
Typed Closure Conversion for the Calculus of Constructions (Technical
Appendix)

WILLIAM J. BOWMAN, Northeastern University, USA

AMAL AHMED, Northeastern University, USA

PREFACE
This is an expanded version of the technical sections for the paper by the same title. This contains extended versions

of figured and proofs, and additional discussions and explanations.

1 SOURCE: CALCULUS OF CONSTRUCTIONS (CC)
Our source language is a variant of the Calculus of Constructions (CC) extended with strong dependent pairs (Σ
types) and η-equivalence for functions, which we typeset in a non-bold, blue, sans-serif font. This model is based on

the CIC specification used in Coq [5, Chapter 4]. For brevity, we omit base types from this formal system but will

freely use base types like natural numbers in examples.

We present the syntax of CC in Figure 1. Universes, or sorts, U are essentially the types of types. CC includes

one impredicative universe ⋆, and one predicative universe □. Expressions have no explicit distinction between

terms, types, or kinds, but we usually use the meta-variable e to evoke a term expression and A or B to evoke a type

expression. Expressions include names x, the universe ⋆, functions λ x : A. e, application e1 e2, dependent function
types Π x : A. B, dependent let let x= e : A in e′, Σ types Σ x : A. B, dependent pairs ⟨e1, e2⟩ as Σ x : A. B, first projections
fst e and second projections snd e. The universe □ is only used by the type system and is not a valid term. As syntactic

sugar, we omit the type annotations on dependent let let x = e in e′ and on dependent pairs ⟨e1, e2⟩ when they are

irrelevant or obvious from context. We also write function types as A → B when the result B does not depend on the

argument. Environments Γ include assumptions x : A that a name x has type A, and definitions x = e : A that name x
refers to e of type A.

We define conversion, or reduction, and definitional equivalence for CC in Figure 2. Conversion here is defined for

deciding equivalence between types (which include terms), but it can also be viewed as the operational semantics of

CC terms. The small-step reduction Γ ⊢ e ▷ e′ reduces the expression e to the term e′ under the local environment Γ,
which we usually leave implicit for brevity. The local environment is necessary to convert a name to its definition.

Each conversion rule is labeled, and when we refer to conversion with an unlabeled arrow e ▷ e′, we mean that e
reduces to e′ by some reduction rule, i.e., either ▷δ , ▷ζ , ▷β , ▷π1 , or ▷π2 . We write Γ ⊢ e ▷∗ e′ to mean the reflexive,

transitive, contextual closure of the relation Γ ⊢ e ▷ e′. Essentially, e ▷∗ e′ runs e using the ▷ relation any number

of times, under any arbitrary context. The ▷∗ relation introduces a definition into the local environment when

descending into the body of a dependent let. That is, we have the following closure rule for ▷∗.

Γ, x = e ⊢ e1 ▷∗ e2
Γ ⊢ let x = e in e1 ▷∗ let x = e in e2

We define equivalence Γ ⊢ e ≡ e′ as reduction in the ▷∗ relation up to η-equivalence, as in Coq [5, Chapter 4].

In Figure 3, we present the typing rules. The type system is standard.

Functions λ x : A. e have dependent function type Π x : A.B ([Lam]). The dependent function type describes that

the function takes an argument, x, of type A, and returns something of type B where B may refer to, i.e., depends
on, the value of the argument x. We can use this to write polymorphic functions, such as the polymorphic identity

function described by the type Π A :⋆.Π x : A.A, or functions with pre/post conditions, such as the division function

described by Π x : Nat.Π y : Nat.Π _ : y > 0.Nat, which statically ensures that we never divide by zero by requiring a

proof that its second argument is greater than zero.

Applications e1 e2 have type B[e2/x] ([App]), i.e., the result type B of the function e1 with the argument e2 substituted
for the name of the argument x. Using this rule and our example of the division function div : Π x :Nat.Π y :Nat.Π _ :

Authors’ addresses: William J. Bowman, Northeastern University, USA, wjb@williamjbowman.com; Amal Ahmed, Northeastern University, USA,

amal@ccs.neu.edu.

, Vol. 1, No. 1, Article . Publication date: April 2018.

Universes U ::= ⋆ | □

Expressions e,A,B ::= x | ⋆ | let x = e : A in e | Π x : A.B | λ x : A. e | e e | Σ x : A.B
| ⟨e1, e2⟩ as Σ x : A.B | fst e | snd e

Environments Γ ::= · | Γ, x : A | Γ, x = e : A

Fig. 1. CC Syntax

Γ ⊢ e ▷ e′

x ▷δ e where x = e : A ∈ Γ

let x = e : A in e1 ▷ζ e1[e/x]

(λ x : A. e1) e2 ▷β e1[e2/x]

fst ⟨e1, e2⟩ ▷π1 e1
snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ e ≡ e′

Γ ⊢ e1 ▷∗ e Γ ⊢ e2 ▷∗ e

Γ ⊢ e1 ≡ e2
[≡]

Γ ⊢ e1 ▷∗ λ x : A. e Γ ⊢ e2 ▷∗ e′
2

Γ, x : A ⊢ e ≡ e′
2

x

Γ ⊢ e1 ≡ e2
[≡-η1]

Γ ⊢ e1 ▷∗ e′
1

Γ ⊢ e2 ▷∗ λ x : A. e Γ, x : A ⊢ e′
1

x ≡ e

Γ ⊢ e1 ≡ e2
[≡-η2]

Fig. 2. CC Conversion and Equivalence

Γ ⊢ e : A

⊢ Γ

Γ ⊢ ⋆ : □
[Ax-*]

(x : A ∈ Γ or x = e : A ∈ Γ) ⊢ Γ

Γ ⊢ x : A
[Var]

Γ ⊢ e : A Γ, x = e : A ⊢ e′ : B

Γ ⊢ let x = e : A in e′ : B[e/x]
[Let]

Γ, x : A ⊢ B : ⋆

Γ ⊢ Π x : A.B : ⋆
[Prod-*]

Γ, x : A ⊢ B : □

Γ ⊢ Π x : A.B : □
[Prod-□]

Γ, x : A ⊢ e : B

Γ ⊢ λ x : A. e : Π x : A.B
[Lam]

Γ ⊢ e : Π x : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Σ x : A.B : ⋆
[Sig-*]

Γ, x : A ⊢ B : □

Γ ⊢ Σ x : A.B : □
[Sig-□]

Γ ⊢ e : Σ x : A.B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A.B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Fig. 3. CC Typing

y > 0.Nat, we type check the term div 4 2 : Π _ : 2 > 0.Nat. Notice that the term variable y in the type has been

replaced with the value of the argument 2.

Dependent pairs ⟨e1, e2⟩ have type Σ x : A.B ([Pair]). Again, this type is a binding form. The type B of the second

component of the pair can refer to the first component of the pair by the name x. We see in the rule [Snd] that the

type of snd e is B[fst e/x], i.e., the type B of the second component of the pair with the name x substituted by fst e.
We can use this to encode refinement types, such as the describing positive numbers by Σ x : Nat. x > 0, i.e., a pair of
a number x with a proof that x is greater than 0.

2

⊢ Γ

⊢ ·
[W-Empty]

⊢ Γ Γ ⊢ A : U

⊢ Γ, x : A
[W-Assum]

⊢ Γ Γ ⊢ e : A Γ ⊢ A : U

⊢ Γ, x = e : A
[W-Def]

Fig. 4. CC Well-Formed Environments

Since types are also terms, we have typing rules for types. The type of ⋆ is □. We call ⋆ the universe of small

types and □ the universe of large types. Intuitively, small types are the types of programs while large types are the

types of types and type-level computations. Since no user can write down □, we need not worry about the type of □.
In [Prod-*], we assign the type ⋆ to the dependent function type when the result type is also ⋆. This rule allows
impredicative functions, since it allows forming a function that quantifies over large types but is in the universe of

small types. The rule [Prod-□] looks similar, but is implicitly predicative, since there is no universe larger than □ to

quantify over. (We could combine the rules for Π, but explicit separation helps clarify the issue of predicativity when

compared with the rules for Σ types, which cannot by combined.) Formation rules for Σ types have an important

restriction: it is unsound to allow impredicativity in strong dependent pairs [2, 3]. The [Sig-*] rule only allows

quantifying over a small type when forming a small dependent pair. The [Sig-□] rule allows quantifying over either

small or large types when forming a large Σ. As usual in models of dependent type theory, we exclude base types,

although they are simple to add.

The rule [Conv] allows resolving type equivalence and reducing terms in types. For instance, if we want to show

that e : Σ x : Nat. x = 2 but we have e : Σ x : Nat. x = 1 + 1, the [Conv] rule performs this reduction. Note while our

equivalence relation is untyped, the [Conv] rule ensures that A and B are well-typed before appealing to equivalence,

ensuring decidability. (It is a standard lemma that if Γ ⊢ e : A, then Γ ⊢ A : U [4].)

Finally, we extend well-typedness to well-formedness of environments ⊢ Γ in Figure 4.

3

Universes U ::= ⋆ | □

Expressions e,A,B ::= x | ⋆ | let x = e : A in e | 1 | ⟨⟩ | Code (x′ : A′, x : A).B | λ (x′ : A′, x : A). e

| Π x : A.B | ⟨⟨e, e⟩⟩ | e e′ | Σ x : A.B | fst e | snd e

Fig. 5. CC-CC Syntax

Γ ⊢ e ▷ e′

x ▷δ e where x = e : A ∈ Γ

let x = e : A in e1 ▷ζ e1[e/x]

⟨⟨λ x′ : A′, x : A. e1, e′⟩⟩ e ▷β e1[e′/x′][e/x]

fst ⟨e1, e2⟩ ▷π1 e1
snd ⟨e1, e2⟩ ▷π2 e2

Γ ⊢ e ≡ e′

Γ ⊢ e1 ▷∗ e Γ ⊢ e2 ▷∗ e

Γ ⊢ e1 ≡ e2
[≡]

Γ ⊢ e1 ▷∗ ⟨⟨λ (x′ : A′, x : A). e′
1
, e′⟩⟩ Γ ⊢ e2 ▷∗ e′2 Γ, x : A ⊢ e1[e′/x′] ≡ e′

2
x

Γ ⊢ e1 ≡ e2
[≡-Clo1]

Γ ⊢ e2 ▷∗ ⟨⟨λ (x′ : A′, x : A). e′
2
, e′⟩⟩ Γ ⊢ e1 ▷∗ e′1 Γ, x : A ⊢ e′

1
x ≡ e′

2
[e′/x′]

Γ ⊢ e1 ≡ e2
[≡-Clo2]

Fig. 6. CC-CC Conversion and Equivalence

2 TARGET: CC, CLOSURE-CONVERTED (CC-CC)
The target language CC-CC is based on CC, but first-class functions are replaced by closed code and closures. We add

a primitive unit type 1 to support encoding environments. This language is typeset in a bold, red, serif font.We

extend the syntax of expressions, Figure 5, with a unit value ⟨⟩ and its type 1, closed code λn : A′, x : A. e and
dependent code types Code (n : A′, x : A).B, and closure values ⟨⟨e, e′⟩⟩ and dependent closure types Π x : A.B. The
syntax of application e e′ is unchanged, but it now applies closures instead of functions.

We define additional syntactic sugar for sequences of terms, to support writing environments whose length is

arbitrary. We write a sequence of terms ei . . . to mean a sequence of length |i | of expressions ei0 , . . . , ein . We extend

the notation to patterns such as xi : Ai . . ., which implies two sequences xi0 , . . . , xin and A0, . . . ,Ain each of length

|i |. We define environments as dependent n-tuples, written ⟨ei . . .⟩ as Σ (xi : Ai . . .). We encode dependent n-tuples

as nested dependent pairs followed by a unit value, i.e., ⟨e0, ⟨. . . , ⟨ei, ⟨⟩⟩⟩⟩. We omit the annotation on n-tuples

⟨ei . . .⟩ when it is obvious from context. We also define pattern matching on n-tuples, written let ⟨xi . . .⟩ = e′ in e, to
perform the necessary nested projections, i.e., let x0 = fst e′ in . . . let xi = fst snd . . . snd e′ in e.

In Figure 6 we present the additional conversion and equivalence rules for CC-CC. Code cannot be applied directly,

but must be part of a closure. Closures applied to an argument β-reduce, applying the underlying code to the

environment and the argument. All the other conversion rules remain unchanged. For equivalence, we no longer

have the usual η rules, since functions have been turned into closures. Instead, we need η rules for closures.

We give the typing rules in Figure 7. Most rules are unchanged from the source language. The most interesting rule

is [Code], which that code only type checks when it is closed. This rule captures the entire point of typed closure

conversion and gives us static machine-checked guarantees that our translation produces closed code. The typing

rule [Clo] for closures ⟨⟨e, e′⟩⟩ substitutes the environment e′ into the type of the closure. This is similar to the

CC rule [App] that substitutes a function argument into the result type of a function. This is also critical to type

4

Γ ⊢ e : t
⊢ Γ

Γ ⊢ ⋆ : □
[Ax-*]

x : A ∈ Γ ⊢ Γ

Γ ⊢ x : A
[Var]

⊢ Γ

Γ ⊢ 1 : ⋆
[T-Unit]

⊢ Γ

Γ ⊢ ⟨⟩ : 1
[Unit]

Γ ⊢ e : A Γ, x = e : A ⊢ e′ : B

Γ ⊢ let x = e : A in e′ : B[e/x]
[Let]

Γ ⊢ A : U Γ, x : A ⊢ B : ⋆

Γ ⊢ Π x : A.B : ⋆
[Prod-*]

Γ ⊢ A : U Γ, x : A ⊢ B : □

Γ ⊢ Π x : A.B : □
[Prod-□]

Γ, x′ : A′, x : A ⊢ B : ⋆

Γ ⊢ Code (x′ : A′, x : A).B : ⋆
[T-Code-*]

Γ, x′ : A′, x : A ⊢ B : □

Γ ⊢ Code (x : A, x′ : A′).B : □
[T-Code-□]

·, x′ : A′, x : A ⊢ e : B

Γ ⊢ λ (x′ : A′, x : A). e : Code (x′ : A′, x : A).B
[Code]

Γ ⊢ e : Code (x′ : A′, x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/x′].B[e′/x′]
[Clo]

Γ ⊢ e : Π x : A′.B Γ ⊢ e′ : A′

Γ ⊢ e e′ : B[e′/x]
[App]

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : ⋆

Γ ⊢ Σ x : A.B : ⋆
[Sig-*]

Γ ⊢ A : U Γ, x : A ⊢ B : □

Γ ⊢ Σ x : A.B : □
[Sig-□]

Γ ⊢ e : Σ x : A.B

Γ ⊢ fst e : A
[Fst]

Γ ⊢ e : Σ x : A.B

Γ ⊢ snd e : B[fst e/x]
[Snd]

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

Fig. 7. CC-CC Typing

preservation, since our translation must generate closure types with free variables and then synchronize the closure

type containing free variables with a closed code type. As with Π types in CC, we have two rules for well typed Code
types. The rule [T-Code-*] allows impredicativity in ⋆, while [T-Code-□] is predicative.

2.1 Type Safety and Consistency
We prove that CC-CC is type safe when interpreted as a programming language and consistent when interpreted as a

logic. Type safety guarantees that all programs in CC-CC have well-defined behavior, and consistency ensures that

when interpreting types as propositions and programs as proofs, we cannot prove False in CC-CC. We prove both

theorems by giving a model of CC-CC in CC, i.e., by encoding the target language in the source language. The model

reduces type safety and consistency of CC-CC to that of CC, which is known to be type safe and consistent. This

standard technique is well explained by Boulier et al. [1].

We construct a model essentially by “decompiling” closures, translating code to functions and closures to partial

application. To show this translation is a model, we need to show that it preserves falseness—i.e., that we translate
False to False—and show that the translation is type-preserving—i.e., we translate any well-typed CC-CC program

(valid proof) into a well-typed program in CC. To extend the model to type safety, we must also show that the

translation preserves reduction semantics—i.e., that reducing an expression in CC-CC is essentially equivalent to

reducing the translated term in CC. Since our type system includes reduction, we already prove this to show type

preservation.

We then prove consistency and type safety of CC-CC by contradiction. If CC-CC were inconsistent, then we could

prove the proposition False in CC-CC, and translate that proof into a valid proof of False in CC. But since CC is

consistent, we can never produce a proof of False in CC, therefore we could not have constructed one in CC-CC. A

similar argument applies for type safety. Since we preserve reduction semantics in CC-CC, if a term had undefined

behavior, we could translate the term into a CC term with undefined behavior. However, CC has no terms with

undefined behavior, hence neither does CC-CC.

The translation from CC-CC to CC, Figure 8, is defined on typing derivations. We use the following notation.

5

Γ ⊢ e : A{◦ e

Γ ⊢ ⋆ : □{◦ ⋆
[M-*]

Γ ⊢ x : A{◦ x
[M-Var]

Γ ⊢ 1 : ⋆{◦ Πα :⋆.Π x : α . α
[M-T-Unit]

Γ ⊢ ⟨⟩ : 1{◦ λα :⋆. λ x : α . x
[M-Unit]

Γ ⊢ e : A{◦ e Γ, x = e : A ⊢ e′ : B{◦

Γ ⊢ let x = e : A in e′ : B[e/x]{◦ let x = e : A in e′
[M-Let]

Γ ⊢ A : U{◦ A Γ, x : A ⊢ B : ⋆{◦ B

Γ ⊢ Π x : A.B : ⋆{◦ Π x : A.B
[M-Prod-*]

Γ ⊢ A : U{◦ A Γ, x : A ⊢ B : □{◦ B

Γ ⊢ Π x : A.B : □{◦ Π x : A.B
[M-Prod-□]

Γ ⊢ A′
: U′{◦ A′ Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : ⋆{◦ B

Γ ⊢ Code (x′ : A′, x : A).B : ⋆{◦ Π x′ : A′.Π x : A.B
[M-T-Code-*]

Γ ⊢ A′
: U′{◦ A′ Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : □{◦ B

Γ ⊢ Code (x′ : A′, x : A).B : □{◦ Π x′ : A′.Π x : A.B
[M-T-Code-□]

Γ ⊢ A′
: U′{◦ A′

Γ, x′ : A′ ⊢ A : U{◦ A Γ, x′ : A′, x : A ⊢ B : U{◦ B Γ, x′ : A′, x : A ⊢ e : B{◦ e

Γ ⊢ λ (x′ : A′, x : A). e : Code (x′ : A′, x : A).B{◦ λ x′ : A′. λ x : A. e
[M-Code]

Γ ⊢ e : Code (x′ : A′, x : A).B{◦ e Γ ⊢ e′ : A′{◦ e′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/x].B[e′/x]{◦ e e′
[M-Clo]

Γ ⊢ e : Π x : A.B{◦ e Γ ⊢ e′ : A{◦ e′

Γ ⊢ e e′ : B[e′/x]{◦ e e′
[M-App]

Γ ⊢ A : ⋆{◦ A Γ, x : A ⊢ B : ⋆{◦ B

Γ ⊢ Σ x : A.B : ⋆{◦ Σ x : A.B
[M-Sig-*]

Γ ⊢ A : U{◦ A Γ, x : A ⊢ B : □{◦ B

Γ ⊢ Σ x : A.B : □{◦ Σ x : A.B
[M-Sig-□]

Γ ⊢ e : Σ x : A.B{◦ e

Γ ⊢ fst e : A{◦ fst e
[M-Fst]

Γ ⊢ e : Σ x : A.B{◦ e

Γ ⊢ snd e : A{◦ snd e
[M-Snd]

Γ ⊢ e : B{◦ e

Γ ⊢ e : A{◦ e
[M-Conv]

Fig. 8. Translation from CC-CC to CC

e◦ def

= e where Γ ⊢ e : A{◦ e

The CC expression e◦ refers to the expression produced by translating the CC-CC expression e, with the typing

derivation for e as an implicit argument.

The rule [M-Code] translates a code type Code (n : A′, x : A).B to the curried function type Π n : A′◦.Π x : A◦.B◦
.

The rule [M-Code] models code λn : A′, x : A. e as a curried function λ n : A′◦. λ x : A◦. e◦. Observe that the inner
function produced in CC is not closed, but that is not a problem since the model only exists to prove type safety and

consistency. It is only in CC-CC programs that code must be closed. The rule [M-Clo] models a closure ⟨⟨e, e′⟩⟩ as the
application e◦ e′◦—i.e., the application of the function e◦ to its environment e′◦. We model Unit with the standard

Church encoding as the polymorphic identity function. All other rules simply recursively translate subterms.

We first prove that this translation preserves falseness. We encode False in CC-CC as ΠA :⋆.A. This encoding
represents a function that takes any arbitrary proposition A and returns a proof of A. Similar, in CC False as Π A :⋆.A.

6

It is clear from [M-Prod-*] that the translation preserves falseness. We use = as the terms are not just definitionally

equivalent, but syntactically identical.

Lemma 2.1 (False Preservation). False◦ = False

To prove type preservation, we split the proof into three key lemmas. First, we show compositionality, i.e., that the
translation from CC-CC to CC commutes with substitution. Then we prove preservation of reduction semantics and

equivalence, which essentially follows from compositionality. Finally, we prove type preservation, which relies on

preservation of equivalence and on compositionality.

Compositionality is an important lemma since the type system and conversion relations are defined by substitution.

Lemma 2.2 (Compositionality). (e[e′/x])◦ = e◦[e′◦/x]

Proof. The proof is by induction on the typing derivation Γ ⊢ e : A. Recall that by convention this derivation is an

implicit argument to the lemma.

Case [Ax-*] Trivial, since e = ⋆ cannot have free variables.

Case [Var] Hence e = x′. There are two subcases:

Sub-case x′ = x Then the proof follows since (x[e′/x])◦ = e′◦ = x[e′◦/x]
Sub-case x′ , x Then the proof follows since (x′[e′/x])◦ = x′ = x′[e′◦/x]

Case [Let] Follows easily by the inductive hypotheses, since both the translation of let and the definition of

substitution are structural, except for the capture avoidance reasoning.

Case [Prod-*] Follows easily by the inductive hypotheses, since both the translation of Π and the definition of

substitution are structural, except for the capture avoidance reasoning.

...
Case [Conv] Recall that the translation is defined by induction on typing derivations, and therefore we have the

conversion typing rule:

Γ ⊢ e : A Γ ⊢ B : U Γ ⊢ A ≡ B

Γ ⊢ e : B
[Conv]

We must show that (e[e′/x])◦ ≡ e◦[e′◦/x] at, loosely speaking, the type B◦
. (Loosely, since we haven’t show

type preservation yet.)

By the induction hypothesis applied to Γ ⊢ e : A, we have that (e[e′/x])◦ ≡ e◦[e′◦/x] at the type A◦
.

The astute type theorist may be concerned that we first need to show that these terms are well-typed—i.e., that
we need to show type preservation—and that A◦ ≡ B◦

, i.e., coherence. However, our definition of equivalence in

CC and CC-CC is based on the CIC untyped equivalence [5, Chapter 4], so the proof is already done. We can

think of this equivalence as justifying semantic equivalences that are statically ruled out by a conservative

syntactic type system. The advantage of this equivalence is that it allows us to stage the proof as we have.

□

Next we show that the translation preserves reduction, or that our model in CC weakly simulates reduction in

CC-CC. This is used both to show that equivalence is preserved, since equivalence is defined by reduction, and to

show type safety.

Lemma 2.3 (Pres. of Reduction). If e ▷ e′ then e◦ ▷∗ e′◦

Proof. By cases on e ▷ e′. The only interesting case is for the reduction of closures.

Case ⟨⟨(λ x′ : A′, x : A. eb), e′⟩⟩ e ▷β eb [e′/x′][e/x]
We must show that

(⟨⟨(λ x′ : A′, x : A. eb), e′⟩⟩ e)◦ ▷∗ (eb [e′/x′][e/x])◦

(⟨⟨(λ x′ : A′, x : A. eb), e′⟩⟩ e)◦ (1)

= ((λ x′ : A′◦. λ x : A◦. e◦b) e
′◦) e◦ by definition (2)

▷2β e◦b [e
′◦/x′][e◦/x] (3)

= (eb [e′/x′][e/x])◦ by Lemma 2.2 (4)

7

□

Now we show that reduction sequences are preserved. This essentially follows from preservation of single-step

reduction, Lemma 2.3.

Lemma 2.4 (Preservation of Reduction Seqences). If e ▷∗ e′ then e◦ ▷∗ e′◦

Proof. The proof is by induction on the length of the reduction sequence e ▷∗ e′. The base case is trivial, and the

inductive case follows by Lemma 2.3 (Pres. of Reduction) and the inductive hypothesis. □

Next, we show coherence, i.e., that the translation preserves equivalence. The proof essentially follows from

Lemma 2.4, but we must show that our η rule for closures is preserved.

Lemma 2.5 (Coherence). If e1 ≡ e2 then e◦
1
≡ e◦

2

Proof. The proof is by induction on the derivation e ≡ e′. The only interesting case is for η equivalence of closures.

Case [≡] Follows by Lemma 2.4 (Preservation of Reduction Sequences).

Case [≡-Clo1]

By assumption, we have the following.

(1) e1 ▷∗ ⟨⟨λ (x′ : A′, x : A). e′
1
, e′⟩⟩

(2) e2 ▷∗ e′2
(3) e1[e′/x′] ≡ e′

2
x

We must show that e◦
1
≡ e◦

2
. By [≡-η1], it suffices to show:

(1) e◦
1
▷∗ λ x : A◦[e′◦/x′]. e′◦

1
[e′◦/x′], which follows since:

e◦
1
▷∗ (⟨⟨λ (x′ : A′, x : A). e′

1
, e′⟩⟩)◦ by Lemma 2.4 (5)

= (λ x′ : A′◦. λ x : A◦. e′◦
1
) e′◦ (6)

▷ λ x : A′◦[e′◦/x′]. e′◦
1
[e′◦/x′] (7)

(2) e◦
2
▷∗ e′◦

2
which follows by Lemma 2.4.

(3) e′◦
1
[e′◦/x′] ≡ e′

2

◦ x, which follows by the inductive hypothesis applied to e1[e′/x′] ≡ e′
2
x and Lemma 2.2.

Case [≡-Clo2] is symmetric.

□

We can now show our final lemma: type preservation.

Lemma 2.6 (Type Preservation).

(1) If ⊢ Γ then ⊢ Γ◦

(2) If Γ ⊢ e : A then Γ◦ ⊢ e◦ : A◦

Proof. We prove parts 1 and 2 simultaneously by induction on the mutually defined judgments ⊢ Γ and Γ ⊢ e : A.
Most cases follow easily by the induction hypothesis.

Case [W-Empty] Trivial.

Case [W-Def] We must show that ⊢ (Γ, x = e : A)◦. By [W-Def] in CC and part 1 of the inductive hypothesis, it

suffices to show that Γ◦ ⊢ e◦ : A◦
, which follows by part 2 of the inductive hypothesis applied to Γ ⊢ e : A.

Case [W-Assum] We must show that ⊢ (Γ, x : A)◦. By [W-Assum] in CC and part 1 of the inductive hypothesis, it

suffices to show that Γ◦ ⊢ A◦
: U◦

, which follows by part 2 of the inductive hypothesis applied to Γ ⊢ A : U.
Case [Ax-*] It suffices to show that ⊢ Γ◦, since ⋆◦ = ⋆, which follows by part 1 of the inductive hypothesis.

...
Case [T-Code-*]

We have that

Γ ⊢ A′
: U′ Γ, x′ : A′ ⊢ A : U Γ, x′ : A′, x : A ⊢ B : ⋆

Γ ⊢ Code (x′ : A′, x : A).B : ⋆

We must show that Γ◦ ⊢ Π x′ : A′◦.Π x : A◦.B◦
: ⋆

By two applications of [Prod-*], it suffices to show

– Γ◦ ⊢ A′◦
: U′◦

, which follows by part 2 of the inductive hypothesis.

8

– Γ◦, x′ : A′◦ ⊢ A◦
: U◦

, which follows by part 2 of the inductive hypothesis.

– Γ◦, x′ : A′◦, x : A◦ ⊢ B◦
: ⋆, which follows by part 2 of the inductive hypothesis and by definition that ⋆◦ = ⋆

Case [Code]

We have that

Γ, x′ : A′, x : A ⊢ e : B

Γ ⊢ λ x′ : A′, x : A. e : Code (x′ : A′, x : A).B
By definition of the translation, we must show Γ◦ ⊢ λ x′ :A′◦. λ x :A◦. e◦ : Π x′ :A′◦.Π x :A◦.B◦

, which follows

by two uses of [Lam] in CC and part 2 of the inductive hypothesis.

Case [Clo]

We have that

Γ ⊢ e : Code (x′ : A′, x : A).B Γ ⊢ e′ : A′

Γ ⊢ ⟨⟨e, e′⟩⟩ : Π x : A[e′/x′].B[e′/x′]
By definition of the translation, we must show that Γ◦ ⊢ e◦ e′◦ : (Π x : A[e′/x′].B[e′/x′])◦.
By Lemma 2.2 (Compositionality), it suffices to show that Γ◦ ⊢ e◦ e′◦ : Π x : A◦[e′◦/x′].B◦[e′◦/x′].
By [App] in CC, it suffices to show that

– Γ◦ ⊢ e◦ : Π x′ : A′.Π x : A◦.B◦
, which follows with A′ = A′◦

by part 2 of the inductive hypothesis.

– Γ◦ ⊢ e′◦ : A′
, which follows by part 2 of the inductive hypothesis.

Case [App] Similar to the case for [Clo].

Case [Conv] Follows by part 2 of the inductive hypothesis and Lemma 2.5 (Coherence).

□

Finally, we can prove the desired consistency and type safety theorems.

Theorem 2.7 (Consistency of CC-CC). There does not exist a closed expression e such that · ⊢ e : False.

Type safety tells us that there is no undefined behavior that causes a program to get stuck before it produces a

value, and all programs terminate.

Theorem 2.8 (Type Safety of CC-CC). If · ⊢ e : A, then e ▷∗ v and v ̸▷ v′.

9

Γ ⊢ e : t{ e where Γ ⊢ e : t

Γ ⊢ ⋆ : □{ ⋆
[CC-*]

Γ ⊢ x : A{ x
[CC-Var]

Γ ⊢ e : A{ e Γ ⊢ A : U{ A Γ, x : A ⊢ e′ : B{ e′

Γ ⊢ let x = e : A in e′ : B[e/x]{ let x = e : A in e′
[CC-Let]

Γ ⊢ A : U{ A Γ, x : A ⊢ B : ⋆{ B

Γ ⊢ Π x : A.B : ⋆{ Π x : A.B
[CC-Prod-*]

Γ ⊢ A : U{ A Γ, x : A ⊢ B : □{ B

Γ ⊢ Π x : A.B : □{ Π x : A.B
[CC-Prod-□]

Γ, x : A ⊢ e : B{ e Γ ⊢ A : U{ A
Γ, x : A ⊢ B : U{ B xi : Ai . . . = FV(λ x : A. e,Π x : A.B, Γ) Γ ⊢ Ai : U{ Ai . . .

Γ ⊢ λ x : A. e : Π x : A.B{ ⟨⟨(λ (n : Σ (xi : Ai . . .), x : let ⟨xi . . .⟩ = n inA).
let ⟨xi . . .⟩ = n in e),

⟨xi . . .⟩ as Σ (xi : Ai . . .)⟩⟩

[CC-Lam]

Γ ⊢ e1 : Π x : A.B{ e1 Γ ⊢ e2 : A{ e2
Γ ⊢ e1 e2 : B[e2/x]{ e1 e2

[CC-App]

Γ ⊢ A : ⋆{ A Γ, x : A ⊢ B : ⋆{ B

Γ ⊢ Σ x : A.B : ⋆{ Σ x : A.B
[CC-Sig-*]

Γ ⊢ A : □{ A Γ, x : A ⊢ B : □{ B

Γ ⊢ Σ x : A.B : ⋆{ Σ x : A.B
[CC-Sig-□]

Γ ⊢ e : Σ x : A.B{ e

Γ ⊢ fst e : A{ fst e
[CC-Fst]

Γ ⊢ e : Σ x : A.B{ e

Γ ⊢ snd e : B[fst e/x]{ snd e
[CC-Snd]

Γ ⊢ e : A{ e

Γ ⊢ e : B{ e
[CC-Conv]

⊢ Γ{ Γ where ⊢ Γ

⊢ ·{ ·
[W-Empty]

⊢ Γ{ Γ Γ ⊢ A : _{ A

⊢ Γ, x : A{ Γ, x : A
[W-Assum]

⊢ Γ{ Γ Γ ⊢ A : _{ A Γ ⊢ e : A{ e

⊢ Γ, x = e : A{ Γ, x = e : A
[W-Def]

Fig. 9. Closure Conversion

10

FV(e,B, Γ)
def

= Γ0, . . . , Γn , x0 : A0, . . . , xn : An
where x0, . . . , xn = fv(e,B)

Γ ⊢ x0 : A0, . . . , Γ ⊢ xn : An
Γ0 = FV(A0, _, Γ)
...

Γn = FV(An , _, Γ)

Fig. 10. CC Dependent Free Variable Sequences

3 CLOSURE CONVERSION
We present the closure conversion translation in Figure 9. We define the following notation for the translation of

expressions.

e+
def

= e where Γ ⊢ e : A{ e
The CC-CC expression e+ refers to the translation of the well-typed CC term e, with typing derivation for e as an

implicit parameter.

Every case of the translation except for functions is trivial, including application [CC-App], since application

is still the elimination form for closures after closure conversion. In the nontrivial case [CC-Lam], we translate

CC functions to CC-CC closures. The translation of a function λ x : A. e produces a closure ⟨⟨e1, e2⟩⟩. We com-

pute the free variables (and their type annotations) of the function λ x : A. e, xi : Ai . . ., using the metafunction

FV(λ x : A. e,Π x : A.B, Γ) defined shortly. The first component e1 is closed code. Ignoring the type annotation for a

moment, the code λ (n, x). let ⟨xi . . .⟩ = n in e+ projects each of the |i | free variables xi . . . from the environment n
and binds them in the scope of the body e+. But CC-CC is dependently typed, so we also bind the free variables from

the environment in the type annotation for the argument x, i.e., producing the annotation x : let ⟨xi . . .⟩ = n inA+

instead of just x : A+. Next we produce the environment type Σ (xi : A+ . . .), from the free source variables xi . . . of
types Ai We create the environment e2 by creating the dependent n-tuple ⟨xi . . .⟩; these free variables will be
replaced by values at run time.

To compute the sequence of free variables and their types, we define the metafunction FV(e,B, Γ) in Figure 10. Just

from the syntax of terms e,B, we can compute some sequence of free variables x0, . . . , xn = fv(e,B). However, the
types of these free variables A0, . . . ,An may contain other free variables, and their types may contain still others,

and so on! We must, therefore, recursively compute the a sequence of free variables and their types with respect to

an environment Γ. Note that because the type B of a term e may contain different free variables than the term, we

must compute the sequence with respect to both a term and its type. However, in all recursive applications of this

metafunction—e.g., FV(A0, _, Γ)—the type of A0 must be a universe and cannot have any free variables.

3.1 Type Preservation
First we prove type preservation, using the same staging as in Section 2. After we show type preservation, we show

correctness of separate compilation. In CC, the lemmas required for type preservation do most of the work to allow us

to prove correctness of separate compilation, since type checking includes reduction and thus we prove preservation

of reduction sequences.

We first show compositionality. This lemma, which establishes that translation commutes with substitution, is the

key difficulty in our proof of type preservation because closure conversion internalizes free variables. Whether we

substitute a term for a variable before or after translation can drastically affect the shape of closures produced by

the translation. For instance, consider the term (λ y : A. e)[e′/x]. If we perform this substitution before translation,

then we will generate an environment with the shape ⟨xi . . . , xj . . .⟩, i.e., with only free variables and without x in

the environment. However, if we translate the individual components and then perform the substitution, then the

environment will have the shape ⟨xi . . . , e′+, xj . . .⟩—that is, x would be free when we create the environment and

substitution would replace it by e′+. We use our η-principle for closures to show that closures that differ in this way

are still equivalent.

11

Lemma 3.1 (Compositionality). (e1[e2/x])+ ≡ e+
1
[e+

2
/x]

Proof. By induction on the typing derivation for e1. We give the key cases.

Case [Ax-Var]

We know that e1 is some free variable x′, so either x′ = x, hence e+
2
≡ e+

2
, or x′ , x, hence x′+ ≡ x′+.

Case [T-Code-*]

We know that e1 = Π x′:A. B.W.l.o.g., assume x′ , x.Wemust show (Π x′:A[e2/x].B[e2/x])+ ≡ (Π x′ : A.B)+[e+
2
/x].

(Π x′ : A[e2/x].B[e2/x])+ (8)

= Π x′ : (A[e2/x])+. (B[e2/x])+ (9)

by definition of the translation

= Π x′ : (A+[e+
2
/x]). (B+[e+

2
/x]) (10)

by the inductive hypothesis for A and B

= (Π x′ : A+.B+)[e+
2
/x] (11)

by definition of substitution

= (Π x′ : A.B)+[e+
2
/x] (12)

by definition of translation

Case [Prod-□]. Similar to [Prod-*]

Case [Lam]

We know that e1 = λ y:A. e.W.l.o.g., assume that y , x.Wemust show that ((λ y : A. e)[e2/x])+ ≡ (λ y : A. e)+[e+
2
/x].

Recall that by convention we have that Γ ⊢ λ y : A. e : Π y : A.B.

((λ y : A. e)[e2/x])+ (13)

= (λ y : (A[e2/x]). e[e2/x])+ (14)

by substitution

= ⟨⟨(λn : Σ (xi : A+i . . .), y : let ⟨xi . . .⟩ = n in (A[e2/x])+.

let ⟨xi . . .⟩ = n in (e[e2/x])+), ⟨xi . . .⟩⟩⟩
(15)

by definition of the translation

where xi : Ai . . . = FV(λ y : (A[e2/x]). e[e2/x], Γ). Note that x is not in the sequence (xi . . .).
On the other hand, we have

f = (λ y : A. e)+[e+
2
/x] (16)

= ⟨⟨(λn : Σ (xj : A+j . . .), y : let ⟨xj . . .⟩ = n inA+.

let ⟨xj . . .⟩ = n in e+), ⟨xj0 . . . , e+2 , xji+1 . . .⟩⟩⟩
(17)

by definition of the translation

where xj : Aj . . . = FV(λ y : A. e, Γ). Note that x is in xj . . .; we can write the sequence as (xj0 . . . x, xji+1 . . .).
Therefore, the environment we generate contains e+

2
in position ji .

By [≡-Clo1], it suffices to show that

let ⟨xi . . .⟩ = ⟨xi . . .⟩ in (e[e2/x])+ ≡ f y where f is the closure from Equation (16).

f y ≡ let ⟨xj0 . . . x, xji+1 ...⟩ = ⟨xj0 . . . , e+2 , xji+1 . . .⟩ in e+ (18)

by ▷β in CC-CC

≡ e+[e+
2
/x] (19)

by |j| applications of ▷ζ , since only x has a value

≡ (e[e2/x])+ (20)

by the inductive hypothesis applied to the derivation for e

12

≡ let ⟨xi . . .⟩ = ⟨xi . . .⟩ in (e[e2/x])+ (21)

by |i| applications of ▷ζ , since no variable has a value

□

Next we show that if a source term e takes a step, then its translation e+ reduces in some number of steps to a

definitionally equivalent term e. This proof essentially follows by Lemma 3.1. Then we show by induction on the

length of the reduction sequence that the translation preserves reduction sequences. Note that since Lemma 3.1 relies

on our η equivalence rule for closures, we can only show reduction up to definitional equivalence. That is, we cannot

show e+ ▷∗ e′+. This is not a problem; we reason about source programs to equivalence anyway, and not up to

syntactic equality.

Lemma 3.2 (Preservation of Reduction). If Γ ⊢ e ▷ e′ then Γ+ ⊢ e+ ▷∗ e and e ≡ e′+

Proof. By cases on Γ ⊢ e ▷ e′. Most cases follow easily by Lemma 3.1, since most cases of reduction are defined by

substitution.

Case x ▷δ e′ where x = e′ : A ∈ Γ.

We must show that x ▷∗ e and e′+ ≡ e. Let e def

= e′+. It suffices to show that x ▷∗ e′+. By definition of the

translation, we know that x = e′+ : A+ ∈ Γ+ and x ▷δ e′+.
Case let x = e1 in e2 ▷ζ e2[e1/x]

We must show that (let x = e1 in e2)+ ▷∗ e and (e2[e1/x])+ ≡ e. Let e def

= e+
2
[e+

1
/x].

(let x = e1 in e2)+ = let x = e+
1
in e+

2
by definition of the translation (22)

▷ζ e+
2
[e+

1
/x] (23)

≡ (e2[e1/x])+ (24)

byLemma 3.1 (Compositionality)

Case (λ x : A. e1) e2 ▷β e1[e2/x]

We must show that ((λ x : A. e1) e2)+ ▷∗ e and (e2[e1/x])+ ≡ e. Let e def

= e+
1
[e+

2
/x].

By definition of the translation, ((λ x : A. e1) e2)+ = f e+
2
, where

f = ⟨⟨(λn : Σ (xi : A+i . . .), x : let ⟨xi . . .⟩ = n inA+. (25)

let ⟨xi . . .⟩ = n in e+
1
), ⟨xi . . .⟩⟩⟩ (26)

and where xi : Ai . . . = FV(λ x : A. e1, Γ).
To complete the proof, observe that,

f e+
2
▷β let ⟨xi . . .⟩ = ⟨xi . . .⟩ in e+

1
[e+

2
/x] (27)

▷ |i |
ζ e+

1
[e+

2
/x] (28)

≡ (e1[e2/x])+ by Lemma 3.1 (29)

□

Lemma 3.3 (Preservation of Reduction Seqences). If Γ ⊢ e ▷∗ e′ then Γ+ ⊢ e+ ▷∗ e and Γ+ ⊢ e ≡ e′+.

Proof. By induction on the length of the reduction sequence n.

Case n = 0 Therefore e′ = e.
Let e = e+

By definition, e+ ▷0 e+ and e+ ≡ e+ by reflexivity.

Case n = i + 1 By assumption, Γ ⊢ e ▷ e1 and Γ ⊢ e1 ▷∗ e′.
It suffices to show that e+ ▷∗ e1 and e1 ≡ e′+.
By Lemma 3.2, e+ ▷∗ e1 and e1 ≡ e+

1
. Note that our notation for translation,

+
, requires that we have a typing

derivation for e1, thus here we rely on subject reduction of CC to know that such a derivation exists.

It remains to be show that e1 ≡ e′+.
By the induction hypothesis, e+

1
▷∗ e and e ≡ e′+.

13

Since e+
1
▷∗ e, by [≡], e+

1
≡ e.

The goal follows by transitivity: e1 ≡ e+
1
≡ e ≡ e′+, therefore e1 ≡ e′+.

□

We can now show coherence, i.e., that equivalent terms are translated to equivalent terms. As equivalence is defined

primarily by ▷∗, the only interesting part of the next proof is preserving η equivalence. To show that η equivalence is

preserved, we require our new η rules for closures.

Lemma 3.4 (Coherence). If Γ ⊢ e ≡ e′, then Γ+ ⊢ e+ ≡ e′+.

Proof. By induction on the e ≡ e′ judgment.

Case [≡]

By assumption, e ▷∗ e1 and e′ ▷∗ e1.
By Lemma 3.3, e+ ▷∗ e and e ≡ e+

1
, and similarly. e′+ ▷∗ e′ and e′ ≡ e+

1
. The result follows by symmetry and

transitivity.

Case [≡-η1]
By assumption, e ▷∗ λ x : t. e1, e′ ▷∗ e2 and e1 ≡ e2 x.
Must show e+ ≡ e′+.
By Lemma 3.3, e+ ▷∗ e and e ≡ (λ x : t. e1)+, and similarly e′+ ▷∗ e′ and e′ ≡ e+

2
.

By transitivity of ≡, it suffices to show (λ x : t. e1)+ ≡ e+
2
.

By definition of the translation,

(λ x : t. e1)+ = ⟨⟨(λn : Σ (xi : A+i . . .), x : let ⟨xi . . .⟩ = n inA+.

let ⟨xi . . .⟩ = n in e+
1
), ⟨xi . . .⟩⟩⟩

where xi : Ai . . . = FV(λ x : t. e1, Γ).
By [≡-Clo1] in CC-CC, it suffices to show that

let ⟨xi . . .⟩ = ⟨xi . . .⟩ in e+
1

(30)

≡ e+
1

(31)

by |i| applications of ▷ζ

≡ e+
2
x (32)

by the inductive hypothesis applied to e1 ≡ e2 x

Case [≡-η2] Symmetric to the previous case; requires [≡-η2] instead of [≡-η1].

□

Now we can prove type preservation. We give the technical version of the lemma required to complete the proof,

followed by the desired statement of the theorem.

Lemma 3.5 (Type Preservation (technical)).

(1) If ⊢ Γ then ⊢ Γ+

(2) If Γ ⊢ e : A then Γ+ ⊢ e+ : A+

Proof. Parts 1 and 2 proven simultaneously by induction on the mutually defined judgments ⊢ Γ and Γ ⊢ e : A.
Part 1 follows easily by induction and part 2. We give the key cases for part 2.

Case [Lam]

We have that Γ ⊢ λ x : A. e : Π x : A.B. We must show that Γ+ ⊢ (λ x : A. e)+ : (Π x : A.B)+.
By definition of the translation, we must show that

⟨⟨(λ (n : Σ (xi : A+i . . .), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+

1
), ⟨xi . . .⟩⟩⟩

: Π x : A+.B+

where xi : Ai . . . = FV(λ x : t. e1, Γ).
Notice that the annotation in the term x : let ⟨xi . . .⟩ = n inA+, does not match the annotation in the type

x : A+. However, by [Clo], we can derive that the closure has type:

Π (x : let ⟨xi . . .⟩ = ⟨xi . . .⟩ inA+). (let ⟨xi . . .⟩ = ⟨xi . . .⟩ inB+),

14

This is equivalent to Π x :A+. B+ (under Γ+), since (let ⟨xi . . .⟩= ⟨xi . . .⟩ inA+) ≡ A+ as we saw in earlier proofs.

So, by [Clo] and [Conv], it suffices to show that the environment and the code are well-typed.

By part 1 of the induction hypothesis applied (since each of xi : Ai . . . come from Γ), we know the environment

is well-typed: Γ+ ⊢ ⟨xi . . .⟩ : Σ (xi : A+i . . .).
Now we show that the code

(λ (n : Σ (xi : A+i . . .), x : let ⟨xi . . .⟩ = n inA+).
let ⟨xi . . .⟩ = n in e+

1
)

has type Code (n, x). let ⟨xi . . .⟩ = n inB+. For brevity, we omit the duplicate type annotations on n and x.
Observe that by the induction hypothesis applied to Γ ⊢ A : U and by weakening

n : Σ (xi : A+i . . .) ⊢ let ⟨xi . . .⟩ = n inA+ : U+.
Hence, by [Code], it suffices to show

·,n, x ⊢ let ⟨xi . . .⟩ = n in e+
1
: let ⟨xi . . .⟩ = n inB+

which follows by the inductive hypothesis applied to Γ, x : A ⊢ e1 : B, and by weakening, since xi . . . are the
free variables of e1, A, and B.

Case [App]

We have that Γ ⊢ e1 e2 : B[e2/x]. We must show that Γ+ ⊢ e+
1

e+
2
: (B[e2/x])+. By Lemma 3.1, it suffices to show

Γ+ ⊢ e+
1

e+
2
: B+[e+

2
/x], which follows by [App] and the inductive hypothesis applied to e1, e2 and B. □

Theorem 3.6 (Type Preservation). If Γ ⊢ e : t then Γ+ ⊢ e+ : t+.

3.2 Correctness
We prove correctness of separate compilation and whole program correctness. These two theorems follow easily from

Lemma 3.3, but requires a little more work to state formally.

First, we need an independent specification that relates source values to target values in CC-CC. We do this by

adding ground types, such as Bool, to both languages and consider results related when they are the same boolean:

true ≈ true and false ≈ false. It is well known how specify more sophisticated notions of observations.

Next, we define components and linking. Components in both CC and CC-CC are well-typed open terms, i.e.,
Γ ⊢ e : A. We implement linking by substitution, and define valid closing substitutions γ as follows.

Γ ⊢ γ
def

= ∀x : A ∈ Γ.· ⊢ γ (x) : A
We extend the compiler to closing substitutions γ+ by point-wise application of the translation.

Our separate compilation guarantee is that the translation of the source component e linked with substitution γ is

equivalent to first compiling e and then linking with some γ that is definitionally equivalent to γ+.

Theorem 3.7 (Correctness of Separate Compilation). If Γ ⊢ e : A and A is a ground type, Γ ⊢ γ , Γ+ ⊢ γ , γ (e) ▷∗ v,
and γ+ ≡ γ then γ (e+) ▷∗ v′ and v+ ≈ v′

Proof. Since the translation commutes with substitution, preserves equivalence, reduction implies equivalence,

and equivalence is transitive, the following diagram commutes.

(γ (e))+ γ (e+)

v+ v′

≡

≡ ≡

≡

Since ≡ on ground types implies ≈, we know that v ≈ v′. □

As a simple corollary, our compiler must also be whole-program correct. If a whole-program e evaluates to a value

v, then the translation e+ runs to a value equivalent to v+.

Corollary 3.8 (Whole-Program Correctness). If · ⊢ e : A and A is a ground type, and e ▷∗ v then e+ ▷∗ v and
v+ ≈ v

REFERENCES
[1] S. Boulier, P.-M. Pédrot, and N. Tabareau. The next 700 syntactical models of type theory. In Conference on Certified Programs and Proofs (CPP),

Jan. 2017. doi: 10.1145/3018610.3018620. URL https://hal.inria.fr/hal-01445835.

[2] T. Coquand. An analysis of Girard’s paradox. In Symposium on Logic in Computer Science (LICS), 1986. URL https://hal.inria.fr/inria-00076023.

15

https://hal.inria.fr/hal-01445835
https://hal.inria.fr/inria-00076023

[3] J. G. Hook and D. J. Howe. Impredicative strong existential equivalent to Type:Type. Technical report, Cornell University, 1986. URL

http://hdl.handle.net/1813/6600.

[4] Z. Luo. ECC, an extended calculus of constructions. In Symposium on Logic in Computer Science (LICS), 1989. doi: 10.1109/lics.1989.39193.
[5] The Coq Development Team. The Coq proof assistant reference manual, Oct. 2017. URL https://web.archive.org/web/20170109225110/https:

//coq.inria.fr/doc/Reference-Manual006.html.

16

http://hdl.handle.net/1813/6600
https://web.archive.org/web/20170109225110/https://coq.inria.fr/doc/Reference-Manual006.html
https://web.archive.org/web/20170109225110/https://coq.inria.fr/doc/Reference-Manual006.html

	1 Source: Calculus of Constructions (CC)
	2 Target: CC, Closure-Converted (CC-CC)
	2.1 Type Safety and Consistency

	3 Closure Conversion
	3.1 Type Preservation
	3.2 Correctness

	References

