
Safe Low-Level Languages

Justin Slepak

1 Cyclone: Regions and a�ne types for memory

management

1.1 Review: Tofte and Talpin Regions

Two hazards commonly associated with manual memory management are allo-
cating a block of memory without ever freeing it (memory leak) and attempting
to access a block of memory which has already been freed (dangling pointer
access).

Tofte and Talpin described a “region type” system, in which data in the
store is associated with a named region. The expression (e at ⇢) allocates store
space for the result of e in the region ⇢. (letregion ⇢ in e) allocates a new
region named ⇢, which remains in scope in e. Once the body of the letregion
expression is evaluated, all store objects in the region it created are freed. This
means regions are managed in stack-based manner. A region allocated for the
entire program can be treated as a heap, but data remains in this heap until
program termination as the only way to deallocate a store entry is for its region
to go out of scope. Including a tag identifying the regions a function may access
in the function’s type allows checking that function calls do not access regions
which have already been freed.

Cyclone o↵ers this region-based memory management in a C-like language.
Every pointer type includes a region annotation. Each function automatically
introduce a new region, which is freed when the function returns. The program-
mer can also wrap a block of code (within a function) with a region declaration,
giving slightly finer control over memory allocation. There is also a “heap” re-
gion which is always in scope and is garbage-collected. “Region polymorphism”
allows variables in a the region tag of a function or struct. For example strcpy
can be used on arguments from arbitrary regions, and those regions are the ones
strcpy will access: char?⇢ strcpy<⇢, ⇢2>(char?⇢ d, const char?⇢2 s).

1.2 Extending Tofte and Talpin

The lexical regions described above impede certain programming idioms. For
example, the programmer must specify at the time of allocation when a block of
memory will be deallocated, which prevents resources from being released early
if the program determines (at runtime) that they are not needed. A function
also cannot free memory allocated by its caller. This makes it impossible to
write a tail-recursive function which deallocates memory before making the tail
call. Any looping construct that preserves state from one iteration to the next
is guaranteed to leak memory.

Cyclone includes additional capabilities to work around the limited expres-
siveness of Tofte and Talpin’s memory management. The “dynamic region”

1

construct behaves like a memory region except that the compiler inserts dy-
namic checks for availability of the region when it is accessed (many of Cyclone’s
safety features revolve around inserting dynamic checks which the programmer
can avoid by writing code more amenable to static analysis). This requires a
runtime structure which tracks what dynamic regions are available for use.

If the overhead associated with region management cannot be amortized
over a large enough number of allocated objects, unique pointers can be used
instead. These pointers resemble a�ne references in �

URAL. Creating an alias
to a unique pointer is prevented: copying a unique pointer consumes the original
copy. Passing the pointer to the function is considered to consume the pointer,
with the function expected to either deallocate it or return it back to the caller
(possibly inside some structure). A unique pointer may be wrapped in a shared
object, in which case the unique pointer can only be accessed via a swap oper-
ation. Because there are no aliases to a unique pointer, it is easy to check that
it is never accessed after it is freed. The extension includes a construct which
allows a temporary alias of a unique pointer inside a code block. Within the
scope of that block, the alias can be used as if it were a non-unique pointer.
Associating a freshly-named lexical region with the block ensures that the alias
itself cannot escape.

Cyclone also provides reference-counted pointers, which are treated like
unique pointers except that they can be aliased more freely. A special alias-
ing operation increments the count associated with the pointer, and a “drop”
operation decreases the count. The analysis which checks pointer safety looks
to see whether it is possible to reach a join point point in the program and have
multiple di↵erent counts associated with a reference-counted pointer.

2 Vault: Linear types for protocol specification

2.1 Type guards

Vault uses a notion of “type guards,” which are used to describe conditions on
how data of that type must be used. Such a type is specified as tracked(R)
T , where T is the underlying type, and R is the guard, expressed as a set of
“keys.” If a value is of a guarded type, accessing it requires that the keys
named in the guard all be held at that point in the program. A global state
called the “held-key set” tracks what keys are true at each point in the program.
It is also possible to assign symbolic values to a key, and a type guard may
specify what value must be assigned to a key. Thus a key can be used to track
both availability of a resource and its state. Each particular guarded type is
considered unique, e.g. every tracked(logfile) FileHandle must be an alias
of the one FileHandle guarded by the logfile key. However multiple di↵erent
underlying types may be used with the same guard. Statically associating each
key with a runtime object requires some restriction on aliasing. Function calls
which a↵ect a tracked object must note those changes via the guard key.

Function types include an e↵ect tag specifying pre- and post-conditions in

2

terms of guard keys. The possible e↵ects on a key are:

• Acquisition: [+K@a] specifies that key K must be not held before the call
and will be held in state a when the function returns.

• Release: [-K@a] specifies that key K must be held in state a before the
call and will not be held when the function returns.

• State change: [K@a->b] specifies that key K must be held in state a

before the call and will be held in state b when the function returns.

• Creation: [new K@a] specifies that a fresh key K will be held in state a

when the function returns.

• Preservation: [K@a] specifies that a fresh key K will be held in state a

both before the call and when the function returns. This is e↵ectively an
abbreviation of [K@a->a]. The key state can also be ignored with [K].

Guarded types can be parameterized over keys, allowing constructs like type
guarded int<key K> = K:int;. Then a function can be specified with the sig-
nature void foo(guarded int<F> x) [F];, indicating that it takes a guarded
integer as a parameter, and its e↵ect is a preserving use of the guarded integer’s
key.

Guarded types can be used to describe a memory region construct:

interface Region {

type region;

tracked(R) region create() [new R];

void delete(tracked(R) region) [-R];

}

The only way to gain access to a region is via create, which generates a
fresh key. An object can be associated with that region by having it use the
key generated from the create call. Delete frees the region by removing the
region’s key from the held-key set.

tracked(R) region rgn = Region.create();

R:point pt = new(rgn) point {x=1; y=2;};

...

Region.delete(rgn);

The first line creates a region (n.b. the resulting key is never bound and
can only be accessed via rgn). The second line uses a tagged new to allocate
a point object with the same guard as rgn. Operations can be performed on
pt until the last line is reached. Then the region’s key is released by delete.
An attempt to use pt or allocate anything new in rgn past this point in the
program is a type error because rgn’s key is no longer held.

3

2.2 Extensions to linear typing

As mentioned above, static protocol enforcement requires knowing the aliases
of a given tracked object. The authors introduce a new model in which every
object allocated on the heap is linear. This means that an object must be
freed at some point and that no aliases are available to form a dangling pointer.
Programming with only linear data is awkward, so the model permits nonlinear
data to have linear components and includes two new operators: adopt and
focus.

adopt e1 by e2 operates on two linear objects and creates a nonlinear ref-
erence to the result of e1, termed the adoptee. The operational semantics asso-
ciates a list of adoptees with each linear object; this list is updated by reducing
an adopt expression to a reference. Only linear objects can be involved in
adoption, so it is impossible for a single object to have multiple adopters. The
reference produced by adoption is e↵ectively guarded by a key associated with
the adopter, which is released when the adopter is deallocated. Adoption also
releases the key associated with the adoptee. The authors describe multiple
ways to handle adoptees of a freed object. In one version, the adoptees are also
freed. Alternatively, when an adopter is deallocated, the keys of its adoptees
are reacquired, and free returns them in a linear list.

Wrapping a linear object in a nonlinear structure is convenient, but allowing
access to it through that structure is unsafe because of the potential for aliasing.
To allow temporary access to a guarded nonlinear object’s linear components,
let x = focus e1 in e2 binds the result of e1 to x in e2, with x treated as
linear. This requires creating a fresh key to guard x and releasing keys associated
with e1 while evaluating e2. This way, it is guaranteed that x is the only name
which can be used to refer to the result of e1. Also, x’s key must be held at the
end of e2.

2.3 Typing rules for Core Vault

e ::= x | n | e.n | e.n := e | e(e) | e[c] | newhni | free e (expression)

| adopt e : h by e | let x = e in e | let x = focus e in e

| fun f [�](x : �) : � pre C post C {e}
c ::= ⇢ | C | G (type arguments)

⌧ ::= int | tr(⇢) | GB h | 8[�].(C,�) ! (C,�) (types)

� ::= 9[⇢, {⇢ 7! h}].tr(⇢) | ⌧ (linear types)

h ::= h�, . . .i | ⌧ [] (heap types)

G ::= {⇢, . . . } (guards)

C ::= • | {⇢ 7! h}] C (capabilities)

� ::= • | ⇢,� (type contexts)

Operations for allocating and freeing an array and accessing individual ele-
ments of an array are available but left out of the description above. A function

4

defintion includes a type context � which gives the guard variables over which
the function is parameterized. It also includes pre- and post-conditions which
describe what set of keys (i.e. what capability) must be held at the beginning
and end of the function. The capability of accessing a linear object and the
handle to the object are considered separate in this language; the existential
type is used to package the two together. The tr(⇢) type indicates a heap ref-
erence; a capability must map the ⇢ to a particular h. This means that the key
uniqueness rule is expanded to require all heap objects to be associated with
distinct keys (even if the heap objects themselves have di↵erent types).

The type judgment for Core Vault takes the form, �;�;C ` e : ⌧ ;C. A type
context (the keys currently in existence), a type environment, and a capability
(the held-key set) are needed to derive that e has type ⌧ . Deriving this type
generates a new ”output” capability, which represents what will be the held-key
set after evaluating e (this is similar to the ”output environment” strategy used
for algorithmic typing in �

UAL).
The typing rules rely on three auxiliary judgments: � ` C G for show-

ing that a capability satisfies a guard; C ` C for rewriting capabilities; and
C;� ` C;� for converting between existentials and tracked types. The guard
satisfaction judgment is straightforward. Base cases are given by

(GS-Empty)
� ` C •

(GS-Single)
� ` {⇢ 7! h} {⇢}

The other rules allow a capability to satisfy the intersection of two guards it
satisfies individually and allows a disjoint union of capabilities to satisfy a guard
that either side of the union would satisfy.

� ` C G1 � ` C G2
(GS-Intersect)

� ` C G1 ^G2

� ` C1 G

(GS-Union1)
� ` C1] C2 G

� ` C2 G

(GS-Union2)
� ` C1] C2 G

The existential conversion judgment uses a pair of simple “pack” and “un-
pack” rules.

(EC-Base)
C;� ` C;�

(EC-Unpack)
C1; 9[⇢, {⇢ 7! h}].tr(⇢) ` C1] {⇢ 7! h}; tr(⇢)

(EC-Pack)
C1] {⇢ 7! h}; tr(⇢) ` C1; 9[⇢, {⇢ 7! h}].tr(⇢)

The capability rewriting judgment allows heap types inside a capability to
be rewritten according to the existential conversion rule.

C1 ` C2
(CR-Base)

{⇢ 7! h}] C1 ` {⇢ 7! h}] C2

5

C1;�i

` C2�
0
i (CR-Rewrite)

{⇢ 7! h�1 . . .�i

. . .�

n

i}] C1 ` {⇢ 7! h�1 . . .�
0
i

. . .�

n

i}] C2

Several of the more interesting rules for Core Vault type judgments are
described here; the full typing rules (extended to allow abstraction over capa-
bilities) are given in [3].

C

in

;�
in

` C1; ⌧in
�,�0;�, [f : ⌧

f

][x : ⌧
in

];C1 ` e : ⌧2;C2

C2; ⌧2 ` C

out

;�
out

(T-Fun)
�;�;C ` fun f [�0](x : �

in

) : �
out

pre C

pre

post C

post

{e}
: 8[�0](C

pre

,�

in

) ! (C
post

,�

out

);C

Checking a function begins by converting the input type to a nonlinear
version: This is done by unpacking the existential representation of the linear
type to get a tracked type and an extended capability. The unpacked type
and extended capability are used to check the function body, and the result is
repackaged (if necessary) into an existential. The possibly repacked type must
match the declared output type and postcondition.

�;�;C ` e1 : GB h;C1] C2

�;` C1 G ⇢ fresh
�;�[x : tr(⇢)];C2] {⇢ 7! h} ` e2 : ⌧2;C3] {⇢ 7! h}

T-Focus
�;�;C ` let x = focus e1 in e2 : ⌧2;C1] C3

In order to focus e1, we must be able to give it a guarded type satisfiable by
a subset of the current capability. The remainder of the current capability aug-
mented with a capability to access x must be su�cient type e2. The capability
to access x must also be included in the output capability of e2. The output
capability for the entire focus expression is the disjoint union of the part of the
input capability that was used to satisfy e1’s guard and the output capability of
e2 minus the capability to access x. Thus all that the focus block comsumes is
the set of capabilities which are released in evaluating its components, and the
capability to access the result of e1 is unavailable during e2.

�;�;C ` e1 : tr(⇢1);C1

�;�;C1 ` e2 : tr(⇢2); {⇢1 7! h}] C2

� ` C2 {⇢2}
T-Adopt

�;�;C ` (adopt e1 : h by e2) : ⇢2 B h;C2

The capabilities held after evaluating the adoptee must su�ce to evaluate
the adopter. After evaluating the adopter, the program must still be capable of
accessing the adoptee; that access is revoked in the final output capability.

Several possible semantics are described for free, but the type rules pre-
sented here assume that an object being deallocated also deallocates its adoptees.
The other possibilities mentioned are having adoptees register a callback which
should be used for freeing them and having free return a linear list of the
deallocated object’s adoptees.

6

3 Sing#: Multiparty protocols

Research on the Vault project eventually led to Singularity, an operating sys-
tem implemented in Sing#, a Vault-like extension to C#. Sing# adds message-
passing over channels which follow contracts, Vault-like state-machine descrip-
tions which specify what send and receive operations may be performed at a
given time. Memory safety for a single program is less of a concern because
Sing# (like C#) uses a garbage-collected heap. However, the message passing
is based on an “exchange heap” in addition to the private (garbage-collected)
heap associated with each individual process. The exchange heap holds data
which may be passed between processes. This is where the potential for un-
safe memory accesses arises, so a system like Vault’s guarded typing enforces a
single-owner rule for exchange heap objects.

Channel contracts themselves are subject to some restrictions. Each cycle
in the contract’s state transition graph must include at least one send and one
receive operation. This prevents cases like having a single process flood the
channel with data, causing what amounts to a memory leak on the exchange
heap. A message can only carry data of an “exchangeable type,” i.e. a scalar
or a tracked heap type, so that messaging cannot be used to gain untracked
aliases. During implementation of this system, the authors decided that sending
a channel endpoint in a message should only be allowed if the state of the channel
carrying the endpoint message requires that the next action be a send operation.
This avoids a race condition in which aliased channel endpoints caused an ill-
timed send to go to the wrong receiver. This contract restriction avoids the use
of a locking mechanism to handle such cases.

7

References

[1] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in
low-level software. In Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementation, PLDI ’01, pages 59–
69, New York, NY, USA, 2001. ACM.

This paper describes how Vault is used to enforce protocols
regarding resource usage, e.g. that a file must be opened, then
read/written, then closed in that order. Vault uses “type guards”
to express these restrictions: A heap object can be statically asso-
ciated with a particular set of keys which must be held in order to
access the object. A key can be treated as a boolean value or an
enumeration of states, in which case a type guard may specify that
a key must be in a particular state. Functions can use guards to
specify pre- and post-conditions and also abstract over key names.
This allows, for example, a fclose function’s type signature to say
that it must be given a filehandle guarded by some abstract key,
which must be held at the beginning of the function and will not
be held at the end of the function.

Vault’s contribution is to include this sort of protocol checking
in the type system, and it does so essentially by extending C. The
paper explains the static analysis used to check that type guards
are satisfied (though not in terms of typing rules). The result is a
low-level language with the opportunity for far more static veri-
fication. The authors demonstrate that this protocol enforcement
can be applied to “real-world” systems without excessive annota-
tion overhead.

[2] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen
Hunt, James R. Larus, and Steven Levi. Language support for fast and
reliable message-based communication in singularity os. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, EuroSys ’06, pages 177–190, New York, NY, USA, 2006. ACM.

Singularity OS is an operating system built using Sing#, a
descendant of C# with Vault-like protocol specification. The pro-
tocol specification system is extended to support message passing
between separate processes. The channels used for message passing
have associated contracts which describe what types of messages
may be sent at what time. The contract is given in terms of a state
machine, similar to associating state with a guard key in Vault.
The resource management introduced by the Vault project is used
to ensure that processes only access their own memory, do not leak

8

memory, and do not perform an illegal send or receive operation
on a channel.

The Singularity project shows how the advantages of high-
level/memory safe languages can be leveraged for a low-level task.
This paper itself focuses on the implementation of message-passing
channels and how the static checking Vault introduced for a single-
process setting can be applied to multiparty communication.

[3] Manuel Fahndrich and Robert DeLine. Adoption and focus: practical lin-
ear types for imperative programming. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming language design and implementa-
tion, PLDI ’02, pages 13–24, New York, NY, USA, 2002. ACM.

This paper gives a type system for a stateful language in which
all heap objects must be allocated and deallocated at linear type.
The system follows a core language based on Vault, with two new
operations. The adopt construct allows nonlinear references to a
linear object. The focus construct allows a nonlinear object to
be temporarily treated as linear. The authors describe use cases
for these constructs in a C-like setting and describe how adop-
tion and focusing might be inferred by the compiler. Full typing
rules are included in an appendix. Several possible extensions and
modifications to the core language are described.

The paper presents extensions to traditional linear typing
which facilitate programming with linear types by allowing con-
trolled aliasing. The authors describe an example of using Vault
with these extensions to describe a vertex bu↵er interface for
graphics programming.

[4] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe and
flexible memory management in cyclone. Technical report, 2003.

This tech report focuses on the extensions to Tofte and Talpin’s
region type system. Regions like those described by Tofte and
Talpin are refered to in Cyclone as ”lexical” regions. Each lex-
ical region is associated with a particular scope (including each
individual function and brace-delimited block). When a lexical re-
gion’s scope ends, data in that region is deallocated. The authors
describe limitations of the Tofte and Talpin system and how they
have extended Cyclone to handle these limitations.

The paper introduces dynamic regions, which are not attached
to a particular scope. This allows data to escape into another
scope, and the programmer can deallocate the region at any time.
The associated drawback is the possibility of a compiler-generated
runtime check on use of data in a dynamic region.

9

