
CS7480 Homework 1 Due: 5pm, 14 Feb 2012

You may turn in handwritten solutions to this assignment—but make sure you write clearly and leave
lots of whitespace! If you choose to typeset your solutions, there is a LaTeX template available for your use
at the course website. (Remember to look in cs7480.sty for macros you can use.) A pdf file containing the
solutions can be submitted via email.

This homework is worth 150 points.

1. Type Soundness Warmup (20 pts.)

We saw that the simply-typed λ-calculus has a sound type system because it preserves types and
guarantees progress of well-typed terms. Thus, well-typed terms do not get stuck (i.e., evaluation is
safe). Let us add pair terms and product types to the call-by-value (CBV) simply-typed λ-calculus
(λ→).

Types τ ::= . . . | τ1 × τ2
Terms e ::= . . . | (e1, e2) | fst e | snd e

Values v ::= . . . | (v1, v2)

Eval. Contexts E ::= . . . | (E, e2) | (v1, E) | fst E | snd E

New reduction rules:
fst (v1, v2) −→ v1 (E-FstPair)

snd (v1, v2) −→ v2 (E-SndPair)

New typing rules:

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2
(T-Pair)

Γ ` e : τ1 × τ2
Γ ` fst e : τ1

(T-Fst)
Γ ` e : τ1 × τ2
Γ ` snd e : τ2

(T-Snd)

Extend the proofs of progress and preservation from λ→—as well as the proofs of any lemmas that the
proofs of progress and preservation rely on—to demonstrate type soundness for this extended language
λ→×. Also, when proving preservation, use induction on the derivation of e −→ e′. The statements of
the progress and preservation lemmas are as follows:

Lemma (Progress): If ` e : τ then either e is a value or there exists some e′ such that e −→ e′.

Lemma (Preservation): If ` e : τ and e −→ e′, then ` e′ : τ .

1



2. Explicit Initialization (35 pts.)

Compound data structures, e.g., arrays, tuples, and records, often need to be initialized step by step,
rather than being created atomically.

For example, when an object is created in Java, before the execution of its constructor, all the non-
primitive-typed fields have the default value (). The object is then gradually initialized using individual
assignments to the fields.

Now let us try to model step-by-step initialization of tuples in the context of the simply-typed λ-
calculus:

Ground values b ::= () | true | false | n
Values v ::= b | λx:τ. e | (v1, . . . , vn)

Terms e ::= v | x | e1 e2 | malloc τ1 × . . .× τn | #i e | #i e1 := e2

Ground types B ::= Unit | Bool | Int

Types τ ::= B | τ1 → τ2 | (τ1 × . . .× τn)\{i1, . . . , ik}

In order to create a tuple, the expression malloc τ1×. . .×τn is used, rather than (e1, . . . , en) which—as
we saw in class—creates a fully initialized tuple at once. The result of malloc τ1 × . . .× τn is a fully
uninitialized tuple, ((), . . . , ()), of type (τ1 × . . .× τn)\{1, . . . , n}.
The type (τ1× . . .× τn)\{i1, . . . , ik} is called a masked type, which represents a tuple that has not been
fully initialized: the elements numbered i1, . . . , ik are masked— that is, they are not initialized and
have the value (). The tuple, after being fully initialized, should have the type τ1 × . . .× τn, which we
assume is syntactic sugar for the type (τ1 × . . .× τn)\{}.
Tuples are initialized functionally with expressions #i e1 := e2, in which e1 first evaluates to a tuple
with its i-th element masked, and e2 evaluates to a value that is compatible with the type of the i-th
element in the tuple. The expression will generate a new tuple with its i-th element initialized, and
otherwise the same as the result of e1. Note that each element of a tuple should only be initialized
once.

To project the i-th element of a tuple, the expression #i e is used. Note, however, that projection of
uninitialized elements is prohibited.

For example, the following expression will evaluate to a tuple (10, 20) of type Int× Int.

(λx:(Int× Int)\{2}. #2 x := 20)
((λx:(Int× Int)\{1, 2}. #1 x := 10)

(malloc Int× Int))

(a) (7 pts) Extend the small-step operational semantics of the simply-typed λ-calculus to include the
new expressions: (v1, . . . , vn), malloc τ1 × . . .× τn, #i e, and #i e1 := e2. Specifically, assuming
left-to-right evaluation, extend the definition of the evaluation contexts and give the additional
reduction rules required.

(b) (10 pts) Extend the typing rules of the simply-typed λ-calculus to include the new constructs.

(c) (18 pts) Prove the soundness of the type system. (For each of the lemmas involved, you only need
to show the proofs for cases that involve the new constructs.)

2



3. Maybe Types (45 pts.)

In many languages (e.g., C, Java) it is convenient to have a special “null” value that acts like a member
of any reference type that is desired. However, the possibility that every reference may turn out to
be null also creates difficulties for both the programmer and the language implementer. A neat way
to have the expressive power of null without the undesirable side effects it to introduce a special type
constructor maybe that effectively augments any type τ with a special null value 〈〉. Because the
null value can be represented by a distinguished pointer value, a maybe τ is easily implemented just
as compactly as a C pointer or a Java reference. In this problem you will develop the semantics of
maybes.

We start with the simply-typed λ-calculus and extend it as follows:

Types τ ::= . . . | maybe τ

Terms e ::= . . . | 〈e〉 | 〈〉 | if 〈x〉 = e0 then e1 else e2

Values v ::= . . . | 〈v〉 | 〈〉

Informally, the extensions work as follows. The new introduction form 〈e〉 injects the value of e into
the corresponding maybe type. The introduction form 〈〉 is the special null value. The special if form
checks whether an expression e0 evaluates to a non-empty maybe; if so, the expression e1 is evaluated
with x bound to the injected value. If not, the expression e2 is evaluated instead.

(a) (5 pts) Assuming left-to-right evaluation and the values given above, define how to extend the
legal evaluation contexts E in which reductions can occur. Also, give rules defining the new
reductions needed for the extended language.

(b) (5 pts) Give any new typing rules that are required for the extended language.

(c) (18 pts) Give a typed translation from this language (λ→ extended with maybe) to the lan-
guage λ→+Unit (the simply-typed λ-calculus with sum types and type Unit). It should translate
type derivations in the source language (λ→ maybe) to terms with type derivations in the tar-
get language (λ→+Unit) , inductively demonstrating that any well-typed source term produces a
well-typed target term.

Specifically, first define a translation function T [[τ ]] that translates each source language type τ
to a target language type.

Next, define a type-preserving translation function E [[·]] that, when applied to a source language
typing judgment, produces a well-typed target term. It will be useful to have a function G[[·]] that
simply maps the types of all the variables in Γ into the target language:

G[[∅]] = ∅
G[[Γ, x:τ ]] = G[[Γ]], x:T [[τ ]]

Now, define E [[·]] in such a way that if Γ ` e : τ in the source language, then in the target language,
we should have:

G[[Γ]] ` E [[Γ ` e : τ ]] : T [[τ ]].

(d) (8 pts) Define the weakest sound subtyping relationship on types maybe τ and maybe τ ′ and
justify it by defining the appropriate coercion function.

(e) (5 pts) Do the same for maybe τ and τ . Why would such a subtype relationship be helpful?

(f) (4 pts) Given the syntax of the language and the typing rules that you gave in part (b) above,
will every well-typed term in this language have a unique type? That is, does the Uniqueness of
Types theorem (Pierce, Theorem 9.3.3) hold? If so, briefly explain why that must be the case; if
not, briefly say why not, and give the minimal changes necessary to ensure uniqueness of types.

3



4. Recursive types (10 pts.)

Consider mutually recursive type definitions like the following:

type Node = Edge list

type Edge = Node * Node

Eliminate the mutual recursion by giving recursive (µ) types for Node and Edge, and show that the
unfoldings of your Node and Edge types satisfy their respective equations. You may assume that list
and × (which is the notation we’ve been using for the ∗ type) are built-in type constructors.

5. Subtyping (20 pts.)

For each of the following questions, answer Yes or No. If the answer is Yes, show the subtyping
derivation. If the answer is No, give either a term that demonstrates how type safety breaks if we
allow the two types in the subtype relation, or a short explanation of why type safety is preserved even
if we allow the two types in the subtype relation.

(a) (5 pts) Is {x : Top→ Ref Top} a subtype of {x : Top→ Top}?
(b) (5 pts) Is {x : Top→ Ref Top} a subtype of {x : Ref Top→ Ref {y : Top}}?
(c) (5 pts) Is {x : Ref {y : Top}} a subtype of {x : Ref Top}?
(d) (5 pts) Is {x : Top} a subtype of {x : { }}?

6. Strong normalization (20 pts.)

Let us add tagged sums to the simply-typed λ-calculus (λ→). We’ll denote this calculus λ→+.

Types τ ::= . . . | τ1 + τ2

Terms e ::= . . . | inlτ1+τ2 e | inrτ1+τ2 e | case e of inl x ⇒ e1 | inr y ⇒ e2

Values v ::= . . . | inlτ1+τ2 v | inrτ1+τ2 v

Eval. Contexts E ::= . . . | inlτ1+τ2 E | inrτ1+τ2 E | case E of inl x ⇒ e1 | inr y ⇒ e2

New reduction rules:

case inlτ1+τ2 v of inl x ⇒ e1 | inr y ⇒ e2 −→ e1[v/x] (E-CaseInl)

case inrτ1+τ2 v of inl x ⇒ e1 | inr y ⇒ e2 −→ e2[v/y] (E-CaseInr)

New typing rules:

Γ ` e : τ1

Γ ` inlτ1+τ2 e : τ1 + τ2
(T-Inl)

Γ ` e : τ2

Γ ` inrτ1+τ2 e : τ1 + τ2
(T-Inr)

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ Γ, y : τ2 ` e2 : τ

Γ ` case e of inl x ⇒ e1 | inr y ⇒ e2 : τ
(T-Case)

Show that all expressions in the language λ→+ are strongly normalizing by extending the proof of
strong normalization for λ→.

4


