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Abstract
Dependently typed languages such as Coq are used to specify

and verify the full functional correctness of source programs.

Type-preserving compilation can be used to preserve these

specifications and proofs of correctness through compilation

into the generated target-language programs. Unfortunately,

type-preserving compilation of dependent types is hard. In

essence, the problem is that dependent type systems are

designed around high-level compositional abstractions to

decide type checking, but compilation interferes with the

type-system rules for reasoning about run-time terms.

We develop a type-preserving closure-conversion trans-

lation from the Calculus of Constructions (CC) with strong

dependent pairs (Σ types)—a subset of the core language of

Coq—to a type-safe, dependently typed compiler intermedi-

ate language named CC-CC. The central challenge in this

work is how to translate the source type-system rules for rea-

soning about functions into target type-system rules for rea-

soning about closures. To justify these rules, we prove sound-

ness of CC-CC by giving a model in CC. In addition to type

preservation, we prove correctness of separate compilation.

CCS Concepts • Software and its engineering → Cor-
rectness; Functional languages; Polymorphism; Com-
pilers; • Theory of computation → Type theory;

Keywords Dependent types, type theory, type-preserving

compilation, closure conversion

∗
We use a combination of colors and fonts to distinguish different languages.

Although the languages are distinguishable in black-and-white, the paper

is easier to read when viewed or printed in color.
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1 Introduction
Full-spectrum dependently typed programming languages

such as Coq have had tremendous impact on the formal veri-

fication of large-scale software. Coq has been used to specify

and prove the full functional correctness the CompCert C

compiler [27], the CertiKOS OS kernel [20, 21], and imple-

mentations of cryptographic primitives and protocols [6, 8].

The problem is that these proofs are about source programs,
but we need guarantees about the target programs, gener-
ated by compilers, that actually end up running on machines.

Projects such as CertiCoq [5], which aims to build a verified

compiler for Coq in Coq, are a good first step. Unfortunately,

CertiCoq throws out type information before compilation.

This makes it difficult to ensure that the invariants of veri-

fied programs are respected when linking. A similar problem

occurs when we extract a proven correct Coq program e to

OCaml, then link with some unverified OCaml component f

that violates the invariants of e and causes a segfault. Since

Coq types are not preserved into OCaml, there is no way to

type check f and flag that we should not link f with e. The

state of the art is to tell the programmer to be careful.

Type-preserving compilation is the key to solving this

problem. Types are useful for enforcing invariants in source

programs, and we can similarly use them to check invari-

ants when linking target programs. With type-preserving

compilation, we could compile e and preserve its specifica-

tions into a typed target language. Then we could use type

checking at link time to verify that all components match

the invariants that e was originally verified against. Once

we have a whole program after linking all components in

a low-level typed—perhaps dependently typed—assembly

language, there would no longer be a need to enforce invari-

ants, so types could be erased to generate (untyped) machine

code. Preserving full-spectrum dependent types has addi-

tional benefits—we could preserve proofs of full functional

correctness into the generated code!

The goal in type-preserving compilation is not to develop

new compiler translations, but to adapt existing translations
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so that they perform the same function but also preserve

typing invariants. Unfortunately, these two goals are in con-

flict, particularly as the typing invariants become richer. The

richer the invariants the type system can express, the less

freedom the compiler is permitted, and the more work re-

quired to establish typing invariants in the transformed code.

In the case of full-spectrum dependently typed languages,

type-preserving compilation is hard. The essential problem

is that compiler transformations disrupt the syntactic rea-

soning used by the type system to decide type checking.

With full-spectrum dependent types, any runtime term can

appear in types, so the type system includes rules for reason-

ing about equivalence and sometimes partially evaluating

runtime terms during type checking. This works well in high

level, functional languages such as the core language of Coq,

but when compilers transform high-level language concepts

into low-level machine concepts, we need new rules for how

to reason about terms during type checking.

In the case of closure conversion, the problem is that,

unlike in simply typed languages, free term variables are

bound in types as well as terms. Intuitively, we translate

a simply typed function Γ ⊢ λx : A.e : A → B into a clo-

sure Γ ⊢ ⟨⟨(λΓ,x : A.e), dom(Γ)⟩⟩ : A → B where the code of the

function is paired with its environment, and the code now re-

ceives its environment as an explicit argument. Note that the

environment is hidden in the type of the closure so that two

functions of the same type but with different environment

still have the same type.
1
With dependent types, the type of

a closure may refer to free variables from the environment.

That is, in Γ ⊢ λx : A.e : Πx : A.B, variables from Γ can appear

in A and B. After closure conversion, how can we keep the

environment hidden in the type when the type must refer to

the environment? That is, in the closure converted version

of the above example Γ ⊢ ⟨⟨(λΓ,x : A.e), env⟩⟩ : Πx : A.B, how

can A and B refer to env if env must remain hidden in the

type?

We solve this problem for type-preserving closure conver-

sion of the Calculus of Constructions with Σ types (CC)—

a subset of the core language of Coq, and a calculus that

is representative of full-spectrum dependently typed lan-

guages. Closure conversion transforms first-class functions

with free variables into closures that pair closed, statically

allocated code with a dynamically allocated environment

containing the values of the free variables. There are two

major challenges in designing new type-system rules for

closures, which we discuss at a high-level in Section 3 be-

fore we formally present our results. In short, we need new

type-system rules for reasoning about closures, and a way to

synchronize the type of a closure, which depends on free vari-
ables, with the type of (closed) code, which cannot depend

on free variables.

1
Normally, we use existential types to hide the environment, but as we will

see in Section 3, existential types cause problems with dependent types.

Universes U ::= ⋆ | □
Expressions e,A,B ::= x | ⋆ | let x = e : A in e | Π x : A.B

| λ x : A. e | e e | Σ x : A.B
| ⟨e1, e2⟩ as Σ x : A.B | fst e | snd e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Figure 1. CC Syntax

Contributions We make the following contributions:

1. We design and prove the consistency of CC-CC, a full-

spectrum dependently typed compiler IL with support for

statically reasoning about closures, Section 4. The proof of

consistency also guarantees type safety of any programs

in CC-CC—i.e., linking any two components in CC-CC is

guaranteed to have well-defined behavior.

2. We give a typed closure-conversion translation from CC

to CC-CC Section 5.

3. Leveraging the type-preservation proof, we prove that this

translation is correct with respect to separate compilation,

i.e., linking components in CC and then running to a value

is equivalent to first compiling the components separately

and then linking in CC-CC.

Next, we introduce CC (Section 2), both to introduce our

source language and to formally introduce dependent types,

before presenting the central problem with typed closure

conversion, and themain idea behind our solution (Section 3).

Elided parts of figures and proofs are included in our online

technical appendix [14].

2 Source: Calculus of Constructions (CC)
Our source language is a variant of the Calculus of Con-

structions (CC) extended with strong dependent pairs (Σ
types) and η-equivalence for functions, which we typeset

in a non-bold, blue, sans-serif font. This model is based on the

CIC specification used in Coq [44, Chapter 4]. For brevity,

we omit base types from this formal system but will freely

use base types like natural numbers in examples.

We present the syntax of CC in Figure 1. Universes, or

sorts, U are essentially the types of types. CC includes one

impredicative universe⋆, and one predicative universe □. Ex-

pressions have no explicit distinction between terms, types,

or kinds, but we usually use the meta-variable e to evoke a

term expression and A or B to evoke a type expression. Ex-

pressions include names x, the universe ⋆, functions λ x : A. e,
application e1 e2, dependent function types Π x : A.B, depen-
dent let let x = e : A in e′, Σ types Σ x : A.B, dependent pairs
⟨e1, e2⟩ as Σ x : A.B, first projections fst e and second projec-

tions snd e. The universe □ is only used by the type system

and is not a valid term. As syntactic sugar, we omit the type

annotations on dependent let let x = e in e′ and on dependent

pairs ⟨e1, e2⟩ when they are irrelevant or obvious from con-

text. We also write function types as A → B when the result

B does not depend on the argument. Environments Γ include
assumptions x : A that a name x has type A, and definitions

x = e : A that name x refers to e of type A.
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Γ ⊢ e ▷ e′
x ▷δ e where x = e : A ∈ Γ

let x = e : A in e1 ▷ζ e1[e/x]
(λ x : A. e1) e2 ▷β e1[e2/x]

fst ⟨e1, e2⟩ ▷π1 e1
snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ e ≡ e′
Γ ⊢ e1 ▷∗ e Γ ⊢ e2 ▷∗ e

Γ ⊢ e1 ≡ e2
[≡]

Γ ⊢ e1 ▷∗ λ x : A. e Γ ⊢ e2 ▷∗ e′
2

Γ, x : A ⊢ e ≡ e′
2

x

Γ ⊢ e1 ≡ e2
[≡-η1]

Γ ⊢ e1 ▷∗ e′
1

Γ ⊢ e2 ▷∗ λ x : A. e Γ, x : A ⊢ e′
1

x ≡ e

Γ ⊢ e1 ≡ e2
[≡-η2]

Figure 2. CC Conversion and Equivalence

We define conversion, or reduction, and definitional equiv-

alence for CC in Figure 2. Conversion here is defined for

deciding equivalence between types (which include terms),

but it can also be viewed as the operational semantics of CC

terms. The small-step reduction Γ ⊢ e ▷ e′ reduces the expres-
sion e to the term e′ under the local environment Γ, which
we usually leave implicit for brevity. The local environment

is necessary to convert a name to its definition. Each conver-

sion rule is labeled, and when we refer to conversion with an

unlabeled arrow e ▷ e′, we mean that e reduces to e′ by some
reduction rule, i.e., either ▷δ , ▷ζ , ▷β , ▷π1 , or ▷π2 . We write

Γ ⊢ e▷∗ e′ to mean the reflexive, transitive, contextual closure

of the relation Γ ⊢ e▷e′. Essentially, e ▷∗ e′ runs e using the ▷
relation any number of times, under any arbitrary context.

We define equivalence Γ ⊢ e≡e′ as reduction in the ▷∗ relation
up to η-equivalence, as in Coq [44, Chapter 4].

In Figure 3, we present the typing rules. The type system

is standard.

Functions λ x : A. e have dependent function type Π x : A. B
([Lam]). The dependent function type describes that the

function takes an argument, x, of type A, and returns some-

thing of type B where B may refer to, i.e., depends on, the
value of the argument x. We can use this to write polymor-

phic functions, such as the polymorphic identity function

described by the type Π A : ⋆.Π x : A.A, or functions with
pre/post conditions, such as the division function described

by Π x : Nat.Π y : Nat.Π _ : y > 0.Nat, which statically ensures

that we never divide by zero by requiring a proof that its

second argument is greater than zero.

Applications e1 e2 have type B[e2/x] ([App]), i.e., the result
type B of the function e1 with the argument e2 substituted for
the name of the argument x. Using this rule and our example

of the division function div : Π x :Nat.Π y :Nat.Π _ : y > 0.Nat,
we type check the term div 4 2 : Π _ : 2 > 0.Nat. Notice that
the term variable y in the type has been replaced with the

value of the argument 2.

Γ ⊢ e : A
⊢ Γ

Γ ⊢ ⋆ : □
[Ax-*]

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
[Var]

Γ ⊢ e : A Γ, x = e : A ⊢ e′ : B

Γ ⊢ let x = e : A in e′ : B[e/x]
[Let]

Γ, x : A ⊢ B : ⋆

Γ ⊢ Π x : A.B : ⋆
[Prod-*]

Γ, x : A ⊢ B : □

Γ ⊢ Π x : A.B : □
[Prod-□]

Γ, x : A ⊢ e : B

Γ ⊢ λ x : A. e : Π x : A.B
[Lam]

Γ ⊢ e : Π x : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Σ x : A.B : ⋆
[Sig-*]

Γ, x : A ⊢ B : □

Γ ⊢ Σ x : A.B : □
[Sig-□]

Γ ⊢ e : Σ x : A.B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A.B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Figure 3. CC Typing

Dependent pairs ⟨e1, e2⟩ have type Σ x :A. B ([Pair]). Again,

this type is a binding form. The type B of the second com-

ponent of the pair can refer to the first component of the

pair by the name x. We see in the rule [Snd] that the type of

snd e is B[fst e/x], i.e., the type B of the second component of

the pair with the name x substituted by fst e. We can use this

to encode refinement types, such as the describing positive

numbers by Σ x : Nat. x > 0, i.e., a pair of a number x with a

proof that x is greater than 0.
Since types are also terms, we have typing rules for types.

The type of ⋆ is □. We call ⋆ the universe of small types and

□ the universe of large types. Intuitively, small types are the

types of programs while large types are the types of types

and type-level computations. Since no user can write down

□, we need not worry about the type of □. In [Prod-*], we

assign the type ⋆ to the dependent function type when the

result type is also ⋆. This rule allows impredicative functions,
since it allows forming a function that quantifies over large

types but is in the universe of small types. The rule [Prod-

□] looks similar, but is implicitly predicative, since there

is no universe larger than □ to quantify over. (We could

combine the rules for Π, but explicit separation helps clarify

the issue of predicativity when compared with the rules for

Σ types, which cannot be combined.) Formation rules for Σ
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⊢ Γ

⊢ ·
[W-Empty]

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
[W-Assum]

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
[W-Def]

Figure 4. CC Well-Formed Environments

types have an important restriction: it is unsound to allow

impredicativity in strong dependent pairs [17, 23]. The [Sig-*]

rule only allows quantifying over a small type when forming

a small dependent pair. The [Sig-□] rule allows quantifying

over either small or large types when forming a large Σ. As
usual in models of dependent type theory, we exclude base

types, although they are simple to add.

The rule [Conv] allows resolving type equivalence and re-

ducing terms in types. For instance, if we want to show that

e : Σ x :Nat. x = 2 but we have e : Σ x :Nat. x = 1 + 1, the [Conv]
rule performs this reduction. Note while our equivalence rela-

tion is untyped, the [Conv] rule ensures that A and B are well-

typed before appealing to equivalence, ensuring decidability.

(It is a standard lemma that if Γ ⊢ e : A, then Γ ⊢ A : U [28].)

Finally, we extend well-typedness to well-formedness of

environments ⊢ Γ in Figure 4.

3 Main Ideas
Closure conversion makes the implicit closures from a func-

tional language explicit to facilitate statically allocating func-

tions in memory. The idea is to translate each first-class

function into an explicit closure, i.e., a pair of closed code
and an environment data structure containing the values

of the free variables. We use code to refer to functions with

no free variables, as in a closure-converted language. The

environment is created dynamically, but the closed code can

be lifted to the top-level and statically allocated. Consider

the following example translation.

(λx .y)+ = ⟨(λn x . lety = (π1 n) in y), ⟨y⟩⟩
((λx .y) true)+ = let ⟨f ,n⟩ = ⟨(λn x . lety = (π1 n) in y), ⟨y⟩⟩ in

f n true

We write e+ to indicate the translation of an expression e.

We translate each function into a pair of code and its environ-

ment. The code accepts its free variables in an environment

argument, n (since n sounds similar to env). In the body of the
code, we bind the names of all free variables by projecting

from this environment n. To call a closure, we apply the code

to its environment and its argument.

This translation is not type preserving since the structure

of the environment shows up in the type. For example, the

following two functions have the same type in the source,

but end up with different types in the target.

(λx .y)+ : ((Nat × Nil) → Nat → Nat) × (Nat × Nil)

(λx .x)+ : (Nil → Nat → Nat) × Nil

This is a well-known problem with typed closure conver-

sion, so we could try the well-known solution [30, 34, 35, 2,

41, 37]. (Spoiler alert: it won’t work for CC.) We represent

closures as an existential package of a pair of the function

and its environment, whose type is hidden. The existential

type hides the structure of the environment in the type.

(λx .y)+ : ∃α .(α → Nat → Nat) × α
(λx .x)+ : ∃α .(α → Nat → Nat) × α

This works well for simply typed and polymorphic lan-

guages, but when we move to a dependently typed language,

we have new challenges. First, the environment must now be

ordered since the type of each new variable can depend on all

prior variables. Second, types can now refer to variables in

the closure’s environment. Recall the polymorphic identity

function from earlier.

λA :⋆. λ x : A. x : Π A :⋆.Π x : A.A

This function takes a type variable, A, whose type is ⋆. It
returns a function that accepts an argument x of type A and

returns it. There are two closures in this example: the outer

closure has no free variables, and thus will have an empty

environment, while the inner closure λ x :A. x has A free, and

thus A will appear in its environment.

Below, we present the translation of this example using

the previous translation. We typeset target language terms

produced by our translation in a bold, red, serif font. We

produce two closures, one nested in the other. Note that we

translate source variables x to x. In the outer closure, the

environment is empty ⟨⟩, and the code simply returns the

inner closure. The inner closure has the argument A from

the outer code in its environment. Since the inner code takes

an argument of type A, we project A from the environment

in the type annotation for x. That is, the inner code takes an
environment n2 that contains A, and the type annotation for

x is x : fst n2. The type fst n2 is unusual, but is no problem

since dependent types allow computations in types.

⟨⟨λ (n1 : 1,A : ⋆). ⟨⟨λ (n2 : ⋆× 1, x : fst n2). x, ⟨A, ⟨⟩⟩⟩⟩, ⟨⟩⟩⟩ :

∃α 1 :⋆. (Π (n1 : α 1,A : ⋆).

∃α 2 : □. (Π (n2 : α 2, x : fst n2). fst n2) × α 2) × α 1

We see that the inner code on its own is well typed with

the closed type Π (n2 : ⋆ × 1, x : fst n2). fst n2. That is, the
code takes two arguments: the first argument n2 is the en-
vironment, and the second argument x is a value of type

fst n2. The result type of the code is also fst n2. As discussed
above, we must hide the type of the environment to en-

sure type preservation. That is, when we build the closure

⟨⟨λ (n2 : ⋆× 1, x : fst n2). x, ⟨A, ⟨⟩⟩⟩⟩, we must hide the type of

the environment ⟨A, ⟨⟩⟩. We use an existential type to quan-

tify over the type α 2 of the environment, and we produce

the type Π (n2 : α 2, x : fst n2). fst n2 for the code in the inner

closure. But this type is trying to take the first projection

of something of type α 2. We can only project from pairs,

and something of type α 2 isn’t a pair! In hiding the type of
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the environment to recover type preservation, we’ve broken

type preservation for dependent types.

A similar problem also arises when closure converting

System F, since System F also features type variables [30, 35].

To understand our solution, it is important to understand

why the solutions that have historically worked for System

F do not scale to CC. We briefly present these past results

and why they do not scale before moving on to the key

idea behind our translation. Essentially, past work using

existential types relies on assumptions about computational

relevance, parametricity, and impredicativity that do not

necessarily hold in full-spectrum dependent type systems.

3.1 Why the Well Known Solution Doesn’t Work
Minamide et al. [30] give a translation that encodes closure

types using existential types, a standard type-theoretic fea-

ture that they use to make environment hiding explicit in

the types. In essence, they encode closures as objects; the

environment can be thought of as the private field of an

object. Since then, the use of existential types to encode clo-

sure types has been standard in all work on typed closure

conversion.

However, the use of existential types to encode closures

in a dependently typed setting is problematic. First, let us

just consider closure conversion for System F. As Minamide

et al. [30] observed, there is a problem when code must be

closed with respect to both term and type variables. This
problem is similar to the one discussed above: when closure

environments contain type variables, since those type vari-

ables can also appear in the closure’s type, the closure’s type

needs to project from the closure’s (hidden) environment

which has type α . To fix the problem, they extend their target

language with translucency (essentially, a kind of type-level

equivalence that we now call singleton types), type-level

pairs, and kinds. All of these features can be encoded in CC,

so we could extend their translation essentially as follows.

(Π x : A.B)+
def

= ∃α : U. ∃n : α .Code (n′ :α , y :n′ = n, x :A+).B+

In this translation, we would existentially quantify over

the type of the environment α , the value of the environment

n, and generate code that requires an environment n′ plus a
proof that the code is only ever given the environment n as

the argument n′. The typing rule for an existential package

copies the existential value into the type. That is, for a clo-

sure pack ⟨A′, v, e⟩ of type ∃α : U. ∃n : α .Code (n′ :α , y :n′ =
n, x :A+). B+, the typing rule for pack requires that we show

e : Code (n′ :A′, y :n′ = v, x :A+).B+; notice that the variable
n has been replaced by the value of the environment v. The
equality n′ = v essentially unifies projections from n′ with
projections from v, the list of free variables representing the

actual environment.

The problem with this translation is that it relies on im-
predicativity. That is, if (Π x : A.B) : ⋆, then we require that

(Π x:A. B)+ : ⋆. Since the existential type quantifies over a type

in an arbitrary universe U but must be in the base universe ⋆,

the existential type must be impredicative. Impredicative ex-

istential types (weak dependent sums) are consistent on their

own, but impredicativity causes inconsistency when com-

bined with other features, including computational relevance

and Coq’s universe hierarchy. In Coq by default, the base

computationally relevant universe Set is predicative, so this

translation would not work. There is a flag to enable impred-

icative Set, but this can introduce inconsistency with some

axioms, such as a combination of the law of excluded middle

plus the axiom of choice, or ad-hoc polymorphism [12]. Even

with impredicative Set, there are computationally relevant

universes higher in Coq’s universe hierarchy, and it would

not be safe to allow impredicativity at more than one uni-

verse. Furthermore, some dependently typed languages, such

as Agda, do not allow impredicativity at all since it is the

source of paradoxes, such as Girard’s paradox.

A second problem arises in developing an η principle,

because the existential type encoding relies on parametricity
to hide the environment. So, any η principle would need

to be justified by a parametric relation on environments.

Internalizing parametricity for dependent type theory is an

active area of research [11, 25, 26, 38] and not all dependent

type theories admit parametricity [12].

Later, Morrisett et al. [35] improved the existential-type

translation for System F, avoiding translucency and kinds

by relying on type erasure before runtime, which meant

that their code didn’t have to close over type variables. This

translation does not apply in a dependently typed setting,

since now types can contain term variables not just “type

erasable” type variables.

3.2 Our Translation
To solve type-preserving closure conversion for CC, we avoid

existential types altogether and instead take inspiration from

the so-called “abstract closure conversion” of Minamide et al.

[30]. They add new forms to the target language to represent

code and closures for a simply typed source language. We

scale the design of these forms to dependent types.

Adapting and scaling even a well-known translation to

dependent type theory is complex. Recall from Section 1 that

the goal of our compiler is to implement the same function-

ality as standard closure conversion, but preserve the typing

invariants. Operationally, our translation will do the obvi-

ous thing, but the complexity of our translation comes from

the types. In the case of dependent types, the complexity

(and usefulness) of the type system comes from the ability

to interpret terms as logical formulas that are capable of ex-

pressing mathematical theorems and proofs. When we add

new typing rules to the target language, we must justify that

the new system is still consistent when interpreted as a logic.

Moreover, we must design new equivalence rules for terms

and, ideally, ensure that equivalence is still decidable.
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In the case of closure conversion, we are transforming the

fundamental feature of dependent type theory: functions and

Π types. Functions can be interpreted as proofs of univer-

sal properties represented by Π types. This transformation

requires dependent types for both code and closures, and

a novel equivalence principle for closures. But in proving

the new rules consistent, we must not just prove that we do

not allow proofs of False in the new system, but also estab-

lish that all universal properties and their proofs that were

representable and provable in the source language are still

representable and provable in the target language. We leave

the proofs of these properties until Section 4.1, but present

the key typing and equivalence rules now.

We extend our type system with primitive types for code

and closures. We represent code as λ (n : A′, x : A). e1 of the
code type Code (n : A′, x : A).B. These are still dependent

types, so n may appear in both A and B, and x may appear

in B. Code must be well typed in an empty environment,

i.e., when it is closed. For simplicity, code only takes two

arguments.

·,n : A′, x : A ⊢ e : B

Γ ⊢ λn : A′, x : A. e : Code (n : A′, x : A).B
[Code]

We represent closures as ⟨⟨e, e′⟩⟩ of typeΠ x:A[e′/n].B[e′/n],
where e is code and e′ is its environment. We continue to

use Π types to describe closures; note that “functions” in CC

are implicit closures. The typing rule for closures is:

Γ ⊢ e : Code (n : A′, x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/n].B[e′/n]
[Clo]

We should think of a closure ⟨⟨e, e′⟩⟩ not as a pair, but as a
delayed partial application of the code e to its environment

e′. This intuition is formalized in the typing rule since the

environment is substituted into the type, just as in dependent-

function application in CC.

To understand our translation, let us start with the trans-

lation of functions.

(λ x : A. e)+
def

= ⟨⟨(λ (n : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

The translation of functions is simple to construct. We know

we want to produce a closure containing code and its envi-

ronment. We know the environment should be constructed

from the free variables of the body of the function, namely

e, and, due to dependent types, the type annotation A.
The question is: what should the type translation of Π

types be? Let’s return to our polymorphic identity function

(just the inner closure). If we apply the above translation,

we produce the following for the inner closure. We know its

type by following the typing rules [Clo] and [Code] above.

⟨⟨λ (n2 : ⋆× 1, x : fst n2). x, ⟨A, ⟨⟩⟩⟩⟩ :
Π (x : (fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]

Expressions e,A,B ::= · · · | 1 | ⟨⟩ | Code (x′ : A′, x : A).B
| λ (x′ : A′, x : A). e | Π x : A.B | ⟨⟨e, e⟩⟩

Figure 5. CC-CC Syntax (excerpts)

We know that the code λ (n2 : ⋆× 1, x : fst n2). x has type
Code (⋆ × 1, x : fst n2). fst n2. Following [Clo], we substitute

the environment into this type, so we get:

Π (x : (fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]
So how do we translate the function type Π x:A.A into the clo-

sure type Π (x : (fst n2)[⟨A, ⟨⟩⟩/n2]). (fst n2)[⟨A, ⟨⟩⟩/n2]? Note
that this type reduces to Π x :A.A. So by the rule [Conv], we

simply need to translate Π x : A.A to Π x : A.A!
The key translation rules are given below.

(Π x : A.B)+
def

= Π x : A+.B+

(λ x : A. e)+
def

= ⟨⟨(λ (n : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . are the free variables of e and A

A final challenge remains in the design of our target lan-

guage: we need to know when two closures are equivalent.

As we just saw, CC partially evaluates terms while type

checking. If two closures get evaluated while resolving type

equivalence, we may inline a term into the environment for

one closure but not the other. When this happens, two clo-

sures that were syntactically identical and thus equivalent

become inequivalent. We discuss this problem in detail in

Section 5, but essentially we need to know when two syn-

tactically distinct closures are equivalent. Our solution is

simple: get rid of the closures and keep inlining things!

Γ, x : A ⊢ e1[e′1/n] ≡ e2[e′2/n]

Γ ⊢ ⟨⟨(λ (n : A′, x : A). e1), e′1⟩⟩ ≡ ⟨⟨(λ (n : A′, x : A). e2), e′2⟩⟩

Two closures are equivalent when we inline the environ-

ment, free variables or not, and run the body of the code. We

leave the argument free, too. We run the bodies of the code

to normal forms, then compare the normal forms. Recall that

equivalence runs terms while type checking and does not

change the program, so the free variables do no harm.

This equivalence essentially corresponds to an η-principle
for closures. From it, we can derive a normal form for clo-

sures ⟨⟨e, e′⟩⟩ that says the environment e′ contains only free

variables, i.e., e′ = ⟨xi . . .⟩.
The above is an intuitive, declarative presentation, but is

incomplete without additional rules. We use an algorithmic

presentation that is similar to the η-equivalence rules for

functions in CC, which we show in Section 4.

4 Target: CC, Closure-Converted (CC-CC)
The target language CC-CC is based on CC, but first-class

functions are replaced by closed code and closures. We add

a primitive unit type 1 to support encoding environments.

We extend the syntax of expressions, Figure 5, with a unit

value ⟨⟩ and its type 1, closed code λn : A′, x : A. e and

dependent code types Code (n : A′, x : A).B, and closure
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Γ ⊢ e ▷ e′ ...

⟨⟨λ x′ : A′, x : A. e1, e′⟩⟩ e ▷β e1[e′/x′][e/x]

Γ ⊢ e ≡ e′

· · ·

Γ ⊢ e1 ▷∗ ⟨⟨λ (x′ : A′, x : A). e′
1
, e′⟩⟩

Γ ⊢ e2 ▷∗ e′2 Γ, x : A ⊢ e1[e′/x′] ≡ e′
2
x

Γ ⊢ e1 ≡ e2
[≡-Clo1]

Γ ⊢ e2 ▷∗ ⟨⟨λ (x′ : A′, x : A). e′
2
, e′⟩⟩

Γ ⊢ e1 ▷∗ e′1 Γ, x : A ⊢ e′
1
x ≡ e′

2
[e′/x′]

Γ ⊢ e1 ≡ e2
[≡-Clo2]

Figure 6. CC-CC Conversion and Equivalence (excerpts)

Γ ⊢ e : t

· · ·

Γ, x′ : A′, x : A ⊢ B : ⋆

Γ ⊢ Code (x′ : A′, x : A).B : ⋆
[T-Code-*]

Γ, x′ : A′, x : A ⊢ B : □

Γ ⊢ Code (x : A, x′ : A′).B : □
[T-Code-□]

·, x′ : A′, x : A ⊢ e : B

Γ ⊢ λ (x′ : A′, x : A). e : Code (x′ : A′, x : A).B
[Code]

Γ ⊢ e : Code (x′ : A′, x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/x′].B[e′/x′]
[Clo]

Figure 7. CC-CC Typing (excerpts)

values ⟨⟨e, e′⟩⟩ and dependent closure types Π x : A.B. The
syntax of application e e′ is unchanged, but it now applies

closures instead of functions.

We define additional syntactic sugar for sequences of

terms, to support writing environments whose length is

arbitrary. We write a sequence of terms ei . . . to mean a se-

quence of length |i | of expressions ei0 , . . . , ein . We extend

the notation to patterns such as xi : Ai . . ., which implies

two sequences xi0 , . . . , xin and A0, . . . ,Ain each of length

|i |. We define environments as dependent n-tuples, writ-

ten ⟨ei . . .⟩ as Σ (xi : Ai . . . ). We encode dependent n-tuples

as nested dependent pairs followed by a unit value, i.e.,
⟨e0, ⟨. . . , ⟨ei, ⟨⟩⟩⟩⟩.We omit the annotation on n-tuples ⟨ei . . .⟩
when it is obvious from context. We also define pattern

matching on n-tuples, written let ⟨xi . . .⟩ = e′ in e, to perform

the necessary nested projections, i.e., let x0=fst e′ in . . . let xi=
fst snd . . . snd e′ in e.
In Figure 6 we present the additional conversion and equiv-

alence rules for CC-CC. Code cannot be applied directly, but

must be part of a closure. Closures applied to an argument

β-reduce, applying the underlying code to the environment

and the argument. All the other conversion rules remain

unchanged. For equivalence, we no longer have the usual η
rules, since functions have been turned into closures. Instead,

we need η rules for closures.

We give the typing rules in Figure 7. All unspecified rules

are unchanged from the source language. The most interest-

ing rule is [Code], which that code only type checks when it

is closed. This rule captures the entire point of typed closure

conversion and gives us static machine-checked guarantees

that our translation produces closed code. The typing rule

[Clo] for closures ⟨⟨e, e′⟩⟩ substitutes the environment e′ into
the type of the closure, as discussed in Section 3. This is

similar to the CC rule [App] that substitutes a function ar-

gument into the result type of a function. As we discussed

in Section 3, this is also critical to type preservation, since

our translation must generate closure types with free vari-

ables and then synchronize the closure type containing free

variables with a closed code type. As with Π types in CC, we

have two rules for well typed Code types. The rule [T-Code-*]
allows impredicativity in ⋆, while [T-Code-□] is predicative.

4.1 Type Safety and Consistency
We prove that CC-CC is type safe when interpreted as a

programming language and consistent when interpreted as

a logic. Type safety guarantees that all programs in CC-CC

have well-defined behavior, and consistency ensures that

when interpreting types as propositions and programs as

proofs, we cannot prove False in CC-CC. We prove both the-

orems by giving a model of CC-CC in CC, i.e., by encoding

the target language in the source language. The model re-

duces type safety and consistency of CC-CC to that of CC,

which is known to be type safe and consistent. This standard

technique is well explained by Boulier et al. [12].

We construct a model essentially by “decompiling” clo-

sures, translating code to functions and closures to partial

application. To show this translation is a model, we need to

show that it preserves falseness—i.e., that we translate False
to False—and show that the translation is type-preserving—

i.e., we translate anywell-typed CC-CC program (valid proof)

into a well-typed program in CC. To extend the model to

type safety, we must also show that the translation preserves

reduction semantics—i.e., that reducing an expression in CC-

CC is essentially equivalent to reducing the translated term

in CC. Since our type system includes reduction, we already

prove this to show type preservation.

We then prove consistency and type safety of CC-CC by

contradiction. If CC-CC were inconsistent, then we could

prove the proposition False in CC-CC, and translate that

proof into a valid proof of False in CC. But since CC is consis-

tent, we can never produce a proof of False in CC, therefore

we could not have constructed one in CC-CC. A similar ar-

gument applies for type safety. Since we preserve reduction

semantics in CC-CC, if a term had undefined behavior, we

could translate the term into a CC term with undefined be-

havior. However, CC has no terms with undefined behavior,

hence neither does CC-CC.

The translation from CC-CC to CC, Figure 8, is defined

on typing derivations. We use the following notation.
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Γ ⊢ e : A{◦ e

· · ·

Γ ⊢ A : U{◦ A Γ, x : A ⊢ B : ⋆{◦ B

Γ ⊢ Π x : A.B : ⋆{◦ Π x : A.B
[M-Prod-*]

Γ ⊢ A′
: U′{◦ A′ Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : ⋆{◦ B

Γ ⊢ Code (x′ : A′, x : A).B : ⋆{◦ Π x′ : A′.Π x : A.B
[M-T-Code-*]

Γ ⊢ A′
: U′{◦ A′ Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : □{◦ B

Γ ⊢ Code (x′ : A′, x : A).B : □{◦ Π x′ : A′.Π x : A.B
[M-T-Code-□]

Γ ⊢ A′
: U′{◦ A′ Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : U{◦ B Γ, x′ : A′, x : A ⊢ e : B{◦ e

Γ ⊢ λ (x′ : A′, x : A). e : Code (x′ : A′, x : A).B{◦ λ x′ : A′. λ x : A. e
[M-Code]

Γ ⊢ e : Code (x′ : A′, x : A).B{◦ e Γ ⊢ e′ : A′{◦ e′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/x].B[e′/x]{◦ e e′
[M-Clo]

Γ ⊢ e : Π x : A.B{◦ e Γ ⊢ e′ : A{◦ e′

Γ ⊢ e e′ : B[e′/x]{◦ e e′
[M-App]

Figure 8. Translation from CC-CC to CC (excerpts)

e◦ def

= e where Γ ⊢ e : A{◦ e

The CC expression e◦ refers to the expression produced by

translating the CC-CC expression e, with the typing deriva-

tion for e as an implicit argument.

The rule [M-Code] translates a code type Code (n : A′, x :

A).B to the curried function typeΠ n:A′◦.Π x:A◦.B◦. The rule
[M-Code] models code λn : A′, x : A. e as a curried function

λ n :A′◦. λ x :A◦. e◦. Observe that the inner function produced

in CC is not closed, but that is not a problem since the model

only exists to prove type safety and consistency. It is only

in CC-CC programs that code must be closed. The rule [M-

Clo] models a closure ⟨⟨e, e′⟩⟩ as the application e◦ e′◦—i.e.,
the application of the function e◦ to its environment e′◦. We

model Unit, omitted for brevity, with the standard Church

encoding as the polymorphic identity function. All other

rules simply recursively translate subterms.

We first prove that this translation preserves falseness. We

encode False in CC-CC as ΠA :⋆.A. This encoding represents
a function that takes any arbitrary proposition A and returns

a proof of A. Similar, in CC False as Π A :⋆.A. It is clear from
[M-Prod-*] that the translation preserves falseness. We use

= as the terms are not just definitionally equivalent, but

syntactically identical.

Lemma 4.1 (False Preservation). False◦ = False

To prove type preservation, we split the proof into three

key lemmas. First, we show compositionality, i.e., that the
translation from CC-CC to CC commutes with substitution.

Then we prove preservation of reduction semantics and

equivalence, which essentially follows from composition-

ality. Finally, we prove type preservation, which relies on

preservation of equivalence and on compositionality. The

proofs are straightforward, since the typing rules in CC-CC

essentially correspond to partial application already, so we

elide them here. They follow the same structure as our type

preservation proof for closure conversion, which we present

in Section 5. For complete details, see our online technical

appendix [14].

Compositionality is an important lemma since the type

system and conversion relations are defined by substitution.

Lemma 4.2 (Compositionality). (e[e′/x])◦ = e◦[e′◦/x]

Next we show that the translation preserves reduction, or

that our model in CC weakly simulates reduction in CC-CC.

This is used both to show that equivalence is preserved, since

equivalence is defined by reduction, and to show type safety.

Lemma 4.3 (Pres. of Reduction). If e ▷ e′ then e◦ ▷∗ e′◦

Nowwe show that reduction sequences are preserved. This
essentially follows from preservation of single-step reduc-

tion, Lemma 4.3.

Lemma 4.4 (Preservation of Reduction Sequences). If e ▷∗
e′ then e◦ ▷∗ e′◦

Next, we show coherence, i.e., that the translation preserves
equivalence. The proof essentially follows from Lemma 4.4,

but we must show that our η rule for closures is preserved.

Lemma 4.5 (Coherence). If e1 ≡ e2 then e◦
1
≡ e◦

2

We can now show our final lemma: type preservation.

Lemma 4.6 (Type Preservation).
1. If ⊢ Γ then ⊢ Γ◦

2. If Γ ⊢ e : A then Γ◦ ⊢ e◦ : A◦

Finally, we can prove the desired consistency and type

safety theorems.

Theorem 4.7 (Consistency of CC-CC). There does not exist
a closed expression e such that · ⊢ e : False.

Type safety tells us that there is no undefined behavior

that causes a program to get stuck before it produces a value,

and all programs terminate.
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Γ ⊢ e : t{ e where Γ ⊢ e : t

Γ ⊢ ⋆ : □{ ⋆
[CC-*]

Γ ⊢ x : A{ x
[CC-Var]

Γ ⊢ e : A{ e Γ ⊢ A : U{ A Γ, x : A ⊢ e′ : B{ e′

Γ ⊢ let x = e : A in e′ : B[e/x]{ let x = e : A in e′
[CC-Let]

Γ ⊢ A : U{ A Γ, x : A ⊢ B : ⋆{ B

Γ ⊢ Π x : A.B : ⋆{ Π x : A.B
[CC-Prod-*]

Γ ⊢ A : U{ A Γ, x : A ⊢ B : □{ B

Γ ⊢ Π x : A.B : □{ Π x : A.B
[CC-Prod-□]

Γ, x : A ⊢ e : B{ e
Γ ⊢ A : U{ A Γ, x : A ⊢ B : U{ B xi : Ai . . . = FV(λ x : A. e,Π x : A.B, Γ) Γ ⊢ Ai : U{ Ai . . .

Γ ⊢ λ x : A. e : Π x : A.B{ ⟨⟨(λ (n : Σ (xi : Ai . . . ), x : let ⟨xi . . .⟩ = n inA).
let ⟨xi . . .⟩ = n in e),

⟨xi . . .⟩ as Σ (xi : Ai . . . )⟩⟩

[CC-Lam]

Γ ⊢ e1 : Π x : A.B{ e1 Γ ⊢ e2 : A{ e2
Γ ⊢ e1 e2 : B[e2/x]{ e1 e2

[CC-App]

Γ ⊢ A : ⋆{ A Γ, x : A ⊢ B : ⋆{ B

Γ ⊢ Σ x : A.B : ⋆{ Σ x : A.B
[CC-Sig-*]

Γ ⊢ A : □{ A Γ, x : A ⊢ B : □{ B

Γ ⊢ Σ x : A.B : ⋆{ Σ x : A.B
[CC-Sig-□]

Γ ⊢ e : Σ x : A.B{ e

Γ ⊢ fst e : A{ fst e
[CC-Fst]

Γ ⊢ e : Σ x : A.B{ e

Γ ⊢ snd e : B[fst e/x]{ snd e
[CC-Snd]

Γ ⊢ e : A{ e

Γ ⊢ e : B{ e
[CC-Conv]

⊢ Γ{ Γ where ⊢ Γ

⊢ ·{ ·
[W-Empty]

⊢ Γ{ Γ Γ ⊢ A : _{ A

⊢ Γ, x : A{ Γ, x : A
[W-Assum]

⊢ Γ{ Γ Γ ⊢ A : _{ A Γ ⊢ e : A{ e

⊢ Γ, x = e : A{ Γ, x = e : A
[W-Def]

Figure 9. Closure Conversion

Theorem 4.8 (Type Safety of CC-CC). If · ⊢ e : A, then e ▷∗ v
and v ̸▷ v′.

5 Closure Conversion
We present the closure conversion translation in Figure 9.

We define the following notation for this translation.

e+
def

= e where Γ ⊢ e : A{ e

The CC-CC expression e+ refers to the translation of the

well-typed CC term e, with typing derivation for e as an

implicit parameter.

Every case of the translation except for functions is triv-

ial, including application [CC-App], since application is still

the elimination form for closures after closure conversion.

In the nontrivial case [CC-Lam], we translate CC functions

to CC-CC closures, as described in Section 3. The transla-

tion of a function λ x : A. e produces a closure ⟨⟨e1, e2⟩⟩. We

compute the free variables (and their type annotations) of

the function λ x : A. e, xi : Ai . . ., using the metafunction

FV(λ x : A. e,Π x : A.B, Γ) defined shortly. The first component

e1 is closed code. Ignoring the type annotation for a moment,

the code λ (n, x). let ⟨xi . . .⟩ = n in e+ projects each of the |i |

free variables xi . . . from the environment n and binds them

in the scope of the body e+. But CC-CC is dependently typed,

so we also bind the free variables from the environment in

the type annotation for the argument x, i.e., producing the

FV(e,B, Γ)
def

= Γ0, . . . , Γn , x0 : A0, . . . , xn : An
where x0, . . . , xn = fv(e,B)

Γ ⊢ x0 : A0, . . . , Γ ⊢ xn : An
Γ0 = FV(A0, _, Γ)
...

Γn = FV(An , _, Γ)

Figure 10. CC Dependent Free Variable Sequences

annotation x : let ⟨xi . . .⟩ = n inA+ instead of just x : A+. Next
we produce the environment type Σ (xi : A+ . . . ), from the

free source variables xi . . . of types Ai . . .. We create the envi-

ronment e2 by creating the dependent n-tuple ⟨xi . . .⟩; these
free variables will be replaced by values at run time.

To compute the sequence of free variables and their types,

we define the metafunction FV(e,B, Γ) in Figure 10. Just from

the syntax of terms e,B, we can compute some sequence

of free variables x0, . . . , xn = fv(e,B). However, the types of
these free variables A0, . . . ,An may contain other free vari-
ables, and their types may contain still others, and so on! We

must, therefore, recursively compute the a sequence of free

variables and their types with respect to an environment Γ.
Note that because the type B of a term e may contain dif-

ferent free variables than the term, we must compute the

sequence with respect to both a term and its type. How-

ever, in all recursive applications of this metafunction—e.g.,
FV(A0, _, Γ)—the type of A0 must be a universe and cannot

have any free variables.
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5.1 Type Preservation
First we prove type preservation, using the same staging

as in Section 4. After we show type preservation, we show

correctness of separate compilation. In CC, the lemmas re-

quired for type preservation do most of the work to allow

us to prove correctness of separate compilation, since type

checking includes reduction and thus we prove preservation

of reduction sequences.

We first show compositionality. This lemma, which estab-

lishes that translation commutes with substitution, is the key

difficulty in our proof of type preservation because closure

conversion internalizes free variables.Whether we substitute

a term for a variable before or after translation can drasti-

cally affect the shape of closures produced by the translation.

For instance, consider the term (λ y : A. e)[e′/x]. If we perform
this substitution before translation, then we will generate

an environment with the shape ⟨xi . . . , xj . . .⟩, i.e., with only

free variables and without x in the environment. However,

if we translate the individual components and then perform

the substitution, then the environment will have the shape

⟨xi . . . , e′+, xj . . .⟩—that is, x would be free when we create

the environment and substitution would replace it by e′+.
We use our η-principle for closures to show that closures

that differ in this way are still equivalent.

Lemma 5.1 (Compositionality). (e1[e2/x])+ ≡ e+
1
[e+
2
/x]

Proof. By induction on the typing derivation for e1. We give

the key cases.

Case [Ax-Var]

We know that e1 is some free variable x′, so either

x′ = x, hence e+
2
≡ e+

2
, or x′ , x, hence x′+ ≡ x′+.

Case [T-Code-*]

We know that e1 = Π x′ :A. B. W.l.o.g., assume x′ , x. We

must show (Π x′ :A[e2/x].B[e2/x])+ ≡ (Π x′ : A.B)+[e+
2
/x].

(Π x′ : A[e2/x].B[e2/x])+ (1)

= Π x′ : (A[e2/x])+. (B[e2/x])+ (2)

by definition of the translation

= Π x′ : (A+[e+
2
/x]). (B+[e+

2
/x]) (3)

by the inductive hypothesis for A and B

= (Π x′ : A+.B+)[e+
2
/x] (4)

by definition of substitution

= (Π x′ : A.B)+[e+
2
/x] (5)

by definition of translation

Case [Lam]

We know that e1 = λ y : A. e. W.l.o.g., assume that y , x.
Wemust show that ((λ y : A. e)[e2/x])+ ≡ (λ y : A. e)+[e+

2
/x].

Recall that by convention we have that Γ ⊢ λ y : A. e :

Π y : A.B.

((λ y : A. e)[e2/x])+ (6)

= (λ y : (A[e2/x]). e[e2/x])+ (7)

by substitution

= ⟨⟨(λn : Σ (xi : A+i . . . ), y : let ⟨xi . . .⟩ = n in (A[e2/x])+.

let ⟨xi . . .⟩ = n in (e[e2/x])+), ⟨xi . . .⟩⟩⟩
(8)

by definition of the translation

where xi : Ai . . . = FV(λ y : (A[e2/x]). e[e2/x], Γ). Note
that x is not in the sequence (xi . . . ).
On the other hand, we have

f = (λ y : A. e)+[e+
2
/x] (9)

= ⟨⟨(λn : Σ (xj : A+j . . . ), y : let ⟨xj . . .⟩ = n inA+.

let ⟨xj . . .⟩ = n in e+), ⟨xj0 . . . , e+2 , xji+1 . . .⟩⟩⟩
(10)

by definition of the translation

where xj : Aj . . . = FV(λ y : A. e, Γ). Note that x is in

xj . . .; we can write the sequence as (xj0 . . . x, xji+1 . . . ).
Therefore, the environment we generate contains e+

2

in position ji .

By [≡-Clo1], it suffices to show that

let ⟨xi . . .⟩ = ⟨xi . . .⟩ in (e[e2/x])+ ≡ f y where f is the
closure from Equation (9).

f y ≡ let ⟨xj0 . . . x, xji+1 ...⟩ = ⟨xj0 . . . , e+2 , xji+1 . . .⟩ in e+ (11)

by ▷β in CC-CC

≡ e+[e+
2
/x] (12)

by |j| applications of ▷ζ , since only x has a value

≡ (e[e2/x])+ (13)

by the inductive hypothesis applied to the derivation for e

≡ let ⟨xi . . .⟩ = ⟨xi . . .⟩ in (e[e2/x])+ (14)

by |i| applications of ▷ζ , since no variable has a value □

Next we show that if a source term e takes a step, then its

translation e+ reduces in some number of steps to a defini-

tionally equivalent term e. This proof essentially follows by

Lemma 5.1. Then we show by induction on the length of the

reduction sequence that the translation preserves reduction

sequences. Note that since Lemma 5.1 relies on our η equiv-

alence rule for closures, we can only show reduction up to

definitional equivalence. That is, we cannot show e+ ▷∗ e′+.
This is not a problem; we reason about source programs to

equivalence anyway, and not up to syntactic equality.

Lemma 5.2 (Preservation of Reduction). If Γ ⊢ e ▷ e′ then
Γ+ ⊢ e+ ▷∗ e and e ≡ e′+

Proof. By cases on Γ ⊢ e ▷ e′. Most cases follow easily by

Lemma 5.1, since most cases of reduction are defined by

substitution. We give representative cases; see our online

technical appendix [14].

Case (λ x : A. e1) e2 ▷β e1[e2/x]
Wemust show that ((λ x:A. e1) e2)+ ▷∗ e and (e2[e1/x])+ ≡

e. Let e def

= e+
1
[e+
2
/x].

By definition of the translation, ((λ x : A. e1) e2)+ = f e+
2
,

where

f = ⟨⟨(λn : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+. (15)

let ⟨xi . . .⟩ = n in e+
1
), ⟨xi . . .⟩⟩⟩ (16)
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and where xi : Ai . . . = FV(λ x : A. e1, Γ).
To complete the proof, observe that,

f e+
2
▷β let ⟨xi . . .⟩ = ⟨xi . . .⟩ in e+

1
[e+
2
/x] (17)

▷
|i |
ζ e+

1
[e+
2
/x] (18)

≡ (e1[e2/x])+ by Lemma 5.1 (19)

□

Lemma 5.3 (Preservation of Reduction Sequences). If Γ ⊢

e ▷∗ e′ then Γ+ ⊢ e+ ▷∗ e and Γ+ ⊢ e ≡ e′+.

We can now show coherence, i.e., that equivalent terms

are translated to equivalent terms. As equivalence is defined

primarily by ▷∗, the only interesting part of the next proof

is preserving η equivalence. To show that η equivalence is

preserved, we require our new η rules for closures.

Lemma 5.4 (Coherence). If Γ ⊢ e ≡ e′, then Γ+ ⊢ e+ ≡ e′+.

Proof. By induction on the e ≡ e′ judgment.

Case [≡-η1]

By assumption, e ▷∗ λ x : t. e1, e′ ▷∗ e2 and e1 ≡ e2 x.
Must show e+ ≡ e′+.
By Lemma 5.3, e+ ▷∗ e and e ≡ (λ x:t. e1)+, and similarly

e′+ ▷∗ e′ and e′ ≡ e+
2
.

By transitivity of ≡, it suffices to show (λ x : t. e1)+ ≡ e+
2
.

By definition of the translation,

(λ x : t. e1)+ = ⟨⟨(λn : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+.

let ⟨xi . . .⟩ = n in e+
1
), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . = FV(λ x : t. e1, Γ).
By [≡-Clo1] in CC-CC, it suffices to show that

let ⟨xi . . .⟩ = ⟨xi . . .⟩ in e+
1

(20)

≡ e+
1

(21)

by |i| applications of ▷ζ

≡ e+
2
x (22)

by the inductive hypothesis applied to e1 ≡ e2 x □

Now we can prove type preservation. We give the tech-

nical version of the lemma required to complete the proof,

followed by the desired statement of the theorem.

Lemma 5.5 (Type Preservation (technical)).
1. If ⊢ Γ then ⊢ Γ+

2. If Γ ⊢ e : A then Γ+ ⊢ e+ : A+

Proof. Parts 1 and 2 proven simultaneously by induction on

the mutually defined judgments ⊢ Γ and Γ ⊢ e : A.
Part 1 follows easily by induction and part 2. We give the

key cases for part 2.

Case [Lam]

We have that Γ ⊢ λ x :A. e : Π x :A. B. We must show that

Γ+ ⊢ (λ x : A. e)+ : (Π x : A.B)+.
By definition of the translation, we must show that

⟨⟨(λ (n : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+

1
), ⟨xi . . .⟩⟩⟩

: Π x : A+.B+

where xi : Ai . . . = FV(λ x : t. e1, Γ).

Notice that the annotation in the term x : let ⟨xi . . .⟩ =
n inA+, does not match the annotation in the type

x : A+. However, by [Clo], we can derive that the

closure has type:

Π (x:let ⟨xi . . .⟩ = ⟨xi . . .⟩ inA+). (let ⟨xi . . .⟩=⟨xi . . .⟩ inB+),
This is equivalent to Π x : A+.B+ (under Γ+), since
(let ⟨xi . . .⟩ = ⟨xi . . .⟩ inA+) ≡ A+ as we saw in earlier

proofs. So, by [Clo] and [Conv], it suffices to show that

the environment and the code are well-typed.

By part 1 of the induction hypothesis applied (since

each of xi : Ai . . . come from Γ), we know the environ-

ment is well-typed: Γ+ ⊢ ⟨xi . . .⟩ : Σ (xi : A+i . . . ).
Now we show that the code

(λ (n : Σ (xi : A+i . . . ), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+

1
)

has type Code (n, x). let ⟨xi . . .⟩=n inB+. For brevity, we
omit the duplicate type annotations on n and x.
Observe that by the induction hypothesis applied to

Γ ⊢ A : U and by weakening

n : Σ (xi : A+i . . . ) ⊢ let ⟨xi . . .⟩ = n inA+ : U+.
Hence, by [Code], it suffices to show

·,n, x ⊢ let ⟨xi . . .⟩ = n in e+
1
: let ⟨xi . . .⟩ = n inB+

which follows by the inductive hypothesis applied to

Γ, x : A ⊢ e1 : B, and by weakening, since xi . . . are the
free variables of e1, A, and B.

Case [App]

We have that Γ ⊢ e1 e2 : B[e2/x]. We must show that

Γ+ ⊢ e+
1

e+
2

: (B[e2/x])+. By Lemma 5.1, it suffices to

show Γ+ ⊢ e+
1

e+
2
: B+[e+

2
/x], which follows by [App] and

the inductive hypothesis applied to e1, e2 and B. □

Theorem5.6 (Type Preservation). If Γ ⊢ e : t then Γ+ ⊢ e+ : t+.

5.2 Correctness
We prove correctness of separate compilation and whole pro-
gram correctness. These two theorems follow easily from

Lemma 5.3, but requires a little more work to state formally.

First, we need an independent specification that relates

source values to target values in CC-CC.We do this by adding

ground types, such as Bool, to both languages and consider re-
sults related when they are the same boolean: true ≈ true and
false ≈ false. It is well known how specify more sophisticated

notions of observations, and we discuss these in Section 6.

Next, we define components and linking. Components in

both CC and CC-CC are well-typed open terms, i.e., Γ ⊢ e :

A. We implement linking by substitution, and define valid

closing substitutions γ as follows.

Γ ⊢ γ
def

= ∀x : A ∈ Γ.· ⊢ γ (x) : A

We extend the compiler to closing substitutions γ+ by point-

wise application of the translation.

Our separate compilation guarantee is that the transla-

tion of the source component e linked with substitution γ is

equivalent to first compiling e and then linking with some γ

that is definitionally equivalent to γ+.
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Theorem 5.7 (Correctness of Separate Compilation). If Γ ⊢

e : A and A is a ground type, Γ ⊢ γ , Γ+ ⊢ γ , γ (e) ▷∗ v, and
γ+ ≡ γ then γ (e+) ▷∗ v′ and v+ ≈ v′

Proof. Since the translation commutes with substitution, pre-

serves equivalence, reduction implies equivalence, and equiv-

alence is transitive, the following diagram commutes.

(γ (e))+ γ (e+)

v+ v′

≡

≡ ≡

≡

Since ≡ on ground types implies ≈, we know that v ≈ v′. □

As a simple corollary, our compiler must also be whole-

program correct. If a whole-program e evaluates to a value

v, then the translation e+ runs to a value equivalent to v+.

Corollary 5.8 (Whole-Program Correctness). If · ⊢ e : A and
A is a ground type, and e ▷∗ v then e+ ▷∗ v and v+ ≈ v

6 Related Work and Discussion
Preserving Dependent Types Barthe et al. [9] study the

call-by-name (CBN) CPS translation for the Calculus of Con-

structions without Σ types. In 2002, when attempting to

extend the translation to CIC, Barthe and Uustalu [10] no-

ticed that in the presence of Σ types, the standard typed CPS

translation fails. In recent work, Bowman et al. [15] show

how to recover type preservation for both CBN and call-by-

value CPS. Bowman et al. [15] add a new typing rule that

keeps track of additional contextual information while type

checking continuations, similar to our [Clo] typing rule that

keeps track of the environment (via substitution) while type

checking closures. In CPS, a term e is evaluated to values

indirectly, by a continuation λ x. e′. When resolving type

equivalence, they end up requiring that e is equivalent to
x. An essentially similar problem arises in the translation Π
types described in Section 3. In closure conversion, we need

show that a free variable x is the same as a projection from

an environment fst n when resolving type equivalence.

There is also work on typed compilation of restricted

forms of dependency, which avoid the central type theo-

retic difficulties we solve. Chen et al. [16] develop a type-

preserving compiler from Fine, an ML-like language with

refinement types, to a version of the .NET intermediate lan-

guage with type-level computation. This system lacks full

spectrum types and can rely on computational irrelevance

of type-level arguments, unlike our setting as discussed in

Section 3. Shao et al. [42] use CIC as an extrinsic type system
over an ML-like language, so that CIC terms can be used as

specifications and proofs, but restrict arbitrary terms from

appearing in types. They develop a type-preserving closure

conversion translation for this language. Their closure con-

version is simpler to develop than ours, because the extrinsic

type system avoids the issues of computational relevance by

disallowing terms from appear in types. Instead, a separate

type-level representation of a subset of terms can appear

in types. This can increase the burden of proving programs

correct compared to an intrinsic system such as CC because

the programmer is required to duplicate programs into the

type-level representation.

Separate and Compositional Compilation In this work,

we prove Theorem 5.7 (Correctness of Separate Compilation)

This is similar to the guarantees of SepCompCert [24]. We

could support a compositional compiler correctness result by

developing a relation independent of the compiler between

source and target components to classify which components

are safe to link with. There are well known techniques for

developing such relations which we think will extend to

CC [13, 36, 37, 41, 43].

Type-Preserving Compilation Type-preserving compila-

tion has been widely used to rule out linking errors, and even

extended to statically rule out security attacks introduced by

linking. The seminal work by Morrisett et al. [35] uses type-

preserving compilation and give a safe linking semantics

to Typed Assembly Languages (TAL): linking any two TAL

components—regardless of whether they were generated

by a correct compiler or hand-written—is guaranteed to be

type and memory safe. Our target language CC-CC provides

similar guarantees to TAL, although it is still a high-level

language by comparison.

7 Future Work
TheCalculus of Inductive Constructions As futurework,

we plan to scale our translation to the Calculus of Inductive

Constructions (CIC), the core language of Coq. There are

two key challenges in scaling to CIC.

First, we need to scale our work to recursive functions.

Our translation should scale easily, but adding recursion to

CC-CC will be challenging. In CIC, recursive functions must

always terminate to ensure consistency. Coq enforces this

with a syntactic guard condition that cannot be preserved by

closure conversion, as it relies on the structure of free vari-

ables. Instead, we intend to investigate two alternatives to

ensuring termination in CC-CC. One is to compile the guard

condition to inductive eliminators—essentially a primitive

form that folds over the tree structure of an inductive type

and is terminating by construction, which has been studied

in Coq [18], but it is not clear how to encode this in a typed

assembly. A more theoretically appealing technique is to

design CC-CC with semantic termination concepts such as

sized types [19]. However, it is not clear how to compile Coq

programs based on the guard condition to sized types.

Recursion also introduces an important performance con-

sideration. Abstract closure conversion introduces additional

allocations and dereferences compared to the existential type

translation [30, 34] To solve this, we need to adapt our def-

inition of closures to enable environments to be separated

from the closures, but still hide their type.
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The second challenge is how to address computational

relevance. In CC, it is simple to make a syntactic distinction

between relevant and irrelevant terms [9] based on the uni-

verses ⋆ and □, although we avoid doing so for simplicity

of the presentation. Coq features an infinite hierarchy of

universes, so the distinction is not easy to make. We would

need to design a source language in which computational

relevance has already been made explicit so that we can eas-

ily decide which terms to closure-convert. Some work has

been done on the design of such languages [7, 31–33], but

to our knowledge none of the work has been used to encode

Coq’s computational relevance semantics.

Full-SpectrumDependently TypedAssembly Language
Our ultimate goal is to compile to a dependently typed

assembly-like language in which we can safely link and then

generate machine code. We imagine the assembly could be

targeted from many languages, such as Coq and OCaml, and

type checking in this assembly would serve to ensure safe

linking. This would require a general purpose typed assem-

bly, with support for interoperating between pure code and

effectful code [39] and different type systems [1].

A minimal compiler for a functional language performs

CPS translation, closure conversion, heap allocation, and

assembly-code generation. Recent work solves CPS [15] and

we solve closure conversion, so two passes remain.

Heap allocation makes memory and allocation explicit, so

we need new typing and equivalence rules that can reason

aboutmemory and allocation. This seems straightforward for

CC, but we anticipate further challenges for CIC. In CIC, we

must allow cycles in the heap to support recursive functions

but still ensure soundness and termination. As discussed

earlier, ensuring terminating recursion alone will introduce

new challenges, but other techniques may help us solve the

problem once the heap is explicit. Linear types have been

used to allow cycles in the heap but still guarantee strong

normalization [4]. Unfortunately, linear types and dependent

types are difficult to integrate [29].

The design of a dependently typed assembly language

will be hard. Assembly language will make machine-level

concepts explicit, such as registers, word sizes, and first-class

control. We will need typing and equivalence rules to rea-

son about these machine-level concepts. First-class control

presents a particular challenge, since it is been shown in-

consistent with dependent type theory [22]. This is related

to the problem of CPS and dependent types, so we antici-

pate that we can build on the work of Bowman et al. [15]

to restrict control and regain consistency. Even if control

is not a problem, the consistency proof will introduce new

challenges. In this work, we develop a model of the CC-CC in

CC to prove type safety and consistency. This relies critically

on compositionality. Assembly languages are typically not

compositional, so this proof architecture may not scale to the

assembly language. However, in recent work on interoper-

ability between a high-level functional language and a typed

assembly language, Patterson et al. [40] successfully defined

a compositional assembly language, and we are hopeful that

we can extend this work to the dependently typed setting.

Secure Compilation Type preservation has been widely

studied to statically enforce secure compilation, i.e., to stat-

ically guarantee that compiled code cannot be linked with

components (attackers) that violate data hiding, abstraction,

and information flow security properties [2, 3, 13, 37]. These

compilers typically prove that the translation preserves and

reflects contextual equivalence, i.e., that the compiler is fully

abstract. As future work, we plan to investigate what secu-

rity guarantees can be implied just from preservation and

reflection of definitional equivalence, which we conjecture

holds of our translation.

In our model, we prove Lemma 4.5 (Coherence), i.e., that
we can translate any two definitionally equivalent CC-CC
terms into definitionally equivalent CC terms. In our com-

piler, we prove Lemma 5.4 (Coherence), i.e., that we translate
any two definitionally equivalent CC terms into definition-

ally equivalent CC-CC terms. These two lemmas resemble

the statements of preservation and reflection, although in

terms of definitional equivalence instead of contextual equiv-

alence. Since Lemma 4.5 is not stated in terms of our compiler,

we need the following condition to complete the proof of

preservation and reflection: e ≡ (e+)◦, i.e., that compiling to

CC-CC and then translating back to CC is equivalent to the

original term; we conjecture this equivalence holds.

Definitional equivalence in dependently typed languages

is sound, but not necessarily complete, with respect to con-

textual equivalence, so even if the above conjecture holds,

more work remains to prove full abstraction. Typed closure

conversion based on the existential-type encoding is well

known to be fully abstract [2, 37]. We conjecture that our

translation is also fully abstract; the essential observation

is that CC-CC does not include any constructs that would

allow an attacker to inspect the environment.
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