
CSCI B522 Homework 4 Due: 6 Nov 2009

You can turn in handwritten solutions to this assignment. To keep your graders happy, please write
clearly, leave lots of whitespace, and use standard-sized (8.5 by 11in) paper! You may be penalized upto 20
points if you do not follow these instructions. Handwritten solutions should be submitted at Lindley Hall
301G by 5pm on the due date.

If you choose to typeset your solutions, you may use LaTeX or Word. If you use LaTeX, there is a
template available for your use at the course website. (Remember to look in b522.sty for macros you can
use.) A pdf file containing the solutions can be submitted online by midnight on the due date.

This homework is worth 90 points. It is a challenging assignment (especially Problem 1), so start early!

1. State (40 pts.)

Writing programs that deal gracefully with failure can be difficult in the usual imperative style, espe-
cially in a distributed environment where failure is unavoidable. A failed subcomputation can leave the
system in an unpredictable state where important invariants are violated. A transaction mechanism is
one way to deal with this. Consider the following extension to uML!:

e ::= . . . | transaction e | abort e

The idea is that a transaction expression evaluates e and if e evaluates successfully, the whole expres-
sion has the same result as e. However, if the evaluation of e leads to the evaluation of an expression
abort e′, then the most recently started transaction halts and its result is the result of evaluating e′.
Since this is an extension to uML!, there is a state (store) that might be modified by expressions that
are evaluated. When a transaction completes successfully, the resulting state is the same as the state
after evaluating e. However, when a transaction is aborted, the resulting state then reverts to the state
that existed at the beginning of the transaction. Transactions can be nested inside other transactions,
so an abort only aborts the innermost ongoing transaction.

(a) (20 pts) Give an operational semantics for this language. You may uniformly lift rules given in
Homework 3 for uML!. (To see what we mean by uniformly lifting rules, see notes for Lecture 12,
beginning of Section 2.1.)

(b) (15 pts) Give a state-passing translation from this extended language to uML. (Hint: Make sure
that you understand the state-passing translation discussed in class; see notes for Lecture 12,
Section 2.2.)

(c) (5 pts) Writing a formal semantics for this mechanism exposes some ambiguities in the above
description, which entail some design choices. What are these choices, how did you make them,
and where do these choices show up in the semantics you wrote? Discuss briefly.

2. Induction (20 pts.)

Prove the following assertions using well-founded induction. Make sure to clearly identify what you
are performing induction on, to state the induction hypothesis and point out where it is being used.

(a) (6 pts) Given a term e in the untyped lambda calculus, show that it doesn’t matter in what order
you substitute closed terms. Specifically, prove the following lemma:
Lemma A: Given a term e and closed terms e1 and e2, if x 6= y, then

e{e1/x}{e2/y} = e{e2/y}{e1/x}

1

(b) (7 pts) In class, we said that e −→∗ e′ if and only if there exists some natural number n such
that e0 −→ e1 −→ . . . −→ en where e = e0 and e′ = en. We call −→∗ the multi-step evaluation
relation.
For this problem, consider an alternative definition of multi-step evaluation for the untyped,
call-by-value lambda calculus, where the relation e −→∗ e′ is defined by the following set of rules:

e −→∗ e
(M-Refl)

e −→ e′ e′ −→∗ e′′

e −→∗ e′′
(M-Step)

Note that the first premise of the M-Step rule uses the call-by-value, small-step relation (−→)
for the untyped lambda calculus.
Prove that the relation −→∗ is transitive—that is, prove the following lemma:
Lemma B: If e1 −→∗ e2 and e2 −→∗ e3, then e1 −→∗ e3.

(c) (7 pts) Here is a fact that we use in the type soundness/safety proof of the simply-typed lambda
calculus: the free variables of a well-typed term are always found in its typing environment. Prove
the following lemma:
Lemma C: In the simply-typed lambda calculus with boolean values and conditionals, we have
that

Γ ` e : T =⇒ FV(e) ⊆ dom(Γ)

3. CPS translation (30 pts.)

In class we saw how to translate lambda-calculus terms to terms in continuation-passing style. For this
problem, let us consider CPS translation of the following source language:

Source Terms e ::= n | x | λx. e | e1 e2 | e1 ⊕ e2 | if0(e0, e1, e2) |
(e1, e2) | fst e | snd e

Source Values v ::= n | λx. e | (v1, v2)

Primitive Operations ⊕ ::= + | − | ×

The source language terms include: integer literals (n); primitive operations (⊕) on integers; a condi-
tional if0(e0, e1, e2) that tests if e0 evaluates to 0, and evaluates the first branch (e1) if it does, or else
evaluates the second branch (e2) if e0 evaluates to an integer other than 0; pairs (e1, e2); and constructs
(fst, snd) to extract the first and second components of a pair.

The small-step operational semantics of the source language is as follows:

Source Evaluation Contexts E ::= [·] | E e2 | v1 E | E ⊕ e2 | v1 ⊕ E | if0(E, e1, e2) |
(E, e2) | (v1, E) | fst E | snd E

Source Reductions

(λx. e) v −→ e{v/x}
n1 ⊕ n2 −→ n3 (where n3 = n1⊕̂n2)

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)
fst (v1, v2) −→ v1

snd (v1, v2) −→ v2

2

The continuation-passing style language that we’ll use as the target of CPS translation is as follows:

Target Values v ::= n | x | (v1, v2) | λ(x, k). e | λx. e | halt

Target Declarations d ::= v | v1 ⊕ v2 | fst v | snd v

Target Terms e ::= let x = d in e | v0 (v1, v2) | v0 v1 | if0(v, e1, e2) | halt v

Primitive Operations ⊕ ::= + | − | ×
There are a few things to note about the target language. First, lambda abstractions that correspond
to continuations are marked with an underline. Second, note that declarations cannot have declarations
as subexpressions—d does not occur in its own definition. Third, ignoring the if0 construct, terms in
the target language are nearly linear in terms of control flow—that is, they consist of a series of let
bindings followed by an application. The only exception to this is the if0 construct, which forms a tree
containing two subexpressions.
The small-step operational semantics of the target language is as follows:

Target Reductions

let x = v in e −→ e{v/x}
let x = n1 ⊕ n2 in e −→ e{n3/x} (where n3 = n1⊕̂n2)

let x = fst (v1, v2) in e −→ e{v1/x}
let x = snd (v1, v2) in e −→ e{v2/x}

(λ(x, k). e) (v1, v2) −→ e{v1/x}{v2/k}
(λx. e) v −→ e{v/x}

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)
halt v −→ v

The CPS translation C[[e]] takes a continuation k, computes the value of e, and passes that value to
k. To translate a full program—a source term with no free variables—we define the CPS translation
Cprog[[e]], which calls the translation C[[e]] with the special top-level continuation halt that accepts a
final answer and halts. (An aside: Instead of adding the special continuation halt as a primitive to
our target language, we could have defined the halt continuation as λx. x.)
The CPS translation for programs, integers, variables, λ-abstractions, and application is defined as
follows:

Cprog[[e]] def= C[[e]](λx.halt x)

C[[n]]k def= k n

C[[x]]k def= k x

C[[λx. e]]k def= k (λ(x, k′). C[[e]]k′)
C[[e1 e2]]k def= C[[e1]](λx1. C[[e2]](λx2. x1 (x2, k)))

In the above translation, in order to avoid variable capture, we assume that x is fresh in the Cprog[[]]
case, that k′ is fresh in the λ-abstraction case, and that x1 and x2 are fresh in the application case.

(a) (10 pts) Consider the following source language program:

(λz. z 3) (λy. y)

Show the CPS translation of the above program. Once you have completed the CPS translation,
show the evaluation of the resulting target-level term. (You should show intermediate steps for
both the translation and the evaluation.)

(b) (20 pts) The above definition of C[[e]]k is incomplete—it only shows how to translate source-
language integers, variables, λ-abstractions and application. Define the missing cases of the CPS
translation.

3

