
CSCI B522 Homework 3 Due: 16 Oct 2009

Your solutions to this assignment should be typeset using LaTeX or Word. If you use LaTeX, there is
a template available for your use at the course website. (Remember to look in b522.sty for macros you can
use.) A pdf file containing the solutions should be submitted by 11:59pm on the due date.

Note: This homework is worth 120 points. It is a longer and more difficult assignment than the last one,
so plan your time accordingly.

1. Well-founded relations (25 pts.)

Which of the following relations are well-founded? Briefly explain why or why not.

(a) Dictionary ordering on strings of alphabetic characters (a-z).

(b) An ordering ≺ on pairs of natural numbers defined inductively by these rules:

n1 < n′1
(n1, n2) ≺ (n′1, n2)

n2 < n′2
(n1, n2) ≺ (n1, n

′
2)

(c) A relation ≺ on finite trees, where given two trees t and t′, t ≺ t′ iff t is exactly the same as t′

except that it is missing exactly one leaf.

(d) An ordering ≺ on finite sequences of natural numbers, where a sequence s of length n is preceded
by the subsequences of s and also by any sequence whose first n elements are all smaller than the
corresponding elements of s.

(e) A relation ≺ on partial functions in N ⇀ N, where

f1 ≺ f2
4⇐⇒ f1 6= f2 ∧ dom(f1) ⊆ dom(f2) ∧ ∀x ∈ dom(f1). f1(x) ≤ f2(x).

2. Names and scope (20 pts.)

Consider the following program:

let x = 5 in
let f = λy. x+ y in

let x = 4 in
let g = (λz. let x = 3 in f(x)) in
g(x) + f(x)

(a) What does this program output using call-by-value semantics with static scope? Explain briefly.

(b) What does this program output using call-by-value semantics with dynamic scope? Explain
briefly.

(c) What does this program output using call-by-name semantics with static scope? Explain briefly.

3. Call-by-denotation (25 pts.)

In class we saw two different ways of evaluating the free variables in function bodies: static scoping and
dynamic scoping. Static scoping uses the environment of the function definition (the lexical scope),
and dynamic scoping uses the environment of the function evaluation (the dynamic scope).

A similar distinction can by made with the evaluation of the actual arguments of a function: we could
evaluate the free variables of actual arguments using either the environment at the function application
(the lexical scope) or the environment at the evaluation of the actual arguments (the dynamic scope).

1

In call-by-value semantics, since the actual arguments are evaluated before applying the function,
the lexical and dynamic scope are the same. However, when the arguments are evaluated lazily, the
distinction is important.

We use call-by-denotation to refer to lazy evaluation of the actual arguments using dynamic scope,
where even the choice of scope to use is lazy—the environment used to look up the values of variables
is the one in force when the variable’s value is needed. (We continue to use call-by-name to mean
lazy evaluation of the actual arguments using the static scope.) For example, consider the following
program. Using call-by-denotation semantics, the program evaluates to 1; using call-by-name semantics
it evaluates to 2.

let f = λy. let x = 0 in y in
let x = 1 in
f(x + 1)

The TeX language has a semantics similar to call-by-denotation. For example, the following TeX code
results in the text “inside”, because the macro foo isn’t expanded until after it is redefined.

\def\fn#1{\def\foo{inside} #1}
\def\foo{outside}
\fn\foo

The corresponding OCaml code would be something like the following, which evaluates to “outside”
in that language.

let fn = (fun x −> let foo = ′′inside′′ in x) in
let foo = ′′outside′′ in

fn foo

(a) What would the result of evaluating the following program be, using call-by-denotation semantics?

let x = 0 in
let f = λy. x+ y in

let x = 1 in
f(x+ 1)

(b) Give a translation of dynamically scoped call-by-denotation lambda calculus into statically scoped
uML, analogously to the translations given in class for dynamic and static scoping. That is,
the source language uses dynamic scope to evaluate free variables in function bodies, and free
variables in function arguments. Briefly explain the key differences between this translation and
the translation for statically scoped, eager evaluation.

4. Dangling references (50 pts.)

In class we claimed that during evaluation, uML! programs never generate dangling references. Let’s
prove it. Consider the fragment of uML! consisting of the following expressions and values:

e ::= n | x | ref e | ! e | e1 := e2 | null | λx. e | e1 e2 |
let x = e1 in e2 | (e1, e2) | let (x, y) = e1 in e2

v ::= n | (v1, v2) | null | λx. e (where λx. e is closed)

To define the small-step semantics of uML!, we augment the grammar of expressions and values with
a set of locations ` ∈ Loc.

e ::= . . . | `
v ::= . . . | `

A store σ is a partial map from locations to values (which could be other locations). The small-step
semantics of uML! programs was defined in terms of configurations 〈e, σ〉, where e is an augmented

2

expression and σ is a store. (For your reference, the small-step operational semantics of uML! is given
at the end of this document.)

We define loc(e) to be the set of locations that occur in the expression e. Thus, for example,
loc((! `2) (λx. (! `1)+! (ref 4))) = {`1, `2}.
A uML! program is a closed expression that does not contain any locations. Thus, if e is a program
then loc(e) = ∅.

(a) Consider the following uML! configuration:

〈 (λx. (! `1) 2) (ref 1) , {`1 7→ λy. ref y} 〉

Show the evaluation of this configuration. For each configuration 〈e′, σ′〉 in the evaluation, give
loc(e′).

(b) Give an inductive definition of the set loc(e) of locations occurring in e.

(c) Prove that if e is a uML! program and 〈e, ∅〉 −→∗ 〈e′, σ〉, then loc(e′) ⊆ dom(σ). If you use
induction, identify the relation you are using in your induction and argue that it is well-founded.

Small-Step Operational Semantics of uML!

Evaluation contexts

E ::= [·] | ref E | !E | E := e2 | v1 := E | E e2 | v1 E |
let x = E in e2 | (E, e2) | (v1, E) | let (x, y) = E in e2

Reductions

〈ref v, σ〉 −→ 〈`, σ[` 7→ v]〉 (where ` /∈ dom(σ))
〈! `, σ〉 −→ 〈σ(`), σ〉 (where ` ∈ dom(σ))

〈` := v, σ〉 −→ 〈null, σ[` 7→ v]〉 (where ` ∈ dom(σ))
〈(λx. e) v, σ〉 −→ 〈e{v/x}, σ〉

〈let x = v in e, σ〉 −→ 〈e{v/x}, σ〉
〈let (x, y) = (v1, v2) in e, σ〉 −→ 〈e{v1/x}{v2/y}, σ〉

Context rule

〈e, σ〉 −→ 〈e′, σ′〉
〈E[e], σ〉 −→ 〈E[e′], σ′〉

3

