
Ownership Types

Fabian Muehlboeck

April 11, 2012

Objects encapsule data and are a nice way to structure a stateful, imperative program, enabling us to
have what we call separation of concerns. We would like to reason about objects or classes individually rather
than about the whole program. Therefore, we often specify some invariants on objects, and then see to it
that all method calls to an object preserve these invariants. However, those invariants might depend on the
status of some other objects our object is related to: a stack might be implemented using a linked list. As
long as that linked list is solely controlled by the stack, everything is fine. But as we often need to share
objects, we need some form of aliasing, that is having references to the same objects at multiple points
in the program. An uncontrolled form of aliasing would make a scenario in which some other object has
access to the linked list that is vital ot the representation of our stack possible - that other object may not
know about the stack’s invariants and internal state and might hence violate the stack’s invariants when it
manipulates the list that it has access to. With uncontrolled aliasing, we never know which objects hold
references to which other objects, which forces us to take the whole program into account when reasoning
about the correctness of a class.

1 An Introduction to Ownership Types

Figure 1: An example ownership tree. Each circle is
an object (except for the root, which is a dummy).
Solid arrows represent ownership relations, dashed
arrows are valid references, dotted arrows represent
invalid references

The basic idea of ownership types is to eliminate a
scenario like above by assigning an owner to each ob-
ject. From this, we can build an ownership hierarchy
as a tree, where owned objects are the child nodes of
their owners. Such a child node may access anything
their parent can access (if the parent shares it with
the child), i.e. all their ancestors plus their immedi-
ate children, as well as their siblings. In general, every
access to an owned object must go through the owner
if it comes from/via higher up in the ownership tree.

Our interest is to include the concept of ownership
into static typechecking, which means we will rule out
some perfectly fine programs and possibly lose some
programming constructs we want to have. In the fol-
lowing, we will examine some attempts for statically
checked ownership type systems and see another ap-
plication of ownership types than just simply control-
ling aliasing, namely in the context of concurrency.

Our running example will be a that of a stack that
is implemented as a linked list. The stack will o↵er the
methods push and pop to add and remove elements
from the stack. We will view the nodes as relevant
to the stack’s representation and thus its invariant, in
particular s.push(x);x = s.pop(); should always work for a stack s and some object of a right type x. The

1



Figure 2: A more detailed example of an ownership tree. Assume X is a type that has a field of type ClassA,
where the object in that field is owned by the instance of X. Dashed lines again represent references, solid
lines ownership relations.

objects the stack stores however are not relevant to its representation and should be accessible from the
outside.

2 Basic Ownership Types

2.1 Our Language

We will use a Java-like language, first presented by Clarke et. al, but slightly adapted by Boyapati et al. to
demonstrate how we would use ownership types to program a safe stack. We will introduce the most impor-
tant constructs here, the full syntax and explanation can be found in Appendix B. The important notation
that we are going to introduce are ownership annotations, which look just like generic type parameters:

class ClassA<o>
{

. . .
}

This is the simplest form of a class declaration. The parameter o will be instantiated with the owner of
an object, which, depending on where in the code that is, might be either this, world or another existing
parameter name. Here, world is a dummy owner representing the root of the ownership tree. A program in
our language consists of a bunch of class definitions followed by an expression to be evaluated. That might
just be (newClassAhworldi).main(). That main-method could then create some global objects owned by
the world or objects that are owned by that object of ClassA.

class ClassA<o>
{

ClassB<world> wb;
ClassB<o> ob ;

2



ClassB<this> tb ;
void main ( ) { . . . }

}
class ClassB<o>
{

. . .
}

Here we see that an object of ClassA contains three fields of ClassB, all with (possibly) di↵erent owners.
Figure 2 shows an example setup. The first field, wb, is a global object, independent of the actual owner of
the ClassA object. The second field, ob, will have the same owner as the ClassA object. That means, if our
ClassA object is a global object, ob will be globally accessible, too. But we do not know this at compile-time,
hence an assignment like this.ob = this.wb; is illegal, as is this.wb = this.ob; . Lastly, tb is owned by our
ClassA object. This means among other things that neither wb nor ob can ever access tb directly.

2.2 Programming our Stack

Given this concept of ownership, we create our stack. As we do not have generics or subtyping, we will have
to create a stack for a specific type. Let us say it is a stack of papers of some class Paperhoi. For now, we
will assume that all the papers are global objects. We will also leave out checks one would normally write
for pop() to ensure that the stack is not empty and use some notational shorthands not mentioned in the
grammar in the Appendix but closer to Java.

class Node<no>
{

Paper<world> paper ;
Node<no> next ;

}
class Stack<o>
{

Node<this> f i r s t ;
void push (Paper<world> paper )
{

f i r s t = new Node ( paper , f i r s t ) ;
}
Paper<World> pop ( )
{

Paper<world> p = f i r s t . paper ;
f i r s t = f i r s t . next ;
return p ;

}
}

Now this stack has a totally safe internal representation. The ownership type system will statically check
that Nodes are never accessible from outside of the stack. Note that all nodes are owned by the stack rather
than by their predecessor node. This is important because there is no notion of a transfer of ownership in the
presented type system, hence the first created node will always be owned by the stack, and any subsequent
node that is put on top of the stack thus must point to a node that has this ownership type.

2.3 Ownership Polymorphism

We might not always know what owners the objects that the stack should store will have. They might be
at any point in the ownership tree, provided that the owner of the stack and thus the stack itself can access
them. At this point, we are forcing them to be at the global ownership level, accessible to everyone, but we
may not want that. Instead, we can introduce additional ownership parameters:

3



class ClassA<o , p , q>
{

. . .
}

The first parameter, o, still has a special status: it refers to the actual owner of an instance of the type.
The other ownership parameters enable us to specify owners of contents of our object, and we can decide
on instantiation wheter to provide this or world or any other available ownership parameter for every of the
parameters of the new object.

This way, we can replace world as the owner of our paper objects by a parameter that we add to the
stack and node classes:

class Node<no , np>
{

Paper<np> paper ;
Node<no , np> next ;

}
class Stack<o , p>
{

Node<this , p> f i r s t ;
void push (Paper<p> paper ) { . . . }
Paper<p> pop ( ) { . . . }

}

If the stack is instantiated with world for p, we e↵ectively have the same setup as before. However, this
time we may also have any other owner for our papers, so long as that owner makes the papers still accessible
to the stack and its nodes. We therefore require all context parameters of an object to be owners of the
owner of that object.

3 Type-checking basic Ownership

First, look at the last statement in the previous section: all context parameters of an object must be owners
of the owner of that object (i.e. the first context parameter). Suppose this was not the case, i.e. we had at
least two context parameters where the first one is not owned by the second one. Then we can just have a
field that’s first context parameter (and therefore its owner) is the second context parameter that we have.
The content of that field is now either owned by something that our object owns (if the second context
parameter is owned by the first context parameter) or even by something somewhere else in the ownership
tree - in both cases, we would have access to an object without going through its owner, thus violating our
ownership structure.

Now recall our ownership trees from above. The key idea to having ownership prevent access to certain
objects is encoded in the so-called Static Visibility Constraint:

SV (e, t) := (e 6= this) ) this /2 contexts(t)

where

contexts(cnhm1...mni) := {m1, ...,mn}

We use this constraint in the typing rules for field accesses and method calls, in the way that we use
some e.x, where x is either a field name or a method name plus arguments, and t is the type of the whole
expression e.x. Now if e 6= this, this means that we are potentially accessing another object’s fields or
methods. If the (return) type of that field or method includes a this, then by our rule above that the first
context parameter must be owned by all the others (and the observation that this is the lowest possible value
for an owner - because you can’t have access to something that is owned by someone lower in the ownership
tree) the owner of that object must be e. And because e is not this, we may not access it from our current

4



class. Note that this is used in two di↵erent meanings here: the ownership parameter this is relative to e,
whereas the object reference this is relative to our current object.

In short, static visibility says that if we access a field or method in some other object, the value we
get back from that must not be owned by that other object. This limitation is a little stronger than what
the ownership structure permits, because if e were the owner of our current object, we actually may have
references to other objects owned by e. The result of this that we cannot just retrieve those objects from e,
but rather e has to give us references to the objects it wants to share with us.

The last things we need for type-checking are some small helpers. Nodehno, npi in the class declaration
header is called an ownership scheme. We may insert anyhthing valid by the rules above for no and np.
In the typing rules, � stands for a function that maps an ownership scheme to a type declaration. If we
have an object of type Nodehthis,pi (that is, it is owned by our current object, and the second parameter
is bound to the current object’s binding for p, that is, an object somehwere above in the ownership tree),
� for that type would map no to this and np to p. Hence when we ask for the field next, we know that
that Node in there is also owned by our current object since we replaced the first context parameter with
this. In addition, we have a function � that extracts such a � when given a type already instantiated with
ownership parameters. Lastly, we assume that we have some dictionaries that tell us the types of fields and
methods by writing t.fn : t0, meaning that the field with name fn in the class of type t is of value t

0, and
t.mn : t1...tk ! t

0 gives us the type of the method with name mn in the class of type t. An example would
be: Nodehno, npi.next : Nodehno, npi.

Let us check (parts of) the following method:

Paper<p> pop ( )
{

Paper<p> pp = f i r s t . paper ;
f i r s t = f i r s t . next ;
return pp ;

}

First, we check the field access first.paper:

... � ` e : t � = �(t) t.fn : t0 SV (e, t0)

... � ` e.fn : �(t0)
(Field Access)

This means that we want to check that e(= first).fn(= paper) : �(t0)(= Paperhpi) under some environ-
ment that we will not explain further. In order to check that this is correct, we first have to check that e has
some type t. In our case, first has type Nodehthis, pi. We retrieve our � from that as {no ) this, np ) p}.
The field named paper in our the class of our type t has type t

0 = Paperhnpi. Luckily, our � therefore gives
us the right type of e.fn, namely Paperhpi. The last thing we have to check is static visibility, i.e. since e

is not this, the object in the field paper may not be owned by e. Since Paperhnpi does not contain this,
we are fine.

Checking field update works very similar to field access - we only have to also check the expression that
we are evaluating.

... � ` e : t � = �(t) t.fn : t0 ... � ` e

0 : �(t0) SV (e, t0)

... � ` e.fn = e

0 : �(t0)
(Field Update)

We can check first = first.next (because technically, it would have to be this.first = this.first.next).
The type of e is this, so our sigma will be the identity function. The type of the field is Nodehthis, pi, and
e

0 has to be checked with field access against that type, which we will assume worked out. Since e = this,
static visibility is trivial, and our type-check succeeds.

Method calls work very similar:

... � ` e : t � = �(t) t.mn : t1...tn ! t

0

... � ` e1 : �(t1) , ... , ... � ` en : �(tn) SV (e, t0), SV (e, t1)...SV (e, tn)

... � ` e.mn(e1, ..., en) : �(t
0)

(Method Call)

5



The e must have some type t that has some context parameter substitution � and a method with name
mn that takes arguments of types t1...tn and returns an object of type t

0. We have to check that the
expressions we use for our arguments are well-typed and evaluate to something of a type with the right
context parameter substitution, and all the arguments as well as the return type must be visible to our
current context (i.e. we cannot give objects as arguments to something if we do not have access to them).

Say that we have some object that has a field s of type Stackhthis, thisi. Let us check a method
call to s.pop(). e is a field access that is well-typed and has type Stackhthis, thisi. The � therefore is
{o ) this, p ) this}, the method pop is of type ! Paperhpi. There are no arguments to type-check, and
only one static visibility constraint. e 6= this, but Paperhpi does not contain this either, so we are fine.
Applying the �, we get the type Paperhthisi as the type of the result of the method call.

4 Iterators

Our stack works: we can put objects onto it and we can retrieve them again. However, what if we want to
examine the whole content of the stack without removing all the elements? We can add iterator-functionality
to the stack by adding the methods current(), next() and reset() and it will work just fine. However, often
we would like to have several iterators at the same time. In our current model, this is not possible: the
iterator would have to be an object of another class, and it had to be visible outside of the stack, hence it
cannot be owned by the stack. But if it is not owned by the stack, it cannot have access to the nodes. This
means that there is no way to implement an e�cient iterator with our current set of possibilities.

Obviously, we have to violate our ownership structure at some point. The problem with that is that if
we allow this arbitrarily, we might lose our ability to reason locally about parts of our program. Boyapati
et. al therefore suggested to use inner classes as a natural way to describe such breaches in the ownership
structure. The idea is that even if inner classes can access inner parts of the outer object while not being
owned by the outer object, we still have a bound on the extent of the violation - i.e. we just reason locally
about a class and an inner class together. There is only one interesting thing that inner classes add to our
syntax, which is the reference to the context of the outer class. Our stack with iterator would look like this:

class Node<no , np>
{

Paper<np> paper ;
Node<no , np> next ;

}
class Stack<o , p>
{

Node<this , p> f i r s t ;
void push (Paper<p> paper ) { . . . }
Paper<p> pop ( ) { . . . }
class I t e r<io>
{

Node<Stack . this , p> cur r ent ;
Paper<p> next ( )
{

Paper<p> pp = current . paper ;
cur r ent=current . next ;
return pp ;

}
bool hasNext ( ) { return cur r ent != null ; }

}
I t e r<i , p> g e t I t e r<i>{ return new I t e r<i>( f i r s t ) ; }

}

One novelty here is the context parameter for the method getIter, which we can use to specify the owner
for the new iterator. The other, already mentioned interesting thing is the type of the field current in Iter.

6



Figure 3: An example ownership forest in a concurrent program. The left tree is only accessible in the code
executed by thread 1, the right tree is only accessible in the code executed by thread 2, and the middle tree
is accessible by both, but has to be locked

Its ownership context is defined as Stack.this. This is just the way to express that the node is actually
owned by the outer stack object, a notation that we can only use with inner classes.

5 Application: Concurrent OO-Programming

Boyapati et al. present a very intuitive way to use ownership types to prevent data races and are also able
to give a simple scheme to prevent deadlocks.

5.1 Data Races

The idea is that instead of just one tree, we have a forest of ownership trees. The root nodes have one of two
special ownership contexts, which is either thisThread or self. If the ownership context is thisThread, then
the object and all the objects it owns are only accessible from within the thread where they were created,
thus we know that we can safely manipulate them without synchronization.

On the other hand, if the ownership context of an object is self, then the object is and all the objects it
owns are shared between all the threads and thus have to be locked before they can be accessed. Whereas
it is usually hard to figure out which part of a composite object to lock best, we have to lock the root of the
self -owned ownership tree here.

Now we can statically check that there is a synchronized-statement around every object that is in a
self -owned ownership tree and therefore guarantee freedom from data races (provided that the programmer
set the synchronized blocks in such a way that they actually guard the actions he considers atomic).

5.2 Deadlocks

When we introduce locking, we usually automatically introduce the possiblity of deadlocks, which occur
when one thread has already locked resource A and now waits for resource B while another thread has
locked resource B and waits for resource A. The simple idea to eliminate deadlocks in this scheme is to
assign a lock level to every root of self -owned ownership trees. Then we can statically check if locks are
aquired in the order of the lock levels and hence guarantee the absence of deadlocks.

6 Conclusion

Ownership types are a field of ongoing research, and the papers presented are from a quite early era of that
research. While the presented systems can express ownership quite nicely, they also have some limitations
in particular do not enable change of ownership, or shared ownership, which might be a - desirable thing
in more complex scenarios (a very limited system of changing ownership dynamically in certain situations

7



has been proposed in the concurrency paper, though, and some kind of shared ownership is presented in
the formalization paper by Clarke et al., but this system on the other hand has the disadvantage that the
number and structure of ownership contexts must be statically know). As always with type systems, the
question is wheter the safety benefit we gain for our programs outweighs the loss of perfectly fine or good
enough programs that are outruled by the type system. So far, ownership types do not seem to have won
that case.

A The papers

A.1 Ownership Types for Flexible Alias Protection

D. G. Clarke, J. M. Potter and J. Noble OOPSLA 1998 : This paper lays the groundwork for ownership
types and introduces the basic ownership type system presented in the beginning. They are able to proof
some important properties of their type system, in particular on what they call Representation Containment,
i.e. the property we showed in figure 1. Types consist of class names and ownership parameters, annotated
like type parameters in generic Java - hence it is not possible to change ownership dynamically. They do
not specify inheritance or subtyping.

A.2 Simple Ownership Types for Object Containment

D. G. Clarke, J. Noble and J. M. Potter - ECOOP 2001 : This paper formalizes the concept of ownership
types. Here, they are presented as an extension to the object calculus of Abadi and Cardelli. They limit
themselves to a scenario where the number and structure of ownership contexts must be known beforehand
and provided as a partial order, though. This still allows many applications, and especially allows more
flexible sharing since the relations now do not necessarily form a tree anymore, but a DAG.

A.3 Ownership Types for Object Encapsulation

C. Boyapati, B. Liskov and L. Shrira - POPL 2003 : Building on the type system presented by Clarke et.
al in 1998, the authors present an extended version of it which also includes inheritance, subtyping an basic
e↵ect clauses. The most important contribution of this paper is the idea to use inner classes as a natural way
of providing access to objects in a way that would violate important properties of ownership relations, which
in this case does not matter because these violations are contained within the outer class and therefore local
reasoning is still possible so long as a class and its inner classes are looked at together. This enables us to
implement iterators.

A.4 Ownership Types for Safe Programming: Preventing Data Races and Deadlocks

C. Boyapati, R. Lee and M. Rinard - OOPSLA 2002 : Here, the authors incrementally present some exten-
sions to the language in the above paper to handle concurrent programming as presented in Section 5. They
also give an overview of possible extensions like basic ownership transfer, using DAGs instead of trees for
the ownership hierarchy, possibilities of type inference and dynamic assignment of lock levels. In addition,
there is an extensive survey on the state of the art in ownership types.

8



B Grammars

B.1 Basic language

p ::= defn ⇤ e

defn ::= class cnhm+i body
body ::= { field ⇤ meth ⇤ }
meth ::= type mn(arg⇤) { e }
field ::= type fn

arg ::= type vn

type ::= cnhow+i
ow ::= m | this | world
e ::= new type | x | let (arg = e) in { e } | x.fn | x.fn = x | x.mn(x⇤) | e; e

m 2 context parameter names
cn 2 class names
mn 2 method names
fn 2 field names
vn 2 variable names

The syntax is rather self-explanatory, the main feature are the context parameters in angle brackets. A
class declaration contains at least one variable context parameter, possibly more, where the first one is the
owner of an instance of that class. The actual parameters are given on instantiation, and field/method type
declarations, where they can either be this, world, or one of the parameters in the class declaration.

B.2 Extended language

p ::= defn ⇤ e

defn ::= class cnhm+i extends c body

c ::= cnhow+i | Objecthow+i | c.cnhow+i
body ::= { defn ⇤ field ⇤ meth ⇤ }
meth ::= type mnhm⇤i(arg⇤) { e }
field ::= type fn

arg ::= type vn

type ::= c

ow ::= m | this | world | cn.this
e ::= new type | x | let (arg = e) in { e } | x.fn | x.fn = x | x.mnhow⇤i(x⇤) | e; e

m 2 context parameter names
cn 2 class names
mn 2 method names
fn 2 field names
vn 2 variable names

The main di↵erence to the syntax presented before is that we allow inner class definitions in the body and
gave context parameters to methods, too (an example of their use can be seen in the Iterator example). We
also see subclassing introduces, therefore we also need to be able to refer to Object as a common superclass.
An important limitation for subclassing is that the first context parameter of the superclass in the class
declaration must also be the first context parameter of the subclass, else one object could have di↵erent
owners depending on the declared type of the object.

9


