. This function returns a connection object c, together with a resource
DB.connected skc sks ¢ that indicates that the client is connected. While the client is connected,
it can perform database operations: load a value stored under a key (load), create a new key in
the database (create), or store a new value under an existing key (store). The specifications are
modeled after the specifications for memory operations in separation logic, with one minor twist: a
load can return an incorrect value if the connection is compromised. A connection is compromised
if either the server or the client was compromised when the connection was established (that is, if
their private keys were known to the attacker).

We can rule out the possibility of a compromise by proving that the agents’ private keys were
still secret at any point after the connection ¢ was established. Note that it is still possible that
these private keys end up leaking at a later point without affecting the integrity of c. As we will
see, this guarantee is a product of the post-compromise properties of the underlying key-exchange
protocol. Logically, this is a consequence of the way persistent assertions work in Iris. The assertion
> [0 —compromised c is persistent because it is guarded by the persistence modality . This means
that, if we are in a proof context where secret skc, secret sks and DB.connected sk¢ sks ¢ all hold,
we can prove > []—compromised ¢ without consuming these premises. Later, we can consume
secret skc or secret skg to leak one of the private keys. (Note that our server only allows clients
to have one active connection at a time. If multiple active connections were possible, ruling out a
compromise would be more difficult, because the attacker would be able to initiate a new session
using a compromised long term key and then corrupt client data.)
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Notation ‘ Abbreviation ‘ Meaning
skc, sks, pkg — Long term keys of client and server
ke — Session key used in connection ¢
DB.disconnected sk¢ skg A The client is disconnected
DB.connected sk¢ skg ¢ r The client is connected via the connection ¢
compromised ¢ — The connection c is compromised
T HZkC’SkS L T g L No term t € T is stored in the server
t H;bC’Sks ta t1 gp Lo The value t; is stored under the key t;
{A} DB.connect skc pkg {c, T} {T'} DB.close ¢ {A s public k.}

{T # t; >4p t2} DB.load ¢ #; {té, (compromised ¢ V té =tp) x [ %) oy tz}

{T xt; >4p L} DB.create c t1 ty {T * t1 Foqp t2} {F * 1 o dp té} DB.store ¢ t1 t {T * t1 Foqp t2}
11 b B2 * B gy b + False secret skc * secret skg * I’  » [ ~compromised ¢
token SkC (T$db.c1ient.sk5) ST A*T gy L HTWwhi=gp LETy =gy L To gy L

Fig. 5. Key-value store assertions and specifications for the client API. For readability, we abbreviate some of
the resources and tacitly assume that the terms t1, t2 and té are public.

At any moment, the client can choose to disconnect from the server by calling the close function.
After disconnecting, k., the session key used to encrypt the connection, is no longer needed, so it
can be made public and leaked to the attacker. Of course, if the key were leaked, the attacker would
be able to read any messages that were encrypted with it, ruining any confidentiality guarantees.
We allow the session key to be leaked after disconnection to highlight that this would not affect
the integrity of the client’s data: the attacker could try to send requests to the server using the
compromised key, but those requests would be ignored.

To illustrate how these specifications can be used, let us assess the integrity of the store with a
security game (Figure 6). The game sets up signature keys for the client and the server, sends the
public keys to the attacker, and then runs the client and the server in parallel. The client uses the
server to store a value chosen by the attacker and then tries to retrieve that value from the server.
Our goal is to prove that the client’s assertion succeeds; that is, the client reads back the same value
that it stored originally. Moreover, this assertion succeeds even though various keys are leaked
during the game. Though the game code is simple, its operational semantics is complex, because the
agents run concurrently and their interaction is mediated by a Dolev-Yao attacker. Thus, checking
the security of the game forces us to reason about concurrency, making it challenging to provide
similar formulations in sequential systems, such as DY* [Bhargavan, Bichhawat, Do, et al. 2021b].

To prove that the game is secure, we use the specification for mk_sign_key, analogous to the one
of mk_aenc_key (Figure 3), to obtain secrecy resources secret skc and secret sks. We also obtain
metadata tokens for these keys, which we can use to initialize the ghost state required to run the
server and the client. For the client, this means obtaining the assertions DB.disconnected sk¢ sks
and T ks | which guarantees that the database is currently uninitialized. Note that the
token needed for the initialization lemma mentions the namespace $db.client.sks, whose last
component is a secret key rather than a plain identifier. This allows the client’s token to be used
for setting up databases with multiple servers. (The lemmas used to initialize the server’s ghost
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let run_client leak_keys skC pkS = let game () =
let c1 = DB.connect skC pkS in let skC, skS =
let key = recv () in mk_sign_key (), mk_sign_key () in
let val = recv () in let pkC, pkS = pkey skC, pkey skS in
DB.create cl1 key val; send pkC; send pkS;
DB.close c1;
send (session_key c1); let leak_keys () = send skC; send skS in
let c2 = DB.connect skC pkS in
leak_keys (); fork (fun () -> DB.start_server skS);
let val' = DB.load c2 key in fork (fun () -> run_client leak_keys skC pkS)

assert (val = val')

Fig. 6. Security game for the key-value storage service. The client reads back the value they stored even if
long-term keys are leaked after the connection.

state are omitted for brevity.) We pass all these resources to the run_client function. When we
close the first connection ¢, we are allowed to leak its session key thanks to the specification of
DB.close. When we establish the second connection c,, we use secret sk¢ and secret sks to prove
that c; is not compromised, which allows us to prove that DB.load returns the expected value.

4 Authentication: The NSL Protocol

The first component of the key-value store we will analyze is its authentication protocol. For post-
compromise security, the implementation uses a protocol based on Diffie-Hellman key exchange,
which we will cover in Section 5. Before we do so, however, we will consider the Needham-
Schroeder-Lowe protocol [Lowe 1996; Needham and Schroeder 1978] (NSL), a classic protocol based
on public-key encryption. Though the protocol provides weaker security guarantees, it is often
used as an introductory example in protocol-verification tools and, thus, serves as a good point of
comparison for Cryptis.

There are two versions of the protocol: one that relies on a trusted server to distribute public
keys, and one where the participants know each other’s public keys from the start. For simplicity,
we model the second one. A typical run can be summarized as follows:

I — R:aenc pky $m1 [a; pk;] R — I:aenc pk; $m2 [a;b; pkg] I — R : aenc pkp $m3 b.

First, the initiator I generates a fresh nonce a and sends it to the responder R, encrypted under their
public key pkp. The responder replies with a together with a fresh nonce b. The initiator confirms
the end of the handshake by returning b. If the protocol terminates successfully, and both agents
are honest, they can conclude that their identities are correct—that is, they match the public keys
sent in the messages—and that the nonces a and b are secret. In particular, they can use a and b to
derive a secret session key to encrypt further communication. Figure 7 shows an implementation
of the protocol in the Cryptis programming language. To keep examples short, we’ll use a syntax
inspired by the ProVerif protocol analyzer [Blanchet 2001]: 1et declarations can mention patterns
of the form =p, which are only matched by p itself. Any errors that arise during execution, such as
failed pattern matching, cause the code to safely return None. (Formally, these errors are managed
using the option monad, and let in our code snippets should be read as monadic bind.)

4.1 Proving Security

A Cryptis proof is typically structured as follows. First, we formulate the expected security or
correctness guarantees of a component using a series of specifications in the Cryptis logic or
security games. Then, we determine which predicates we must associate with the encrypted or
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let initiator skI pkR = let responder skR =

let pkI = pkey skI in let pkR = pkey skR in

let a = mk_nonce () in let m1 = recv () in

let m1 = aenc pkR $m1 [a; pkI] in let [a; pkI] = adec skR $m1 m1 in

send m1; if not (is_aenc_key pkI) then fail ();

let m2 = recv () in let b = mk_nonce () in

let [=a; b; =pkR] = adec skI $m2 m2 in let m2 = aenc pkR $m2 [a; b; pkR] in

let m3 = aenc pkR $m3 b in send m2;

send m3; let m3 = adec skR $m3 (recv ()) in

let k = key senc [pkI; pkR; a; b] in if m3 != b then fail ();

k let k = key senc [pkI; pkR; a; b] in
(pkI, k)

Fig. 7. Implementation of NSL. Variables beginning with sk and pk refer to secret and public keys.

signed messages exchanged in the protocol. We prove lemmas that allow us to initialize these
message predicates by consuming corresponding resource tokens, using the rules of Figure 1. We
proceed to prove that the desired specifications hold assuming that the required message predicates
are available. Finally, to prove a closed result that is independent of the Cryptis logic (e.g., that an
assertion in a game does not fail), we invoke the adequacy theorem (Theorem 2.1), using the tokens
that it generates to initialize the message predicates required by each component of the program.
Let us see how this applies in the context of NSL. The handshake produces a session key k that
is guaranteed to be secret, as long as both participants are honest. We formalize this claim with
the following theorem, which, moreover, produces metadata tokens for the agents to coordinate
their actions. We use the metavariable ¢ to range over sessions, which comprise the keys of each
protocol participant, ¢.init and o.resp, as well as their nonces, o.shares;yj; and o.sharess,. The
session key is defined as o.key = key,, . [pkey o.init; pkey o.resp; o.sharesjni; 0.shares,esp].

THEOREM 4.1. Define sessionnsy sk skg o as sk; = o.init = skg = o.resp * O(public o.key
>(public sk; V public skg)). Assuming that the message predicates of Figure 8 are set up, the following
triples hold:

{True} initiator sky (pkey skg) {True} responder skg
r, r = None V 3o, r = Some o.key r, r = None V 3sky o, r = Some (pkey skj, .key)
* sessionnst sky skg o * token o.init T * sessionns| skr skg o * tokeno.resp T

Let us dissect this result. We focus on the initiator, since the responder is similar. If the protocol
successfully terminates, the function returns the session key exchanged by the two agents. The
predicate sessionysy skj skr o says that the session key o.key is public if and only if one of the
long-term secret keys is known by the attacker.

The proof of for the initiator is outlined in Figure 8, along with the required message predicates.
(Note that the third predicate is trivial. We will come back to this point later.) We focus on the case
where every operation succeeds since the specification does not impose any requirements when
the function fails. We use the MKNONCE rule to generate a fresh nonce a such that publica
>O(public sk; V public skg). This nonce comes with a token resource, which we will use in
the postcondition. We encrypt the first message using the rule for aenc (Figure 3). To prove its
precondition, assuming that the message invariants have been allocated appropriately, we must show
that [@gm1 ]aenc skr [a; pk;] holds. Since a is not known to be public, we proceed by proving its second
disjunct; that is: (1) proving @¢m skr [a; pk;] and (2) proving public skg = public a * public pk;.
Both points follow from how a was generated, and because every key for asymmetric encryption is
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©gm1 skr m1 = a skr, my = [a; pkey skg] * (public a &= »(public sk; V public skg))
@¢m2 sk mo = Jab skg, my = [a; b; pkey skgr] * (public b <= »(public skj V public skg))
©sm3 Skr m3 = True

P £ O(publica &< »(public sk; V public skg)) * tokena T

Q = P« (publicb &= »(public sk; Vv public skg))

{True} {P * public ma}

let a = mk_nonce () in let [=a; b;=pkg] = adec sk; $m2 my in
{(public a <= »O(public sky V public skgr)) {P * [@gm2]aenc skr [a; b; pkg]}

« tokent T} ={P = (public b &= »(public sk; V public skr))}
={P = [‘P$m1]aenc skr [QZPkl]} ={0=* [‘P$m3]aenc skg b}

let my = aenc pkp $m1 [a; pk;] in let m3 = aenc pkp $m3 b in
{P s public m1} {0}

send mq; let k = keygene [pkr; pkg;a; b] in
{P} {30,k = o.key * sessionns| sky skg o

let mg =recv () in * token o.init T}

{P s public mp}

Fig. 8. Proof for the NSL initiator, message predicates and abbreviations.

public. After the message is encrypted, it is considered public, so it can be safely sent to the network.
Now, consider what happens when the initiator receives m;. Since the message is public, after
decrypting and checking it, we prove [@gm2]aenc k1 [a; b; pkg] holds (cf. the rule for adec in Figure 3).
This entails public b &= »(public sk; V public skg); indeed, we have two cases to consider. One
possibility is that the message predicate holds. This implies the equivalence directly. The other
possibility is that the body of the message (that is, the nonces a and b) is public, which could happen if
my, was sent by an attacker. Because a is also public, it must be the case that >(public sk;Vpublic skg)
holds. Since public b also holds, the equivalence holds as well. This equivalence proves that the
last message can be safely encrypted and sent (intuitively, because b can be read by the responder).
To conclude, we need to prove that the session key k has the desired secrecy. This follows trivially
from the equivalence public a &= public b <= »(public sk; Vv public skg).

4.2 What About the Third Message?

Our proof of NSL did not require any particular properties of the third message. In fact, whether the
third message is needed or not depends on what the protocol is being used for. Its original purpose,
as devised by Needham and Schroeder [1978], was to establish an authenticated interactive session,
which also seems to be the goal of most authentication protocols. Assuming that the initiator sends
the first message of the session, this means that the third handshake message is redundant, because
it does not convey new information. All we need to know is that the session key is known only to
the relevant parties and suitably fresh to prevent replay attacks. As we will see, metadata tokens
provide a mechanism to argue about freshness: since we cannot own a token that overlaps with
existing metadata (cf. Figure 1), we can guarantee that a fresh key k does not belong to a set of old
keys K by ensuring that all keys in K are generated from nonces whose tokens have been used.
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let check_key_secrecy session_key = let rec do_resp keysR skR pkI =
let guess = recv () in (x Similar to initiator x)
assert (session_key != guess) (* ... %)

let rec do_init keysI skI pkR = let game () =
fork (fun () -> do_init keysI skI pkR); (* Generate keys and leak public keys *)
(*x Attacker chooses responder *) let skI, skR =
let pkR' = recv () in mk_aenc_key (), mk_aenc_key () in
(* Run handshake *) let pkI, pkR = pkey skI, pkey skR in
let k = init skI pkR' in send pkI; send pkR;
(* The session key should be fresh and *) (*x Generate sets of session keys *)
assert (not (Set.mem keysI k)); let keysI = Set.new () in
Set.add keysI k; let keysR = Set.new () in
(x if attacker chose honest responder, (* Run agents *)

the key cannot be guessed. *) fork (fun () -> do_init keysI skI pkR);

if pkR' == pkR then check_key_secrecy k fork (fun () -> do_resp keysR skR pkI)
else ()

Fig. 9. A security game where the attacker tries to learn the session keys or cause them to be reused.

However, we could consider alternative scenarios where the protocol authenticates a single
request or message. For example, in a protocol for financial transactions, the client might not need
to establish a whole interactive session with the server just to send one request. Suppose that
the initiator embeds the request data d in the last handshake message, which would serve as a
confirmation step to transfer funds to a vendor or carry out whatever other action is requested. We
could modify the predicate of the third message to include an escrow [Kaiser et al. 2017; Turon
et al. 2014] that would allow trading in one of b’s tokens against a resource P d associated with the
client’s data. Logically, this resource could provide the server with the necessary permissions to
carry out the operation on the client’s behalf. This idea would also make sense in hybrid scenarios,
such as in the early data extension of TLS 1.3, where the handshake messages can be used to carry
some application-level data before the regular message exchange begins. In Section 6, we will
discuss in more detail how escrows in Cryptis enable the transfer of resources through messages.

The guarantees of the third message are also tied to another point discussed earlier: the temporal
aspect of authentication. In most tools for protocol verification, the specification of an authentication
protocol includes trace properties stating that various belief events logged by the agents occur
in a certain order. If we were interested in adding such temporal guarantees to Theorem 4.1, we
could strengthen the third predicate to communicate to let the responder know that the initiator
confirmed the handshake. We chose not to follow this approach because it would complicate the
specifications and because it was not needed to verify the applications we were interested in, just
like specifications of imperative code rarely mention the precise order of memory operations it
performs, focusing instead on the observable behavior that it produces.

4.3 Game Security for NSL

Because Theorem 4.1 does not involve the traditional temporal properties used in protocol verifica-
tion, we might worry that it might be missing attacks. To increase our confidence in this result,
we use a symbolic security game (Figure 9). We generate keys for two honest participants, an
initiator and a responder, and let them run an arbitrary number of parallel sessions. In each iteration
of do_init, the initiator attempts to contact an agent chosen by the attacker. If the handshake
successfully terminates, the initiator adds the exchanged key to a set of keys keysI, while ensuring
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I — M : aenc pky, $m1 [a; pk;] R — M : aenc pk; $m2 [a; b] I — M : aenc pky,; $m3 b
M — R : aenc pkp $m1 [a; pk;] M — I: aenc pk; $m2 [a; b] M — R : aenc pkp $m3 b.

Fig. 10. Attack on the original Needham-Schroeder protocol [Lowe 1996].

that it is fresh. Moreover, if the initiator contacted the honest responder, the attacker tries to guess
the session key. The logic in do_resp is similar. The agents win the game if no checks fail.

Providing this kind of guarantee can be elusive. The original version of the NSL protocol [Need-
ham and Schroeder 1978] was vulnerable to a man-in-the-middle attack [Lowe 1996], even though
it was thought to be secure for several years (and even verified [Burrows et al. 1990]). The issue was
that the original version omitted the identity of the responder in my—that is, m, would have been
aenc pk; $m2 [a; b] instead of aenc pk; $m2 [a; b; pky]. This meant that the initiator had no way of
telling if the responder was actually allowed to see the nonce b. Indeed, the second predicate ties
the confidentiality of b to the secret key of the responder, and this property is required to prove that
the third message can be sent. If the responder’s identity were not explicitly mentioned, it would be
impossible to know who can see b, so it would be impossible to prove that the third message is safe.

As seen in Figure 10, a malicious responder M can exploit this issue to lead an honest R into
generating a nonce b for authenticating I, and then tricking I into leaking this nonce to M. In the
end, M is able to construct the same session key that R believes is being used to talk to I—despite
the fact that R believes that the handshake was performed between two agents that are, in fact,
honest. The game shows that the attack cannot succeed—otherwise, check_key_secrecy would fail.

To show that the attacker cannot win the game, we proceed as follows. First, we prove speci-
fications for the functions do_init and do_resp that guarantee that they are safe. We consume
the secrecy resources of the agents’ private keys to guarantee that they cannot become public. In
the proof of do_init, we invoke the specification of initiator in Theorem 4.1. We maintain an
invariant on keysI saying that every key k’ = o.key stored in the set satisfies o.sharesnit F>gsess ()-
This means that the new session key k cannot be in the set, because its corresponding token has
not been used yet. Thus, the first assertion cannot fail. We consume this token so that the key can
be added to keysI. We then argue that the second assertion cannot fail because the attacker’s guess
is public, whereas the session key cannot be because the agents are honest. A symmetric reasoning
shows that do_resp is safe as well. Finally, we prove that game is safe. We generate the keys of the
honest participants by invoking the specifications in Section 2. Then, we allocate two empty sets of
keys, which trivially satisfy the invariant that all keys have their metadata token set. We conclude
by invoking the specifications of do_init and do_resp to show that the last line is safe.

5 Diffie-Hellman Key Exchange and Forward Secrecy

One limitation of a protocol like NSL is being vulnerable to key compromise. If a private key is
leaked, an attacker can decrypt the handshake messages and learn its session key. By contrast,
many modern protocols guarantee forward secrecy: if a handshake is successful, its session keys will
remain secret even if long-term keys are leaked [Cohn-Gordon et al. 2016]. Our goal in this section
is to demonstrate that Cryptis can scale up to such richer guarantees. Specifically, we will prove the
correctness of the ISO protocol [Krawczyk 2003], which provides forward secrecy. Because of its
stronger guarantees, it will be our protocol of choice to implement the communication components
used in our key-value store. A typical run of the protocol proceeds as follows:

I—R:[g%pk;] R—1I:signskg$m2[g%g”;pk;] I — R:signsk;$m3[g%;g"; pkgl.
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let initiator skI pkR = let responder skR =

let pkI = pkey skI in let pkR = pkey skR in

let a = mk_nonce () in let [ga; pkI] = recv () in

send [g*a; pkRI; let b = mk_nonce () in

let [=g*a; gb; =pkI] = send (sign skR $m2 [ga; g*b; pkIl);
verify pkR $m2 (recv ()) in let [=ga; =g*b; =pkR] =

send (sign skI $m3 [g*a; gb; pkR1); verify pkI $m3 (recv ()) in

let k = let k =
key senc [pkI; pkR; g*a; gb; gb*al in key senc [pkI; pkR; ga; g*b; ga*b] in

k (pkI, k)

Fig. 11. 1SO authentication protocol based on Diffie-Hellman key exchange.

sq b pky,my = [sa;gb;pkl] * (public b <= »False)

11>

Osm2 Skr ma2

@sm3 skr m3 = Jasy, skr, m3 = [g%; sp; pkey skg] = (public sky V public skgrV

(public (key,.,. [pkey skr; pkey skR;g“;sb;sZ]) - > False))
Fig. 12. Message predicates for ISO protocol.

The flow is similar to the NSL protocol, except that (1) it uses digital signatures instead of asymmetric
encryption; (2) the first message does not need to be signed or encrypted; (3) the keys used in the
signed messages 2 and 3 are swapped; (4) the agents exchange the key shares g% and ¢® rather than
the nonces a and b. At the end of the handshake, the participants can compute the shared secret
g% = (¢%)? = (¢*)? and use it to derive a session key. Figure 11 shows an implementation of ISO.

We proceed following the blueprint laid out in Section 4. We formulate a specification for the
initiator and the responder, and use these specifications to prove the security of a game between
the attacker and the agents. The main difference lies in the secrecy guarantees for the session
key k: when the handshake terminates, if we can prove that the participants’ long-term keys are
not compromised yet, then k will remain secret forever, even if some long-term keys are leaked
later. The ISO session o now includes a component o.secret, which corresponds to the shared
Diffie-Hellman secret. We define o.key as key,,,,. [o.init; o.resp; o.sharesiyii; 0.sharessp; o.secret].

THEOREM 5.1. Define sessioniso sk skg o as sk; = o.initsskg = o.resp*(public sk;V public skrV
O(public o.key <= »False)). The following triples hold:

{True} initiator sk; (pkey skg) {True} responder skg
r, r = None V 3o, r = Some o.key r, r = None V 3 sky o,r = Some (pkey skr, o.key)
* session|so sk skr o * token o.init T * session|so sky skr o * tokeno.resp T

We use the predicates of Figure 12. Each agent allocates their nonces n so that public n
> False. When I checks the signature, either R is compromised, or they learn that R’s key share
is of the form g?, with public b &= » False. Since public a &= » False, Figure 1 implies that
public g% is equivalent to > False. We modify the game of Figure 9 so that both signature keys are
eventually leaked, and we only check a session key if it was exchanged before the compromise
(Figure 13). To prove security, we proceed similarly to what we did earlier. The main difference is
the management of long-term keys. After generating the sk; and skg, we allocate an invariant J that
says that either the compromise bit c is set to false, in which case secret skj*secret skg holds, or it is
set to true, in which case both sk; and sk are public. Then, we prove that the check_key_secrecy
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let rec wait_for_compromise c = let game () =
if not !c then wait_for_compromise c (x ... %)
let skI = mk_sign_key #() in
let check_key_secrecy c k = let skR = mk_sign_key #() in
if not !c then let pkI = pkey skI in
wait_for_compromise c; let pkR = pkey skR in
let guess = recv () in let ¢ = ref false in
assert (k != guess) (x ... %)
else () fork (fun () -> do_init keysI c¢ skI pkR);
fork (fun () -> do_resp keysR ¢ skR pkI);
let compromise_keys c skI skR = fork (fun () -> compromise_keys c skI skR)
c := true; send skI; send skR

Fig. 13. Security game for the ISO protocol (excerpt).

function is safe provided that it is called on a session key k of the ISO protocol. If we run the “then”
branch of that function, the invariant J, combined with the postcondition of the handshake, implies
that O(public k & » False) holds. This guarantees that the attacker cannot win.

5.1 Extensions

We now discuss several extensions of the base protocol and specification that make them easier to
reuse in other settings. Figure 14 lists auxiliary predicates and rules that we will use.

Decomposing the Responder. In a typical client/server setting, it is useful to decompose R’s logic
into two steps. In the IS0. listen function, the responder waits for an incoming connection request,
the first message of the ISO protocol. The server can use the initiator’s identity to decide whether
to accept the connection or not. If it decides to accept the connection, it can call the ISO.confirm
function, which generates the responder’s key share and runs the rest of the ISO handshake.

Session Compromise. The specification of ISO has a limitation: if the handshake completes
successfully, it is impossible for us to model the compromise of the session key k, because the
session key is secret forever. We can relax this limitation by modifying the secrecy predicates
of the private DH keys a and b. Let release_token t = token ¢ (1$IS0.released) and released t =
t F3150.released (). We define public a and public b as »(released g* * released gb). Intuitively,
released marks whether that can be treated as compromised from the point of view of one of the
parties. To create this resource, the agent must consume a matching release_token resource, which
is generated once the key shares are created. Then, we can model a compromise of the session key
by simply releasing the tokens of the initiator and the responder. While the agents still hold their
release tokens, we can prove that the key is not yet compromised.

Early Compromise. Conversely, if we know that one of the agents is already compromised before
the handshake, it is useful for the session key k to be public from the start. Then, if we use the
key to encrypt something (cf. Section 6), we do not need to prove the corresponding message
predicates. Our extended ISO specifications allow us to make k public in this scenario. We add a
parameter p € {init, resp} to the session predicate, which tracks whether the agent of role p was
able to compromise the session early. The predicate compromised p ¢ holds if the handshake was
compromised from p’s perspective—that is, that agent learned that one of the private keys was
compromised before the end of the handshake.

Extended Specification. With all these extensions, we can strengthen Theorem 5.1 as follows. (We
include only the specification for the initiator; the specification for the responder is similar.)
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compromised p o + public a.key > % compromised p o + public skc V public skg
release_tokent * released t - False > * secret skc * secret sks +- > [0 ~compromised p ¢
release_tokent = released t % x> released o.shares;,;; * > released o.sharescp, + public o.key

% x release_token o.shares,, * public o.key F > compromised p o

Fig. 14. Properties of handshake compromise. We abbreviate session|so skc¢ sks p o as 2.

THEOREM 5.2. Let b be an arbitrary boolean. Assuming that the appropriate signature predicates are
allocated, the triple {b = public skr V public skg} initiator sk; (pkey skr) {r, ¢ r} is valid, where ¢ r
isr = None V 30, r = Some o.key * sessionso skj skg init o  release_token o.shares;yiy * O(b =
compromised init o) * token o.init (T \ T$IS0).

6 Reliable Connections

Now that we have authentication, we can use it to implement authenticated, reliable connections.
At the logic level, we follow prior work and model this functionality as the ability to reliably
transfer arbitrary separation-logic resources [Gondelman et al. 2023; Hinrichsen, Bengtson, et al.
2020]. Operationally, the functionality guarantees that messages are received in the same order that
they are sent and that their contents are not modified. To preserve their order, we include sequence
numbers in every message sent; to preserve their contents, we encrypt them with a session key.

The functionality is described in Figure 15. By abuse of notation, we sometimes use a connection
object c as if it were its underlying session o. In particular, c.shares, refers to the key share of the
agent of role p. There is no harm in doing that because the connection object tracks the session
key, which fully determines all the session information. To connect to a server, a client uses the
connect function, which initiates an ISO handshake and stores the resulting session key in the
returned connection object, along with counters for tracking sequence numbers. The server behaves
similarly, but runs the responder of the protocol. Once a connection is established, we can use the
send and recv functions to communicate. These functions include and check sequence numbers to
ensure that messages are received in the appropriate order. The recv function keeps polling the
network until it receives a message with the expected tag and sequence number.

Let us analyze these specifications. As we mentioned earlier, it will be useful to let the connec-
tion functions create compromised connections if we know that one of the participants is also
compromised. Accordingly, the precondition of the functions connect and confirm assumes that
either the agents have been compromised or some resource P is available. When the connection is
established, it will be marked as compromised if the first case holds; otherwise, the resource P will
be available for use. This allows us to maintain an resource P across multiple connections, provided
that the protocol participants are not compromised. Moreover, the postconditions provide release
tokens to compromise session keys and a metadata token. Finally, the postconditions provide the
resource Conn.connected sk¢ sks p ¢, which says that the connection is ready. To send and receive
messages, we must have assigned special conn_pred p ¢ predicates to their tags. For simplicity, we
assume that each tag can be used to send messages for a single role p. Then, to send a message
f, we must prove that ¢ skc sks ¢ £ holds, unless the session key is compromised. Dually, we can
assume that this predicate holds when receiving the message. Crucially, these predicates are not
required to hold persistently, which allows us to transfer resources through a connection. To enable
this transfer of resources, we use a variant of the escrow pattern [Gondelman et al. 2023; Kaiser et al.
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let Conn.listen () = ISO0.listen () let Conn.connect skI pkR =
let k = ISO.initiator skI pkR in
let Conn.confirm skR request = {session_key = k; sent = 0; received = 0}
let k = ISO.confirm skR request in
{session_key = k; let Conn.recv conn s =
sent = @; received = 0} let rec loop () =
let m = recv () in
let Conn.send conn s m = let [n; payload] =
let ciphertext = sdec c.session_key s m in
senc conn.session_key s if n == c.received then
[conn.sent; m] in c.received++; payload
conn.sent++; else loop ()
send ciphertext in loop ()
CoNNCONNECT

E =T\ T$IS0\ T$Conn

Conn.connected sk¢ skg init ¢
# (compromised init ¢ V P)

x release_token c.sharesjpit

* token c.init &

{public sk¢c V public sks V P} Conn.connect skc (pkey sks) ¢,

CoNNCONFIRM
E =T\ T$IS0\ T$Conn
Conn.connected skc skgs resp ¢
public ga ) % (compromised resp ¢ V P)
{ # (public sk¢ V public sks vV P)} Conn.confirm sks (ga, pkey skc) yec, * release_token c.sharesyesp

* token c.resp &

CONNSEND
senc > conn_pred p ¢

Conn.connected skc sks p ¢ N
{ « public 7+ (public c.key v ¢ skc sks ¢ T) Conn.send ¢ N t {Conn.connected skc sks p c}
CoNNRECVY
senc - conn_pred p~! ¢

- Conn.connected sk¢ sks p ¢
{Conn.connected skc sks p c} Conn.recv c N {t, « public T (public c.key V ¢ skc sks ¢ 7)

Fig. 15. Implementation and specification of reliable communication. The variable p € {init, resp} denotes
the role of an agent, and p~! denotes the opposite role.

2017; Turon et al. 2014]. The idea is to use an invariant J to allow an agent to extract a resource
R by exchanging it against a guard G. Because invariants are persistent, they can be used in the
proofs of message predicates.

Figure 16 presents the definitions of the predicates used in the specifications. The resource

. . ~—~—c.shares .
Conn.connected skc sks p ¢ contains an assertion | em l$ ", which tracks how many messages
——-dbconn.recv

that agent has received. This uses a monotonic counter resource algebra, which combines the
authoritative resource algebra [Jung, Krebbers, Jourdan, et al. 2018] with the monoid (N, max, 0).
An element of the form em represents ownership of a monotonic counter that is set to m, whereas
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Conn.connected sk¢ sks p ¢ = sessioniso sk sks p ¢

. - ——ac.shares
«3nm,c — {key = k; sent = n; received = m} = om | [/ *

conn_pred p okt £ Jont k=ockeyt=(n:T)=publict
777‘0'.shares o o.shares _1

x(e s > .init 0. Tx'e ! s
(‘— —n—‘$conn.recv =7 >(¢o.initorespot ‘—U—+—1—J$conn.recv

Fig. 16. Predicates for reliable connections

it - o.sharesinit
resp_pred_tokenq ocp= tA,ngieﬂ, Epi$rpc.resp7pr‘ed
Aske sks o, d_tok ke sks o
rpc_pred ¢ i = conn_pred init :(PCSISCCS;IZS ;e;p_pre _token, , & (i skc sks o F)

resp_pred skc sks o t £ 3, resp_pred_token, , o ¢ * vt

RPC.connected sk¢ sks ¢ = Conn.connected sk¢ skg init ¢ * release_token c.sharesi,it
* (compromised init ¢ V resp_pred_token; o (A_, False))

senc > xr rpc_pred ¢ ¢
SeNc H—grpc.resp conn_pred init resp_pred

public I % RPC.connected skc sks ¢
* (compromised init ¢ V ¢ skc sks ¢ )

RpcCaLL

RecC
RPC.callc N ¥ POLLOSE {RPC.connected skc sks c}
7 public 7 * RPC.connected sk¢ sks ¢ RPC.close ¢
> % (compromised init ¢ V ¢ ske sks ¢ TT') {public c.key}

Fig. 17. Remote procedure calls

on means that the counter’s value is at least n. The message predicate conn_pred p ¢ contains an
escrow that allows us to trade in that guard against resources attached to the message payload,
provided that the guard’s counter matches the sequence number of the message. Note that this
escrow also returns an updated guard, signaling the fact that another message was received.

To prove the specification of send, we must be able to prove that conn_pred p ¢ holds of c.key
and n :: £ under the preconditions of that function. Let us assume that ¢ sk¢ sks ¢ 7 holds; otherwise,
the session key is public and the encrypted message is trivially public. We consume that resource

AT “c.shares,

. . A !
to create an invariant | = || on ilﬁ%conn'recv

-—--c.shares .« 4 ————- ~c.shares

s s s i P raos p=1
the implication {en " " =<1 >(¢ skc sksct*en+1j "

-——-c.shares _
are given jenj " Vl . If we open J, the first disjunct is contradictory, because it states that the
counter has already passed the value n + 1. This allows us to extract the second disjunct to prove

the conclusion. Finally, we can reestablish J by bumping the counter and proving its first disjunct.

V ¢ c.init c.resp ¢ 7 |. This invariant allows us to prove

) persistently. Suppose that we

7 Remote Procedure Calls

The last internal component we need for our key-value store is the RPC mechanism. The component
is a thin layer on top of reliable connections (cf. Figure 15). The connection stage is mostly unchanged.
When the server accepts a connection from a client C, it enters a loop that continuously receives
requests from C. To perform a call (RPC.call), the client sends a message with the appropriate
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tag (which identifies the server operation) and arguments and then waits for the corresponding
response. The server invokes a handler upon receiving this request based on the operation and
sends whatever the handler returns back to the client.

Each RPC operation comes with two predicates: a predicate ¢ that should hold of the arguments
of the operation, and a predicate ¢ for its return values. It is convenient for ¢ to be able to refer
to the arguments in addition to the results. Here, the ability to transfer resources with reliable
connections comes in handy. Using a fractional agreement algebra and term metadata, we define a
resource resp_pred_token, o ¢/, which keeps track of which property y/ should hold of the results.
The RPC client allocates this resource when the connection is established. Before performing a call,
the client updates /' to ¢ skc skc o £, where 7 is the list containing the arguments of the operation.
Then, it sends one half of this token to the server. The message predicate for the server’s response
says that the results of the operation should satisfy exactly this predicate. The RPC functionality
also includes a close call for the client to close the connection. The client consumes its release token
and informs the server that the token has been released. The server releases its token as well, at
which point the session key becomes public. This allows the server to reply to the client without
proving any particular message predicates. When the client receives the server’s acknowledgment,
they conclude that the session key has been made public.

8 Implementing and Verifying the Key-Value Store

With all the communication primitives and data structures in place, implementing the key-value
store is straightforward. The server sits in a loop waiting for incoming connection requests from
the RPC module. When a request arrives, the server queries a directory to check if that client has an
account. If the account doesn’t exist yet, a new one is created. If it does, the server acquires a lock
to the account and forks off a separate thread that handles that connection. Several clients can be
served simultaneously, but each client can have at most one active connection, and the account lock
is used to guarantee mutual exclusion. Each API call corresponds to a server handler that performs
the corresponding operation on the client’s database. Once the client closes the connection, the
server releases the lock and kills the connection thread. The server uses a map data structure to
store the account directory and the client databases. For simplicity, our implementation uses a
purely functional association list stored in a location, but we could easily swap that out for a more
efficient implementation.

To verify the specifications of Figure 5, we use some custom resources and RPC predicates
described in Figure 18. (Once again, most of these resources are parameterized by the keys of the
client and the server, but we elide most of these parameters for readability.) We distinguish between
two types of databases: the logical database, which the client believes ought to be stored in the
server, and the physical database, which is what is actually stored in the server. The logical database
is ghost state that is owned by the client, and the physical database is tracked by a resource that
says that the client’s database is correctly represented as an association list.

The logical database consists of a series of resources stored in term metadata, which the client and
the server can initialize by consuming the appropriate tokens (cf. DBMAINALLOC, DBCOPYALLOC
and DBSTATEALLOC). The resource db_state o means that the current logical state is exactly o.
This predicate is defined with a function resource algebra, similarly to how the heap is modeled
in Iris [Jung, Krebbers, Jourdan, et al. 2018]. As shown in Figure 18, it can be combined with the
points-to assertion t; Fqp ¢ to update the logical state (DBSTATEUPDATE) or find out which values
are stored under it (DBSTATEAGREE). The remaining database resources are used to transfer updates
from the client to the server, and are implemented with a fractional agreement algebra. The resource
db_main o tracks the client’s view on the logical database, and db_copy o tracks the server’s view
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DBSTATEALLOC token skc (T$db.client.sks.state) = db_state @ = T >y L
DBSTATEAGREE db_state § = t] boqp, otp = § t; = oty

DBSTATEUPDATE db_state & = t1 o4}, ot = db_state (8[t1 > 15]) * 11 gy 1y
DBMAINALLOC token skc (T$db.client.sks.replica) = db_main 0 = db_sync 0
DBCoPYALLOC token sks (T$db.server.skc) = db_copy 0

DBMAINUPDATE db_main & * db_sync § = db_main &’ = db_update § §’
DBCoPYUPDATE db_copy &1 * db_update 8, 8" = &1 = 5, * db_copy & * db_sync &’
DBMAINSYNC db_main 61 * db_sync 62 = 1 = 52

I3

368, RPC.connected sk¢ skg ¢
# db_state § * (compromised init ¢ V db_main § * db_sync )
DB.disconnected sk¢ sks = 36, db_state § = (public skc V public sks V db_main & = db_sync §)

DB.connected sk¢ skg ¢

Psstore Skc sks ¢ T2 Tty t2 0,F = [y, t2] * db_update o o[t; > t2]

11>

Psack_store Skc sks ¢ T = 3o, db_sync o

¢$10ad Skc sks ¢ T2 3t ty0,f=[t1] *xot1 = Some t3 * db_update o ¢

®sack_load Skc sks ¢ 7 23tyo,f=[th]*7 =[t] *ot; = Some ty * db_sync o.

Fig. 18. Key-value store: Auxiliary assertions, rules and call predicates.

of the physical database. The resource db_sync o indicates that these two views are in sync. When
the client wants to update the logical database to ¢’, they consume this resource to create a new
resource db_update o ¢’ with the DBMAINUPDATE rule. The server can use this resource to update
their own view to the new state (DBCorYUpPDATE). The connection and disconnection predicates
for the client ensure that the db_state is consistent with the update resources. In the case of a
compromise, the client and the server can have inconsistent views of the logical database, in which
case we do not require the update resources to be present, thus allowing their states to diverge.
Finally, to prove the specifications of Figure 5, we use RPC predicates to inform the server about
which operations are performed on the logical state. We leverage the fact that the RPC abstraction
can be used to transfer resources, which allows the client to send db_update resources to keep
the server synchronized. When the server receives these messages, it synchronizes its copy of
the logical state and applies the corresponding operations to maintain its invariant. For example,
the message predicates for storing or loading a value are shown in Figure 18. In particular, the
response predicate for loading a value guarantees that the value #; in the response is the correct
value associated with the key t; sent in the request. Here, we make use of the fact that the predicate
for the response of the load request can mention the queried key t;; otherwise, the client wouldn’t
be able to tell that the value t, corresponds to #;, since the key does not appear in the response.

9 Implementation and Model

Rather than formalizing the Cryptis language from scratch, we implemented it as a library in
HeapLang, the main language used in Iris. We developed a small library to manipulate lists and
other data structures. We formalized cryptographic terms as a separate type from HeapLang values,
and rely on an explicit function to encode terms as values. Namespaces are included in terms by
converting them to integers. We ensure that Diffie-Hellman terms are normalized so that their
intended notion of equality coincides with equality in Rocq, similar to some encodings of quotient
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Table 1. Code statistics.

Component ‘ Impl. (loc) ‘ Proofs (loc) ‘ Game (loc) ‘ Total (loc) ‘ Wall-clock time (s)

Cryptis Core | — - - 8270 113
NSL (Section 4) | 54 230 255 539 43
ISO (Section 5) | 59 783 345 1212 54
Connections (Section 6) | 79 521 — 613 27
RPC (Section 7) | 52 492 - 554 25
Store (Section 8) | 154 1383 161 1706 79

types in type theory [Cohen 2013]. We implemented nonces as heap locations, which allowed us to
reuse much of the location infrastructure. To allocate a nonce, we simply allocate a new location,
which is guaranteed to be fresh. Encoding nonces in terms of heap locations is well-suited for
reasoning about protocols in the symbolic model, but it is not meant to be taken too literally—in
particular, because heap allocation does not produce bit patterns with enough entropy to withstand
real attackers.

To give an idea of the effort involved in Cryptis, Table 1 shows the size of our development and
case studies. The “Cryptis Core” row encompasses the logic, the HeapLang libraries for manipulating
terms and their specifications. The figures reported for case studies are broken down in lines of code
for the HeapLang implementation, lines of code for proofs of the Cryptis specifications (aggregated
with specifications and auxiliary definitions), and lines of code for defining and proving the security
of games. We also include the time spent to compile the code with parallel compilation on Rocq 9.0
running on an Ubuntu 24.04 laptop with an Intel i7-1185G7 3.00GHz with eight cores and 15GiB of
RAM. These statistics show that the effort required by Cryptis is comparable to other advanced
tools for modular protocol verification, such as DY* [Bhargavan, Bichhawat, Do, et al. 2021b].

Differences with Respect to the Paper. We have assumed that term variables always range over
terms that have been previously generated. Rocq cannot impose this restriction, so instead we
have a separate minted predicate that ensures that every nonce that appears in a term has been
previously allocated. Concretely, minted ¢ says that every nonce t’ < ¢ satisfies [ Fgpinted (), where
I is the nonce’s underlying location, and the notation refers to the location metadata predicate.
This standard Iris predicate allows us to attach metadata to individual locations in HeapLang and
satisfies laws similar to those of our term metadata predicate. In fact, our term metadata was
inspired by location metadata, as we discuss below.

Another difference lies in the treatment of the network. In Section 2, we modeled the network as
a separate state component that is manipulated concurrently by the agents and attacker actions. In
our implementation, the network is a modeled by a channel object, which is just a concurrent linked
list stored in the heap. To access the channel, the program must acquire its lock and release it after it
is done. We model the attacker as a separate set of threads that run the attacker actions described in
Section 2. We maintain an invariant that the channel only contains public messages. This invariant
is preserved by the honest agents because the specification of send requires a public message.
It is also preserved by attacker actions because public terms are preserved by all cryptographic
operations. One drawback of this encoding is that HeapLang does not have good support for global
objects. Therefore, in Cryptis, every function that manipulates the channel must take the channel
as a parameter. To run a Cryptis program, we must run a special init_network function, which
allocates the channel and initializes the attacker threads.
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Model of Cryptis Assertions. The main Cryptis predicates are obtained by a combination of Iris
invariants and ghost state. The adequacy theorem (Theorem 2.1) is responsible for allocating these
resources and setting up the required invariants. The public predicate is defined as a Rocq recursive
function using the size of the term as fuel. The definition is stated to validate all the equivalences
in Figure 1 directly. The only clause that is not covered by that definition is the clause for nonces.
It is defined as public (nonce I) = Iy ¢,] Pgnonce ¥ A [@jy A > ¢ (nonce l), where ¢ ranges over
predicates of type term — iProp. This is an example of higher-order ghost state [Jung, Krebbers,
Birkedal, et al. 2016]. When we allocate a nonce, we also allocate a new ghost location y to store its
secrecy predicate ¢, and then tie y to the nonce by using the metadata of its underlying location I.

The definitions of message-predicate assertions and term metadata rely on the following construc-
tion. We define assertions tokeny &, y — n x and Lé}j\// that behave like the analogous propositions
for term metadata but are indexed by ghost locations rather than terms. We can allocate a new
resource tokeny T for a fresh y at any point. (Internally, these assertions are defined using the
reservation map resource algebra of Iris and adapted from the location metadata feature mentioned
above.) This allows us to define message predicates and term metadata with one level of indirection:

token F&E = tokenyr & Fonyoez @)jﬁ
tokent & £ Jy, term_name ¢ y * tokeny & tn x = Jy,term_namefy sy >y X

In this definition, yr refers to a ghost name that is uniquely associated with the functionality F,
whereas the assertion term_name ¢ y, which we will soon dive into, means that ¢ is uniquely asso-
ciated with the name y. Message predicates are another instance of higher-order ghost state [Jung,
Krebbers, Birkedal, et al. 2016]: we use a resource algebra of predicates that guarantees agreement to
uniquely associate ¢ to yr and N. One important technical point is that, because of its impredicative
definition, the uniqueness of the predicate is only guaranteed under a > (cf. Figure 1).

Regarding the term_name predicate, we keep a map p stored under a ghost name yierm that
associates each term ¢ to a name y. We use an authoritative algebra to keep two copies of this map:
an authoritative copy ey, which records the exact state of the map, and a fragment oy, which can

fffffffffffffff

be split to track the name of each term. We define term_name ¢ y as | o[t > Agree y] "™, which
guarantees that ¢ corresponds to exactly one y. The authoritative copy of the map is stored in
an invariant that guarantees that every term in its domain is minted. In the proof of mk_nonce,
when we allocate a fresh nonce ¢, but before t is minted, we can open this invariant to extend the
term-name map with bindings for other terms ¢’ > t. Such terms are not minted, so we can prove

that they are not in the map, which allow us to create fresh token resources for them.

10 Related Work

Verification of Message-Passing or Distributed Applications. Recent years have seen the introduc-
tion of several tools for reasoning about distributed systems and message-passing concurrency,
such as Disel [Sergey et al. 2018], Actris [Hinrichsen, Bengtson, et al. 2020; Hinrichsen, Louwrink,
et al. 2021], or Aneris [Gondelman et al. 2023; Krogh-Jespersen et al. 2020]. One common limitation
of these tools is that they assume a non-adversarial communication model. For example, Actris
assumes that messages cannot be dropped, duplicated or tampered with, whereas Aneris assumes
that messages cannot be tampered with. By contrast, Cryptis allows us to reason about programs
running over an adversarial network. On the other hand, some of these tools have been designed to
reason about more challenging idioms of message-passing programming than what we currently
handle. For example, Actris uses session types to reason about the communication between agents.
In future work, we would like to bring together these two lines of research, by extending Cryptis to
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integrate the reasoning principles identified by these and other tools for reasoning about distributed
systems (e.g., integrate session types with our communication abstraction).

Some works in this space intersect with cryptography. For example, Hawblitzel et al. [2014] pro-
pose a methodology to verify applications running over an adversarial network. The specifications
guarantee that the responses that a client receives from the network are the same regardless of
whether what is sitting on the other end is the real application or a functionally equivalent abstract
machine that serves as its specification. However, unlike Cryptis, the authors do not show that the
responses received by the client satisfy any meaningful integrity guarantees. Drawing an analogy
in the context of our key-value store case study, this would mean that the client would not have
any guarantees that the value loaded from the database is indeed the last one that was stored.

Tools for Symbolic Cryptography Verification. There is a vast literature on techniques for ver-
ifying protocols; see Barbosa et al. [2021] for a comprehensive survey. One line of work in this
landscape focuses on verifying the absence of memory-safety violations or other low-level bugs
in implementations [Erbsen et al. 2019; Polubelova et al. 2020]. Ruling out such bugs is crucial
for security, but does not suffice to establish all required integrity and confidentiality guarantees,
which are usually analyzed with specialized tools. These tools strike a balance between many
requirements, such as expressiveness, convenience, and scalability. In one corner of the design
space, we have automated solvers such as ProVerif [Blanchet 2001], Tamarin [Meier et al. 2013]
and CPSA [Doghmi et al. 2007], which favor convenience over expressiveness and scalability, but
which are nonetheless powerful enough to analyze several real-world protocols. Cryptis explores a
different set of trade-offs: limited support for push-button automation in return for more scalability
and expressiveness, which enables the reuse of protocol proofs within larger systems.

Many other tools settle for similar trade-offs. The work that is the closest to ours is DY* [Bharga-
van, Bichhawat, Do, et al. 2021b]. DY" is a state-of-the-art F* library for protocol verification that
has been used to verify various protocols, such as Signal or ACME [Bhargavan, Bichhawat, Do,
et al. 2021a]. There are several similarities between the two tools. Like Cryptis, DY* is based on
symbolic cryptography and emphasizes expressiveness, allowing users to state and verify complex
properties. DY* also maintains a predicate on the set of messages that travel through the network,
akin to our public predicate: we can only send a message that satisfies the predicate, and every
message received from the network is guaranteed to satisfy the predicate. Both tools are designed to
reason about weak, or syntactic secrecy, and do not currently support relational indistinguishability
properties. In DY", secrecy is formulated using a system of confidentiality labels, akin to those
used in information-flow control systems [Denning 1976]: each message tracks which principals or
sessions are allowed to read it. Superficially, the public predicate of Cryptis is coarser, in that we
only distinguish public and secret information. Nevertheless, the two models seem to be able to
express similar policies. For example, Theorem 4.1 says that the NSL nonces can be read by the
attacker if and only if »(public sk; V public skg), which we can interpret as saying that either the
initiator or the responder are compromised. The DY* model of NSL offers similar guarantees.

Nevertheless, there are several differences between the two tools. Verification in DY* is carried
out semi-automatically, by leveraging the F* type system and SMT solvers. DY* was designed
to enable the extraction of executable code, a feature that would be crucial for making protocol
implementations more reliable, but that Cryptis currently lacks. Regarding our focus, the reuse of
protocol proofs to verify larger systems, DY* is not based on separation logic, so it does not support
the several verification idioms that rely on it. Moreover, DY* has a restricted state model: agents
can keep serialized long-term state associated with individual sessions, but do not have access
to common primitives for manipulating heap data structures. Finally, DY* is sequential, whereas
Cryptis has a nondeterministic scheduler. Since cryptographic protocols are concurrent systems,
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they must be modeled in DY* by following a rigid coding discipline: we decompose each protocol
into a series of actions, where each action is a separate function that does not rely on scheduling
nondeterminism. If several actions are inadvertently combined into one function, its specification
might hold only for a restricted choice of interleavings, which might miss some attacks.

These differences suggest that it would be difficult replicate in DY* the same type of proof reuse
that Cryptis supports. Consider a system such as our key-value store. In DY”, it would be impossible
to formulate succinct, self-contained specifications for the client wrappers, such as those of Figure 5.
On the one hand, we would need to decompose each wrapper into several atomic actions to factor
out local and network-wide scheduling nondeterminism. On the other hand, our specifications
make crucial use of connectives that have no analogue outside of separation logic (e.g., a points-to
connective to model the state of the store).

Another difference between the two tools, orthogonal to the goal of end-to-end verification, lies
in the support for compositionality. DY* enables compositionality through a layered approach [Bhar-
gavan, Bichhawat, Hosseyni, et al. 2023]: a protocol can be defined as a composition of several layers,
where each layer specifies disjointness conditions that should be respected by other components,
as well as predicates that need to be proved by its clients when using a cryptographic primitive. For
example, if a component C uses an encryption key that is shared with other components, we must
specify all encrypted messages that C is allowed to manipulate, and the other components cannot
manipulate such messages in ways that conflict with what C expects. The message predicates of
Cryptis play a similar role, but sacrifice some generality in return for ease of use: protocols can
be composed automatically if they rely on disjoint message tags, a phenomenon that has been
observed several times in the literature [Andova et al. 2008; Arapinis et al. 2015, 2012; Bugliesi et al.
2004a,b; Ciobacd and Cortier 2010; Maffei 2005]. Tag disjointness only needs to be checked once,
when declaring message predicates; by contrast, disjointness conditions in DY” need to be checked
on every call to a cryptographic primitive.

On a parallel line of work, several authors have proposed ways of integrating symbolic cryptogra-
phy within automated program analyzers for separation logic [Arquint et al. 2023; Vanspauwen and
Jacobs 2015]. These proposals aim to verify that protocol implementations are free of memory safety
violations while also conforming to their expected confidentiality and integrity guarantees. The
work of Arquint et al. [2023] was the first to demonstrate that separation-logic resources are useful
to reason about protocol security beyond just memory-related bugs, by using special freshness
resources to prove that protocols satisfy injective agreement (the absence of replay attacks). Our
metadata tokens enables similar, but more general, reasoning patterns. In particular, they can be
used to prevent replay attacks at the application level, by guaranteeing that reliable connections
deliver each message only once. Besides relying on a larger trusted computing base, one important
difference with respect to Cryptis is that these works do not attempt to reuse proofs of protocol
correctness to reason about larger systems. It is not obvious how these proposals could be leveraged
to support this kind of reasoning. Our reliable connection abstraction, for instance, uses the term
metadata feature of Cryptis to enable the transfer of resources through an authenticated connection,
a feature that plays a crucial role in the verification of our key-value store.

Looking beyond symbolic cryptography, several works have been developed to reason about
protocols in the computational model [Abate et al. 2021; Barthe, Dupressoir, et al. 2013; Gancher et al.
2023; Stoughton et al. 2022]. The computational model is more realistic than Cryptis’ symbolic model,
since it assumes that attackers have the power to manipulate messages as raw bitstrings, without
being confined to a limited API of operations. On the other hand, dealing with such attackers
requires more detailed reasoning, which means that such tools have difficulty scaling beyond
individual cryptographic primitives or simple protocols. Looking beyond protocol verification,
some works have proposed to reason about the use of cryptographic components in other types of
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systems. For example, FastVer2 leverages a trusted execution environment (TEE) to allow clients to
verify the correctness of key-value store operations. The authors prove that, if the FastVer2 monitor
succeeds, then all the key-value store logs are sequentially consistent, unless a hash collision
occurred. While Cryptis has similar goals, our focus is showing how proofs of cryptographic
communication protocols can be reused to achieve application-level goals.

Specification of Authentication. Most verification works view a protocol as a means for agents to
agree on their identities, parameters, session keys, or the order of events during execution [Arquint
et al. 2023; Bhargavan, Bichhawat, Hosseyni, et al. 2023; Blanchet 2001; Datta et al. 2011; Gordon
and Jeffrey 2003; Lowe 1997; Meier et al. 2013]. For example, if an initiator I authenticates with
a responder R, we might want to guarantee that R was indeed running at some point in the past,
that it was running and accepted to connect with I specifically, or that it accepted to start a unique
session with I that corresponds to the session key that they exchanged [Lowe 1997]. Cryptis shows
that agreeing on identities and on the contents of messages is crucial when reusing a protocol. For
example, when a key-value store receives a database operation, it must know which agent sent this
request to apply the operation to the correct database; when the client receives the response, it must
track which key was queried to know which value will be returned. This aspect of authentication
is implicit in Cryptis specifications, which allow us to determine the identity of participants based
on the exchanged session key. On the other hand, we have not found an instance where the exact
ordering of events in an authentication handshake could be leveraged to reason about a larger
system that uses a protocol. This allowed us to define the Cryptis logic without the event traces
that are used in related tools [Arquint et al. 2023; Bhargavan, Bichhawat, Do, et al. 2021b].

11 Conclusion and Future Work

We presented Cryptis, an Iris extension for symbolic cryptographic reasoning. As we demonstrated
throughout the paper, Cryptis allows us to reduce the correctness of distributed systems verified
in separation logic to elementary assumptions embodied by the symbolic model of cryptography,
without the need for baking in a stronger (and less realistic) communication model. The integration
of cryptographic reasoning allows us to evaluate how the correctness of a system is affected by
compromising cryptographic material such as a long-term private key, going beyond what standard
specifications in separation logic provide. Thanks to the adequacy of the Iris logic, which Cryptis
inherits, these correctness results can be understood in rather concrete terms, via security games
that rely only on the operational semantics of the underlying programming language.

Like other tools [Bhargavan, Bichhawat, Do, et al. 2021b], Cryptis is limited to single executions.
This can be restrictive for security, since many specifications talk about pairs of executions (e.g.
indistinguishability). We plan to lift this restriction drawing inspiration from prior work on rea-
soning about sealing via logical relations [Sumii and Pierce 2007, 2003] and relational reasoning
in Iris [Frumin et al. 2018]. Another avenue for strengthening the logic would be to incorporate
probabilistic properties and the computational model of cryptography. Prior work shows that
probabilistic reasoning can benefit from separation logic [Barthe, Hsu, et al. 2020], and we believe
that these developments could be naturally incorporated to our setting. Finally, we plan to extend
the tool to encompass more protocols by adding more cryptographic primitives (e.g. group inverses
would allow us to analyze the recent OPAQUE protocol [Jarecki et al. 2018]).
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