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1 Introduction

In this talk, I’m going to give an introduction to functional reactive program-
ming and some of its uses. We’ll look at the history of the idea, some of its key
features, and how it might be used in various settings. I like to think of it as
seeing the full timeline of a single idea: we’ll go from a problem in need of a
solution, to a proposed solution, to refinements to that solution, and finally to
applications to problems we face today (specifically, programming for networks).

2 Motivation

Let’s take a few moments to think about our typical programming model. Often,
when we’re describing a language or talking about extending a language with
some new feature, we use a model that looks a lot like what you see in the
lambda calculus: we give a single input value to a program, the program runs
for a while and internally works with the input, and eventually it returns a single
output value. Internally, there might be complicated things going on inside the
program, like mutation, non-local control, etc., but the user only sees the final
output value that is eventually returned.

This model is easy to understand and reason about, but unfortunately, the
real world is not so simple. In the real world, things are constantly in motion,
everything is changing over time, and our program is expected to change with
it. Instead of having just one input, our program can take any number of inputs
over time, and it can have any number of outputs, as well. If an event suddenly
occurs, our program might be expected to change its process entirely based on
that change. We can apply this model to many di↵erent scenarios, such as
software to control vehicles like cars and airplanes, GUI programs, and robots.
In short, our programs need to react to the changes around them.

Even if we ignore changing input values, some programs might be expected
to behave di↵erently based on the passage of time itself—for example, think of
media players or animations, which need to produce new output multiple times
per second.

So, we can see that we have two types of programs: We call the first type of
program transformational, since its job is to transform the given input into an
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output, and we call the second type reactive, since the program should react to
the changes in its environment.

The problem we want to solve is, how can we model this ever-changing world
and write programs that can handle all of its changes? The typical solution
seen today is to write the normal imperative code that runs in an infinite loop,
continuously creates the output needed, and reacts to events either by creating
a new thread for each event or periodically polling for any new events that have
come in. Saving state in our program allows us to hold onto any old values that
may have changed over time.

However, moving into the imperative world forces us to lose many of the
nice reasoning models we had in our functional, transformational world. Fur-
thermore, this model mixes together two separate parts of our program: the
“framework” of our program that handles communicating with the real world,
checking for events, etc., and the actual computation that we’re trying to ex-
press. For example, if you think of a program that runs an animation, our code
to run a loop and draw a frame every n milliseconds would be mixed up with
the code that calculates, given the current time, where we want a certain point
to be. We want a model that allows for a clean separation of these two parts of
our programs and gives us back a model that’s easy to reason about, hopefully
similar to our familiar lambda calculus. This is the intent of functional reactive
programming.

3 Functional Reactive Programming

Functional reactive programming (a.k.a. FRP) [1] is a programming model
created to separate the implementation details of our reactive programs from
the domain issues we wanted to express. The key idea of FRP is that everything
is expressed in terms of signals. A signal is just an entity whose value changes
over time. At a high level, you can think of a signal as a function from Time

to some output value of type ⌧ :

Signal ⌧ = Time! ⌧

However, a signal is not just a typical function as we know them from the
lambda calculus. For example, we can examine signals for their edges (the points
where the value changes), and create new signals based on these edges. There
are other di↵erences we’ll see throughout the rest of this talk.

We can use signals to represent all sorts of time-varying values. In an ani-
mation, this might be the color or size of some image. In a mobile robot, signals
could act as input such as light sensors or collision detection, or output like the
motor speed for each wheel. In a video player, we might have one signal for the
current frame being displayed, and other signals like volume and pitch for the
audio output.

We can also model events, such as keyboard presses or mouse clicks, as
signals. An event signal is just a signal that, at any given time, either has a
value of that event’s type, or an appropriate null value. In Haskell, we can
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represent this using the Maybe type. For example, the signal for a keyboard
press event would have the type Signal (Maybe Char).

E↵ectively, when we write an FRP program, we’re really just computing a
new signal based on the input signals given. As a simple example, imagine we
have a robot whose x-coordinate is defined by the following formula:

x(t) =
1
2

Z t

0
(vr(t) + vl(t)) cos(✓(t)) dt

Using FRP, we could write a signal for this formula like so (assuming we al-
ready have signals vr, vl, and theta; and the various necessary math operators
have been lifted to the level of functions):

x = (1/2) * integral ((vr + vl) * cos theta)

Depending on what sort of program we’re writing, some underlying frame-
work can take this signal computation and use it as needed, while handling
all of the low-level issues with dealing with the surrounding environment. The
framework handles all of the implementation/operational details for us, such as
sampling rates, polling, gathering input, etc., and allows us to work in a simpler
model. This leads to all sorts of benefits, like better modularity, easier reasoning
about programs, and programming at a higher level of abstraction.

3.1 Signal Functions and Arrows

What I’ve described so far is FRP as described in the original paper, Functional
Reactive Animation. However, there’s a problem: this level of expressiveness
in our signal code can cause space and time leaks. Intuitively, the problem is
that functions allow the programmer to access the values of a signal from any
point in the past up to the current time. This makes it too easy to accidentally
write functions that have to compute every previous value of the signal, since
signals do not normally hold onto their state. For example, if a signal relies
on just its single previous value, it might have to compute every value from its
past just to reconstruct that value. This can cause space leaks in that we now
need O(n) amount of memory to store the previous values during computation
(where n is the number of previous steps). It can also cause time leaks in that
our operations might take linear time instead of constant time. This is especially
problematic in real-time systems, a common application of FRP.

To solve this problem, we instead restrict our language so that programmers
actually write in terms of signal functions, which you can think of as functions
from signals to signals:

SF ⌧1 ⌧2 = Signal ⌧1 ! Signal ⌧2

This is the method used by Yampa [5, 3], the FRP implementation from
the Yale Haskell group and the subject of both Functional Reactive Program-
ming, Continued, and Arrows, Robots, and Functional Reactive Programming.
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Although the type is described above as a function, the type SF is actually
abstract—its representation is completely hidden from us, allowing the under-
lying framework to implement it in whatever way it sees fit. By doing this, we
have completely removed the programmer’s access to signals: in other words,
signals are no longer first class! This prevents the programmer from introducing
certain kinds of space and time leaks, because they can no longer access values
of the signal from arbitrarily far back in the past.

FRP programmers still need to create and manipulate signal functions,
though. To do so, we structure signal functions with arrows. In high-level
terms, an arrow is a general abstraction of computation. If you’re familiar with
monads, arrows are actually a generalization of monads (although don’t worry if
you don’t know monads—they’re not necessary for this talk). The key benefits
to arrows are that we can write arrows that deal with the current instantaneous
values of our signals, even though we have no access to the signals themselves,
and we can compose arrows in a number of ways. The application of arrows is
abstracted away from us, though, so we then rely on the underlying FRP im-
plementation to apply them whenever a new value of a given signal is needed.

To work with signals, we are given a number of combinators (functions that
work on signal functions). The combinator arr lifts pure (stateless) functions
to signal functions:

arr : (⌧1 ! ⌧2)! SF ⌧1 ⌧2

The >>> combinator does the expected composition, piping the output of
the first signal function into the input of the second:

>>> : SF ⌧1 ⌧2 ! SF ⌧2 ⌧3 ! SF ⌧1 ⌧3

Finally, &&& creates a signal function that splits a signal into a pair of
signals, applying the first signal function to the first part of the pair, and the
second function to the second part. You can think of this as parallel application:

&&& : SF ⌧1 ⌧2 ! SF ⌧1 ⌧3 ! SF ⌧1 (⌧2 ⇥ ⌧3)

These three combinators define the core rules for arrows. There are also a
number of other combinators that can be built from these and are included in
the Yampa system.

Also, to allow for computing on previous values of a signal, and generally
allowing for signals with “state”, some primitive signal functions are provided to
manage these computations for us. Among these are integral, which computes
the integral of a signal from time 0 to the current time, and hold, which holds
the value of an event as the current value until another event occurs.

Let’s look at an example that puts all these combinators together. Recall
our x-coordinate formula from earlier:

x(t) =
1
2

Z t

0
(vr(t) + vl(t))cos(✓(t)) dt

Our signal function for this formula looks like the following (assuming sup-
plied signal functions vrSF, vlSF, and thetaSF; and the binary equivalent of
arr, arr2):
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xSF = let v = (vrSF &&& vlSF) >>> arr2 (+)
c = thetaSF >>> arr cos

in (v &&& c) >>> arr (*) >>> integral >>> arr (/2)

If you look hard enough, you can see that this does indeed implement the
given function. Howerver, it’s hard to see that when using typical function
application and infix operator syntax for our combinators and signal functions.
Fortunately, Yampa has a separate syntax used for this purpose:

xSF = proc inp -> do
vr <- vrSF -< inp
vl <- vlSF -< inp
theta <- thetaSF -< inp
i <- integral -< (vr + vl) * cos theta
returnA -< (i / 2)

The above syntax defines a new signal function, xSF. The binding structure
is similar to Scheme’s let*, with each variable to the left of an arrow being
bound in each successive line. The proc keyword indicates the beginning of this
form, and inp is a variable that is bound in the scope of this form to current
instantaneous value of the input signal to this signal function. On each arrow
line, the term on the right is an expression indicating the instantaneous value
to be sent to the signal function indicated in the middle of the arrow. Finally,
the left-hand side can be a pattern to bind the result of the signal function’s
computation.

You can see that, while not as clean as the original signal definition, this
syntax is much more readable than the version we defined previously. The
above form will desugar to something like what we defined above, using the
core combinators as needed.

3.2 Events and Models of Time

As mentioned above, we can implement events as Maybe types. However,
events are only defined at instantaneous points in time. This brings up the issue
of modeling time. In the Yampa system, time is modeled with both continu-
ous and discrete methods, although the emphasis is more on continuous time.
Behind the scenes, when our implementation is dealing with a continuous time
signal, it’s typically going to get values of this signal by polling periodically—
since some value is always defined on that signal, polling will always return some
reasonable value.

However, this is not true for discrete time signals, such as events. Since
events only happen at infinitely small moments in time, there’s a good chance
polling would miss some events altogether. In these cases, the implementation
would most likely rely on some sort of push/interrupt mechanism to feed it new
values when an event occurs, which would kickstart the evaluation of signal
functions that rely on that event.
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There are various signal functions that move between continuous and discrete
time. For example, edge outputs a signal function that generates an event
whenever the value of its input signal changes. On the other hand, hold does
the opposite: its output signal’s value is always the value of the last event that
occurred (or some default value).

Another important signal function is switch, which has the following type:

switch : SF ⌧1 (⌧2 ⇥Event ⌧3)! (⌧3 ! SF ⌧1 ⌧2)! SF ⌧1 ⌧2

As you can see, this signal function takes as input a signal function that
generates a value and an event, as well as a normal function for generating a
new signal function based on the value of the event. The semantics of switch are
that it acts like the signal function in the first argument until an event occurs,
at which point it calls the function in the second argument to generate a new
signal function to use from that point forward.

There are other varieties of switch. dSwitch delays the switch by exactly
one time-step, so that the switch does not happen until just after the event oc-
curred (which allows some loops to be well-founded). rSwitch is like the normal
switch, except that it generates a new signal every time an event occurs, not
just the first time. Finally, drSwitch combines the functionality of dSwitch

and rSwitch.
Here’s an example of a use of switch. We want to program a robot such

that, whenever it hits a wall, we reverse its velocity (so that it moves away from
the wall). We are given signal functions currVel and hitWall, which provide
the current velocity and an event whenever we hit a wall. Here’s what our signal
function would look like:

fixVelocity = switch (currVel &&& hitWall)
lambda (e). (currVel >>> arr (lambda (x). -1 * x))

This signal function will initially act exactly like currVel, since it’s the first
part of our pair in the input to switch. As soon as we get an event from hitWall,
we will use the the function given as the second argument to produce the new
signal function, which just passes the current velocity to a signal function that
will negate it.

3.3 Loops

Finally, we can also have loops in our FRP programs. Specifically, we can use
the output of a signal function as part of its own input. Since this would cause
an infinite loop if a signal function’s output was always dependent on its current
instantaneous input, we need to avoid these sorts of dependencies using constant
signal functions, or delays such as in dSwitch. Some research has investigated
ensuring well-formed loops using type systems, but that is beyond the scope of
this talk.

Here is a quick example, again using events and switches. This example
shows a signal function that increments a robots velocity by one every time a
particular button is pressed:
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vel = proc inp -> do rec
e <- incrVelEvs -< inp
v <- drSwitch (constant 0) -< (inp, tag e (constant (v + 1)))
returnA -< v

(tag is just a function that transforms its event argument e (if it’s not a null
value) into the value given by its second argument)

Two things to note here: first, the rec keyword at the beginning indicates
that these definitions are mutually recursive (similar to a letrec in Scheme).
Second, note that v’s definition depends on itself: it uses v + 1 in its definition.
However, this is still well-formed, since drSwitch guarantees that v only depends
on its previous value.

3.4 Putting it all Together

Finally, let’s look at one more example that combines some of these concepts.
We want to build a controller for a robot that goes faster depending on how
loud the user yells at it. Specifically, the requirements are the following:

1. Initially, the velocity should be proportional to the average volume the
robot has sensed since its program started.

2. If the user ever presses a certain button, the robot converts into a mode
where it just moves forward at some constant velocity (say, 5.0).

We will assume we have the signal functions localtime (to get the elapsed
time), identity (the identity signal function), and buttonE (an event signal that
triggers when the user pushes the button). We also assume that we have a
function getVolume that gets the current volume from the current value of the
robot’s overall input signal. We’ll break this up into two parts; first, the signal
function to turn the volume into a velocity:

velFromSound = proc inp -> do
vol <- identity -< getVolume inp
ivol <- integral -< vol
t <- localtime -< ()
avgVol <- identity -< ivol / t
returnA -< k * avgVol

In the above function, we use integral to calculate the integral of the
volume over the course of the entire program’s execution. We then divide that
by the elapsed time to get the average volume, and multiply that by the constant
k to get our final velocity.

Next, we want to integrate this with logic to switch between velocity modes
as needed:

velController = switch (velFromSound &&& buttonE)
lambda (e). constant 5.0
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Our overall controller is, again, a relatively simple switch statement that
uses our volume-driven velocity until the button press occurs, at which point it
switches to the constant 5.0 velocity signal function.

4 Nettle: Applying FRP to programmable routers

FRP has been around for about 15 years now, but one great test of a research
idea’s impact is to ask, “is it being used to solve real, every-day problems?”.
In fact, FRP is being used today in an area of work today known as software-
defined networking. Before we get into how people use FRP in this area, though,
we need to understand what a software-defined network (or SDN) is. If you saw
Jennifer Rexford’s talk at POPL this year, this next bit may be a review for
you.

Today, one can describe routers as having two separate parts: the data plane
and the control plane. The data plane is the part of the router responsible for
accepting incoming packets and forwarding them on through the correct port
according to some rules in an internal flow table. The control plane is in charge
of keeping that flow table up to date using some routing protocol that it’s been
configured to use. The routing protocols available on a given router are typically
built into the device (for performance reasons), and have limited configurability.
Network administrators have limited parameters of the various protocols that
they can tweak, and they have no way at all of using a completely new or
di↵erent protocol on these routers. What’s more, since these boxes have lots of
custom circuitry to implement these protocols, they tend to be expensive.

Software-defined networking takes a di↵erent approach. It says that instead
of having a large number of static, expensive, complicated boxes making up
our network, the network should be comprised of two separate types of entities:
smart but slow controllers, and fast but dumb switches. The idea is that a
network would have a small number of controllers running on commodity server
hardware handling the actual routing protocols, which would then install new
rules as needed into the flow tables of the switches in the network. By doing
this, the routers could be simplified so as to run on common switches, while at
the same time becoming more flexible and able to run more protocols.

The most common API used for this purpose is OpenFlow. A switch that
implements OpenFlow allows controllers on the network to send it commands
to update its routing table, and the switch in turn sends any packets it doesn’t
know how to handle to the controller. The controller handles each of these
packets in turn and installs new rules on the switches as appropriate.

Researchers have come up with a variety of ways to program these networks,
but one system of note is Nettle [6], also out of the Yale Hakell group. Their
method is to model the controller software as an FRP program. Its input is a
stream of OpenFlow events, such as IncomingPacket, SwitchJoin, SwitchLeave,
etc., and its output is a stream of OpenFlow commands to send back to the
switches. In full, the signature looks like this:

Controller = SF (Event (Switch ID, SwitchMessage)) (Event SwitchCommand)
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4.1 Examples

Let’s look at some examples of how this system works. The first example is
a controller that just drops every packet it receives. It’s not a very useful
controller, but it does give a simple illustration of the idea:

controller = proc msgE -> do
cmdE <- never -< msgE
returnA -< cmdE

The variable msgE represents a value from our signal of switch messages.
Note that we’re dealing entirely with event signals, and therefore are working in
a discrete time system. We pass this value through the signal function never,
which is a signal function whose output type is an event signal, but which never
generates an actual event—the value of the signal is always the null value. The
resulting value is used as the output of our overall signal function. Putting this
all together, we can see that this controller will never generate any commands,
regardless of the messages it receives.

Now let’s try something slightly more complex (and certainly more useful).
Our next controller will, for every message it receives, tell the switch to flood
the packet to the rest of the network. This isn’t terribly e�cient, but it will
at least eventually get packets where they need to go. In addition, we’ll clear
the routing table of any switch that joins the network, to ensure a somewhat
consistent state. We’ll build this router in pieces:

clearOnJoin = proc msgE -> do
returnA -< liftE f (switchJoinE msgE)
where f (sid, _) = clearTable sid

floodPackets = proc msgE -> do
returnA -< liftE f (packetInE msgE)
where f (sid, packetMsg) = sendPacketIn flood (sid, packetMsg)

controller = proc msgE -> do
clearE <- clearOnJoin -< msgE
floodE <- floodPackets -< msgE
returnA -< mergeEventsBy (+) (clearE, floodE)

There are a few new operations here that we need to define. First, liftE has
type (a -> b) -> Event a -> Event b and essentially raises pure functions
up to the level of events. Next, switchJoinE and packetInE are projection
operations that select the switch join and packet messages, respectively, out
of the stream of switch messages. At the OpenFlow level, clearTable and
sendPacketIn are constructors for switch commands. Finally, mergeEventsBy
takes two events and merges them into one, using the provided operator to han-
dle conflicts when both events occur at once. In this case, (+) is the sequencing
operator, so both commands would be sent.
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Finally, to make something more practical, we want to create a learning
switch. The idea behind a learning switch is that whenever a switch receives
a packet marked as being from a certain address, and that packet is received
through a given port, we know that there is a path to that address whose next
hop is through that port. This information allows us to construct a routing
table. In typical routing situations, this construction would happen on the
router, but in our case, it will all be done on the controller, which will then
relay this information to the switches in the network. Again, we will build this
controller by piecing together a few di↵erent signal functions.

getNextHops = proc msgE -> do
hostMapE <- accum empty -< liftE updateMap (packetInE msgE)
hostMap <- hold empty -< hostMapE
returnA -< hostMap

controller = proc msgE -> do
nextHops <- getNextHops -< msgE
tableModE <- identity <- mapFilterE f (packetInE msgE)
clearE <- clearOnJoin -< msgE
floodE <- floodPackets -< msgE
returnA <- mergeEventsBy (+) (clearE, tableModE, floodE)
where f (packetE) = packetToCmd nextHops packetE

Again, there are some new combinators to discuss. updateMap takes a packet
and turns it into an entry in our next hop map. mapFilterE is a combinator
that takes a function from a type a to a type Maybe b as well as an Event
a, and turns it into an Event b, where there is only an event if the given
function returns a Something b value instead of Nothing— in other words,
we’re mapping over our elements, and then filtering them to include those with
actual values. Finally, packetToCmd will generate a rule insertion command if it
can find a suitable entry in the next hops table, or a Nothing value otherwise.

You can see that by putting these together, we can create a sensible con-
troller. Over time, the getNextHops rule accumulates a table of next hops, and
new packets that come into the network get rules assigned to their appropriate
switch. Any incoming switch messages that don’t have a corresponding rule in
the next hops map have their packet flooded over the network.

These have all been relatively primitive examples, but you can imagine that
by using these tools and this programming model, you could program the con-
troller to implement more complicated protocols, like OSPF or BGP, or even
features like firewalls or network address translation. FRP, as used in Nettle,
gives programmers a model that’s easy to reason about and abstracts away
many of the details of event-driven programming.

4.2 Extensions and Other Issues

There are some other interesting issues in using FRP for SDNs that deserve a
brief menion here. First, you may have noticed that the above programs use a
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completely discrete time system. This makes sense given our goals, but there
are uses for continuous time systems in SDNs, too. For example, one could
have a continuous signal that represents tra�c coming through each switch,
and develop a load balancer based on that.

Second, the NetCore system [4, 2] (formerly known as Frenetic ) uses FRP
for a similar purpose, but at a higher level. When programming directly with
OpenFlow rules, such as in Nettle, it’s easy to introduce race conditions in which
two separate but conflicing rules are sent to a switch at roughly the same time,
and it’s unclear which one will override the other. Also, working at this level can
make it hard to compose rules together, especially when trying to write larger
and more complicated programs. Frenetic works at a higher-level, abstracting
these issues away from the programmer and allowing them to work entirely in
terms of patterns and rules.

5 Conclusion

To wrap up, we have seen the evolution of functional reactive programming
from its beginning to where it stands today. We saw some of the initial prob-
lems with the traditional computation model that motivated a move to a more
sophisticated system like FRP. We then saw how the initial attempts at this
caused some initial issues, which encouraged a move towards signal functions,
modeled as arrows. We also saw how the idea of arrows allows us to abstract the
idea of computation and gives us a nice semantics for composing compositions
together. Also in the Yampa system, we discussed its events and continuous ver-
sus discrete time, as well as recursive signal functions, both of which are very
useful when programming with FRP. Finally, we looked at Nettle to see that
FRP is indeed useful enough to be used in real-world applications, specifically
software-defined networks. There are many more applications of FRP being
used, and research into the subject is ongoing.

6 Reading Summaries

6.1 Functional Reactive Programming, Continued

In this paper, Nilsson et al. present their version of arrowized FRP (which
would later become Yampa). Their intent is to avoid some of the operational
and semantic problems that came about in the original FRP system. To accom-
plish this, they restrict the programmer to writing programs in terms of signal
functions, intstead of signals directly. This restriction makes certain kinds of
problematic programs impossible to write and clarifies some of the semantics.
They also describe how they used the concept of arrows to implement signal
functions, and they explain the combinators that work on arrows. The paper
also describes some other details of their system, such as stateful signal functions
and their method for dealing with discrete time and events. From there, they
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go in depth into some of the implementation details, including some possible
optimizations, and conclude.

I think the idea of working directly with signal functions makes sense, and it
does seem to clarify some confusion between what’s a signal and what’s a signal
function. However, they didn’t explain how signals caused space-time leaks very
well, which largely motivated the whole idea. Perhaps it had been covered in
previous work, but a more detailed explanation would have helped.

Also, the optimizations mentioned at the end in 4.4 and 4.5 seemed a bit
tacked-on. They could possibly be useful, but they’re not explored enough here
for me to make a good judgment. They seem to merit a future paper, and
should have just been in the “Future Work” section.

6.2 Arrows, Robots, and Functional Reactive Program-
ming

This paper was similar to FRP Continued in many ways, although it had a di↵er-
ent audience. Whereas FRP Continued was published at the Haskell workshop,
this paper was published at the Advanced Functional Programming Summer
School in Oxford, so its intent is more to teach the general ideas rather than
to describe new research that’s been done. Again, the paper explains signal
functions, arrows, arrow combinators, events, and recursive signals. The rest of
the paper is dedicated to an extended example, exploring di↵erent parts of the
Yampa system and providing exercises for students.

Although the paper does not present anything entirely new, it is a good
source for learning the Yampa system as a whole, from a user’s perspective. It
mostly skips over the motivation for moving from signals to signal functions,
but it does a good job of explaining how to work with signal functions and
the provided combinators. The examples in the second half also provide larger
examples of FRP programs that weren’t available in the earlier paper.

The one weakness of this paper is that although its intended audience is
end users of Yampa, it could have gone into more depth about some of the
motivations behind these ideas. Although the audience may not be researchers
who plan on extending this work, it’s still useful for a programmer using the
system to understand why one way of working with the system is a good idea
and another is not.

6.3 Nettle: Taking the Sting Out of Programming Net-
work Routers

In the Nettle paper, Voellmy and Hudak describe Nettle, an FRP-based (specif-
ically, Yampa-based) approach for writing a controller for a software-defined
network. Their approach assumes the network is running the OpenFlow API,
which allows the controller to receive messages from switches in the network and
remove and install rules on those switches. The system is largely modeled as
a discrete system, where the input signal is a stream of switch message events,
and the output stream is a stream of switch command events, which will then be
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distributed to the network by the underlying implementation. They give some
primitive functions for working with messages, rules, and commands, and show
how these can be used to build up some controllers that model simple routing
algorithms. At the end, they also mention how continuous time signals might
be used to model data like tra�c throughout the network, and they note this
could be used for building things like load balancers.

Previous solutions to the SDN controller problem have mostly been either too
low-level (e.g. NOX) or too static (e.g. FML) for real-world use. Nettle presents
a solution that allows programmers to work at a higher level and respond to
changes in the network, while still having a simple, clean model of the overall
system. However, controller programmers will probably want an even higher-
level model, such as in Frenetic, to deal with issues like rule composition and
race conditions.

Also, while the examples given in the paper do get increasingly more com-
plex, even the most sophisticated one is still rather simple. A better test of this
system would be to implement one of the classic routing protocols on it, such
as a distance-vector or link-state protocol, and examine how di�cult this task
is.
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