
Types for Module Systems

Jonathan Schuster

In this talk, I will be discussing type systems for ML modules. Specifically,
we’ll look at some of the complications that arise when trying to extend the
typical features of the ML module system to give it more practical value, and
then we’ll talk about one specific formulation of a type system for ML modules
encoded in System F!. The information in this talk primarily comes from Derek
Dreyer’s PhD thesis [1] and Russo et al.’s paper, F-ing Modules [3].

1 ML Module System - The Basics

First, let’s review the general ideas behind ML modules. The syntax I use here
is slightly di↵erent from what is seen in something like Standard ML, but it’s
only for the purpose of presentation—the concepts remain the same.

Let’s take a look at what a module for sets of integers might look like:

IntSet = {

type set = int list;

val empty = nil;

val insert = fn (x : int, s : set) : set => ...

val isMember = fn (x : int, s : set) : bool => ...

}

In this example, we have a module IntSet that has one type declaration and
three value declarations. Value declarations work similarly to fields in records:
you bind them to a variable, and you can project them from the record with
the usual dot syntax (e.g. IntSet.empty). The type declaration type set

essentially just renames the type int list—with this module, whenever you
see set, you can just mentally replace it with int list. You can also declare
submodules within a module with something like module X = { ... }.

This module is fine as far as it goes, but right now, every consumer of
this module knows that sets are represented as lists and can exploit that fact.
We’d like to hide our representation type from the consumer, and this is where
signatures and sealing come in.

Think of a signature as the type of a module—it tells the consumer what
it can do with a module. For our IntSet module, the signature might look
something like this:

1

INT_SET_SIG = {

type set;

val empty : set;

val insert : (int * set) -> set

val isMember : (int * set) -> bool

}

Notice the type declaration in the signature: the signature doesn’t say any-
thing about it other than that it’s a type. We’ve e↵ectively specified an abstract
type, and we call this an opaque type declaration. If we had specified the actual
type, with syntax like type X = some type, we would call it a transparent type
declaration. Note that just as values can have a principal type, a module can
have a principal signature that gives the most specific information about that
module.

Finally, to hide the type information, we have to apply the signature through
an operation called sealing :

SealedIntSet = IntSet :> INT_SET_SIG

Now consumers of SealedIntSet cannot exploit its internal representation
type.

Great, we have a modular implementation of sets with information hiding.
But what if we want to generalize this to sets of any type of element? This is
where functors come in. A functor is essentially a function at the module level:
it takes one or more modules as input and returns a module as output.

To use this on our set example, though, we need one more thing, which is
the idea of translucent signatures. If after defining a signature, you want to give
a little more information about one of its types, you can do so with syntax like
the following:

SOME_SIG where type t = some_type

Now, let’s generalize our IntSet module as a functor:

ITEM_SIG = {

type item;

val equals : item * item -> bool;

}

SetFunctor = fun (Item : ITEM_SIG) => {

type set = Item.item list;

type item = Item.item;

val empty = nil;

val insert = fn (x : item, s : set) : set => ...

val isMember = fn (x : item, s : set) : bool => ...

} :> SET where type item = Item.item

2

We now have a set functor that can be used for any kind of set. For example,
if we wanted a module for a set of integers and another for a set of strings and
if we had the appropriate Integer and String modules that were sealed with
ITEM SIG, we could do the following:

IntSet = SetFunctor(Integer)

StringSet = SetFunctor(String)

2 Complications

2.1 Higher Order Functors

Now that we’ve seen the basics of the ML module system, let’s see what happens
when we try to extend it with features programmers might want. First, what
happens if we make functors higher order? That is, what if functors can consume
or produce other functors as input/output, and not just modules? Consider the
following:

SIG = { type t; }

Apply = fun (F : SIG -> SIG, X : SIG) => F(X)

Ident = fun (X : SIG) => X

Arg = { ... type t = ... } :> SIG

M1 = Ident(Arg)

M2 = Apply(Ident, Arg)

Looking at this code, you can see that Apply just applies its first argument (a
functor) to its second, and that Ident is simply the identity functor for modules.
SIG is just a signature that declares a single abstract type.

Now, consider M1 and M2. One would think they would behave similarly, and
they mostly do, except for one point: The typechecker recognizes M1.t to be
the same as Arg.t, but cannot see the same equivalence for M2.t. Why is this?

The reason is that the principal signature of Ident is (X : SIG) -> SIG

where type t = X.t, so the typechecker can link the type of Ident’s argument
and its result. However, with our current language, we can’t express a signature
for Apply that gives us enough information to do something like this.

One solution, proposed by MacQueen and Tofte, is to re-typecheck Apply’s
body whenver it is used and gain extra type information that way. This will
allow programs like the one above to pass, but it has two main issues:

1. This solution only works when the compiler has access to the body of
Apply. For instance, this won’t work if Apply was compiled separately.

2. The signature we give the module no longer expresses the type we want
it to have—in a sense, the typechecker has more information than is en-
coded in the signature. We’d rather have some more expressive signature
language that can express the equivalence relation we want.

3

A better solution is the idea of an applicative semantics for functors. So far,
the functors we have been dealing with are generative, in that they generate new
abstract types every time they are called. With applicative functors, the idea is
that applying the same functor to the same arguments should always give you
a module with the same abstract types, no matter how many times you apply
it. Along with this, the syntax is extended to allow for projection of types from
functor applications as well. So, in an applicative setting, Apply would have the
following principal signature:

(F : SIG -> SIG, X : SIG) -> SIG where type t = F(X).t

The above signature allows us to express the typing relationship we want
and fixes the problem with Apply.

That’s not to say that applicative functors are always the right answer,
though. For example, you might want to create a module for a lookup table
that generates a new key for each value you insert. Generative functors would
allow you to ensure that a key can only be used with the module that generated
it.

2.2 Recursive Modules

Another feature we’d like to have in our module system is mutually recursive
modules. For example, we’d like to write something like this:

A = {

val m = ref 0;

val f = fn (x : int) => ... B.g(y) ...

}

B = {

val n = ref 1;

val g = fn (z : int) => ... A.f(w) ...

}

Unfortunately, ML doesn’t allow this: a module is only in scope after its
own declaration. There are a few workarounds to get around this, however.
One could just move the needed declarations into the same module, but then
we lose the modular structure we were trying to create. We could also create a
functor that’s parameterized over the defintion of one of the modules and use
it as a sort of forward reference, but that gets a bit ugly when more modules
come into play. A third option is to use something like Scheme’s backpatching
system, setting one of the modules to a memory reference that only gets its
value after the module is created.

However, none of these workarounds are satisfactory: they don’t scale well
as the number of mutually recursive modules grows, and some structures can
only be created with truly recursive modules. In the end, we really want some
sort of form for recursive modules, like this:

4

rec(X:S.M)

The idea is that this form defines a module M, where X is bound in its scope
to the value of the module itself. The module must match the signature S.

Using this structure, we could define our example above as a module with
two mutually recursive submodules:

M = rec(X:SIG.{

A = {

val m = ref 0;

val f = fn (x : int) => ... X.B.g(y) ...

}

B = {

val n = ref 1;

val g = fn (z : int) => ... X.A.f(w) ...

}

})

That’s nice, but we haven’t defined the actual semantics of our rec form.
Let’s just do the naive thing and say that it’s equivalent to its unfolding,
M[rec(X:S.M)/X]. Note that this means the module M will get re-evaluated
every time it references X.

That works fine in a purely functional system, but what if our modules
also have values that can have side e↵ects (such as m and n above)? In this
case, every time we recursively reference the module, we e↵ectively reset any
state associated with the original version. Instead of re-evaluating the module,
what we really want to do is use the same module for every unfolding. We can
accomplish this by using the Scheme-like backpatching trick mentioned above
as a workaround, but we instead do it internally so that it’s invisible to the
programmer.

This leaves just one question: How do we ensure that X is not referenced
before it’s bound to the “value” of the module? This can be done either statically
or dynamically, but in the interest of time, I won’t go into those methods here.

3 Encoding ML Modules in System F
!

(F-ing
Modules)

3.1 Motivation

In 1986, David MacQueen wrote a paper arguing that existential types were too
cumbersome to express a type system for every day modular programming (such
as in ML) [2]. In MacQueen’s opinion, restricting operations on existential types
to the scope of an unpack form was too limiting and inevitably led to expanding
the unpack’s scope to include large portions of the program. As an alternative,

5

he proposed using strong existentials, which adds the type e.↵ and a type rule
like the following:

�;� ` e : 9↵.� �,↵;�, x : � ` e

0 : ⌧ 0 � ` ⌧

0
↵ /2 � pure(e)

�;� ` unpackh↵, xi = e in e

0 : ⌧ 0[e.↵/↵]

Note that this essentially allows existentially bound types to escape their
unpack by being bound to their original pack expression.

However, allowing terms into the type language created a dependent type
system, which of course has undecidable type-checking in general. Over the
next two decades, researchers created more and more refined type systems to
resolve this issue, but none were satisfactory, and they gave the ML module
system the reputation of being overly complex. What was needed was a simple
to understand static and dynamic semantics for the ML module system.

Finally, in 2010, Rossberg et al. published F-ing Modules [3], contradicting
MacQueen’s opinion of existential types and arguing that one could indeed sim-
ply express the semantics of ML modules using nothing but the type system of
System F!. This led to the paper’s slogan, “ML modules are just a particular
mode of use of System F!.” The rest of this talk describes their solution.

3.2 A Description of Elaboration

The key insight of the F-ing Modules approach was that, instead of giving a
direct semantics for ML, one should define an elaboration semantics that defines
the language in terms of some other target language (in this case, System F!).
Thus, ML terms elaborate to F! terms, ML types elaborate to F! types, etc.

The main question is how to elaborate ML modules and signatures, especially
their abstract types. To address this, the paper presents the idea of semantic

signatures. A semantic signature is an F! type that represents the semantic

interpretation of a syntactic signature in ML. Specifically, a semantic signature
is an existential type that binds all of the abstract types in the ML signature.
We represent a semantic signature as ⌅, which has the form 9↵.⌃. We call this
an abstract signature, since it binds abstract types. ⌃, on the other hand, is
a concrete signature: an F! record type that gives the types for the various
declarations within the module/signature.

Let’s look at a concrete example. Recall the signature of our original Set
module, INT SET SIG:

INT_SET_SIG = {

type set : *;

val empty : set;

val insert : (int * set) -> set;

val isMember : (int * set) -> bool;

}

6

I’ve added the kind annotation to the type here, since we’ll now be deal-
ing with higher-kinded types. By elaborating this syntactic signature into a
semantic signature, we get the following:

9↵.{lset : {typ : 8� : (⌦ ! ⌦).�↵ ! �↵},
lempty : {val : ↵},
linsert : {val : Int⇥ ↵ ! ↵},
lisMember : {val : Int⇥ ↵ ! Bool}

}

This looks complicated, but let’s break it down. First, notice that the type
declaration has been turned into the existentially bound type ↵, and its scope
is the entire signature. Any abstract types defined in a module or a submodule
are always hoisted to the top-level of the signature.

Ignoring the type declaration lset for a moment, we have three other labels
in our concrete signature: lempty, linsert, and lisMember. We assume that we can
inject any module field name X into a record label lX , and that these labels will
not conflict with other labels used in the target language. Every declared field
in a module will become one of the fields in an F! record type, but since we
need to distinguish between value and type declarations, we wrap each one in
a single-field record labeled as either “typ” or “val”. Within that record type,
you can see that each of the functions has the expected type.

Finally, examine the field for the type declaration, lset. If you look closely,
you can see that this is essentially an identity function. The reason for this is
that we don’t really care what the value of this declaration is - we only need it
for typechecking, and then we can ignore the actual value at runtime.

Elaborating the actual module SET gives the expected corresponding value
of the above type:

packhIntList, {lset = {typ = ⇤↵ : (⌦ ! ⌦).�x : ↵ IntList.x},
lempty = {val = (. . .)},
linsert = {val = (. . .)},
lisMemmber = {val = (. . .)}}i

I’m not showing the translations of the functions here since this presenta-
tion assumes some elaboration for the terms of the core language (lambdas,
applications, etc.).

Writing out the records that wrap values as typ and value gets messy, so we
introduce the following shorthand:

7

(value declaration type) [⌧] := {val : ⌧}
(type declaration type) [= ⌧ :] := {typ : 8↵ : (! ⌦).↵⌧ ! ↵⌧}

(value binding) [e] := {val = e}
(type binding) [⌧ :] := {typ = ⇤↵ : (! ⌦).�x : ↵⌧.x}

Using this shorthand, our examples become the following:

9↵.{lset : [= ↵ : ⌦]},
lempty : [Int],

linsert : [Int⇥ ↵ ! ↵],

lisMember : [Int⇥ ↵ ! Bool]}

packhIntList, {lt = [IntList : ⌦],

lempty = [(. . .)],

linsert = [(. . .)],

lisMemmber = [(. . .)]i

Projecting a value out of the module does the appropriate packs and unpacks.
For example, the expression IntSet.empty would elaborate to this:

(unpackh↵, yi = (unpackh↵, xi = IntSet in pack h↵, x.lIntSeti) in y).val

3.3 A Peek at the Elaboration Rules

Now that you have an intuition for how the system works, let’s look at the
actual formalisms. The elaboration is done through a series of syntax-directed
elaboration judgments, the majority of which are translation judgments that
specify how to convert a term from ML to its corresponding syntax in F!. For
example, let’s look at the rule for value declarations in a signature:

� ` T : ⌦ ⌧

� ` val X : T {lX : [⌧]}

The conclusion of this rule can be read as “Gamma proves the value decla-
ration elaborates to the F! declaration {lX : [⌧]}”. The premise checks to make
sure that the given type is a proper type, and it produces its corresponding F!

type ⌧ , which is used in the conclusion.
Similarly, let’s look at the rule for a value binding in a declaration:

� ` E : ⌧ e

� ` val X = E : {lX : [⌧]} {lX = [e]}

8

The conclusion of this rule is similar to the earlier rule, except that along
with producing the F! type, we also produce the F! value, e. The premise says
that to translate this value binding, we have to have that the ML expression E

translates to the F! expression e with type ⌧ .
Next, let’s look at the rule for sealing a module:

�(X) = ⌃ � ` S ⌅ � ` ⌃ ⌅ " ⌧ f

� ` X :> S : ⌅ packh⌧ , fXi

There are two important things to note here. The first is that, since we’re
sealing a module, we introduce a pack form to seal away our abstract types.
Second, we’ve introduced a new type of judgment in our last premise. This
judgment is the signature matching judgment. It says that the concrete signa-
ture ⌃ matches the abstract signature ⌅ if you replace all instances of ↵ in ⌅
with ⌧ , and it returns a function f that converts an F! module expression from
the concrete type to the abstract type.

The module projection rule is what takes care of most of the automatic
packing and unpacking:

� ` M : 9↵.{lX : ⌃, lX0 : ⌃0} e

� ` M.X : 9↵.⌃ unpackh↵, yi = e in packh↵, y.lXi

As you can see, this rule unpacks the given module expression, projects out
the desired field, and repacks it with the same types. A later rule converts
this new pack expression into a normal expression by checking that none of the
abstract types are needed in the enclosed value.

Finally, the two other interesting rules are the abstraction and application
rules for functors:

� ` S 9↵.⌃ �,↵, X : ⌃ ` M : ⌅ e

� ` fun(X : S)) M : 8↵.⌃ ! ⌅ ⇤↵.�X : ⌃.e

�(X1) = 8↵.⌃0 ! ⌅ �(X2) = ⌃ � ` ⌃ 9↵⌃0 " ⌧ f

� ` X1(X2) : ⌅[⌧/↵] (X1⌧)(fX2)

In a sense, you can see how these look like the typical lambda abstraction
and application rules from the STLC. In the abstraction rule, we check that
the body of the functor has a certain “type” (signature) when evaluated in the
environment where the ↵ and X are bound. In the application rule, we check
that X1 is actually a functor, and we check that X2 matches the type that the
functor expects.

The application rule introduces the signature matching judment, � ` ⌃
9↵⌃0 " ⌧ f . The judgment says that the concrete signature ⌃ matches the
abstract signature 9↵.⌃0 if one substitutes the types ⌧ for ↵, and it gives the

9

conversion function f which converts a module expression matching the concrete
signature to one that matches the abstract one with the types substituted in.
The rule for that judgment basically just does the substitution for the types and
checks that ⌃ is a subtype of the resulting type.

There are several more rules like the ones I’ve shown, but the above are
some of the most interesting. By following these rules in a syntax-directed way,
a program can come up with a complete translation of an ML program into F!.

3.4 Soundness

As it turns out, proving soundness is rather easy in this system. Since we’re
elaborating ML expressions to terms in F! (which we know to have a sound
type system), all we have to do is prove that the elaboration only produces well-
typed terms in F!. We can prove this using a relatively simple simultaneous
induction on derivations of our various elaboration judgments, but I won’t go
into any more detail here.

3.5 Controversy of Elaboration Semantics

Something I found interesting: in all of this, while we proved type soundness, we
haven’t tried to prove any sort of semantic equivalence, which seems especially
important for something with a formal definition like SML. Instead, we actually
define the language in terms of this elaboration. Perhaps future work would
look at some sort of semantic equivalence.

3.6 Conclusion

In their work, Russo et al. set out to create a simple, easy-to-understand static
and dynamic semantics for the module language of ML. By creating an elabora-
tion semantics and using the idea of semantic signatures to represent modules’
abstract types as existential types, they were able to show that the ML module
system and its asscoiated type system can be understood in System F! alone,
without the need for a complicated dependent type system.

References

[1] Derek Dreyer. Understanding and Evolving the ML Module System. PhD
thesis, Carnegie Mellon University, May 2005.

[2] David B. MacQueen. Using dependent types to express modular structure. In
Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, POPL ’86, pages 277–286, New York, NY, USA,
1986. ACM.

[3] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing modules.
In Proceedings of the 5th ACM SIGPLAN workshop on Types in language

10

design and implementation, TLDI ’10, pages 89–102, New York, NY, USA,
2010. ACM.

11

