
Object Encodings in System F

Or: Stacking µ and 9
Fabian Muehlboeck

March 21, 2012

1 Reminder: object-oriented programming

An object is the combination of some state that the object encapsulates, and some methods to access (and
possibly manipulate) that state. People like to use object-oriented programming because it o↵ers a nice way
to organize a program. Several features are commonly found in most object-oriented languages, the most
important of them are:

1. Encapsulation

We want to factor our data into parts and we completely control all access to those parts, which makes
it easier to guarantee certain invariants.

2. Subtyping

We do not want additional information some objects might have to get in the way of exploiting common
properties of our objects.

3. Classes and Inheritance

We do not only want to share interfaces, but also implementations.

4. Open Recursion

We would like to have a parameter this that lets us reference methods of the same class within the
definition of said methods.

The following example code shows almost all the four features listed above:

public class Point
{

protected int x ;
public Point (int x) { this . x = x ; }
public int getx () { return this . x ; }
public Point move(int d i s t)

{ return new Point (this . x + d i s t) ; }
public Point bump() { return this . move (1) ; }

}

public class Sca ledPoint extends Point
{

protected int s ;
public Sca ledPoint (int x , int s) { super (x) ; this . s = s ; }
public int ge t s () { return s ; }

1

public Sca ledPoint move(int d i s t)
{ return new Sca ledPoint (this . x + d i s t ⇤ s , s) ; }

public Sca ledPoint zoom (int s)
{ return new Sca ledPoint (this . x , s) ; }

}

Subtyping is not directly shown, but any code that is written to use an instance of the Point-class should
also be able to use an instance of the ScaledPoint-class.

It is easy to see what we can do with objects of those classes in Java (in fact, these classes are also
Featherweight Java classes, which is something we will look at later). Now if we want fo formally reason
about programs of this form, we can basically do two things: either we translate it into a calculus we already
know, or we can invent a new calculus, construct all the rules we need and proof the properties we would like
to have. We will use the former approach: we will encode objects and object-oriented programs in System
F (plus varying extensions), which has the nice e↵ect that most proofs are already there and we can use it
to compile our program in a type-preserving way.

In the following, we will first look at some di↵erent basic object encodings for the general concept of
object-oriented programming that were proposed in the 80s and 90s, until we finally look at an encoding
created to support type-preserving compilation for Featherweight Java from the early 2000s.

2 Basic object encodings

All the following examples in this section use System F!

<: with records and pairs, some also use existential
types and/or recursive types (we use letrec to construct these). The syntax and the most important rules
are listed in Appendix A. For readability, we omit fold- and unfold-annotations.

2.1 Interfaces, subtyping and binary methods

We will encode our interface for a Point type as follows:

PT := �� :: ⇤.{getx : Unit ! Int,move : Int ! �, bump : Unit ! �[, equals : � ! Bool]}

Similarly, ScaledPoint will be:

SPT := �� :: ⇤.{ getx : Unit ! Int,move : Int ! �, bump : Unit ! �, gets : Unit ! Int,
zoom : Int ! Unit[, equals : � ! Bool]}

This way, if we have some ⌧ such that PT ⌧ is a well-formed type, any instance of that type will be a
record that exposes some methods but does not expose any state (the methods however might do that). If
we have such an instance p, we could for example write p.getx () to get the x-position of the point.

The equals-method is put between brackets because we will always look at it separately. The reason
for this is that it is a so-called binary method, i.e. a method that takes a parameter an object of the same
type as the object that we are sending the message to. Having � in a contravariant position complicates
subtyping a bit: an SPT (that is, a type that results from applying SPT to some argument) is a subtype
of a PT if and only if SPT and PT were applied to the same argument. As we want methods of Point to
return instances of Point and methods of ScaledPoint to return instances of ScaledPoint, this will usually
not be the case, hence the record types that we want will not be subtypes of each other when we add a
method like equals.

On the other hand, the type function SPT itself is a subtype of the type function PT regardless of
wheter we include the equals-method or not, because here pointwise higher-order subtyping applies, which
state that the results have to be in a subtyping relation if we apply the same argument (which is, as we saw
above, true in our case). This will have some interesting consequences in the di↵erent encodings that we are
going to look at.

2

2.2 OR - encoding objects using recursive types

When thinking about how to encode an object, one might focus on the fact that it should sometimes return
an instance of its own type (as we saw in the move- and bump-methods for the Point-class). This leads to
the use of recursive types, and thus our first encoding:

OR := �↵ :: ⇤ ! ⇤.µ�.↵�

OR takes a signature and produces from it a recursive type. Applied to our Point signature PT, we get

OR PT := µ�.{getx : Unit ! Int,move : Int ! �, bump : Unit ! �}

Can we create an instance of that type? Yes:

makepoint := letrec mkobj : Int ! OR PT =
�x : Int.

{ getx = � :Unit. x,
move = �d:Int.mkobj (x+ d),
bump = � :Unit.mkobj (x+ 1)}

in mkobj

Similarly, for SPT, the type is:

OR SPT := µ�.{getx : Unit ! Int,move : Int ! �, bump : Unit ! �, gets : Unit ! Int, zoom : Int ! Unit}

and an instance is created by:

myspoint := letrec mkobj : {x : Int, s : Int} ! OR SPT =
�p : {x : Int, s : Int}.

{ getx = � :Unit. p.x,
move = �d:Int.mkobj {x = p.x+ d ⇤ p.s, s = p.s},
bump = � :Unit.mkobj {x = p.x+ s, s = p.s},
gets = � :Unit. p.s,
zoom = �d:Int.mkobj {x = p.x, s = s ⇤ d}}

in mkobj

You might have observed a few things here:

1. Encapsulation works quite naturally. There is no way one could look at the content of x from the
outside. Also we can easily call methods by just using the .-notation:

(((makepoint 5).bump ()).move 2).getx () = 8

2. Subtyping works fine (without binary methods): if we just replace makepoint in the above code by
makespoint, we get the same result.

3. We did not implement the bump-method in terms of move as we did in the initial Java-code. It was
not possible since there was no way to access the move-method in the definition of the bump-method.

4. While OR SPT is a subtype of OR PT , we did not use inheritance. Intuitively, this was not possible
because both objects completely encapsulate their inner state.

3

2.2.1 Self-recursion

Let us fix the bump-method first. What we need is a self-parameter that we can use in the method definitions,
such that we can write something like bump = � :Unit. self.move 1. So let’s just create such a self:

makepoint := letrec mkobj : Int ! OR PT =
�x : Int.

let self = mkobj x in

{ getx = � :Unit. x,
move = �d:Int.mkobj (x+ d),
bump = � :Unit. self.move 1}

in mkobj

The same principle works for ScaledPoint.

2.2.2 Binary Methods

Now it is time to look at our equals-method. In Java, if we have an argument of the same class, we can
access its private members, that is, we can also access the values that form its state. This is not possible
in the OR encodings (in fact, it is not possible in any of the encodings presented in this part), because
we do not handle the classes as types and thus do not know the internal structure of an object even if it
implements some interface. Luckily, we have the getx-method, so we can just ask an object for that value
from the outside:

makepoint := letrec mkobj : Int ! OR PT =
�x : Int.

let self = mkobj x in

{ getx = � :Unit. x,
move = �d:Int.mkobj (x+ d),
bump = � :Unit. self.move 1,
equals = �o:OR PT. x = o.getx}

in mkobj

The problem here is that we lose subtyping. OR PT and OR SPT including equals look as follows:

OR PT := µ�.{getx : Unit ! Int,move : Int ! �, bump : Unit ! �, equals : � ! Bool}

OR SPT := µ�.{ getx : Unit ! Int,move : Int ! �, bump : Unit ! �,
gets : Unit ! Int, zoom : Int ! Unit, equals : � ! Bool}

Following the Amber-rule for subtyping of recursive types, we see that OR SPT is not a subtype of
OR PT (and of course, vice versa):

↵ <: � ` F ↵ <: J �

µ↵.F ↵ <: µ�.J �
S-Amber

2.3 OE - encoding objects using existential types

As you may have guessed, recursive types are not the only way to encode objects. Not using recursive
types may make our type system strongly normalizing. Talking about interfaces and implementations, using
existential types seems a natural way to encode objects, too. We present OE, a type function to create an
object type from our interface:

OE := �↵ :: ⇤ ! ⇤.9�.(� ⇥ (� ! ↵�))

4

Here, we need some witness type. As there is no recursion, it cannot be the object itself. Rather, we use
the type of the object’s state as a witness type. The type and a constructor for an object of the point class
will then look as follows:

OE PT := 9�.(� ⇥ (� ! {getx : Unit ! Int,move : Int ! �, bump : Unit ! �}))

makepoint := �n:Int.pack (Int, (n, �x:Int.
{ getx = � :Unit. x,

move = �d:Int. x+ d,
bump = � :Unit. x+ 1}))

The first thing we see is that methods do not return objects anymore, just state. This means that in
this encoding, the caller has to repackage an object after having unpacked it and called whatever method he
wanted. We can define an shorthand for calling methods:

o <= l := unpack (↵, (s, m)) = o in (m s).l

This way, given an object o of type OE PT , we can call all our three methods by writing (o <= getx) (),
(o <= move) 3 or (o <= bump) (). However, this time all three methods return an Int. The caller on the
other hand only knows this of the getx-method. He has to repackage the object after every call that returns
the state of the object before he can send the next message (and he cannot do anything else with it, so we
still have encapsulation here). We cannot put the repackaging code into the shorthand we defined above,
because not every method returns an instance of the state type (imagine the state would rather be a record
with one Int-field, getx would still return an Int, but move and bump would not).

We can again use shorthands, this time define them for all the methods that need repackaging, for
example:

o << move := �d:Int.unpack (↵, (s, m)) = o in (pack (↵, ((o <= move) d, m)) as OE PT)

2.3.1 Self-recursion

Self-recursion in OE works similar to OR. We have to use letrec to create the function that creates the
method record from some state, then we can create a self instance of that record and use it in the definition
of our methods. Then we package the function along with some state into the existential type - no recursion
will be visible to the outside.

2.3.2 Binary Methods

There are good news and bad news related to binary methods in OE.
The good news is: subtyping works. Because of the existential outside, it is only important if the inner

parts are in a subtyping relation when the witness type is the same for both types.
The bad news is: we cannot program equals (and no other binary method, for that matter). This is

because the existential type parameter is not the type of the whole object, but just of the state. As we are
just discussing objects that implement some interface, but have their state hidden in an existential type, we
do not know what the state of any other object looks like. E.g. if we have two objects o1, o2 of type OE PT ,
we cannot write (o1 <= equals) o2 since the argument of equals must be of the state type of o1. But even
if we unpack o2 to access its state, we do not know it’s type. Therefore we are unable to write a well-typed
binary method in our OE-setting.

2.4 ORE - encoding objects using recursive and existential types

Repackaging the object every time as the caller of a method is quite tedious. But in order to be able to
return an already repackaged object, we need to know the type of the object for the return types, bringing
us back to recursive types and our next encoding:

5

ORE := �↵ :: ⇤ ! ⇤.µ�.9�.(� ⇥ (� ! ↵�))

We will skip the incremental definition an just provide types and implementations of our classes in this
scheme:

ORE PT := µ�.9�.(� ⇥ (� ! { getx : Unit ! Int,move : Int ! �, bump : Unit ! �
[, equals : � ! Bool]}))

close
Point

:= �obj :{x : Int}⇥ ({x : Int} ! PT ORE PT).
pack ({x : Int}, obj) as ORE PT

makepoint := letrec makemeth : {x : Int} ! PT ORE PT =
�p: {x : Int}.

let self = close
Point

(p.x,makemeth,)in
{getx = � :Unit. p.x,
move = �d:Int. close

Point

({x = p.x+ d}, makemeth),
bump = � :Unit. self <= move 1}

in

�n:Int. close
Point

({x = n}, makemeth)

close
x

is a notational shortcut for repackaging an object. In contrast to OE, binary methods can be
programmed in ORE, as in OR, because the type of the argument is a whole object again, and we can
express message sending uniformly as follows:

o <= l := unpack (↵, (s, m)) = o in (m s).l

However, as in OR, subtyping gets lost on the way.

2.5 ORBE - encoding objects using recursive and bounded existential types

ORBE := �↵ :: ⇤ ! ⇤.µ�.9� <: �.(� ⇥ (� ! ↵�))

The basic idea of ORBE comes from the an alternative implementation of self-recursion in OE. Instead of
creating self from the state each time we create the method record from the state, we could create self from
the state outside of the existential, and then just pack the whole self instead of just the state - thus the state
of the object is the object itself. This could eliminate the need for re-packaging the object on the outside,
but there we do not know this from the type OE constructs. ORBE can be seen as an extension of OE that
makes the shape of its state at least partly public. An interesting thing is that any ORBE object could also
be an ORE or OE object. Sadly, it does not combine the two in terms of binary methods in terms of being
expressible and retaining subtyping, but rather it su↵ers from the same deficiency as OE. Subtyping with
binary methods would work, but there is no way to program the function right because altough the state
type is at least partially known, that still does not su�ce to know that an argument exactly has the same
state type as the object. A last problem of ORBE is also that in order for subtyping to work, we need to
allow the bounds of the bounded existential types to vary. The rule that allows that makes the subtyping
relation undecidable.

2.6 Summary

This part gave an overview of the Comparing Object Encodings paper by Bruce, Cardelli and Pierce. All the
compared encodings have their strenghts and weaknesses, but it seems that the weaknesses of OR and ORE
are more acceptable than those of OE and ORBE. Sadly, their comparison does not give any substantial
di↵erence between OR and ORE. The only di↵erence they claim is that in OR, the default protection of
instance variables is public since there is no existential to express that something is hidden. However, those
variables are not accessible from the outside either, since they are hidden in the implementation of the
methods.

6

3 Type-preserving compilation of Featherweight Java

3.1 Featherweight Java

Featherweight Java is a subset of real Java that provides a functional kernel of the language, designed to
be easily extensible and as small as possible while still expressive. It provides classes and inheritance, but
no interfaces, and a strictly functional, stateless style. Fields can be assigned only once, in the constructor,
which in turn takes a value for every variable as argument. The last thing that is supported is dynamic
casting. There are no ints or bools or control structures, but exactly five forms of terms: variables, field
accesses, method invocations, constructor invocations and casts.

Along with FJ comes a complete yet simple type system and operational semantics with proofs of progress
and preservation. We will look at a proposed encoding of FJ in System F designed for type-preserving
compilation. The full details of the encoding are not within the scope of this notes - we will just look at the
way objects are encoded and how subclassing and inheritance work. In general, the presented encoding is
able to support type-preserving, modular compilation of full Featherweight Java.

3.2 System F extensions

The most important extension this encoding uses are row types. These are ordered records that are annotated
with a set of labels that may not occur in the record, and they have an optional tail. In short, a row type
looks like {l1 : ⌧1, . . . , ln : ⌧

n

; ⌧ 0} and has kind RL, where ⌧ 0 is the tail of the row and has kind RL

0
s.t.

L0 = L[{l1, . . . , ln} and {l1, . . . , ln}\L = ; (this means that L is a set of labels that may not appear in the
record, therefore they also may not appear in the tail. In addition to that, the tail may not contain labels
that already appear in the front of the record). The second important extension we will see are tuple kinds.
They basically are records for types, written {l1 :: k, ..., l

n

:: k}. When given a type ↵ of that kind, we can
select the type labeled l

i

by writing ↵ · l
i

.

3.3 Object Encoding

The object encoding that was chosen here very closely resembles the typical in-memory layout of objects: it
is a row type that’s first element is another row that contains the methods of the object, and the rest of the
elements are the fields. Another important basic concept is that self-application is used for method calls, i.e.
o.bump becomes (o.vtab.bump)o. This means that the first parameter of every method will have the type of
the object, so we already have a self/this included in our method calls. We will see that this has a rather
drastic e↵ect on subtyping.

Let us see how Point would look like in this encoding. First, we need a row type that matches the
convention mentioned above: a method table at the beginning, and after that, the fields:

⌧
Point(1)

:= {vtab : {getx : ?PT? ! Int,move : ?PT?, Int ! ?PT?, bump : ?PT? ! ?PT?}, x : Int}

So we have the general structure of our type, and we know at least some input and output types. For
?PT? we have to insert the type of the object itself. Fortunately, we know a way how to do that:

⌧
Point(2)

:= µ↵ :: ⇤.{vtab : {getx : ↵ ! Int,move : ↵, Int ! ↵, bump : ↵ ! ↵}, x : Int}

That almost looks like the OR encoding that we looked at in the beginning. There is just a small problem:
the ↵ is in contravariant positions now. If we extend Point to ScaledPoint, we get:

⌧
ScaledPoint(2)

:= µ↵ :: ⇤.{ vtab : { getx : ↵ ! Int,move : ↵, Int ! ↵, bump : ↵ ! ↵,
gets : ↵ ! Int, zoom : ↵, Int ! ↵},

x : Int, s : Int}

Here, ScaledPoint is not a subtype of Point. Luckily, we can add a thing to our encoding such that it
does not need to be: the important observation is that when we check a program statically, we only care
for the declared types of our variables. That is, if we supply a ScaledPoint for a variable of declared type

7

Point, we only care about the parts of the records that are in Point. These can be conveniently found in the
front of the records, whereas the parts that ScaledPoint adds are in the tail. So all we have to do is make a
ScalePoint look like a Point at certain positions in the code by hiding those tails. This can be achieved with
an existential type:

⌧
Point

:= 9� :: {f :: R{vtab,x},m :: ⇤ ! R{getx,move,bump}}.
µ↵ :: ⇤.{vtab : {getx : ↵ ! Int,move : ↵, Int ! ↵, bump : ↵ ! ↵;� ·m ↵}, x : Int;� · f}

Now we just need to repackage ScaledPoint into a Point by providing the correct witness type, which in
this case would be:

{f = {s : Int},m = �↵ :: ⇤.{gets : ↵ ! Int, zoom : ↵, Int ! ↵}}

Note that binary methods like equals would still not work. The reason for this is that all the alphas
are replaced with the same type on repackaging, hence the argument for the equals-method of a repackaged
ScaledPoint would demand the witness type of the repackaged ScalePoint, which is not the witness type
of a Point, hence we could not use a Point as an argument to the equals-method of a ScaledPoint that is
repackaged as a Point, violating the substitution principle.

The last component that should be enabled by the FJ!F encoding is open recursion. We want to be
able to have mutually recursive types, and possibly have types to explicitly refer to themselves. Therefore,
we recursively define a tuple of types that consists of all our types:

µ� :: { Point :: ⇤, ScaledPoint :: ⇤}.
{ Point = 9� :: {f :: ...,m :: ...}.µ↵ :: ⇤.{vtab : ..., ...}

ScaledPoint = 9� :: {f :: ...,m :: ...}.µ↵ :: ⇤.{vtab : ..., ...}}

This way, we can get a less powerful version of the equals-method while keeping subtyping or rather the
ability to repackage ScaledPoints as Points: we can explicitly let the type of the second argument be Point
(in our notation expressed as � · Point) instead of ↵ in both classes. Then both have to accept any value
packaged as Point, and di↵erent packagings have no influence on the type of the second argument.

3.4 Subclassing and Inheritance

In languages with classes, objects of a class usually share their implementation, i.e. they all have the same
method table. In the presented translation, this is represented by polymorphic dictionary records. The key
idea is that we accept any tails for the method and field records to be able to specify the self type. Then a
subtype just has to specify the right tails to instantiate the a version of the supertype’s method record that
is tailored to the subtype.

We give a short example how that would look like for our running example. Here, ktail
X

represents the
tail kind of some class X. It is a record kind of the form {m : ⇤ ! RM , f : RF }, where M is the set of
already used method names in X and F is the set of already used field names, and Rows

Y,Z

gives us the
right type of such a tail kind that specifies the methods and fields Y has that Z does not. Lastly, tail[x]
returns the tail of a given record. The last two definitions (Rows and tail) do not follow the paper exactly
but are simplified, thus the examples below do not fully represent the true translation, but should su�ce to
demonstrate the underlying ideas:

s
Point

:= �� :: ktail
Point

.µ↵ :: ⇤{vtab : {getx : ↵ ! Int,move : ↵, Int ! ↵, bump : ↵ ! ↵; (�·m) ↵}, x : Int;�·f}

dictPT := ⇤� :: ktail
Point

.{ getx = �this:s
Point

�. this.x,
move = �(this, d):s

Point

� ⇥ Int. {vtab = this.vtab, x = this.x+ d;tail[this]},
bump = �this:s

Point

�. this.vtab.move this 1}

s
ScPoint

:= �� :: ktail
ScPoint

.µ↵ :: ⇤{vtab : {getx : ↵ ! Int, ..., gets : ↵ ! Int, ...; (�·m) ↵}, x : Int, s : Int;�·f}

8

dictSPT := ⇤� :: ktail
ScPoint

.{ getx = (dictPT Rows
ScPoint,Point

).getx,
...
gets = �this:s

ScPoint

�. this.s,
...}

3.5 Visibility

Currently, all fields are public - an objects type is just a record that specifies the fields, so we can access
them from anywhere given an object. An existential type can help us hide private fields from everyone else.
The easiest way to do this is to alter the record layout a bit, such that private fields are in an own record
for each class. The record format would thus be:

{vtab : ..., point : {px : ..., py : ...}, pz : ..., spoint : {spx : ...}, spy : ...}

Here, a point would have private fields px and py and a public field pz, and a scaled point would have a
private field spx and a public field spy. Now the type of the private fields would be hidden in existentials,
and we would have to do some more packing and unpacking, but we would have a basic implementation
of private fields. However, in Java, one may access the private fields of another object of the same class.
This gets a little trickier, a lot of information about all the types in the program has to be carried around
throughout the code.

Private methods on the other hand are easy - the dictionary definition just has to be extended such that
it includes their definition such that the other methods can use them, but does not include them in the
result.

Implementing protected and package visibilities is a lot harder, like with accessing private fields of other
objects of the same class, a lot more information needs to be passed around to enable things to know the
right types at the right positions.

A F-Omega - syntax, extensions and important rules

A.1 Syntax of F-Omega

Terms e ::= x | �x:⌧. e | e e | ⇤↵ <: ⌧.e | e[⌧] | (e, e) | fst e | snd e
{l = e . . . l = e} | let x = e in e | letrec x : ⌧ ! ⌧ = e in e |
pack (↵, e) as ⌧ | unpack (↵, x) = e in e

Values v ::= b | �x:⌧. e | ⇤↵ <: ⌧.e | (v, v) | {l = v . . . l = v} | let x = e in e |
letrec x : ⌧ ! ⌧ = e in e | pack (↵, v) as ⌧

Types ⌧ ::= B | ↵ | ⌧ ! ⌧ | 8↵.⌧ | �↵ :: k.⌧ | ⌧ ⌧ | ⌧ ⇥ ⌧
9↵.⌧ | µ↵.⌧ | {l : ⌧ . . . l : ⌧}

Kinds k ::= ⇤ | k ! k

Var-Contexts � ::= ; | �, x : ⌧

Type-Contexts � ::= ; | �,↵ :: k

Here, x are variables, b are base values, B are base types, and l are labels.

A.2 Important Subtyping rules

↵ <: � ` F ↵ <: J �

µ↵.F ↵ <: µ�.J �
S-Amber

The Amber rule gives us subtyping for recursive types. F and J are type functions.

9

↵ <: ⌧1 ` ⌧3 <: ⌧2
8↵ <: ⌧1.⌧3 <: 8↵ <: ⌧1.⌧2

S-All-Kernel-Sub

This rule is called the Kernel subtyping rule for bounded polymorphic functions. It allows subtyping only
for invariant bounds, and su�ces for all presented encodings except for ORBE.

` ⌧1 <: ⌧4 ↵ <: ⌧1 ` ⌧3 <: ⌧2
8↵ <: ⌧4.⌧3 <: 8↵ <: ⌧1.⌧2

S-All-Full-Sub

ORBE needs theFull subtyping rule for bounded polymorphic functions in order to be able to have variable
bounds. This makes the subtyping relation undecidable.

A.3 Row types

Basic explanations of the presented extensions were given in section 3.2 . We give the typing rules for row
types:

� ` Abs

L :: RL

(1)

AbsL is the type of an empty row that trivially contains none of the labels in L and therefore has the
corresponding row kind.

� ` ⌧ :: ⇤ � ` ⌧ 0 :: RL[{l}

� ` l : ⌧ ; ⌧ 0 :: RL�{l} (2)

Next, appending a label with some type to a row type that does not already contain that label procudes a
new type of a kind that does not exclude that label anymore (since it already contains it).

� ` ⌧ :: R;

� ` {⌧} :: ⇤
(3)

And lastly, a row constructor (the bold braces) used with a type of a row kind that does not exclude any
labels (one could also say it does not miss any labels) is viewed as complete, hence we can lift it to a full
type.

10

