
Cryptis: Cryptographic Reasoning in Separation Logic

ARTHUR AZEVEDO DE AMORIM, Rochester Institute of Technology, USA
AMAL AHMED, Northeastern University, USA

MARCO GABOARDI, Boston University, USA

We introduce Cryptis, an extension of the Iris separation logic for the symbolic model of cryptography. The

combination of separation logic and cryptographic reasoning allows us to prove the correctness of a protocol

and later reuse this result to verify larger systems that rely on the protocol. To make this integration possible,

we propose novel specifications for authentication protocols that allow agents in a network to agree on the use

of system resources. We evaluate our approach by verifying various authentication protocols and a key-value

store server that uses these authentication protocols to connect to clients. Our results are formalized in Rocq.

CCS Concepts: • Theory of computation → Separation logic; • Security and privacy → Logic and
verification.

Additional Key Words and Phrases: Separation Logic, Cryptographic Protocols, Authentication

ACM Reference Format:
Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi. 2026. Cryptis: Cryptographic Reasoning in

Separation Logic. Proc. ACM Program. Lang. 10, POPL, Article 88 (January 2026), 31 pages. https://doi.org/10.1

145/3776730

1 Introduction
Computer systems must manage various resources to behave correctly, in particular regarding

security and privacy. However, doing so is nontrivial, especially when resources are shared by

components that might interfere with each other. For example, if a networked system uses a

cryptographic protocol and private keys are not shared with care, a security breach might result.

A great tool for ruling out such resource conflicts is separation logic [Brookes 2007; O’Hearn

2007; Reynolds 2002]. Assertions denote the ownership of resources, and if a program meets a

specification, it is guaranteed not to affect any resources disjoint from its pre- or postconditions.

What constitutes a resource depends on the application. Originally, resources were data structures

in memory, and being disjoint meant avoiding aliasing. This has since been generalized to other

types of resources, such as the state of a concurrent protocol [Hinrichsen, Bengtson, et al. 2020] or

sources of randomness [Bao et al. 2022; Barthe, Hsu, et al. 2020; Li et al. 2023].

By describing precisely what resources are used, and how they are used, separation logic brought

a key advancement to program verification: compositionality. We can verify each component in

isolation, without knowing exactly what resources are used elsewhere. Later, we can argue that the

entire system is correct, provided that the resources used by each component are kept separate.

This allows the logic to scale to large systems, including many that were challenging to handle

with prior techniques, such as concurrent or distributed ones. And thanks to its rich specification

language, the logic can be used to reason about a wide range of components with diverse purposes.

Authors’ Contact Information: Arthur Azevedo de Amorim, Rochester Institute of Technology, Rochester, NY, USA,

arthur.aa@gmail.com; Amal Ahmed, Northeastern University, Boston, MA, USA, amal@ccs.neu.edu; Marco Gaboardi,

Boston University, Boston, MA, USA, gaboardi@bu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART88

https://doi.org/10.1145/3776730

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

https://orcid.org/0000-0001-9916-6614
https://orcid.org/0000-0001-7424-572X
https://orcid.org/0000-0002-5235-7066
https://doi.org/10.1145/3776730
https://doi.org/10.1145/3776730
https://orcid.org/0000-0001-9916-6614
https://orcid.org/0000-0001-7424-572X
https://orcid.org/0000-0002-5235-7066
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776730
https://www.acm.org/publications/policies/artifact-review-and-badging-current

88:2 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Individual proofs of correctness can be composed in a unified formalism, thus ruling out bugs due

to possible mismatches between the guarantees of one component and the requirements of another.

Due to the relative novelty of separation logic, however, this power remains underexplored

in many domains. Among many examples, we can mention cryptographic protocols. To illustrate,
suppose we want to verify a distributed application that serves multiple clients. Many frameworks

have been introduced for tackling this task under increasingly realistic assumptions [Hinrichsen,

Bengtson, et al. 2020; Krogh-Jespersen et al. 2020; Sergey et al. 2018]. For example, Gondelman

et al. [2023] showed how to verify a remote procedure call (RPC) library and a key-value store in

Aneris [Krogh-Jespersen et al. 2020], which assumes that messages can be dropped or duplicated,

but not tampered with. It would be desirable to extend these results to a weaker model, where

messages might be forged or tampered with, and where reliable communication must be enforced

cryptographically. However, while there are several techniques for verifying protocols [Arquint

et al. 2023; Bhargavan, Bichhawat, Do, et al. 2021b; Blanchet 2001; Datta et al. 2011; Meier et al.

2013; Vanspauwen and Jacobs 2015], they have never been applied to reason about application-level

guarantees, such as proving that a client only receives correct responses from the server.

The goal of this paper is to connect these two lines of work. We introduce a new separation logic,

Cryptis, which extends Iris [Jung, Krebbers, Jourdan, et al. 2018] with the Dolev-Yao symbolic model

of cryptography [Dolev and Yao 1983]. Cryptis allows us to reuse proofs of protocol correctness to

verify application-level specifications, which hold even in the presence of powerful adversaries

that control the network. Proof reuse is enabled by several Iris features, including its support for

concurrency, higher-order ghost state and invariants. These features are orthogonal to other parts

of Cryptis, so it is possible to compose protocols with other concurrent programs and reason about

their behavior without compromising soundness.

Core Features. To reason in the Dolev-Yao model, Cryptis follows prior work and uses a special

predicate to overapproximate the set of messages known to the attacker [Arquint et al. 2023;

Bhargavan, Bichhawat, Do, et al. 2021b; Vanspauwen and Jacobs 2015]. When a message is built

using cryptographic primitives, such as encryption or digital signatures, we can define which

properties must hold of the contents of the message on a per-protocol basis. Upon receipt, these

properties allow us to prove that protocols meet their desired specifications.

To enable proof reuse, Cryptis associates terms such as nonces or cryptographic keys with

tokens—resources that allow us to bind a term to metadata or other resources. For example, when

clients and servers authenticate, they can use metadata associated with a session key to track

how many messages have been exchanged through the connection, which allows them to transfer

resources via messages using the escrow pattern [Kaiser et al. 2017; Turon et al. 2014], similar to

what is done in Aneris [Gondelman et al. 2023; Krogh-Jespersen et al. 2020]. Because the connections

are authenticated, a server can assume that the exchanged resources pertain to a specific client,

which provides the capability to modify that client’s data without interfering with other clients.

Evaluation. We evaluate Cryptis by verifying a key-value store that guarantees that clients

always receive the correct response from the server. The store is built on top of several modules:

RPC, reliable connections, and authentication, where each component is verified solely based on

the specifications of the others. To our knowledge, this is the first correctness proof for such an

application running on a Dolev-Yao network. Including protocols in the model of a system also

allows us to analyze how its behavior is affected when honest agents can be compromised—a

common concern in modern protocols [Cohn-Gordon et al. 2016]. For example, we prove that

our store behaves correctly even when the long-term keys are leaked, provided that the client

communicates with the server using a session key that was exchanged before the leak.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:3

Game-Based Specifications. It is common to define the security of a cryptographic protocol via

a game—a piece of code where honest agents aim to achieve some goal, such as exchanging an

unguessable session key, even in the presence of an attacker. The protocol is secure, by definition,

if the attacker cannot win the game and prevent the agents from achieving their goal. Games are

one of the main paradigms of specification in the computational model of cryptography, where

messages are bit vectors and adversaries are probabilistic algorithms. They provide an intuitive

way to formulate concepts such as “secrecy” that would be otherwise difficult to define. Despite

their appeal, reasoning about games in the computational model is notoriously difficult, because

it requires intricate probabilistic arguments and often involves reductions (“given an adversary

against this protocol 𝑃 , I can build an adversary against some hard problem 𝑃 ′”).
By contrast, Cryptis specifications are easier to prove than their computational analogues, but it

might not be clear what protection they provide. To clarify this point, we advocate for a methodology

based on symbolic security games. Like games for the computational model, symbolic games are

simply code where honest agents interact with an attacker. Their proofs of security, however,

are simpler than those in the computational model, since they can be carried within Cryptis. The

adequacy of the logic allows us to translate such proofs to self-contained trace properties, which can

be assessed independently of Cryptis. While symbolic games have appeared in prior works [Böhl

and Unruh 2016], ours is the first to show how we can reason about them via a logic.

Trace-Based Specifications. Dolev-Yao tools often define correctness in terms of a trace of events—

ghost data that describes the belief or the intent of agents at various points [Arquint et al. 2023;

Bhargavan, Bichhawat, Do, et al. 2021b; Blanchet 2002; Lowe 1997; Meier et al. 2013]. For example,

when an agent authenticates, they might emit an event to record the exchanged keys and who they

believe the other participant is. We can rule out various bugs by forcing such events to match. To

prevent a man-in-the-middle attack, we can verify that the event marking the end of a handshake

is matched by an earlier event marking that an agent accepted the connection; to prevent replay

attacks, we can also require that acceptance occur at most once for a given combination of keys.

Cryptis follows a different approach. Rather than relying on a baked-in trace, users can verify a

protocol by plugging in their own ghost state—typically, using term metadata. An authentication

protocol, as we will see, is simply a means for the agents to agree on a secret shared key and

establish ghost resources to coordinate their actions. We could use ghost state to store an event

trace, in which case it would be possible to adapt the classical notions of authentication into Cryptis.

Nevertheless, we have not found a reason to do so: our specifications are capable of preventing

bugs similar to those based on event traces, without the need for detailed temporal reasoning.

Secrecy as a Resource. Extending separation logic with symbolic cryptography provides novel

idioms for reasoning about security, by treating secrecy as a resource secret 𝑘 . While this resource

is available, the term 𝑘 is guaranteed to be secret, but the resource can be consumed at any point to

make 𝑘 available to the attacker. This enables a new model of dynamic compromise. Systems based

on an event trace often feature an attacker API with functions for compromising agents or sessions.

Operationally, this has the effect of creating a special event indicating when the compromise

occurred and allowing the attacker to access private data. But because a compromise can occur

anytime, it is difficult to reason about the behavior of a protocol under a specific compromise

scenario (e.g., where a key is compromised only after a certain event takes place). Cryptis, on

the other hand, allows us to model compromise in security games, by adding a command to

leak a sensitive cryptographic term 𝑘 in a specific step of the game. If we keep secret 𝑡 until the
compromise, we can argue that any actions that take place earlier are unaffected by it.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:4 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Contributions. In sum, our contributions are:

• Cryptis, a separation logic for symbolic cryptography with a trace-less semantics (Section 2).

• A newmodel of key compromise that treats the secrecy of a key as a separation-logic resource.

• Novel authentication specifications for coordinating agents via resources tied to cryptographic

material (Sections 4 and 5).

• Connecting Cryptis proofs to security results phrased with symbolic security games.
• Case studies showing that protocol specifications can be reused in application-level proofs.

• A formalization of our results in Rocq [Team 2025] using Iris [Jung, Krebbers, Jourdan, et al.

2018] and the Iris proof mode [Krebbers et al. 2017].

Structure of the Paper. Section 2 gives a comprehensive overview of Cryptis. Section 3 presents the

specification and the architecture of a modular key-value store cloud application, whose components

we describe and verify in the rest of the paper. First, we show how to verify authentication protocols,
which allow agents to exchange keys for encrypting sessions. We verify the classic Needham-

Schroeder-Lowe protocol [Lowe 1996; Needham and Schroeder 1978] (Section 4), which uses

asymmetric encryption, and the ISO protocol [Krawczyk 2003] (Section 5), which uses Diffie-

Hellman key exchange and digital signatures. For the latter, we prove forward secrecy: session
keys remain secret even after long-term keys are compromised. These protocols can be reused to

verify authenticated, reliable channels (Section 6) which, in turn, can be used to implement an RPC

mechanism (Section 7). This mechanism guarantees the security of the key-value store and allows

us to prove its correctness (Section 8). In Section 9, we discuss details of our formalization and of

the model of Cryptis. Section 10 discusses related work and Section 11 concludes.

Data-Availability Statement. The implementation and the case studies are included in the accom-

panying artifact [Azevedo de Amorim et al. 2025].

2 Core Cryptis
Cryptis is a logic for reasoning about networked programs in a typical functional imperative

language. The logic and the language are summarized in Figure 1. Most features are inherited

from Iris, so we focus on our extensions and refer readers to Jung, Krebbers, Jourdan, et al. [2018]

for more background on other features. The ⊲ symbol refers to the later modality, which enables

recursive definitions while avoiding paradoxes. The assertion � 𝑃 means that 𝑃 holds persistently,

without holding ephemeral resources. The assertion 𝑃 ⇛E 𝑄 means that we can make 𝑄 hold by

consuming 𝑃 , modifying ghost state and accessing invariants under any namespace N ∈ E.

Semantics and Networking. The operational semantics follows other Iris developments [Jung,

Krebbers, Jourdan, et al. 2018]. A program configuration comprises a heap, a thread pool, the network
state and a set of generated nonces. A per-thread reduction relation specifies how each thread can step

and interact with its environment, possibly modifying objects on the heap, sending and receiving

messages, and forking off new threads. There are two primitive networking functions, send and

recv. These functions are restricted to terms 𝑡 , a subset of values that excludes anything that cannot
be meaningfully sent over the network, such as pointers or closures. The network state in Cryptis is

modeled as a set of messages that can be observed by the attacker. In the protocol analysis literature,

this set is sometimes known as the attacker knowledge. The attacker knowledge grows whenever
an agent sends a message. To receive a message, the semantics chooses a message from the attacker

knowledge nondeterministically and returns it to the calling agent. The message is not removed

from the knowledge, so it could be received multiple times, even by different agents. As usual

in the symbolic model, messages do not include their sender or recipient, since this information

is unreliable. The per-thread reduction relation is lifted to whole configurations by choosing an

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:5

Key types 𝑢 := aenc | adec | sign | verify | senc
Functionalities 𝐹 := aenc | sign | senc
Terms 𝑡, sk, pk, 𝑘 := 𝑛 | N | (𝑡1, 𝑡2) | {𝑡}@𝑘 | key𝑢 𝑡 | 𝑡 ˆ (𝑡1 · · · 𝑡𝑛) | · · ·
Expressions 𝑒 := send 𝑒 | recv | {𝑒}@𝑒 | key𝑢 𝑒 | open 𝑒1 𝑒2 | pkey 𝑒 | 𝑒1 ˆ 𝑒2 | mk_nonce | · · ·

Assertions 𝑃,𝑄 := 𝐹 ↦→N 𝜑 | 𝑡 ↦→N 𝑥 | public 𝑡 | token 𝐹 E | token 𝑡 E | · · ·

Term equations

𝑡 ˆ() = 𝑡
𝑡 ˆ(𝑡1 · · · 𝑡𝑛) ˆ(𝑡𝑛+1 · · · 𝑡𝑚) = 𝑡 ˆ(𝑡1 · · · 𝑡𝑚)

𝑡 ˆ(𝑡1𝑡2) = 𝑡 ˆ(𝑡2𝑡1)

Private keys

(keyaenc 𝑡)sec ≜ keyadec 𝑡

(keysign 𝑡)sec ≜ keysign 𝑡

(keysenc 𝑡)sec ≜ keysenc 𝑡

Opening keys

(keyaenc 𝑡)open ≜ keyadec 𝑡

(keysign 𝑡)open ≜ keyverify 𝑡

(keysenc 𝑡)open ≜ keysenc 𝑡

Public terms

public 𝑛, public N ⇐⇒ True

public (𝑡1, 𝑡2) ⇐⇒ public 𝑡1 ∧ public 𝑡2

public {(N , 𝑡)}@𝑘 ⇐⇒ public 𝑡 ∧ public 𝑘 ∨ ∃𝜑, 𝐹𝑢 ↦→N 𝜑 ∧ �𝜑 𝑘sec 𝑡 ∗ �(public 𝑘open −∗ public 𝑡1)
public (key𝑢 𝑡) ⇐⇒ public 𝑡 ∨ public_key 𝑢

public (𝑡 ˆ 𝑡 ′) ⇐⇒ True (when 𝑡 does not begin with ˆ)
public (𝑡 ˆ(𝑡1 · · · 𝑡𝑛)) ⇐⇒ ∃𝑖, public (𝑡 ˆ(𝑡1 · · · 𝑡𝑖−1𝑡𝑖+1 · · · 𝑡𝑛)) ∧ public 𝑡𝑖

Operational semantics

open ({𝑡1}@𝑘) 𝑘open → Some 𝑡1
open 𝑡 𝑘 → None (in all other cases)

Public keys

𝑢 ∈ {aenc, verify}
public_key 𝑢

Program logic

{⊲ public 𝑡} send 𝑡 {True} {True} recv () {𝑡, public 𝑡}

{
�∀𝑡 𝑡 ′, 𝑡 ′ ∈ 𝑇 (𝑡) −∗ 𝑡 ⪯ 𝑡 ′

}
mk_nonce ()

𝑡,�(public 𝑡 ⇐⇒ ⊲�𝜑 𝑡) ∗ ∗
𝑡 ′∈𝑇 (𝑡)

token 𝑡 ′ ⊤


Metadata rules (for both terms and message predicates)

𝛼 ↦→N 𝛽1 ∗ 𝛼 ↦→N 𝛽2 ⊢ ⊲(𝛽1 = 𝛽2)
↑N ⊆ E ∗ token𝛼 E ⇛ 𝛼 ↦→N 𝛽

𝛼 ↦→N 𝛽 ∗ token𝛼 E ⊢ ↑N ⊈ E
token𝛼 (E1 ⊎ E2) ⊢ token𝛼 E1 ∗ token𝛼 E2

Fig. 1. The Cryptis logic and programming language. The highlighted assertions are persistent.

active thread nondeterministically and allowing it to take a step. These steps are interleaved with

attacker actions, which read some number of channel messages, combine these messages using a

cryptographic operation (see “Attacker model” below), and add the result to the knowledge.

Cryptographic Operations. Terms can be manipulated with several cryptographic primitives:

sealing ({𝑡}@𝑘), Diffie-Hellman exponentiation (ˆ) and nonce generation (mk_nonce). Sealing is an
umbrella primitive that encodes various encryption-like functionalities. In {𝑡}@𝑘 , the term 𝑡 is the

sealed message, and 𝑘 is the sealing key. We use 𝑘 to range over key terms, and reserve sk for private
keys and pk for public keys. Keys are terms of the form key𝑢 𝑡 , where 𝑡 is the seeding material

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:6 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

used to generate it and 𝑢 is its type. We distinguish between keys for asymmetric encryption

(𝑢 ∈ {aenc, adec}), digital signatures (𝑢 ∈ {sign, verify}) and symmetric encryption (𝑢 = senc). We

can unseal a term by calling open, which succeeds only if the key used for sealing matches the

one used for unsealing. The expression pkey sk computes the public key corresponding to some

secret key sk. The (partial) operations 𝑘sec and 𝑘open map a key 𝑘 to its corresponding private key

and opening key. In a Diffie-Hellman term 𝑡 ˆ(𝑡1 · · · 𝑡𝑛), the terms 𝑡1, . . . , 𝑡𝑛 represent the exponents.

We quotient terms to validate useful properties of exponentiation; in particular, exponents can

be freely permuted, and we have the familiar identity 𝑡 ˆ 𝑡1 ˆ 𝑡2 = 𝑡 ˆ 𝑡2 ˆ 𝑡1, which allows agents to

compute a shared Diffie-Hellman secret based on their key shares 𝑡 ˆ 𝑡1 and 𝑡 ˆ 𝑡2. A call tomk_nonce
nondeterministically chooses a nonce that does not occur in the set of generated nonces stored in

the program configuration. It returns that value and adds it to the set of generated nonces.

Attacker Model. In Cryptis’ Dolev-Yao model, cryptographic operations behave as black boxes. It

is impossible to manipulate messages as bit strings, to guess nonces or keys out of thin air, or to

extract the contents of an encrypted message without its key. On the other hand, we assume that the

attacker can invoke any cryptographic operation on terms they know—encrypting or decrypting

terms using known keys, generating nonces, extracting values from a tuple, etc. By running attacker

actions nondeterministically, the semantics overapproximates any sequence of interactions with

a Dolev-Yao attacker. Of course, real-life attackers might not abide by the Dolev-Yao restrictions,

so Cryptis might miss some attacks. Nevertheless, the model is rich enough to rule out several

critical, real attacks, such as Lowe’s attack on the NS protocol (Section 4.3). (In our implementation,

attacker actions are separate threads that must be explicitly initialized; cf. Section 9.)

Public Terms. To allow agents to communicate securely in the presence of such a powerful

attacker, Cryptis forces every message traveling through the network to satisfy a special public
predicate. Accordingly, the specification of the networking functions says that send takes in a

public term, whereas recv is guaranteed to return a public term. The definition of public balances
between two needs: capturing the capabilities of the attacker, on the one hand, and allowing honest

agents to reason about their communication, on the other. To model the attacker, the definition

ensures that public terms are preserved by all term operations (pairing two terms, sealing a term

with a key, etc.), hence by all attacker actions. To make it possible to reason about communication,

the public predicate allows us to impose predicates on sealed messages, as it is done in similar

tools [Backes et al. 2011, 2014; Bhargavan, Bichhawat, Do, et al. 2021b]. Suppose we want to send a

message of the form𝑚 = {(N , 𝑡)}@pk, where pk = keyaenc 𝑡
′
is an encryption key. In typical uses

of encryption, the contents of the message, 𝑡 , are not public. Nevertheless, the definition says that

we can prove that𝑚 is public provided that 𝑡 satisfies a certain predicate 𝜑 attached to the tag N .

The assertion 𝐹 ↦→N 𝜑 means that the tagN is associated with the predicate 𝜑 for sealed messages

under the functionality 𝐹 . Each tag can be associated with at most one 𝜑 under a given 𝐹 . The

protocol verifier chooses which predicates to use by consuming a token 𝐹 E resource, which states

that no tags in E have had any predicates assigned to them. (Initially, E is set to ⊤, which contains

every tag.) Cryptis focuses on tagged messages to make reasoning modular: if two protocols use

different tags, their proofs can be automatically composed. We represent tags with Iris namespaces,

which are similar to strings, but can be organized hierarchically. For example, if a protocol P has
three messages, we might tag them using the namespaces $P.m1, $P.m2 and $P.m3 (we will use $ to

distinguish namespaces from other identifiers). To set up their predicates, we can expose a lemma

that consumes a token of the form token 𝐹 (↑$P), where the set ↑$P contains any namespace that

has $P as a prefix. Thus, a user of a protocol does not need to know exactly which tags it uses.

The clause for encrypted terms also includes �(public 𝑘open ⇒ public 𝑡), which allows the

attacker to conclude that the contents of the message are public if they are ever able to decrypt it

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:7

with a public (compromised) decryption key. If 𝑢 = sign, then the antecedent of this implication is

trivial, which means that we can only sign messages when the contents are public. Notice that both

this implication and the message predicate 𝜑 are guarded by the persistence modality �: since a

Dolev-Yao attacker can duplicate messages arbitrarily, public must be persistent.

Dually, when another agent receives a sealed message, the definition says that we must consider

two cases: either the sealing key and the contents of the message are public, or the corresponding

sealing predicate holds. The first case typically occurs when reasoning about communication with

an attacker or compromised agent, which cannot be expected to enforce non-trivial properties,

whereas the second one arises when communicating with another honest agent. This type of case

analysis is reminiscent of the use of union types in protocol analysis [Backes et al. 2011, 2014].

Keys can be shared according to common usage patterns. For asymmetric encryption, the sealing

key (𝑢 = aenc) is always considered public, whereas the unsealing key (𝑢 = adec) is public if and
only the seed is. For signatures, it’s the opposite. A symmetric key is public if and only if its seed is.

The definition of public for exponentials allows agents to freely exchange key shares 𝑡 ˆ 𝑡 ′. When

there is more than one exponent, the term is public if and only if it can be obtained by combining

two smaller public terms via exponentiation. If 𝑡 is not a DH term, then public (𝑡 ˆ 𝑡1𝑡2) ⇐⇒
public 𝑡1 ∨ public 𝑡2. The specification for mk_nonce says, among other things, that the result 𝑡 is

such that public 𝑡 can be any predicate 𝜑 𝑡 chosen. The ⊲ modality is required for soundness: if

we had public 𝑡 ⇐⇒ �𝜑 𝑡 , we could get a contradiction by choosing 𝜑 𝑡 ≜ ¬public 𝑡 . We can

choose 𝜑 𝑡 = True to generate a public nonce, or 𝜑 𝑡 = False to generate a secret.

Term Metadata. The last feature that we need to cover is term metadata. The assertion 𝑡 ↦→N 𝑥

says that the term 𝑡 has been permanently associated with the metadata item 𝑥 under the namespace

N , where 𝑥 ranges over elements from arbitrary countable types. Like sealing predicates, we can

create metadata by consuming a resource token 𝑡 E. Each term is associated to at most one metadata

item under a given N . Tokens are created during nonce generation. As shown in the specification

for mk_nonce, the post-condition contains tokens for any term 𝑡 ′ ∈ 𝑇 (𝑡), where 𝑇 (𝑡) is a finite set
such that 𝑡 is a subterm of any 𝑡 ′ ∈ 𝑇 (𝑡) (written 𝑡 ⪯ 𝑡 ′). Intuitively, if 𝑡 ⪯ 𝑡 ′ and 𝑡 is fresh, then 𝑡 ′
cannot have been used by the program, which means that we are allowed to obtain a token for it.

Metadata in Cryptis serves multiple purposes. One use is to reason about term freshness: if a set

of terms𝑇 is such that every term has metadata under some namespaceN , any term 𝑡 that still has

a token containing N must not belong to 𝑇 . We can also use metadata to attach ghost state to a

term. The assertion 𝑎
𝑡

N ≜ ∃𝛾, 𝑡 ↦→N 𝛾 ∗ 𝑎
𝛾
says that 𝑡 is associated with an element 𝑎 drawn

from some resource algebra. This idiom is useful to track ghost state that is associated with an

agent, when 𝑡 is their public key, or with a session, when 𝑡 is the corresponding session key. Most

rules that apply to the Iris ghost ownership assertion carry over to this connective.

Adequacy. Cryptis satisfies an adequacy result that relates specifications to more elementary

properties stated in terms of the operational semantics of its language. The formulation of adequacy

is similar to the one of Iris, but it also provides tokens that are needed to carry out the proofs.

To invoke the adequacy theorem, we must decide which predicates will be associated with each

cryptographic functionality and each tag, and consume the tokens to set up these predicates, as

shown in Figure 1. Any combination of predicates can be used, provided that they are associated

with separate tags and functionalities.

Theorem 2.1. Suppose that 𝑃 𝑣 is a meta-level proposition such that we have a Cryptis proof of
{token aenc⊤ ∗ token senc⊤ ∗ token sign⊤} 𝑒 {𝑣 .𝑃 𝑣} . If 𝑒 terminates in a value 𝑣 when running in
the initial configuration, then 𝑃 𝑣 holds. Moreover, the initial configuration cannot reach a stuck state.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:8 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

pending 𝛾 ∗ �(public 𝑡 ⇐⇒ ⊲ shot 𝛾 1) −∗ secret 𝑡 secret 𝑡 ⇛ public 𝑡

secret 𝑡 ⇛ �(public 𝑡 −∗ ⊲ False) secret 𝑡 ∗ public 𝑡 −∗ ⊲ False

secret 𝑡 ≜ (public 𝑡 −∗ ⊲ False) ∧ (True ⇛ public 𝑡) ∧ (True ⇛ (public 𝑡 −∗ ⊲ False))

Fig. 2. Secrecy resource. The shot 𝛾 𝑛 proposition is persistent.

[𝜑]aenc sk 𝑡 ≜ public 𝑡 ∨ �𝜑 sk 𝑡 ∧ �(public sk ⇒ public 𝑡) aenc pk N 𝑡 ≜ {(N , 𝑡)}@pk

adec sk N 𝑡 ≜

{
Some 𝑡 ′ if open sk 𝑡 = Some (N , 𝑡 ′)
None otherwise

mk_aenc_key () ≜ keyadec (mk_nonce ())

{True}mk_aenc_key ()
{
sk, ∃𝑡, sk = keyadec 𝑡 ∗ token sk⊤ ∗ secret sk

}
{
aenc ↦→N 𝜑 ∗ [𝜑]aenc sk 𝑡

}
aenc (pkey sk) N 𝑡

{
𝑡 ′, public 𝑡 ′

}
{aenc ↦→N 𝜑 ∗ public 𝑡} adec sk N 𝑡

{
𝑣, 𝑣 = None ∨ ∃𝑡 ′, 𝑣 = Some 𝑡 ′ ∗ [𝜑]aenc sk 𝑡 ′

}
Fig. 3. Derived constructions for asymmetric encryption. We assume that sk ranges over decryption keys.

2.1 Derived Constructions
Cryptis includes several convenience features derived from the core elements presented above.

Secrecy Resources. Besides being public or private, the secrecy of nonce can behave as a resource.

This pattern is useful to model dynamic compromise, when an attacker does not have access to

some key at first, but eventually compromises it. Consider an ephemeral resource pending 𝛾 stating

that 𝛾 has not been tied to any value yet, whereas the persistent resource shot 𝛾 𝑛 means that 𝛾 is

tied to the integer 𝑛 and no other value. Such resources are commonplace and can be defined using

various ghost state constructions [Timany et al. 2024]. If public 𝑡 is equivalent to ⊲ shot 𝛾 𝑛, we
can use pending 𝛾 to create a resource secret 𝑡 (Figure 2), which means that 𝑡 can become public or

private at any point, by exchanging pending 𝛾 for shot 𝛾 1 or shot 𝛾 0. Moreover, because pending 𝛾
and shot 𝛾 1 contradict each other, we can guarantee that 𝑡 is secret as long as secret 𝑡 is available.

Specialized Cryptographic Primitives. Though sealing comprises several functionalities, in prac-

tice, it is useful to expose separate functions for each one of them. Figure 3 shows the interface

for programming with asymmetric encryption. The function mk_aenc_key is a wrapper around
mk_nonce that uses the nonce to generate a decryption key. The functions aenc and adec are
wrappers around sealing and opening. Because Cryptis works with tagged messages, it is more con-

venient for these functions to take the tag as a separate argument. We implement digital signatures

and symmetric encryption in a similar way. Note that verify, the function that verifies a signed

message, outputs the contents of the signed message, instead of a success bit. To prove the specifi-

cation ofmk_aenc_key, we allocate a resource pending 𝛾 and use the specification ofmk_nonce to
generate a nonce 𝑡 so that public 𝑡 ⇐⇒ ⊲ shot 𝛾 1. Since public (keyadec 𝑡) ⇐⇒ public 𝑡 , we
can create a resource secret (keyadec 𝑡), as shown in Figure 2. Moreover, since 𝑡 ⪯ keyadec 𝑡 , we
can use the mk_nonce rule to create a token for the key. The specifications for encryption and

decryption mention the predicate [𝜑]aenc sk 𝑡 , which describes what holds of the contents of the

message 𝑡 if we know that aenc ↦→N 𝜑 holds.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:9

Authenticated

key exchange

(Sections 4 and 5)

Reliable

connections

(Section 6)

Remote

procedure calls

(Section 7)

Client

wrappers
Server

Data

structures

Fig. 4. Structure of key-value store. Arrows denote dependencies, circles denote internal components, and
squares denote the key-value store itself.

3 Motivating Application: A Key-Value Store
In the rest of the paper, we will illustrate the expressiveness of Cryptis by verifying the correctness

of a simple key-value store. This case study demonstrates how we can reason modularly about

a high-level application that provides non-trivial integrity guarantees even in the presence of

arbitrary Dolev-Yao attackers, and how these guarantees are affected when long-term keys are

compromised. In this section, we content ourselves with an overview of the architecture of the

key-value store and its specification. Later, we will dive into its individual components.

Figure 4 summarizes the structure of the application. A server stores client data in internal data

structures, and clients performs API calls to retrieve and manipulate their data. The communication

between clients and the server is implemented by a remote procedure call (RPC) component, which

sits on top of a connection abstraction that preserves the ordering and contents of messages. To

create a connection, a client must initiate an authentication handshake with the server, which

allows the two parties to exchange a session key and confirm each other’s identities. Since our focus

is on how such distinct components can be developed and verified modularly, the functionality of

each verified component will be rather minimal. For example, the store server provides sequential

consistency, runs on a single machine, and stores the client data using an association list. Because

of the modular design and the expressiveness of separation logic, it should be possible to make

each component more realistic without changing fundamentally how they are connected.

Figure 5 shows the specification of the client API. To interact with the server, the client must

first call the connect function. This function returns a connection object 𝑐 , together with a resource

DB.connected sk𝐶 sk𝑆 𝑐 that indicates that the client is connected. While the client is connected,

it can perform database operations: load a value stored under a key (load), create a new key in

the database (create), or store a new value under an existing key (store). The specifications are
modeled after the specifications for memory operations in separation logic, with one minor twist: a

load can return an incorrect value if the connection is compromised. A connection is compromised

if either the server or the client was compromised when the connection was established (that is, if

their private keys were known to the attacker).

We can rule out the possibility of a compromise by proving that the agents’ private keys were

still secret at any point after the connection 𝑐 was established. Note that it is still possible that

these private keys end up leaking at a later point without affecting the integrity of 𝑐 . As we will

see, this guarantee is a product of the post-compromise properties of the underlying key-exchange

protocol. Logically, this is a consequence of the way persistent assertions work in Iris. The assertion

⊲�¬compromised 𝑐 is persistent because it is guarded by the persistence modality �. This means

that, if we are in a proof context where secret sk𝐶 , secret sk𝑆 and DB.connected sk𝐶 sk𝑆 𝑐 all hold,
we can prove ⊲�¬compromised 𝑐 without consuming these premises. Later, we can consume

secret sk𝐶 or secret sk𝑆 to leak one of the private keys. (Note that our server only allows clients

to have one active connection at a time. If multiple active connections were possible, ruling out a

compromise would be more difficult, because the attacker would be able to initiate a new session

using a compromised long term key and then corrupt client data.)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:10 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Notation Abbreviation Meaning

sk𝐶 , sk𝑆 , pk𝑆 — Long term keys of client and server

𝑘𝑐 — Session key used in connection 𝑐

DB.disconnected sk𝐶 sk𝑆 Δ The client is disconnected

DB.connected sk𝐶 sk𝑆 𝑐 Γ The client is connected via the connection 𝑐

compromised 𝑐 — The connection 𝑐 is compromised

𝑇 ↦→sk𝐶 ,sk𝑆
db ⊥ 𝑇 ↦→db ⊥ No term 𝑡 ∈ 𝑇 is stored in the server

𝑡1 ↦→sk𝐶 ,sk𝑆
db 𝑡2 𝑡1 ↦→db 𝑡2 The value 𝑡2 is stored under the key 𝑡1

{Δ} DB.connect sk𝐶 pk𝑆 {𝑐, Γ} {Γ} DB.close 𝑐 {Δ ∗ public 𝑘𝑐 }

{Γ ∗ 𝑡1 ↦→db 𝑡2} DB.load 𝑐 𝑡1
{
𝑡 ′
2
, (compromised 𝑐 ∨ 𝑡 ′

2
= 𝑡2) ∗ Γ ∗ 𝑡1 ↦→db 𝑡2

}
{Γ ∗ 𝑡1 ↦→db ⊥} DB.create 𝑐 𝑡1 𝑡2 {Γ ∗ 𝑡1 ↦→db 𝑡2}

{
Γ ∗ 𝑡1 ↦→db 𝑡

′
2

}
DB.store 𝑐 𝑡1 𝑡2 {Γ ∗ 𝑡1 ↦→db 𝑡2}

𝑡1 ↦→db 𝑡2 ∗ 𝑡1 ↦→db 𝑡
′
2
⊢ False secret sk𝐶 ∗ secret sk𝑆 ∗ Γ ⊢ ⊲�¬compromised 𝑐

token sk𝐶 (↑$db.client.sk𝑆) ⇛⊤ Δ ∗ ⊤ ↦→db ⊥ 𝑇1 ⊎𝑇2 ↦→db ⊥ ⊢ 𝑇1 ↦→db ⊥ ∗𝑇2 ↦→db ⊥

Fig. 5. Key-value store assertions and specifications for the client API. For readability, we abbreviate some of
the resources and tacitly assume that the terms 𝑡1, 𝑡2 and 𝑡 ′

2
are public.

At any moment, the client can choose to disconnect from the server by calling the close function.
After disconnecting, 𝑘𝑐 , the session key used to encrypt the connection, is no longer needed, so it

can be made public and leaked to the attacker. Of course, if the key were leaked, the attacker would

be able to read any messages that were encrypted with it, ruining any confidentiality guarantees.

We allow the session key to be leaked after disconnection to highlight that this would not affect

the integrity of the client’s data: the attacker could try to send requests to the server using the

compromised key, but those requests would be ignored.

To illustrate how these specifications can be used, let us assess the integrity of the store with a

security game (Figure 6). The game sets up signature keys for the client and the server, sends the

public keys to the attacker, and then runs the client and the server in parallel. The client uses the

server to store a value chosen by the attacker and then tries to retrieve that value from the server.

Our goal is to prove that the client’s assertion succeeds; that is, the client reads back the same value

that it stored originally. Moreover, this assertion succeeds even though various keys are leaked

during the game. Though the game code is simple, its operational semantics is complex, because the

agents run concurrently and their interaction is mediated by a Dolev-Yao attacker. Thus, checking

the security of the game forces us to reason about concurrency, making it challenging to provide

similar formulations in sequential systems, such as DY* [Bhargavan, Bichhawat, Do, et al. 2021b].

To prove that the game is secure, we use the specification formk_sign_key, analogous to the one
of mk_aenc_key (Figure 3), to obtain secrecy resources secret sk𝐶 and secret sk𝑆 . We also obtain

metadata tokens for these keys, which we can use to initialize the ghost state required to run the

server and the client. For the client, this means obtaining the assertions DB.disconnected sk𝐶 sk𝑆
and ⊤ ↦→sk𝐶 ,sk𝑆

db ⊥, which guarantees that the database is currently uninitialized. Note that the

token needed for the initialization lemma mentions the namespace $db.client.sk𝑆 , whose last
component is a secret key rather than a plain identifier. This allows the client’s token to be used

for setting up databases with multiple servers. (The lemmas used to initialize the server’s ghost

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:11

let run_client leak_keys skC pkS =
let c1 = DB.connect skC pkS in
let key = recv () in
let val = recv () in
DB.create c1 key val;
DB.close c1;
send (session_key c1);
let c2 = DB.connect skC pkS in
leak_keys ();
let val' = DB.load c2 key in
assert (val = val')

let game () =
let skC, skS =

mk_sign_key (), mk_sign_key () in
let pkC, pkS = pkey skC, pkey skS in
send pkC; send pkS;

let leak_keys () = send skC; send skS in

fork (fun () -> DB.start_server skS);
fork (fun () -> run_client leak_keys skC pkS)

Fig. 6. Security game for the key-value storage service. The client reads back the value they stored even if
long-term keys are leaked after the connection.

state are omitted for brevity.) We pass all these resources to the run_client function. When we

close the first connection 𝑐1, we are allowed to leak its session key thanks to the specification of

DB.close. When we establish the second connection 𝑐2, we use secret sk𝐶 and secret sk𝑆 to prove

that 𝑐2 is not compromised, which allows us to prove that DB.load returns the expected value.

4 Authentication: The NSL Protocol
The first component of the key-value store we will analyze is its authentication protocol. For post-

compromise security, the implementation uses a protocol based on Diffie-Hellman key exchange,

which we will cover in Section 5. Before we do so, however, we will consider the Needham-

Schroeder-Lowe protocol [Lowe 1996; Needham and Schroeder 1978] (NSL), a classic protocol based
on public-key encryption. Though the protocol provides weaker security guarantees, it is often

used as an introductory example in protocol-verification tools and, thus, serves as a good point of

comparison for Cryptis.

There are two versions of the protocol: one that relies on a trusted server to distribute public

keys, and one where the participants know each other’s public keys from the start. For simplicity,

we model the second one. A typical run can be summarized as follows:

𝐼 → 𝑅 : aenc pk𝑅 $m1 [𝑎; pk𝐼] 𝑅 → 𝐼 : aenc pk𝐼 $m2 [𝑎;𝑏; pk𝑅] 𝐼 → 𝑅 : aenc pk𝑅 $m3 𝑏.

First, the initiator 𝐼 generates a fresh nonce 𝑎 and sends it to the responder 𝑅, encrypted under their

public key pk𝑅 . The responder replies with 𝑎 together with a fresh nonce 𝑏. The initiator confirms

the end of the handshake by returning 𝑏. If the protocol terminates successfully, and both agents

are honest, they can conclude that their identities are correct—that is, they match the public keys

sent in the messages—and that the nonces 𝑎 and 𝑏 are secret. In particular, they can use 𝑎 and 𝑏 to

derive a secret session key to encrypt further communication. Figure 7 shows an implementation

of the protocol in the Cryptis programming language. To keep examples short, we’ll use a syntax

inspired by the ProVerif protocol analyzer [Blanchet 2001]: let declarations can mention patterns

of the form =p, which are only matched by p itself. Any errors that arise during execution, such as

failed pattern matching, cause the code to safely return None. (Formally, these errors are managed

using the option monad, and let in our code snippets should be read as monadic bind.)

4.1 Proving Security
A Cryptis proof is typically structured as follows. First, we formulate the expected security or

correctness guarantees of a component using a series of specifications in the Cryptis logic or

security games. Then, we determine which predicates we must associate with the encrypted or

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:12 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

let initiator skI pkR =
let pkI = pkey skI in
let a = mk_nonce () in
let m1 = aenc pkR $m1 [a; pkI] in
send m1;
let m2 = recv () in
let [=a; b; =pkR] = adec skI $m2 m2 in
let m3 = aenc pkR $m3 b in
send m3;
let k = key senc [pkI; pkR; a; b] in
k

let responder skR =
let pkR = pkey skR in
let m1 = recv () in
let [a; pkI] = adec skR $m1 m1 in
if not (is_aenc_key pkI) then fail ();
let b = mk_nonce () in
let m2 = aenc pkR $m2 [a; b; pkR] in
send m2;
let m3 = adec skR $m3 (recv ()) in
if m3 != b then fail ();
let k = key senc [pkI; pkR; a; b] in
(pkI, k)

Fig. 7. Implementation of NSL. Variables beginning with sk and pk refer to secret and public keys.

signed messages exchanged in the protocol. We prove lemmas that allow us to initialize these

message predicates by consuming corresponding resource tokens, using the rules of Figure 1. We

proceed to prove that the desired specifications hold assuming that the required message predicates

are available. Finally, to prove a closed result that is independent of the Cryptis logic (e.g., that an

assertion in a game does not fail), we invoke the adequacy theorem (Theorem 2.1), using the tokens

that it generates to initialize the message predicates required by each component of the program.

Let us see how this applies in the context of NSL. The handshake produces a session key 𝑘 that

is guaranteed to be secret, as long as both participants are honest. We formalize this claim with

the following theorem, which, moreover, produces metadata tokens for the agents to coordinate

their actions. We use the metavariable 𝜎 to range over sessions, which comprise the keys of each

protocol participant, 𝜎.init and 𝜎.resp, as well as their nonces, 𝜎.sharesinit and 𝜎.sharesresp. The
session key is defined as 𝜎.key ≜ keysenc [pkey 𝜎.init; pkey 𝜎.resp;𝜎.sharesinit;𝜎.sharesresp].

Theorem 4.1. Define sessionNSL sk𝐼 sk𝑅 𝜎 as sk𝐼 = 𝜎.init ∗ sk𝑅 = 𝜎.resp ∗ �(public 𝜎.key ⇐⇒
⊲(public sk𝐼 ∨ public sk𝑅)). Assuming that the message predicates of Figure 8 are set up, the following
triples hold:
{True} initiator sk𝐼 (pkey sk𝑅){
𝑟, 𝑟 = None ∨ ∃𝜎, 𝑟 = Some 𝜎.key

∗ sessionNSL sk𝐼 sk𝑅 𝜎 ∗ token𝜎.init⊤

} {True} responder sk𝑅{
𝑟, 𝑟 = None ∨ ∃sk𝐼 𝜎, 𝑟 = Some (pkey sk𝐼 , 𝜎 .key)

∗ sessionNSL sk𝐼 sk𝑅 𝜎 ∗ token𝜎.resp⊤

}
Let us dissect this result. We focus on the initiator, since the responder is similar. If the protocol

successfully terminates, the function returns the session key exchanged by the two agents. The

predicate sessionNSL sk𝐼 sk𝑅 𝜎 says that the session key 𝜎.key is public if and only if one of the

long-term secret keys is known by the attacker.

The proof of for the initiator is outlined in Figure 8, along with the required message predicates.

(Note that the third predicate is trivial. We will come back to this point later.) We focus on the case

where every operation succeeds since the specification does not impose any requirements when

the function fails. We use the MkNonce rule to generate a fresh nonce 𝑎 such that public 𝑎 ⇐⇒
⊲�(public sk𝐼 ∨ public sk𝑅). This nonce comes with a token resource, which we will use in

the postcondition. We encrypt the first message using the rule for aenc (Figure 3). To prove its

precondition, assuming that themessage invariants have been allocated appropriately, wemust show

that [𝜑$m1]aenc sk𝑅 [𝑎; pk𝐼] holds. Since 𝑎 is not known to be public, we proceed by proving its second
disjunct; that is: (1) proving 𝜑$m1 sk𝑅 [𝑎; pk𝐼] and (2) proving public sk𝑅 ⇒ public 𝑎 ∗ public pk𝐼 .
Both points follow from how 𝑎 was generated, and because every key for asymmetric encryption is

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:13

𝜑
$m1 sk𝑅 𝑚1 ≜ ∃𝑎 sk𝐼 ,𝑚1 = [𝑎; pkey sk𝐼] ∗ (public 𝑎 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅))
𝜑
$m2 sk𝐼 𝑚2 ≜ ∃𝑎 𝑏 sk𝑅,𝑚2 = [𝑎;𝑏; pkey sk𝑅] ∗ (public 𝑏 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅))

𝜑
$m3 sk𝑅 𝑚3 ≜ True

𝑃 ≜ �(public 𝑎 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅)) ∗ token𝑎⊤
𝑄 ≜ 𝑃 ∗ (public 𝑏 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅))

{True}
let 𝑎 = mk_nonce () in

{(public 𝑎 ⇐⇒ ⊲�(public sk𝐼 ∨ public sk𝑅))
∗ token 𝑡 ⊤}

⇒{𝑃 ∗ [𝜑
$m1]aenc sk𝑅 [𝑎; pk𝐼]}

let𝑚1 = aenc pk𝑅 $m1 [𝑎; pk𝐼] in
{𝑃 ∗ public𝑚1}

send𝑚1;

{𝑃}
let𝑚2 = recv () in

{𝑃 ∗ public𝑚2}

{𝑃 ∗ public𝑚2}
let [=𝑎;𝑏;=pk𝑅] = adec sk𝐼 $m2𝑚2 in

{𝑃 ∗ [𝜑
$m2]aenc sk𝐼 [𝑎;𝑏; pk𝑅]}

⇒{𝑃 ∗ (public 𝑏 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅))}
⇒{𝑄 ∗ [𝜑

$m3]aenc sk𝑅 𝑏}
let𝑚3 = aenc pk𝑅 $m3 𝑏 in

{𝑄}
let 𝑘 = keysenc [pk𝐼 ; pk𝑅 ;𝑎;𝑏] in

{∃𝜎, 𝑘 = 𝜎.key ∗ sessionNSL sk𝐼 sk𝑅 𝜎
∗ token𝜎.init⊤}

Fig. 8. Proof for the NSL initiator, message predicates and abbreviations.

public. After the message is encrypted, it is considered public, so it can be safely sent to the network.

Now, consider what happens when the initiator receives𝑚2. Since the message is public, after

decrypting and checking it, we prove [𝜑$m2]aenc sk𝐼 [𝑎;𝑏; pk𝑅] holds (cf. the rule for adec in Figure 3).
This entails public 𝑏 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅); indeed, we have two cases to consider. One

possibility is that the message predicate holds. This implies the equivalence directly. The other

possibility is that the body of themessage (that is, the nonces𝑎 and𝑏) is public, which could happen if

𝑚2 was sent by an attacker. Because 𝑎 is also public, it must be the case that ⊲(public sk𝐼∨public sk𝑅)
holds. Since public 𝑏 also holds, the equivalence holds as well. This equivalence proves that the

last message can be safely encrypted and sent (intuitively, because 𝑏 can be read by the responder).

To conclude, we need to prove that the session key 𝑘 has the desired secrecy. This follows trivially

from the equivalence public 𝑎 ⇐⇒ public 𝑏 ⇐⇒ ⊲(public sk𝐼 ∨ public sk𝑅).

4.2 What About the Third Message?
Our proof of NSL did not require any particular properties of the third message. In fact, whether the

third message is needed or not depends on what the protocol is being used for. Its original purpose,

as devised by Needham and Schroeder [1978], was to establish an authenticated interactive session,

which also seems to be the goal of most authentication protocols. Assuming that the initiator sends

the first message of the session, this means that the third handshake message is redundant, because

it does not convey new information. All we need to know is that the session key is known only to

the relevant parties and suitably fresh to prevent replay attacks. As we will see, metadata tokens

provide a mechanism to argue about freshness: since we cannot own a token that overlaps with

existing metadata (cf. Figure 1), we can guarantee that a fresh key 𝑘 does not belong to a set of old

keys 𝐾 by ensuring that all keys in 𝐾 are generated from nonces whose tokens have been used.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:14 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

let check_key_secrecy session_key =
let guess = recv () in
assert (session_key != guess)

let rec do_init keysI skI pkR =
fork (fun () -> do_init keysI skI pkR);
(* Attacker chooses responder *)
let pkR' = recv () in
(* Run handshake *)
let k = init skI pkR' in
(* The session key should be fresh and *)
assert (not (Set.mem keysI k));
Set.add keysI k;
(* if attacker chose honest responder,

the key cannot be guessed. *)
if pkR' == pkR then check_key_secrecy k
else ()

let rec do_resp keysR skR pkI =
(* Similar to initiator *)
(* ... *)

let game () =
(* Generate keys and leak public keys *)
let skI, skR =

mk_aenc_key (), mk_aenc_key () in
let pkI, pkR = pkey skI, pkey skR in
send pkI; send pkR;
(* Generate sets of session keys *)
let keysI = Set.new () in
let keysR = Set.new () in
(* Run agents *)
fork (fun () -> do_init keysI skI pkR);
fork (fun () -> do_resp keysR skR pkI)

Fig. 9. A security game where the attacker tries to learn the session keys or cause them to be reused.

However, we could consider alternative scenarios where the protocol authenticates a single
request or message. For example, in a protocol for financial transactions, the client might not need

to establish a whole interactive session with the server just to send one request. Suppose that

the initiator embeds the request data 𝑑 in the last handshake message, which would serve as a

confirmation step to transfer funds to a vendor or carry out whatever other action is requested. We

could modify the predicate of the third message to include an escrow [Kaiser et al. 2017; Turon

et al. 2014] that would allow trading in one of 𝑏’s tokens against a resource 𝑃 𝑑 associated with the

client’s data. Logically, this resource could provide the server with the necessary permissions to

carry out the operation on the client’s behalf. This idea would also make sense in hybrid scenarios,

such as in the early data extension of TLS 1.3, where the handshake messages can be used to carry

some application-level data before the regular message exchange begins. In Section 6, we will

discuss in more detail how escrows in Cryptis enable the transfer of resources through messages.

The guarantees of the third message are also tied to another point discussed earlier: the temporal

aspect of authentication. Inmost tools for protocol verification, the specification of an authentication

protocol includes trace properties stating that various belief events logged by the agents occur

in a certain order. If we were interested in adding such temporal guarantees to Theorem 4.1, we

could strengthen the third predicate to communicate to let the responder know that the initiator

confirmed the handshake. We chose not to follow this approach because it would complicate the

specifications and because it was not needed to verify the applications we were interested in, just

like specifications of imperative code rarely mention the precise order of memory operations it

performs, focusing instead on the observable behavior that it produces.

4.3 Game Security for NSL
Because Theorem 4.1 does not involve the traditional temporal properties used in protocol verifica-

tion, we might worry that it might be missing attacks. To increase our confidence in this result,

we use a symbolic security game (Figure 9). We generate keys for two honest participants, an

initiator and a responder, and let them run an arbitrary number of parallel sessions. In each iteration

of do_init, the initiator attempts to contact an agent chosen by the attacker. If the handshake

successfully terminates, the initiator adds the exchanged key to a set of keys keysI, while ensuring

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:15

𝐼 → 𝑀 : aenc pk𝑀 $m1 [𝑎; pk𝐼]
𝑀 → 𝑅 : aenc pk𝑅 $m1 [𝑎; pk𝐼]

𝑅 → 𝑀 : aenc pk𝐼 $m2 [𝑎;𝑏]
𝑀 → 𝐼 : aenc pk𝐼 $m2 [𝑎;𝑏]

𝐼 → 𝑀 : aenc pk𝑀 $m3 𝑏

𝑀 → 𝑅 : aenc pk𝑅 $m3 𝑏.

Fig. 10. Attack on the original Needham-Schroeder protocol [Lowe 1996].

that it is fresh. Moreover, if the initiator contacted the honest responder, the attacker tries to guess

the session key. The logic in do_resp is similar. The agents win the game if no checks fail.

Providing this kind of guarantee can be elusive. The original version of the NSL protocol [Need-

ham and Schroeder 1978] was vulnerable to a man-in-the-middle attack [Lowe 1996], even though

it was thought to be secure for several years (and even verified [Burrows et al. 1990]). The issue was

that the original version omitted the identity of the responder in𝑚2—that is,𝑚2 would have been

aenc pk𝐼 $m2 [𝑎;𝑏] instead of aenc pk𝐼 $m2 [𝑎;𝑏; pk𝑅]. This meant that the initiator had no way of

telling if the responder was actually allowed to see the nonce 𝑏. Indeed, the second predicate ties

the confidentiality of 𝑏 to the secret key of the responder, and this property is required to prove that

the third message can be sent. If the responder’s identity were not explicitly mentioned, it would be

impossible to know who can see 𝑏, so it would be impossible to prove that the third message is safe.

As seen in Figure 10, a malicious responder 𝑀 can exploit this issue to lead an honest 𝑅 into

generating a nonce 𝑏 for authenticating 𝐼 , and then tricking 𝐼 into leaking this nonce to𝑀 . In the

end,𝑀 is able to construct the same session key that 𝑅 believes is being used to talk to 𝐼—despite

the fact that 𝑅 believes that the handshake was performed between two agents that are, in fact,

honest. The game shows that the attack cannot succeed—otherwise, check_key_secrecy would fail.

To show that the attacker cannot win the game, we proceed as follows. First, we prove speci-

fications for the functions do_init and do_resp that guarantee that they are safe. We consume

the secrecy resources of the agents’ private keys to guarantee that they cannot become public. In

the proof of do_init, we invoke the specification of initiator in Theorem 4.1. We maintain an

invariant on keysI saying that every key 𝑘 ′ = 𝜎.key stored in the set satisfies 𝜎.sharesinit ↦→$sess ().
This means that the new session key 𝑘 cannot be in the set, because its corresponding token has

not been used yet. Thus, the first assertion cannot fail. We consume this token so that the key can

be added to keysI. We then argue that the second assertion cannot fail because the attacker’s guess

is public, whereas the session key cannot be because the agents are honest. A symmetric reasoning

shows that do_resp is safe as well. Finally, we prove that game is safe. We generate the keys of the

honest participants by invoking the specifications in Section 2. Then, we allocate two empty sets of

keys, which trivially satisfy the invariant that all keys have their metadata token set. We conclude

by invoking the specifications of do_init and do_resp to show that the last line is safe.

5 Diffie-Hellman Key Exchange and Forward Secrecy
One limitation of a protocol like NSL is being vulnerable to key compromise. If a private key is

leaked, an attacker can decrypt the handshake messages and learn its session key. By contrast,

many modern protocols guarantee forward secrecy: if a handshake is successful, its session keys will

remain secret even if long-term keys are leaked [Cohn-Gordon et al. 2016]. Our goal in this section

is to demonstrate that Cryptis can scale up to such richer guarantees. Specifically, we will prove the

correctness of the ISO protocol [Krawczyk 2003], which provides forward secrecy. Because of its

stronger guarantees, it will be our protocol of choice to implement the communication components

used in our key-value store. A typical run of the protocol proceeds as follows:

𝐼 → 𝑅 : [𝑔𝑎 ; pk𝐼] 𝑅 → 𝐼 : sign sk𝑅 $m2 [𝑔𝑎 ;𝑔𝑏 ; pk𝐼] 𝐼 → 𝑅 : sign sk𝐼 $m3 [𝑔𝑎 ;𝑔𝑏 ; pk𝑅] .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:16 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

let initiator skI pkR =
let pkI = pkey skI in
let a = mk_nonce () in
send [g^a; pkR];
let [=g^a; gb; =pkI] =
verify pkR $m2 (recv ()) in

send (sign skI $m3 [g^a; gb; pkR]);
let k =
key senc [pkI; pkR; g^a; gb; gb^a] in

k

let responder skR =
let pkR = pkey skR in
let [ga; pkI] = recv () in
let b = mk_nonce () in
send (sign skR $m2 [ga; g^b; pkI]);
let [=ga; =g^b; =pkR] =

verify pkI $m3 (recv ()) in
let k =

key senc [pkI; pkR; ga; g^b; ga^b] in
(pkI, k)

Fig. 11. ISO authentication protocol based on Diffie-Hellman key exchange.

𝜑
$m2 sk𝑅 𝑚2 ≜ ∃𝑠𝑎 𝑏 pk𝐼 ,𝑚2 = [𝑠𝑎 ;𝑔𝑏 ; pk𝐼] ∗ (public 𝑏 ⇐⇒ ⊲ False)
𝜑
$m3 sk𝐼 𝑚3 ≜ ∃𝑎 𝑠𝑏 sk𝑅,𝑚3 = [𝑔𝑎 ; 𝑠𝑏 ; pkey sk𝑅] ∗ (public sk𝐼 ∨ public sk𝑅∨

(public (keysenc [pkey sk𝐼 ; pkey sk𝑅 ;𝑔𝑎 ; 𝑠𝑏 ; 𝑠
𝑎
𝑏
]) −∗ ⊲ False))

Fig. 12. Message predicates for ISO protocol.

The flow is similar to the NSL protocol, except that (1) it uses digital signatures instead of asymmetric

encryption; (2) the first message does not need to be signed or encrypted; (3) the keys used in the

signed messages 2 and 3 are swapped; (4) the agents exchange the key shares 𝑔𝑎 and 𝑔𝑏 rather than

the nonces 𝑎 and 𝑏. At the end of the handshake, the participants can compute the shared secret

𝑔𝑎𝑏 = (𝑔𝑎)𝑏 = (𝑔𝑏)𝑎 and use it to derive a session key. Figure 11 shows an implementation of ISO.

We proceed following the blueprint laid out in Section 4. We formulate a specification for the

initiator and the responder, and use these specifications to prove the security of a game between

the attacker and the agents. The main difference lies in the secrecy guarantees for the session

key 𝑘 : when the handshake terminates, if we can prove that the participants’ long-term keys are

not compromised yet, then 𝑘 will remain secret forever, even if some long-term keys are leaked

later. The ISO session 𝜎 now includes a component 𝜎.secret, which corresponds to the shared

Diffie-Hellman secret. We define 𝜎.key as keysenc [𝜎.init;𝜎.resp;𝜎.sharesinit;𝜎.sharesresp;𝜎.secret].
Theorem 5.1. Define sessionISO sk𝐼 sk𝑅 𝜎 as sk𝐼 = 𝜎.init∗sk𝑅 = 𝜎.resp∗(public sk𝐼 ∨public sk𝑅∨

�(public 𝜎.key ⇐⇒ ⊲ False)) . The following triples hold:

{True} initiator sk𝐼 (pkey sk𝑅){
𝑟, 𝑟 = None ∨ ∃𝜎, 𝑟 = Some 𝜎.key

∗ sessionISO sk𝐼 sk𝑅 𝜎 ∗ token𝜎.init⊤

} {True} responder sk𝑅{
𝑟, 𝑟 = None ∨ ∃ sk𝐼 𝜎, 𝑟 = Some (pkey sk𝐼 , 𝜎 .key)

∗ sessionISO sk𝐼 sk𝑅 𝜎 ∗ token𝜎.resp⊤

}
We use the predicates of Figure 12. Each agent allocates their nonces 𝑛 so that public 𝑛 ⇐⇒

⊲ False. When 𝐼 checks the signature, either 𝑅 is compromised, or they learn that 𝑅’s key share

is of the form 𝑔𝑏 , with public 𝑏 ⇐⇒ ⊲ False. Since public 𝑎 ⇐⇒ ⊲ False, Figure 1 implies that

public 𝑔𝑎𝑏 is equivalent to ⊲ False. We modify the game of Figure 9 so that both signature keys are

eventually leaked, and we only check a session key if it was exchanged before the compromise

(Figure 13). To prove security, we proceed similarly to what we did earlier. The main difference is

the management of long-term keys. After generating the sk𝐼 and sk𝑅 , we allocate an invariant 𝐽 that

says that either the compromise bit 𝑐 is set to false, in which case secret sk𝐼 ∗secret sk𝑅 holds, or it is

set to true, in which case both sk𝐼 and sk𝑅 are public. Then, we prove that the check_key_secrecy

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:17

let rec wait_for_compromise c =
if not !c then wait_for_compromise c

let check_key_secrecy c k =
if not !c then
wait_for_compromise c;
let guess = recv () in
assert (k != guess)

else ()

let compromise_keys c skI skR =
c := true; send skI; send skR

let game () =
(* ... *)
let skI = mk_sign_key #() in
let skR = mk_sign_key #() in
let pkI = pkey skI in
let pkR = pkey skR in
let c = ref false in
(* ... *)
fork (fun () -> do_init keysI c skI pkR);
fork (fun () -> do_resp keysR c skR pkI);
fork (fun () -> compromise_keys c skI skR)

Fig. 13. Security game for the ISO protocol (excerpt).

function is safe provided that it is called on a session key 𝑘 of the ISO protocol. If we run the “then”

branch of that function, the invariant 𝐽 , combined with the postcondition of the handshake, implies

that �(public 𝑘 ⇐⇒ ⊲ False) holds. This guarantees that the attacker cannot win.

5.1 Extensions
We now discuss several extensions of the base protocol and specification that make them easier to

reuse in other settings. Figure 14 lists auxiliary predicates and rules that we will use.

Decomposing the Responder. In a typical client/server setting, it is useful to decompose 𝑅’s logic

into two steps. In the ISO.listen function, the responder waits for an incoming connection request,

the first message of the ISO protocol. The server can use the initiator’s identity to decide whether

to accept the connection or not. If it decides to accept the connection, it can call the ISO.confirm
function, which generates the responder’s key share and runs the rest of the ISO handshake.

Session Compromise. The specification of ISO has a limitation: if the handshake completes

successfully, it is impossible for us to model the compromise of the session key 𝑘 , because the

session key is secret forever. We can relax this limitation by modifying the secrecy predicates

of the private DH keys 𝑎 and 𝑏. Let release_token 𝑡 ≜ token 𝑡 (↑$ISO.released) and released 𝑡 ≜
𝑡 ↦→$ISO.released (). We define public 𝑎 and public 𝑏 as ⊲(released𝑔𝑎 ∗ released𝑔𝑏). Intuitively,
released marks whether that can be treated as compromised from the point of view of one of the

parties. To create this resource, the agent must consume a matching release_token resource, which

is generated once the key shares are created. Then, we can model a compromise of the session key

by simply releasing the tokens of the initiator and the responder. While the agents still hold their

release tokens, we can prove that the key is not yet compromised.

Early Compromise. Conversely, if we know that one of the agents is already compromised before

the handshake, it is useful for the session key 𝑘 to be public from the start. Then, if we use the

key to encrypt something (cf. Section 6), we do not need to prove the corresponding message

predicates. Our extended ISO specifications allow us to make 𝑘 public in this scenario. We add a

parameter 𝜌 ∈ {init, resp} to the session predicate, which tracks whether the agent of role 𝜌 was

able to compromise the session early. The predicate compromised 𝜌 𝜎 holds if the handshake was

compromised from 𝜌’s perspective—that is, that agent learned that one of the private keys was

compromised before the end of the handshake.

Extended Specification. With all these extensions, we can strengthen Theorem 5.1 as follows. (We

include only the specification for the initiator; the specification for the responder is similar.)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:18 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

compromised 𝜌 𝜎 ⊢ public 𝜎.key Σ ∗ compromised 𝜌 𝜎 ⊢ public sk𝐶 ∨ public sk𝑆

release_token 𝑡 ∗ released 𝑡 −∗ False Σ ∗ secret sk𝐶 ∗ secret sk𝑆 ⊢ ⊲�¬compromised 𝜌 𝜎

release_token 𝑡 ⇛ released 𝑡 Σ ∗ ⊲ released𝜎.sharesinit ∗ ⊲ released𝜎.sharesresp ⊢ public 𝜎.key

Σ ∗ release_token𝜎.shares𝜌 ∗ public 𝜎.key ⊢ ⊲ compromised 𝜌 𝜎

Fig. 14. Properties of handshake compromise. We abbreviate sessionISO sk𝐶 sk𝑆 𝜌 𝜎 as Σ.

Theorem 5.2. Let 𝑏 be an arbitrary boolean. Assuming that the appropriate signature predicates are
allocated, the triple {𝑏 ⇒ public sk𝐼 ∨ public 𝑠𝑘𝑅} initiator sk𝐼 (pkey sk𝑅) {𝑟, 𝜑 𝑟 } is valid, where 𝜑 𝑟
is 𝑟 = None ∨ ∃𝜎, 𝑟 = Some 𝜎.key ∗ sessionISO sk𝐼 sk𝑅 init 𝜎 ∗ release_token𝜎.sharesinit ∗ �(𝑏 ⇒
compromised init 𝜎) ∗ token𝜎.init (⊤ \ ↑$ISO).

6 Reliable Connections
Now that we have authentication, we can use it to implement authenticated, reliable connections.

At the logic level, we follow prior work and model this functionality as the ability to reliably

transfer arbitrary separation-logic resources [Gondelman et al. 2023; Hinrichsen, Bengtson, et al.

2020]. Operationally, the functionality guarantees that messages are received in the same order that

they are sent and that their contents are not modified. To preserve their order, we include sequence

numbers in every message sent; to preserve their contents, we encrypt them with a session key.

The functionality is described in Figure 15. By abuse of notation, we sometimes use a connection

object 𝑐 as if it were its underlying session 𝜎 . In particular, 𝑐.shares𝜌 refers to the key share of the

agent of role 𝜌 . There is no harm in doing that because the connection object tracks the session

key, which fully determines all the session information. To connect to a server, a client uses the

connect function, which initiates an ISO handshake and stores the resulting session key in the

returned connection object, along with counters for tracking sequence numbers. The server behaves

similarly, but runs the responder of the protocol. Once a connection is established, we can use the

send and recv functions to communicate. These functions include and check sequence numbers to

ensure that messages are received in the appropriate order. The recv function keeps polling the

network until it receives a message with the expected tag and sequence number.

Let us analyze these specifications. As we mentioned earlier, it will be useful to let the connec-

tion functions create compromised connections if we know that one of the participants is also

compromised. Accordingly, the precondition of the functions connect and confirm assumes that

either the agents have been compromised or some resource 𝑃 is available. When the connection is

established, it will be marked as compromised if the first case holds; otherwise, the resource 𝑃 will

be available for use. This allows us to maintain an resource 𝑃 across multiple connections, provided

that the protocol participants are not compromised. Moreover, the postconditions provide release

tokens to compromise session keys and a metadata token. Finally, the postconditions provide the

resource Conn.connected sk𝐶 sk𝑆 𝜌 𝑐 , which says that the connection is ready. To send and receive

messages, we must have assigned special conn_pred 𝜌 𝜑 predicates to their tags. For simplicity, we

assume that each tag can be used to send messages for a single role 𝜌 . Then, to send a message

®𝑡 , we must prove that 𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡 holds, unless the session key is compromised. Dually, we can

assume that this predicate holds when receiving the message. Crucially, these predicates are not
required to hold persistently, which allows us to transfer resources through a connection. To enable

this transfer of resources, we use a variant of the escrow pattern [Gondelman et al. 2023; Kaiser et al.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:19

let Conn.listen () = ISO.listen ()

let Conn.confirm skR request =
let k = ISO.confirm skR request in
{session_key = k;
sent = 0; received = 0}

let Conn.send conn s m =
let ciphertext =
senc conn.session_key s
[conn.sent; m] in

conn.sent++;
send ciphertext

let Conn.connect skI pkR =
let k = ISO.initiator skI pkR in
{session_key = k; sent = 0; received = 0}

let Conn.recv conn s =
let rec loop () =

let m = recv () in
let [n; payload] =

sdec c.session_key s m in
if n == c.received then

c.received++; payload
else loop ()

in loop ()

ConnConnect

E = ⊤ \ ↑$ISO \ ↑$Conn

{public sk𝐶 ∨ public sk𝑆 ∨ 𝑃} Conn.connect sk𝐶 (pkey sk𝑆)

𝑐,
Conn.connected sk𝐶 sk𝑆 init 𝑐
∗ (compromised init 𝑐 ∨ 𝑃)
∗ release_token 𝑐.sharesinit
∗ token 𝑐.initE


ConnConfirm

E = ⊤ \ ↑$ISO \ ↑$Conn{
public ga
∗ (public sk𝐶 ∨ public sk𝑆 ∨ 𝑃)

}
Conn.confirm sk𝑆 (ga, pkey sk𝐶)

𝑐,
Conn.connected sk𝐶 sk𝑆 resp 𝑐
∗ (compromised resp 𝑐 ∨ 𝑃)
∗ release_token 𝑐.sharesresp
∗ token 𝑐.resp E


ConnSend

senc ↦→N conn_pred 𝜌 𝜑{
Conn.connected sk𝐶 sk𝑆 𝜌 𝑐
∗ public ®𝑡 ∗ (public 𝑐.key ∨ 𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡)

}
Conn.send 𝑐 N ®𝑡 {Conn.connected sk𝐶 sk𝑆 𝜌 𝑐}

ConnRecv

senc ↦→N conn_pred 𝜌−1 𝜑

{Conn.connected sk𝐶 sk𝑆 𝜌 𝑐} Conn.recv 𝑐 N
{
®𝑡,Conn.connected sk𝐶 sk𝑆 𝜌 𝑐
∗ public ®𝑡 ∗ (public 𝑐.key ∨ 𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡)

}
Fig. 15. Implementation and specification of reliable communication. The variable 𝜌 ∈ {init, resp} denotes
the role of an agent, and 𝜌−1 denotes the opposite role.

2017; Turon et al. 2014]. The idea is to use an invariant 𝐽 to allow an agent to extract a resource

𝑅 by exchanging it against a guard 𝐺 . Because invariants are persistent, they can be used in the

proofs of message predicates.

Figure 16 presents the definitions of the predicates used in the specifications. The resource

Conn.connected sk𝐶 sk𝑆 𝜌 𝑐 contains an assertion •𝑚 𝑐.shares𝜌
$conn.recv which tracks how many messages

that agent has received. This uses a monotonic counter resource algebra, which combines the

authoritative resource algebra [Jung, Krebbers, Jourdan, et al. 2018] with the monoid (N,max, 0).
An element of the form •𝑚 represents ownership of a monotonic counter that is set to𝑚, whereas

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:20 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Conn.connected sk𝐶 sk𝑆 𝜌 𝑐 ≜ sessionISO sk𝐶 sk𝑆 𝜌 𝑐

∗ ∃𝑛𝑚, 𝑐 ↦→ {key = 𝑘 ; sent = 𝑛; received =𝑚} ∗ •𝑚 𝑐.shares𝜌
$conn.recv

conn_pred 𝜌 𝜑 𝑘 𝑡 ≜ ∃𝜎 𝑛 ®𝑡, 𝑘 = 𝜎.key ∗ 𝑡 = (𝑛 :: ®𝑡) ∗ public ®𝑡
∗ (•𝑛

𝜎.shares
𝜌−1

$conn.recv
⇛⊤ ⊲(𝜑 𝜎.init 𝜎.resp 𝜎 ®𝑡 ∗ •𝑛 + 1

𝜎.shares
𝜌−1

$conn.recv
))

Fig. 16. Predicates for reliable connections

resp_pred_token𝑞 𝜎 𝜑 ≜ Agree𝑞 𝜑
𝜎.sharesinit
$rpc.resp_pred

rpc_pred 𝜑 𝜓 ≜ conn_pred init
(
𝜆sk𝐶 sk𝑆 𝜎 ®𝑡, resp_pred_token1/2 𝜎 (𝜓 sk𝐶 sk𝑆 𝜎 ®𝑡)
∗ 𝜑 sk𝐶 sk𝑆 𝜎 ®𝑡

)
resp_pred sk𝐶 sk𝑆 𝜎 ®𝑡 ≜ ∃𝜓, resp_pred_token

1/2 𝜎 𝜓 ∗𝜓®𝑡
RPC.connected sk𝐶 sk𝑆 𝑐 ≜ Conn.connected sk𝐶 sk𝑆 init 𝑐 ∗ release_token 𝑐.sharesinit

∗ (compromised init 𝑐 ∨ resp_pred_token
1
𝜎 (𝜆_, False))

RpcCall

senc ↦→N rpc_pred 𝜑 𝜓
senc ↦→

$rpc.resp conn_pred init resp_pred{
public ®𝑡 ∗ RPC.connected sk𝐶 sk𝑆 𝑐
∗ (compromised init 𝑐 ∨ 𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡)

}
RPC.call 𝑐 N ®𝑡{
®𝑡 ′, public

®𝑡 ′ ∗ RPC.connected sk𝐶 sk𝑆 𝑐
∗ (compromised init 𝑐 ∨𝜓 sk𝐶 sk𝑆 𝑐 ®𝑡 ®𝑡 ′)

} RpcClose {RPC.connected sk𝐶 sk𝑆 𝑐}
RPC.close 𝑐

{public 𝑐.key}

Fig. 17. Remote procedure calls

◦𝑛 means that the counter’s value is at least 𝑛. The message predicate conn_pred 𝜌 𝜑 contains an

escrow that allows us to trade in that guard against resources attached to the message payload,

provided that the guard’s counter matches the sequence number of the message. Note that this

escrow also returns an updated guard, signaling the fact that another message was received.

To prove the specification of send, we must be able to prove that conn_pred 𝜌 𝜑 holds of 𝑐.key
and 𝑛 :: ®𝑡 under the preconditions of that function. Let us assume that 𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡 holds; otherwise,
the session key is public and the encrypted message is trivially public. We consume that resource

to create an invariant 𝐽 ≜ ◦𝑛 + 1

𝑐.shares𝜌
$conn.recv ∨ 𝜑 𝑐.init 𝑐.resp 𝑐 ®𝑡 . This invariant allows us to prove

the implication •𝑛
𝑐.shares

𝜌−1

$conn.recv
⇛⊤ ⊲(𝜑 sk𝐶 sk𝑆 𝑐 ®𝑡 ∗ •𝑛 + 1

𝑐.shares
𝜌−1

$conn.recv
) persistently. Suppose that we

are given •𝑛
𝑐.shares

𝜌−1

$conn.recv
. If we open 𝐽 , the first disjunct is contradictory, because it states that the

counter has already passed the value 𝑛 + 1. This allows us to extract the second disjunct to prove

the conclusion. Finally, we can reestablish 𝐽 by bumping the counter and proving its first disjunct.

7 Remote Procedure Calls
The last internal component we need for our key-value store is the RPCmechanism. The component

is a thin layer on top of reliable connections (cf. Figure 15). The connection stage ismostly unchanged.

When the server accepts a connection from a client 𝐶 , it enters a loop that continuously receives

requests from 𝐶 . To perform a call (RPC.call), the client sends a message with the appropriate

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:21

tag (which identifies the server operation) and arguments and then waits for the corresponding

response. The server invokes a handler upon receiving this request based on the operation and

sends whatever the handler returns back to the client.

Each RPC operation comes with two predicates: a predicate 𝜑 that should hold of the arguments

of the operation, and a predicate𝜓 for its return values. It is convenient for𝜓 to be able to refer

to the arguments in addition to the results. Here, the ability to transfer resources with reliable

connections comes in handy. Using a fractional agreement algebra and term metadata, we define a

resource resp_pred_token𝑞 𝜎 𝜓
′
, which keeps track of which property𝜓 ′

should hold of the results.

The RPC client allocates this resource when the connection is established. Before performing a call,

the client updates𝜓 ′
to𝜓 sk𝐶 sk𝐶 𝜎 ®𝑡 , where ®𝑡 is the list containing the arguments of the operation.

Then, it sends one half of this token to the server. The message predicate for the server’s response

says that the results of the operation should satisfy exactly this predicate. The RPC functionality

also includes a close call for the client to close the connection. The client consumes its release token

and informs the server that the token has been released. The server releases its token as well, at

which point the session key becomes public. This allows the server to reply to the client without

proving any particular message predicates. When the client receives the server’s acknowledgment,

they conclude that the session key has been made public.

8 Implementing and Verifying the Key-Value Store
With all the communication primitives and data structures in place, implementing the key-value

store is straightforward. The server sits in a loop waiting for incoming connection requests from

the RPC module. When a request arrives, the server queries a directory to check if that client has an

account. If the account doesn’t exist yet, a new one is created. If it does, the server acquires a lock

to the account and forks off a separate thread that handles that connection. Several clients can be

served simultaneously, but each client can have at most one active connection, and the account lock

is used to guarantee mutual exclusion. Each API call corresponds to a server handler that performs

the corresponding operation on the client’s database. Once the client closes the connection, the

server releases the lock and kills the connection thread. The server uses a map data structure to

store the account directory and the client databases. For simplicity, our implementation uses a

purely functional association list stored in a location, but we could easily swap that out for a more

efficient implementation.

To verify the specifications of Figure 5, we use some custom resources and RPC predicates

described in Figure 18. (Once again, most of these resources are parameterized by the keys of the

client and the server, but we elide most of these parameters for readability.) We distinguish between

two types of databases: the logical database, which the client believes ought to be stored in the

server, and the physical database, which is what is actually stored in the server. The logical database

is ghost state that is owned by the client, and the physical database is tracked by a resource that

says that the client’s database is correctly represented as an association list.

The logical database consists of a series of resources stored in termmetadata, which the client and

the server can initialize by consuming the appropriate tokens (cf. DbMainAlloc, DbCopyAlloc

and DbStateAlloc). The resource db_state 𝜎 means that the current logical state is exactly 𝜎 .

This predicate is defined with a function resource algebra, similarly to how the heap is modeled

in Iris [Jung, Krebbers, Jourdan, et al. 2018]. As shown in Figure 18, it can be combined with the

points-to assertion 𝑡1 ↦→db 𝑡2 to update the logical state (DbStateUpdate) or find out which values

are stored under it (DbStateAgree). The remaining database resources are used to transfer updates

from the client to the server, and are implemented with a fractional agreement algebra. The resource

db_main 𝜎 tracks the client’s view on the logical database, and db_copy 𝜎 tracks the server’s view

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:22 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

DbStateAlloc token sk𝐶 (↑$db.client.sk𝑆 .state) ⇛ db_state ∅ ∗ ⊤ ↦→db ⊥
DbStateAgree db_state 𝛿 ∗ 𝑡1 ↦→db ot2 −∗ 𝛿 𝑡1 = ot2
DbStateUpdate db_state 𝛿 ∗ 𝑡1 ↦→db ot2 ⇛ db_state (𝛿 [𝑡1 ↦→ 𝑡 ′

2
]) ∗ 𝑡1 ↦→db 𝑡

′
2

DbMainAlloc token sk𝐶 (↑$db.client.sk𝑆 .replica) ⇛ db_main ∅ ∗ db_sync ∅
DbCopyAlloc token sk𝑆 (↑$db.server.sk𝐶) ⇛ db_copy ∅
DbMainUpdate db_main 𝛿 ∗ db_sync 𝛿 ⇛ db_main 𝛿 ′ ∗ db_update 𝛿 𝛿 ′

DbCopyUpdate db_copy 𝛿1 ∗ db_update 𝛿2 𝛿 ′ ⇛ 𝛿1 = 𝛿2 ∗ db_copy 𝛿 ′ ∗ db_sync 𝛿 ′

DbMainSync db_main 𝛿1 ∗ db_sync 𝛿2 −∗ 𝛿1 = 𝛿2

DB.connected sk𝐶 sk𝑆 𝑐 ≜ ∃ 𝛿,RPC.connected sk𝐶 sk𝑆 𝑐

∗ db_state 𝛿 ∗ (compromised init 𝑐 ∨ db_main 𝛿 ∗ db_sync 𝛿)
DB.disconnected sk𝐶 sk𝑆 ≜ ∃ 𝛿, db_state 𝛿 ∗ (public sk𝐶 ∨ public sk𝑆 ∨ db_main 𝛿 ∗ db_sync 𝛿)

𝜑
$store sk𝐶 sk𝑆 𝑐 ®𝑡 ≜ ∃𝑡1 𝑡2 𝜎, ®𝑡 = [𝑡1, 𝑡2] ∗ db_update 𝜎 𝜎 [𝑡1 ↦→ 𝑡2]

𝜑
$ack_store sk𝐶 sk𝑆 𝑐 ®𝑡 ®𝑡 ′ ≜ ∃𝜎, db_sync 𝜎

𝜑
$load sk𝐶 sk𝑆 𝑐 ®𝑡 ≜ ∃𝑡1 𝑡2 𝜎, ®𝑡 = [𝑡1] ∗ 𝜎 𝑡1 = Some 𝑡2 ∗ db_update 𝜎 𝜎

𝜑
$ack_load sk𝐶 sk𝑆 𝑐 ®𝑡 ®𝑡 ′ ≜ ∃𝑡1 𝑡2 𝜎, ®𝑡 = [𝑡1] ∗ ®𝑡 ′ = [𝑡2] ∗ 𝜎 𝑡1 = Some 𝑡2 ∗ db_sync 𝜎.

Fig. 18. Key-value store: Auxiliary assertions, rules and call predicates.

of the physical database. The resource db_sync 𝜎 indicates that these two views are in sync. When

the client wants to update the logical database to 𝜎 ′, they consume this resource to create a new

resource db_update 𝜎 𝜎 ′ with the DbMainUpdate rule. The server can use this resource to update

their own view to the new state (DbCopyUpdate). The connection and disconnection predicates

for the client ensure that the db_state is consistent with the update resources. In the case of a

compromise, the client and the server can have inconsistent views of the logical database, in which

case we do not require the update resources to be present, thus allowing their states to diverge.

Finally, to prove the specifications of Figure 5, we use RPC predicates to inform the server about

which operations are performed on the logical state. We leverage the fact that the RPC abstraction

can be used to transfer resources, which allows the client to send db_update resources to keep

the server synchronized. When the server receives these messages, it synchronizes its copy of

the logical state and applies the corresponding operations to maintain its invariant. For example,

the message predicates for storing or loading a value are shown in Figure 18. In particular, the

response predicate for loading a value guarantees that the value 𝑡2 in the response is the correct

value associated with the key 𝑡1 sent in the request. Here, we make use of the fact that the predicate

for the response of the load request can mention the queried key 𝑡1; otherwise, the client wouldn’t

be able to tell that the value 𝑡2 corresponds to 𝑡1, since the key does not appear in the response.

9 Implementation and Model
Rather than formalizing the Cryptis language from scratch, we implemented it as a library in

HeapLang, the main language used in Iris. We developed a small library to manipulate lists and

other data structures. We formalized cryptographic terms as a separate type from HeapLang values,

and rely on an explicit function to encode terms as values. Namespaces are included in terms by

converting them to integers. We ensure that Diffie-Hellman terms are normalized so that their

intended notion of equality coincides with equality in Rocq, similar to some encodings of quotient

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:23

Table 1. Code statistics.

Component Impl. (loc) Proofs (loc) Game (loc) Total (loc) Wall-clock time (s)

Cryptis Core — — — 8270 113

NSL (Section 4) 54 230 255 539 43

ISO (Section 5) 59 783 345 1212 54

Connections (Section 6) 79 521 — 613 27

RPC (Section 7) 52 492 — 554 25

Store (Section 8) 154 1383 161 1706 79

types in type theory [Cohen 2013]. We implemented nonces as heap locations, which allowed us to

reuse much of the location infrastructure. To allocate a nonce, we simply allocate a new location,

which is guaranteed to be fresh. Encoding nonces in terms of heap locations is well-suited for

reasoning about protocols in the symbolic model, but it is not meant to be taken too literally—in

particular, because heap allocation does not produce bit patterns with enough entropy to withstand

real attackers.

To give an idea of the effort involved in Cryptis, Table 1 shows the size of our development and

case studies. The “Cryptis Core” row encompasses the logic, the HeapLang libraries for manipulating

terms and their specifications. The figures reported for case studies are broken down in lines of code

for the HeapLang implementation, lines of code for proofs of the Cryptis specifications (aggregated

with specifications and auxiliary definitions), and lines of code for defining and proving the security

of games. We also include the time spent to compile the code with parallel compilation on Rocq 9.0

running on an Ubuntu 24.04 laptop with an Intel i7-1185G7 3.00GHz with eight cores and 15GiB of

RAM. These statistics show that the effort required by Cryptis is comparable to other advanced

tools for modular protocol verification, such as DY* [Bhargavan, Bichhawat, Do, et al. 2021b].

Differences with Respect to the Paper. We have assumed that term variables always range over

terms that have been previously generated. Rocq cannot impose this restriction, so instead we

have a separate minted predicate that ensures that every nonce that appears in a term has been

previously allocated. Concretely,minted 𝑡 says that every nonce 𝑡 ′ ⪯ 𝑡 satisfies 𝑙 ↦→$minted (), where
𝑙 is the nonce’s underlying location, and the notation refers to the location metadata predicate.

This standard Iris predicate allows us to attach metadata to individual locations in HeapLang and

satisfies laws similar to those of our term metadata predicate. In fact, our term metadata was

inspired by location metadata, as we discuss below.

Another difference lies in the treatment of the network. In Section 2, we modeled the network as

a separate state component that is manipulated concurrently by the agents and attacker actions. In

our implementation, the network is a modeled by a channel object, which is just a concurrent linked

list stored in the heap. To access the channel, the program must acquire its lock and release it after it

is done. We model the attacker as a separate set of threads that run the attacker actions described in

Section 2. We maintain an invariant that the channel only contains public messages. This invariant

is preserved by the honest agents because the specification of send requires a public message.

It is also preserved by attacker actions because public terms are preserved by all cryptographic

operations. One drawback of this encoding is that HeapLang does not have good support for global

objects. Therefore, in Cryptis, every function that manipulates the channel must take the channel

as a parameter. To run a Cryptis program, we must run a special init_network function, which
allocates the channel and initializes the attacker threads.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:24 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Model of Cryptis Assertions. The main Cryptis predicates are obtained by a combination of Iris

invariants and ghost state. The adequacy theorem (Theorem 2.1) is responsible for allocating these

resources and setting up the required invariants. The public predicate is defined as a Rocq recursive
function using the size of the term as fuel. The definition is stated to validate all the equivalences

in Figure 1 directly. The only clause that is not covered by that definition is the clause for nonces.

It is defined as public (nonce 𝑙) ≜ ∃𝛾 𝜑, 𝑙 ↦→$nonce 𝛾 ∧ 𝜑
𝛾 ∧ ⊲�𝜑 (nonce 𝑙), where 𝜑 ranges over

predicates of type term → iProp. This is an example of higher-order ghost state [Jung, Krebbers,

Birkedal, et al. 2016]. When we allocate a nonce, we also allocate a new ghost location 𝛾 to store its

secrecy predicate 𝜑 , and then tie 𝛾 to the nonce by using the metadata of its underlying location 𝑙 .

The definitions of message-predicate assertions and termmetadata rely on the following construc-

tion. We define assertions token𝛾 E, 𝛾 ↦→N 𝑥 and 𝑎
𝛾

N that behave like the analogous propositions

for term metadata but are indexed by ghost locations rather than terms. We can allocate a new

resource token𝛾 ⊤ for a fresh 𝛾 at any point. (Internally, these assertions are defined using the

reservation map resource algebra of Iris and adapted from the location metadata feature mentioned

above.) This allows us to define message predicates and term metadata with one level of indirection:

token 𝐹 E ≜ token𝛾𝐹 E 𝐹 ↦→N 𝜑 ≜ 𝜑
𝛾𝐹

N
token 𝑡 E ≜ ∃𝛾, term_name 𝑡 𝛾 ∗ token𝛾 E 𝑡 ↦→N 𝑥 ≜ ∃𝛾, term_name 𝑡 𝛾 ∗ 𝛾 ↦→N 𝑥

In this definition, 𝛾𝐹 refers to a ghost name that is uniquely associated with the functionality 𝐹 ,

whereas the assertion term_name 𝑡 𝛾 , which we will soon dive into, means that 𝑡 is uniquely asso-

ciated with the name 𝛾 . Message predicates are another instance of higher-order ghost state [Jung,

Krebbers, Birkedal, et al. 2016]: we use a resource algebra of predicates that guarantees agreement to

uniquely associate 𝜑 to 𝛾𝐹 andN . One important technical point is that, because of its impredicative

definition, the uniqueness of the predicate is only guaranteed under a ⊲ (cf. Figure 1).

Regarding the term_name predicate, we keep a map 𝜇 stored under a ghost name 𝛾term that

associates each term 𝑡 to a name 𝛾 . We use an authoritative algebra to keep two copies of this map:

an authoritative copy •𝜇, which records the exact state of the map, and a fragment ◦𝜇, which can

be split to track the name of each term. We define term_name 𝑡 𝛾 as ◦[𝑡 ↦→ Agree 𝛾] 𝛾term
, which

guarantees that 𝑡 corresponds to exactly one 𝛾 . The authoritative copy of the map is stored in

an invariant that guarantees that every term in its domain is minted. In the proof of mk_nonce,
when we allocate a fresh nonce 𝑡 , but before 𝑡 is minted, we can open this invariant to extend the

term-name map with bindings for other terms 𝑡 ′ ⪰ 𝑡 . Such terms are not minted, so we can prove

that they are not in the map, which allow us to create fresh token resources for them.

10 Related Work
Verification of Message-Passing or Distributed Applications. Recent years have seen the introduc-

tion of several tools for reasoning about distributed systems and message-passing concurrency,

such as Disel [Sergey et al. 2018], Actris [Hinrichsen, Bengtson, et al. 2020; Hinrichsen, Louwrink,

et al. 2021], or Aneris [Gondelman et al. 2023; Krogh-Jespersen et al. 2020]. One common limitation

of these tools is that they assume a non-adversarial communication model. For example, Actris

assumes that messages cannot be dropped, duplicated or tampered with, whereas Aneris assumes

that messages cannot be tampered with. By contrast, Cryptis allows us to reason about programs

running over an adversarial network. On the other hand, some of these tools have been designed to

reason about more challenging idioms of message-passing programming than what we currently

handle. For example, Actris uses session types to reason about the communication between agents.

In future work, we would like to bring together these two lines of research, by extending Cryptis to

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:25

integrate the reasoning principles identified by these and other tools for reasoning about distributed

systems (e.g., integrate session types with our communication abstraction).

Some works in this space intersect with cryptography. For example, Hawblitzel et al. [2014] pro-

pose a methodology to verify applications running over an adversarial network. The specifications

guarantee that the responses that a client receives from the network are the same regardless of

whether what is sitting on the other end is the real application or a functionally equivalent abstract

machine that serves as its specification. However, unlike Cryptis, the authors do not show that the

responses received by the client satisfy any meaningful integrity guarantees. Drawing an analogy

in the context of our key-value store case study, this would mean that the client would not have

any guarantees that the value loaded from the database is indeed the last one that was stored.

Tools for Symbolic Cryptography Verification. There is a vast literature on techniques for ver-

ifying protocols; see Barbosa et al. [2021] for a comprehensive survey. One line of work in this

landscape focuses on verifying the absence of memory-safety violations or other low-level bugs

in implementations [Erbsen et al. 2019; Polubelova et al. 2020]. Ruling out such bugs is crucial

for security, but does not suffice to establish all required integrity and confidentiality guarantees,

which are usually analyzed with specialized tools. These tools strike a balance between many

requirements, such as expressiveness, convenience, and scalability. In one corner of the design

space, we have automated solvers such as ProVerif [Blanchet 2001], Tamarin [Meier et al. 2013]

and CPSA [Doghmi et al. 2007], which favor convenience over expressiveness and scalability, but

which are nonetheless powerful enough to analyze several real-world protocols. Cryptis explores a

different set of trade-offs: limited support for push-button automation in return for more scalability

and expressiveness, which enables the reuse of protocol proofs within larger systems.

Many other tools settle for similar trade-offs. The work that is the closest to ours is DY* [Bharga-

van, Bichhawat, Do, et al. 2021b]. DY* is a state-of-the-art F* library for protocol verification that

has been used to verify various protocols, such as Signal or ACME [Bhargavan, Bichhawat, Do,

et al. 2021a]. There are several similarities between the two tools. Like Cryptis, DY* is based on

symbolic cryptography and emphasizes expressiveness, allowing users to state and verify complex

properties. DY* also maintains a predicate on the set of messages that travel through the network,

akin to our public predicate: we can only send a message that satisfies the predicate, and every

message received from the network is guaranteed to satisfy the predicate. Both tools are designed to

reason about weak, or syntactic secrecy, and do not currently support relational indistinguishability

properties. In DY*, secrecy is formulated using a system of confidentiality labels, akin to those

used in information-flow control systems [Denning 1976]: each message tracks which principals or

sessions are allowed to read it. Superficially, the public predicate of Cryptis is coarser, in that we

only distinguish public and secret information. Nevertheless, the two models seem to be able to

express similar policies. For example, Theorem 4.1 says that the NSL nonces can be read by the

attacker if and only if ⊲(public sk𝐼 ∨ public sk𝑅), which we can interpret as saying that either the

initiator or the responder are compromised. The DY* model of NSL offers similar guarantees.

Nevertheless, there are several differences between the two tools. Verification in DY* is carried

out semi-automatically, by leveraging the F* type system and SMT solvers. DY* was designed

to enable the extraction of executable code, a feature that would be crucial for making protocol

implementations more reliable, but that Cryptis currently lacks. Regarding our focus, the reuse of

protocol proofs to verify larger systems, DY* is not based on separation logic, so it does not support

the several verification idioms that rely on it. Moreover, DY* has a restricted state model: agents

can keep serialized long-term state associated with individual sessions, but do not have access

to common primitives for manipulating heap data structures. Finally, DY* is sequential, whereas

Cryptis has a nondeterministic scheduler. Since cryptographic protocols are concurrent systems,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:26 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

they must be modeled in DY* by following a rigid coding discipline: we decompose each protocol

into a series of actions, where each action is a separate function that does not rely on scheduling

nondeterminism. If several actions are inadvertently combined into one function, its specification

might hold only for a restricted choice of interleavings, which might miss some attacks.

These differences suggest that it would be difficult replicate in DY* the same type of proof reuse

that Cryptis supports. Consider a system such as our key-value store. In DY*, it would be impossible

to formulate succinct, self-contained specifications for the client wrappers, such as those of Figure 5.

On the one hand, we would need to decompose each wrapper into several atomic actions to factor

out local and network-wide scheduling nondeterminism. On the other hand, our specifications

make crucial use of connectives that have no analogue outside of separation logic (e.g., a points-to

connective to model the state of the store).

Another difference between the two tools, orthogonal to the goal of end-to-end verification, lies

in the support for compositionality. DY* enables compositionality through a layered approach [Bhar-
gavan, Bichhawat, Hosseyni, et al. 2023]: a protocol can be defined as a composition of several layers,

where each layer specifies disjointness conditions that should be respected by other components,

as well as predicates that need to be proved by its clients when using a cryptographic primitive. For

example, if a component 𝐶 uses an encryption key that is shared with other components, we must

specify all encrypted messages that 𝐶 is allowed to manipulate, and the other components cannot

manipulate such messages in ways that conflict with what 𝐶 expects. The message predicates of

Cryptis play a similar role, but sacrifice some generality in return for ease of use: protocols can

be composed automatically if they rely on disjoint message tags, a phenomenon that has been

observed several times in the literature [Andova et al. 2008; Arapinis et al. 2015, 2012; Bugliesi et al.

2004a,b; Ciobâcă and Cortier 2010; Maffei 2005]. Tag disjointness only needs to be checked once,

when declaring message predicates; by contrast, disjointness conditions in DY* need to be checked

on every call to a cryptographic primitive.

On a parallel line of work, several authors have proposed ways of integrating symbolic cryptogra-

phy within automated program analyzers for separation logic [Arquint et al. 2023; Vanspauwen and

Jacobs 2015]. These proposals aim to verify that protocol implementations are free of memory safety

violations while also conforming to their expected confidentiality and integrity guarantees. The

work of Arquint et al. [2023] was the first to demonstrate that separation-logic resources are useful

to reason about protocol security beyond just memory-related bugs, by using special freshness

resources to prove that protocols satisfy injective agreement (the absence of replay attacks). Our

metadata tokens enables similar, but more general, reasoning patterns. In particular, they can be

used to prevent replay attacks at the application level, by guaranteeing that reliable connections

deliver each message only once. Besides relying on a larger trusted computing base, one important

difference with respect to Cryptis is that these works do not attempt to reuse proofs of protocol

correctness to reason about larger systems. It is not obvious how these proposals could be leveraged

to support this kind of reasoning. Our reliable connection abstraction, for instance, uses the term

metadata feature of Cryptis to enable the transfer of resources through an authenticated connection,

a feature that plays a crucial role in the verification of our key-value store.

Looking beyond symbolic cryptography, several works have been developed to reason about

protocols in the computational model [Abate et al. 2021; Barthe, Dupressoir, et al. 2013; Gancher et al.

2023; Stoughton et al. 2022]. The computational model is more realistic than Cryptis’ symbolic model,

since it assumes that attackers have the power to manipulate messages as raw bitstrings, without

being confined to a limited API of operations. On the other hand, dealing with such attackers

requires more detailed reasoning, which means that such tools have difficulty scaling beyond

individual cryptographic primitives or simple protocols. Looking beyond protocol verification,

some works have proposed to reason about the use of cryptographic components in other types of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

Cryptis: Cryptographic Reasoning in Separation Logic 88:27

systems. For example, FastVer2 leverages a trusted execution environment (TEE) to allow clients to

verify the correctness of key-value store operations. The authors prove that, if the FastVer2 monitor

succeeds, then all the key-value store logs are sequentially consistent, unless a hash collision

occurred. While Cryptis has similar goals, our focus is showing how proofs of cryptographic

communication protocols can be reused to achieve application-level goals.

Specification of Authentication. Most verification works view a protocol as a means for agents to

agree on their identities, parameters, session keys, or the order of events during execution [Arquint

et al. 2023; Bhargavan, Bichhawat, Hosseyni, et al. 2023; Blanchet 2001; Datta et al. 2011; Gordon

and Jeffrey 2003; Lowe 1997; Meier et al. 2013]. For example, if an initiator 𝐼 authenticates with

a responder 𝑅, we might want to guarantee that 𝑅 was indeed running at some point in the past,

that it was running and accepted to connect with 𝐼 specifically, or that it accepted to start a unique

session with 𝐼 that corresponds to the session key that they exchanged [Lowe 1997]. Cryptis shows

that agreeing on identities and on the contents of messages is crucial when reusing a protocol. For

example, when a key-value store receives a database operation, it must know which agent sent this

request to apply the operation to the correct database; when the client receives the response, it must

track which key was queried to know which value will be returned. This aspect of authentication

is implicit in Cryptis specifications, which allow us to determine the identity of participants based

on the exchanged session key. On the other hand, we have not found an instance where the exact

ordering of events in an authentication handshake could be leveraged to reason about a larger

system that uses a protocol. This allowed us to define the Cryptis logic without the event traces

that are used in related tools [Arquint et al. 2023; Bhargavan, Bichhawat, Do, et al. 2021b].

11 Conclusion and Future Work
We presented Cryptis, an Iris extension for symbolic cryptographic reasoning. As we demonstrated

throughout the paper, Cryptis allows us to reduce the correctness of distributed systems verified

in separation logic to elementary assumptions embodied by the symbolic model of cryptography,

without the need for baking in a stronger (and less realistic) communication model. The integration

of cryptographic reasoning allows us to evaluate how the correctness of a system is affected by

compromising cryptographic material such as a long-term private key, going beyond what standard

specifications in separation logic provide. Thanks to the adequacy of the Iris logic, which Cryptis

inherits, these correctness results can be understood in rather concrete terms, via security games

that rely only on the operational semantics of the underlying programming language.

Like other tools [Bhargavan, Bichhawat, Do, et al. 2021b], Cryptis is limited to single executions.

This can be restrictive for security, since many specifications talk about pairs of executions (e.g.

indistinguishability). We plan to lift this restriction drawing inspiration from prior work on rea-

soning about sealing via logical relations [Sumii and Pierce 2007, 2003] and relational reasoning

in Iris [Frumin et al. 2018]. Another avenue for strengthening the logic would be to incorporate

probabilistic properties and the computational model of cryptography. Prior work shows that

probabilistic reasoning can benefit from separation logic [Barthe, Hsu, et al. 2020], and we believe

that these developments could be naturally incorporated to our setting. Finally, we plan to extend

the tool to encompass more protocols by adding more cryptographic primitives (e.g. group inverses

would allow us to analyze the recent OPAQUE protocol [Jarecki et al. 2018]).

Acknowledgments
The authors would like to thank the anonymous reviewers for their thoughtful comments. This

material is based upon work supported by the National Science Foundation under Grant No. 2314323

and 2314324.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

88:28 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

References
Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Catalin Hritcu, Kenji

Maillard, and Bas Spitters. 2021. “SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq.” In:

34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–15. doi:
10.1109/CSF51468.2021.00048.

Suzana Andova, Cas J. F. Cremers, Kristian Gjøsteen, Sjouke Mauw, Stig Fr. Mjølsnes, and Sasa Radomirovic. 2008. “A

framework for compositional verification of security protocols.” Inf. Comput., 206, 2-4, 425–459. doi: 10.1016/j.ic.2007.07
.002.

Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. 2015. “Composing Security Protocols: From Confidentiality to

Privacy.” In: Principles of Security and Trust - 4th International Conference, POST 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings (Lecture Notes in
Computer Science). Ed. by Riccardo Focardi and Andrew C. Myers. Vol. 9036. Springer, 324–343. doi: 10.1007/978-3-662-

46666-7_17.

Myrto Arapinis, Vincent Cheval, and Stéphanie Delaune. 2012. “Verifying Privacy-Type Properties in a Modular Way.” In:

25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012. Ed. by Stephen

Chong. IEEE Computer Society, 95–109. doi: 10.1109/CSF.2012.16.

Linard Arquint, Malte Schwerhoff, Vaibhav Mehta, and Peter Müller. 2023. “A Generic Methodology for the Modular

Verification of Security Protocol Implementations.” In: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark, November 26-30, 2023. Ed. by Weizhi Meng, Christian

Damsgaard Jensen, Cas Cremers, and Engin Kirda. ACM, 1377–1391. doi: 10.1145/3576915.3623105.

[SW] Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi, Cryptis: Cryptographic Reasoning in Separation Logic
Nov. 2025. doi: 10.5281/zenodo.17342914, url: https://doi.org/10.5281/zenodo.17342914.

Michael Backes, Catalin Hritcu, andMatteoMaffei. 2011. “Union and Intersection Types for Secure Protocol Implementations.”

In: Theory of Security and Applications - Joint Workshop, TOSCA 2011, Saarbrücken, Germany, March 31 - April 1, 2011,
Revised Selected Papers (Lecture Notes in Computer Science). Ed. by Sebastian Mödersheim and Catuscia Palamidessi.

Vol. 6993. Springer, 1–28. doi: 10.1007/978-3-642-27375-9_1.

Michael Backes, Catalin Hritcu, and Matteo Maffei. 2014. “Union, intersection and refinement types and reasoning about

type disjointness for secure protocol implementations.” J. Comput. Secur., 22, 2, 301–353. doi: 10.3233/JCS-130493.
Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. “A separation logic for negative dependence.” Proc. ACM

Program. Lang., 6, POPL, 1–29. doi: 10.1145/3498719.
Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. 2021. “SoK:

Computer-Aided Cryptography.” In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27
May 2021. IEEE, 777–795. doi: 10.1109/SP40001.2021.00008.

Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013. “Easy-

Crypt: A Tutorial.” In: Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures (Lecture Notes
in Computer Science). Ed. by Alessandro Aldini, Javier López, and Fabio Martinelli. Vol. 8604. Springer, 146–166. doi:

10.1007/978-3-319-10082-1_6.

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. “A probabilistic separation logic.” Proc. ACM Program. Lang., 4, POPL,
55:1–55:30. doi: 10.1145/3371123.

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021a. “An In-Depth Symbolic Security Analysis of the ACME Standard.” In: CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. Ed. by
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi. ACM, 2601–2617. doi: 10.1145/3460120.3484588.

Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021b. “DY*: A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code.” In:

IEEE European Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021. IEEE, 523–542.
doi: 10.1109/EUROSP51992.2021.00042.

Karthikeyan Bhargavan, Abhishek Bichhawat, Pedram Hosseyni, Ralf Küsters, Klaas Pruiksma, Guido Schmitz, Clara

Waldmann, and Tim Würtele. 2023. “Layered Symbolic Security Analysis in DY★.” In: Computer Security - ESORICS
2023 - 28th European Symposium on Research in Computer Security, The Hague, The Netherlands, September 25-29, 2023,
Proceedings, Part III (Lecture Notes in Computer Science). Ed. by Gene Tsudik, Mauro Conti, Kaitai Liang, and Georgios

Smaragdakis. Vol. 14346. Springer, 3–21. doi: 10.1007/978-3-031-51479-1_1.

Bruno Blanchet. 2001. “An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.” In: 14th IEEE Computer Security
Foundations Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova Scotia, Canada. IEEE Computer Society, 82–96.

doi: 10.1109/CSFW.2001.930138.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1016/j.ic.2007.07.002
https://doi.org/10.1016/j.ic.2007.07.002
https://doi.org/10.1007/978-3-662-46666-7_17
https://doi.org/10.1007/978-3-662-46666-7_17
https://doi.org/10.1109/CSF.2012.16
https://doi.org/10.1145/3576915.3623105
https://doi.org/10.5281/zenodo.17342914
https://doi.org/10.5281/zenodo.17342914
https://doi.org/10.1007/978-3-642-27375-9_1
https://doi.org/10.3233/JCS-130493
https://doi.org/10.1145/3498719
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3460120.3484588
https://doi.org/10.1109/EUROSP51992.2021.00042
https://doi.org/10.1007/978-3-031-51479-1_1
https://doi.org/10.1109/CSFW.2001.930138

Cryptis: Cryptographic Reasoning in Separation Logic 88:29

Bruno Blanchet. 2002. “From Secrecy to Authenticity in Security Protocols.” In: Static Analysis, 9th International Symposium,
SAS 2002, Madrid, Spain, September 17-20, 2002, Proceedings (Lecture Notes in Computer Science). Ed. by Manuel V.

Hermenegildo and Germán Puebla. Vol. 2477. Springer, 342–359. doi: 10.1007/3-540-45789-5_25.

Florian Böhl and Dominique Unruh. 2016. “Symbolic universal composability.” J. Comput. Secur., 24, 1, 1–38. doi: 10.3233
/JCS-140523.

Stephen Brookes. 2007. “A semantics for concurrent separation logic.” Theor. Comput. Sci., 375, 1-3, 227–270. doi: 10.1016/j.t
cs.2006.12.034.

Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. 2004a. “Authenticity by tagging and typing.” In: Proceedings of the
2004 ACMWorkshop on Formal Methods in Security Engineering, FMSE 2004, Washington, DC, USA, October 29, 2004. Ed. by
Vijayalakshmi Atluri, Michael Backes, David A. Basin, and Michael Waidner. ACM, 1–12. doi: 10.1145/1029133.1029135.

Michele Bugliesi, Riccardo Focardi, and Matteo Maffei. 2004b. “Compositional Analysis of Authentication Protocols.” In:

Programming Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings
(Lecture Notes in Computer Science). Ed. by David A. Schmidt. Vol. 2986. Springer, 140–154. doi: 10.1007/978-3-540-247

25-8_11.

Michael Burrows, Martín Abadi, and Roger M. Needham. 1990. “A Logic of Authentication.” ACM Trans. Comput. Syst., 8, 1,
18–36. doi: 10.1145/77648.77649.

Ştefan Ciobâcă and Véronique Cortier. 2010. “Protocol Composition for Arbitrary Primitives.” In: Proceedings of the 23rd
IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010. IEEE Computer

Society, 322–336. doi: 10.1109/CSF.2010.29.

Cyril Cohen. 2013. “Pragmatic Quotient Types in Coq.” In: Interactive Theorem Proving - 4th International Conference, ITP
2013, Rennes, France, July 22-26, 2013. Proceedings (Lecture Notes in Computer Science). Ed. by Sandrine Blazy, Christine

Paulin-Mohring, and David Pichardie. Vol. 7998. Springer, 213–228. doi: 10.1007/978-3-642-39634-2_17.

Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Garratt. 2016. “On Post-compromise Security.” In: IEEE 29th Computer
Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. IEEE Computer Society, 164–178. doi:

10.1109/CSF.2016.19.

Anupam Datta, John C. Mitchell, Arnab Roy, and Stephan Hyeonjun Stiller. 2011. “Protocol Composition Logic.” In: Formal
Models and Techniques for Analyzing Security Protocols. Cryptology and Information Security Series. Vol. 5. Ed. by

Véronique Cortier and Steve Kremer. IOS Press, 182–221. doi: 10.3233/978-1-60750-714-7-182.

Dorothy E. Denning. 1976. “A Lattice Model of Secure Information Flow.” Commun. ACM, 19, 5, 236–243. doi: 10.1145/36005

1.360056.

Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer. 2007. “Searching for Shapes in Cryptographic Protocols.” In:

Tools and Algorithms for the Construction and Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007,
Proceedings (Lecture Notes in Computer Science). Ed. by Orna Grumberg and Michael Huth. Vol. 4424. Springer, 523–537.

isbn: 978-3-540-71208-4. doi: 10.1007/978-3-540-71209-1_41.

Danny Dolev and Andrew Chi-Chih Yao. 1983. “On the security of public key protocols.” IEEE Trans. Inf. Theory, 29, 2,
198–207. doi: 10.1109/TIT.1983.1056650.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. “Simple High-Level Code for Crypto-

graphic Arithmetic - With Proofs, Without Compromises.” In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San
Francisco, CA, USA, May 19-23, 2019. IEEE, 1202–1219. doi: 10.1109/SP.2019.00005.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. “ReLoC: A Mechanised Relational Logic for Fine-Grained Concur-

rency.” In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July
09-12, 2018. Ed. by Anuj Dawar and Erich Grädel. ACM, 442–451. doi: 10.1145/3209108.3209174.

Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, and Bryan Parno. 2023. “Owl: Compositional Verification

of Security Protocols via an Information-Flow Type System.” In: 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023. IEEE, 1130–1147. doi: 10.1109/SP46215.2023.10179477.

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal. 2023. “Verifying Reliable

Network Components in a Distributed Separation Logic with Dependent Separation Protocols.” Proc. ACM Program.
Lang., 7, ICFP, 847–877. doi: 10.1145/3607859.

Andrew D. Gordon and Alan Jeffrey. 2003. “Authenticity by Typing for Security Protocols.” Journal of Computer Security, 11,
4, 451–520. doi: 10.3233/JCS-2003-11402.

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. 2014. “Ironclad

Apps: End-to-End Security via Automated Full-System Verification.” In: 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. Ed. by Jason Flinn and Hank Levy. USENIX

Association, 165–181. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

https://doi.org/10.1007/3-540-45789-5_25
https://doi.org/10.3233/JCS-140523
https://doi.org/10.3233/JCS-140523
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/1029133.1029135
https://doi.org/10.1007/978-3-540-24725-8_11
https://doi.org/10.1007/978-3-540-24725-8_11
https://doi.org/10.1145/77648.77649
https://doi.org/10.1109/CSF.2010.29
https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.3233/978-1-60750-714-7-182
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1109/SP46215.2023.10179477
https://doi.org/10.1145/3607859
https://doi.org/10.3233/JCS-2003-11402
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel

88:30 Arthur Azevedo de Amorim, Amal Ahmed, and Marco Gaboardi

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. “Actris: session-type based reasoning in separation

logic.” Proc. ACM Program. Lang., 4, POPL, 6:1–6:30. doi: 10.1145/3371074.
Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. “Machine-checked semantic

session typing.” In: CPP ’21: 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event,
Denmark, January 17-19, 2021. Ed. by Catalin Hritcu and Andrei Popescu. ACM, 178–198. doi: 10.1145/3437992.3439914.

Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. “OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-

computation Attacks.” In: Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III (Lecture
Notes in Computer Science). Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10822. Springer, 456–486. doi:

10.1007/978-3-319-78372-7_15.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. “Higher-order ghost state.” In: Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. Ed. by
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii. ACM, 256–269. doi: 10.1145/2951913.2951943.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. “Iris from the

ground up: A modular foundation for higher-order concurrent separation logic.” J. Funct. Program., 28, e20. doi: 10.1017
/S0956796818000151.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. “Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris.” In: 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs). Ed. by Peter Müller. Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 17:1–17:29. isbn: 978-3-95977-035-4. doi: 10.4230/LIPICS.ECOOP.2017.17.

Hugo Krawczyk. 2003. “SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its Use in the IKE-

Protocols.” In: Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings (Lecture Notes in Computer Science). Ed. by Dan Boneh. Vol. 2729.

Springer, 400–425. doi: 10.1007/978-3-540-45146-4_24.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. “The Essence of

Higher-Order Concurrent Separation Logic.” In: Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science). Ed. by Hongseok Yang. Vol. 10201.

Springer, 696–723. doi: 10.1007/978-3-662-54434-1_26.

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

“Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems.” In: Programming Languages and Systems
- 29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science).

Ed. by Peter Müller. Vol. 12075. Springer, 336–365. doi: 10.1007/978-3-030-44914-8_13.

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. “Lilac: A Modal Separation Logic for Conditional Probability.” Proc.
ACM Program. Lang., 7, PLDI, 148–171. doi: 10.1145/3591226.

Gavin Lowe. 1997. “A Hierarchy of Authentication Specification.” In: 10th Computer Security Foundations Workshop (CSFW
’97), June 10-12, 1997, Rockport, Massachusetts, USA. IEEE Computer Society, 31–44. doi: 10.1109/CSFW.1997.596782.

Gavin Lowe. 1996. “Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.” In: Tools and Algorithms
for Construction and Analysis of Systems, Second International Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996,
Proceedings (Lecture Notes in Computer Science). Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 1055. Springer,

147–166. doi: 10.1007/3-540-61042-1_43.

Matteo Maffei. 2005. “Tags for Multi-Protocol Authentication.” Electron. Notes Theor. Comput. Sci., 128, 5, 55–63. doi:
10.1016/j.entcs.2004.11.042.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. “The TAMARIN Prover for the Symbolic Analysis

of Security Protocols.” In: Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings (Lecture Notes in Computer Science). Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044.

Springer, 696–701. doi: 10.1007/978-3-642-39799-8_48.

Roger M. Needham and Michael D. Schroeder. 1978. “Using Encryption for Authentication in Large Networks of Computers.”

Commun. ACM, 21, 12, 993–999. doi: 10.1145/359657.359659.

Peter W. O’Hearn. 2007. “Resources, concurrency, and local reasoning.” Theor. Comput. Sci., 375, 1-3, 271–307. doi: 10.1016/j
.tcs.2006.12.035.

Marina Polubelova, Karthikeyan Bhargavan, Jonathan Protzenko, Benjamin Beurdouche, Aymeric Fromherz, Natalia

Kulatova, and Santiago Zanella Béguelin. 2020. “HACLxN: Verified Generic SIMDCrypto (for all your favourite platforms).”

In: CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, November 9-13,
2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM, 899–918. doi: 10.1145/3372297.3423352.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

https://doi.org/10.1145/3371074
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.4230/LIPICS.ECOOP.2017.17
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/3591226
https://doi.org/10.1109/CSFW.1997.596782
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1016/j.entcs.2004.11.042
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1145/359657.359659
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3372297.3423352

Cryptis: Cryptographic Reasoning in Separation Logic 88:31

John C. Reynolds. 2002. “Separation Logic: A Logic for Shared Mutable Data Structures.” In: 17th IEEE Symposium on Logic
in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74. doi:

10.1109/LICS.2002.1029817.

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. “Programming and proving with distributed protocols.” Proc. ACM
Program. Lang., 2, POPL, 28:1–28:30. doi: 10.1145/3158116.

Alley Stoughton, Carol Chen, Marco Gaboardi, and Weihao Qu. 2022. “Formalizing Algorithmic Bounds in the Query Model

in EasyCrypt.” In: 13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel
(LIPIcs). Ed. by June Andronick and Leonardo de Moura. Vol. 237. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

30:1–30:21. doi: 10.4230/LIPIcs.ITP.2022.30.

Eijiro Sumii and Benjamin C. Pierce. 2007. “A bisimulation for dynamic sealing.” Theor. Comput. Sci., 375, 1-3, 169–192. doi:
10.1016/j.tcs.2006.12.032.

Eijiro Sumii and Benjamin C. Pierce. 2003. “Logical Relations for Encryption.” J. Comput. Secur., 11, 4, 521–554. doi:
10.3233/JCS-2003-11403.

[SW] The Rocq Development Team, The Rocq Prover version 9.0, Apr. 2025. doi: 10.5281/zenodo.15149629, url: https://doi.o

rg/10.5281/zenodo.15149629.

Amin Timany, Armaël Guéneau, and Lars Birkedal. 2024. “The Logical Essence of Well-Bracketed Control Flow.” Proc. ACM
Program. Lang., 8, POPL, 575–603. doi: 10.1145/3632862.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. “GPS: navigating weak memory with ghosts, protocols, and

separation.” In: Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014. Ed. by Andrew P. Black and

Todd D. Millstein. ACM, 691–707. isbn: 978-1-4503-2585-1. doi: 10.1145/2660193.2660243.

Gijs Vanspauwen and Bart Jacobs. 2015. “Verifying Protocol Implementations by Augmenting Existing Cryptographic

Libraries with Specifications.” In: Software Engineering and Formal Methods - 13th International Conference, SEFM 2015,
York, UK, September 7-11, 2015. Proceedings (Lecture Notes in Computer Science). Ed. by Radu Calinescu and Bernhard

Rumpe. Vol. 9276. Springer, 53–68. isbn: 978-3-319-22968-3. doi: 10.1007/978-3-319-22969-0_4.

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 88. Publication date: January 2026.

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3158116
https://doi.org/10.4230/LIPIcs.ITP.2022.30
https://doi.org/10.1016/j.tcs.2006.12.032
https://doi.org/10.3233/JCS-2003-11403
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.1145/3632862
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-319-22969-0_4

	Abstract
	1 Introduction
	2 Core Cryptis
	2.1 Derived Constructions

	3 Motivating Application: A Key-Value Store
	4 Authentication: The NSL Protocol
	4.1 Proving Security
	4.2 What About the Third Message?
	4.3 Game Security for NSL

	5 Diffie-Hellman Key Exchange and Forward Secrecy
	5.1 Extensions

	6 Reliable Connections
	7 Remote Procedure Calls
	8 Implementing and Verifying the Key-Value Store
	9 Implementation and Model
	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments

