
Type and E↵ect Systems

Asumu Takikawa

March 30, 2012

Imagine that you are provided a nullary function f that has the type �! Void. What can you
say about what this function does if and when you call it? Can you memoize this function safely?
Can you run this on another core without any synchronization? Do you even know if control flow
will return to you when you call this function?

The answer to all of these questions in most languages is “I don’t know” unless you have
access to the source code. The reason is that the Void type means the function might have some
unspecified side e↵ects. This could be anything from writing to disk, transferring control flow to
an entirely di↵erent part of the program, or launching some ballistic missiles.

The motivation behind this talk is to allow automated reasoning about the e↵ects of a program—
without using monads or a uniqueness type system—by utilizing type and e↵ect systems.

1 Types and E↵ects in FX

The idea originated at the MIT AI Lab where several researchers worked on a typed variant of
Scheme called FX. The “Report on the FX Programming Language” has the following definition
of an e↵ect:

An e↵ect is a static description of the side-e↵ects an expression may perform when it
is evaluated. Just as a type describes what an expression computes, an e↵ect describes
how an expression computes.

To build up a formal system to talk about e↵ects, let’s start with System F and gradually
enrich it. Below is a standard grammar for System F, with an abstract set of base terms b and
base types B. The type rules are also shown below. The operational semantics is omitted since it
is not important for now.

e ::= b | �x:⌧. e | e e | ⇤↵::k. e | e [⌧] (expressions)

⌧ ::= B | ⌧ �! ⌧ | 8↵::k.⌧ | ↵ (types)

k ::= ⇤ (kinds)

The core calculus of FX is just a small addition to System F. We add a new syntactic category
of e↵ects and then introduce e↵ects where appropriate into the expressions and types. Most types
stay unchanged, but we introduce an e↵ect annotation over the arrow of the function type. These
are called the latent e↵ects of the functions, which we will discuss in detail in a second.

E↵ects also introduce a new kind, excuse the pun, of polymorphism and thus we allow instan-
tiation of polymorphic lambdas with e↵ects. We also add a new kind ⇤ for e↵ects.1

1
This is non-standard notation. The FX report uses a verbose effect kind and the ATTAPL chapter elides a

kind system entirely.

1

e ::= . . . | e [d] (expressions)

d ::= ⌧ | � (description)

⌧ ::= B | ⌧ ��! ⌧ | 8↵::k.⌧ | ↵ (types)

� ::= E | ([�1...�n) | � (e↵ects)

k ::= ⇤ | ⇤ (kinds)

The e↵ects are also parameterized by a set of base e↵ects E . The actual FX language includes
many base types and e↵ects. The base types are not that interesting to talk about (the FX report
describes standard types such as numbers, strings, etc.) but the base e↵ects are interesting.

The FX report includes the following e↵ects in E : pure, read, write, init. All of these have
the kind ⇤. A variant of FX that we will talk about called FX/R will modify these base e↵ects
slightly.

In FX, terms can have both a type ⌧ and e↵ect � so instead of a type judgment �;� ` e : ⌧ we
use a type and e↵ect judgment �;� ` e : ⌧ ! �. E↵ects can be composed with a union operator [.
Ordering for e↵ects is not significant in FX, so you can think of the operator as being commutative
and associative. This is not the case in all type e↵ect systems. For example, the Nielsen and Nielsen
type and e↵ect system for CML uses a flow-sensitive system.

Before we get too deep into the formalism, let’s think about how these types are actually used.
Bare System F has no I/O primitives, reference cells, or anything else that can cause a side e↵ect.
To actually demonstrate anything interesting, we need to provide some base operations. So imagine
that we extend the core calculus with I/O. Consider what type we should give the following code:

(displayln (read-line))

In just System F with some base operations and the Void type, this expression would just get
the Void type. However, in FX this also has the e↵ect ([read write). Now let’s consider a more
interesting scenario. What type and e↵ect do we give the following code?

(� ()
(displayln (read-line)))

Clearly the type of the lambda expression is ! Void. Does the lambda expression have an e↵ect
though? That’s actually a trick question: both answers could be valid, depending on your point of
view. FX takes the view that a lambda abstraction itself has no e↵ect (i.e, its e↵ect is pure) when
created. However, we will see that Tofte-Talpin region type system uses a di↵erent view.

On the other hand, that wasn’t entirely a trick question. What happens when a function is
applied rather than created? If you think about a lambda as a delayed computation, then it would
make sense for the delayed computation—in this case the I/O calls—to have a delayed e↵ect. That’s
why we have a notion of latent e↵ect.

Latent e↵ects are bookkeeping on function types so that the type system can retrieve the correct
delayed e↵ect of the computation later. When you use higher-order features of your language, latent
e↵ects have other uses as well.

Now let’s proceed with the formalism again. Since our system has kinds, we need a kinding
judgment. There is nothing too surprising about the kinding rules. The main di↵erence from
System F is the addition of the e↵ect joining operation, which has the obvious kinding judgment.

K-Var

↵ :: k 2 �

↵ :: k

K-ForAll

�,↵ :: k ` ⌧ :: ⇤
� ` 8↵::k.⌧ :: ⇤

K-Max

� ` �i :: ⇤ (1  i  n)

� ` ([�1 . . .�n) :: ⇤

2

The type judgments for FX are more interesting. Let’s start out with the variable rule:

T-Var

�(x) = ⌧

�;� ` x : ⌧ ! pure

The rule is virtually unchanged except that we give it a pure e↵ect since variable reference does
not a↵ect the store (in our calculus anyway) or do I/O in any sense.

Next let’s consider lambda abstraction and application:

T-Abs

�;�, x : ⌧1 ` e : ⌧2 ! �

�;� ` �x:⌧1. e : ⌧1
��! ⌧2 ! pure

T-App

�;� ` e1 : ⌧1
��! ⌧2 ! �1 �;� ` e2 : ⌧1 ! �2

�;� ` e1 e2 : ⌧ ! ([� �1 �2)

We discussed earlier that lambda abstractions would be pure. On the other hand, the compu-
tation inside may have an e↵ect. The rule just takes the e↵ect for the inner expression and adds it
as the latent e↵ect of the function type.

Function application is slightly more complicated. Which expressions in the application can
have an e↵ect? Well, both of them can. Is that it? That’s not quite enough yet. With the
application rule, we have to remember to propagate the latent e↵ect without dropping it on the
floor. The e↵ect of the entire expression is just the composition of the three e↵ects we have.

Finally, we have type abstraction and application. Before we look at the stock FX rules, let’s
go back to the System F rule and think about how we would modify it. Here’s the System F rule
with ? as a placeholder for e↵ects:

T-TAbs

�,↵ :: k;� ` e : ⌧ ! ?

�;� ` ⇤↵::k. e : 8↵::k.⌧ ! ?

What should we put in those boxes? Let’s think about our choices. In general, the expression
e might have any e↵ect, but type abstractions also delay the computation inside. We solved this
for plain lambdas by introducing a latent type. We could do the same thing here, but we would
then be forced to add an annotation on the 8 type.

Another option is to require that the expression inside of a type abstraction is pure. That
sounds limiting, but would that actually be a problem? If you think about it, type abstractions
usually surround a plain application, which is pure itself. It is unlikely that there are many useful
expressions that have an e↵ect between the plain lambda and the outer big lambda. The advantage
of making type applications pure is that they can be entirely erased from the program without any
overhead.2

T-TAbs

�,↵ :: k;� ` e : ⌧ ! pure

�;� ` ⇤↵::k. e : 8↵::k.⌧ ! pure

T-TApp

�;� ` e1 : 8↵::k.⌧ ! � � ` d :: k

�;� ` e1 [d] : ⌧ [↵/d] ! �

2
Contrast this with System F, where erasure requires that you replace big lambdas with small lambdas if you have

e↵ects.

3

To summarize, here are all of the type and e↵ect judgments together:

T-Var

�(x) = ⌧

�;� ` x : ⌧ ! pure

T-Abs

�;�, x : ⌧1 ` e : ⌧2 ! �

�;� ` �x:⌧1. e : ⌧1
��! ⌧2 ! pure

T-App

�;� ` e1 : ⌧1
��! ⌧2 ! �1 �;� ` e2 : ⌧1 ! �2

�;� ` e1 e2 : ⌧ ! ([� �1 �2)

T-TAbs

�,↵ :: k;� ` e : ⌧ ! pure

�;� ` ⇤↵::k. e : 8↵::k.⌧ ! pure

T-TApp

�;� ` e1 : 8↵::k.⌧ ! � � ` d :: k

�;� ` e1 [d] : ⌧ [↵/d] ! �

One thing we haven’t discussed in detail is the subtle change to the rules for polymorphism.
Since FX has multiple base kinds, we actually find that polymorphism serves two purposes. To
motivate this, consider what the type of the map function should be:

map : 8↵.8�.(↵ ! �), (List↵)
?

��! (List�)

We can see that we need some e↵ect over the arrow. What e↵ect do we have though? Where
FX really shines is that it supports higher-order functions in a natural way even with e↵ects. All
we need to do is add another abstraction in the above type:

map : 8�.8↵.8�.(↵ ! �), (List↵)
��! (List�)

This is assuming that the map function itself has no e↵ects other than its argument functions.
In FX, this is technically not the case since all list-manipulating functions have init e↵ect, since
they allocate objects to memory.

In the full FX system, there are also subtyping and equality relations defined on e↵ects so that
some e↵ects can be interchanged. For example, pure is the same as a composition of no e↵ects and
the composition of a single e↵ect is just the e↵ect itself.

2 Tofte-Talpin and Regions

So far, we have looked at the FX language, which defines a general-purpose type and e↵ect system
that is mainly designed to accommodate a dialect of Scheme with a type system similar to System
F. Now we are going to switch gears and look at an application of a type and e↵ect system for
another aspect of programming languages: memory management.

The type and e↵ect idea is used as a tool to express region-based memory management. A
region is an abstract chunk of memory that will be allocated and store values from your program.
Pictorially, the regions in a program look like a stack with di↵erent frame sizes:

4

�x. e

5

r1

�y. e

r2

h5, 3i

3.7

7

r3

Stack-based allocation is a special case where the regions have fixed sizes. Note that the
allocations are custom-tailored to the particular program that you write. The tailoring is due either
to the explicit annotations in your program—this is how we will formalize regions—or due to the
allocations that a region inference algorithm finds. This kind of region-based memory management
is actually quite an old idea dating back to the 60s and 70s, but their type-safe implementation in
programming languages is a more recent idea.

This kind of memory management is an alternative to manual memory management or garbage
collection. Region-based memory management was designed to address shortcomings by providing
memory safety guaranteed by the type system, predictability of allocation due to the inference of
allocation from your program, and better profiling support.3

We’re not going to talk about full-blown practical region-based memory management, but we
will talk about a calculus called RAL and its typed cousin RTL, which uses the Tofte-Talpin type
and e↵ect system.

RAL is an untyped calculus that makes region-based allocation explicit in the program syntax.
New regions are created and bound in the body of a new ⇢.e expression, so that expressions in e

can store values in ⇢. Regions can either be a variable ⇢ or the special unallocated region • (i.e., an
unallocated/unreachable value). You can imagine this memory management construct as a hybrid
between stack allocation and heap allocation. The regions themselves are created in a stack-like
fashion, but each region stores multiple values in the heap.

The only values we have in this language are closures and boolean constants. Since booleans
are constants, they are not allocated in any regions. However, closures are explicitly allocated in
a region. Lambda expressions are annotated with the region they are allocated in, e.g., r is the
region that �x. e at r is allocated in. Similarly, a closure (�x. e)r is the value form allocated at r.

A neat new idea that we will use in RAL is the notion of a region abstraction. These define
new expressions that are abstract over the regions that they allocate in, which is a natural thing
to do once you have the idea of regions. This allows, for example, for functions to allocate their
results in di↵erent regions at di↵erent callsites. A region abstraction looks like (�⇢. u)r. Unlike
lambda abstractions, a region abstraction does not contain a general term but contains an almost

value—basically a closure or a lambda expression that will become a closure.4

e ::= u | x | if e then e else e | e e | e [r] | fix x.e | new ⇢.e (expressions)

u ::= v | �x. e at r | �⇢. u at r (almost values)

v ::= true | false | (�x. e)r | (�⇢. u)r (values)

3
These design motivations are based on the experience of the designers of ML-Kit. For more

information, see the notes from the 1997 Summer School on Region-Based Memory Management:

http://www.itu.dk/research/mlkit/kit2/summerschool/toc.html

4
As far as I can tell, there is no need for this limitation except to keep the calculus as conservative as possible.

Note that since we have ordinary lambdas, there is no real need to make region abstractions act as a suspended

computation as well.

5

r ::= ⇢ | • (regions)

For the operational semantics, we have an unsurprising set of evaluation contexts as follows:

E ::= [·] | if E then e else e | E e | v E | E [r] | fix x.E | new ⇢.E (evaluation contexts)

The operational semantics for the language is summarized in the following axioms:

�x. e at ⇢ �! (�x. e)⇢ Clos

(�x. e)⇢ v �! e[x/v] Beta

�⇢1. u at ⇢2 �! (�⇢1. u)⇢2 RClos

(�⇢1. u)⇢2 [r] �! u[⇢1/r] RBeta

new ⇢.v �! v[⇢/•] Dealloc

The Beta rule is completely standard. The corresponding Clos rule takes a lambda expression
and reduces it to the closure value. This distinction between lambda expressions and closures exists
just to make the distinction between the program source and the values that are actually allocated
in a region obvious. The corresponding rules for region abstractions are almost exactly the same.

The Dealloc rule is also interesting. The point of the rule is that after the reduction semantics
finishes reducing under the allocation, the region is no longer accessible and should be deallocated.
This ensures that any values that escape the region cannot be used by other parts of the program.

The other axioms, shown below, are completely standard.

fix x.v �! v[x/fix x.v] Fix

if true then e1 else e2 �! e1 IfT

if false then e1 else e2 �! e2 IfF

There are some interesting properties to talk about in relation to the RAL calculus. One is that
if you have a term e in RAL that contains deallocated values, you can replace these values with
anything else and obtain an equivalent term e

0. Another property that we’d like to have is that
an RAL expression is operationally equivalent to the same term with regions erased (in a simpler
language). That is, regions do not a↵ect evaluation aside from the presence of regions.

2.1 Types + RAL = RTL

In the last few pages we have seen a new language construct that lets you do memory management
in a new way. So how does this relate to the type and e↵ect systems that we talked about earlier?
It turns out that a natural way to ensure that RAL programs do not get stuck is to use a type and
e↵ect system. The “e↵ects” in this case are the need for a memory region. The regions that an
expression needs to be live to execute are going to be included in the e↵ect. The resulting language
is called RTL.

There are two motivations for creating a type system for this language. One is that type
safety essentially means we have memory safety, since not getting stuck means you can’t access a
deallocated region. Another use for the type system is that it provides a hook to actually infer the
region annotations that we have in RAL. More on that later.

6

RTL looks mostly like RAL, but with a grammar for types. Unfortunately, RTL is presented
quite di↵erently from FX because its type system uses lambdas without annotations and “guesses”
types in many parts of the judgments.

The actual types in RTL look pretty standard except for the latent e↵ect on arrows and the
new region abstraction type ⇧⇢.�⌧ . E↵ects are either an empty e↵ect or some sequence of region
variables.

u ::= v | �x. e at r | �⇢. u at r (almost values)

v ::= bv | (�x. e)r | (�⇢. u)r (values)

bv ::= true | false (booleans)

⌧ ::= Bool | (⌧ ��! ⌧, r) | (⇧⇢.

�
⌧, r) (types)

� ::= ; | �, ⇢ (e↵ects)

The backwards nature of the type judgments can be immediately see in the T-Var rule and
rules for base types:

T-Var

�(x) = ⌧

�;� ` x : ⌧ ! �

T-Bool

�;� ` bv : Bool ! �

You can see that a variable can have any e↵ect whatsoever. The idea is that if a typing derivation
that is lower in the tree requires any �, this rule can provide it. That is, it does not matter what
regions are live in order for a variable to type-check.

Similarly, the rules for abstractions work in this reverse direction. Essentially abstractions just
require that the latent e↵ect (i.e., what regions must be live to call this function) is the e↵ect of
the expression inside the lambda (i.e., what the function body needs to be live). The e↵ect of an
abstraction as a whole just requires that the region of the abstraction itself must be live.

Application is a bit stranger. Both the function and its argument use the same live regions ,
since there is no way for a binder outside of this application to only provide a live region to one
or the other. The latent e↵ect must be a subset of the e↵ect of the application so that all regions
needed to run the function are actually live in the application. Region applications work mostly
the same, but with a substition of region variables.

T-Abs

�, x : ⌧1 ` e : ⌧2 ! �` r 2 �

� ` �x:⌧1. e at r : (⌧1
�`�! ⌧2, r) ! �

T-App

� ` e1 : (⌧1
�`�! ⌧2, r) ! �

� ` e2 : ⌧1 ! � r 2 � �` ✓ �

� ` e1 e2 : ⌧ ! �

T-RAbs

� ` u : ⌧ ! �` r 2 �

� ` �⇢. u at r : (⇧⇢.�`
⌧, r) ! �

T-RApp

� ` e : ⇧⇢.�`
⌧ ! �

r 2 � �`[⇢/r] ✓ �

� ` e [r] : ⌧ [⇢/r] ! �

The rule for new regions is important, as it provides evidence that a region is actually live. The
idea is that all of the rules push the regions that it needs to be live down, while the T-New rule
pushes the actually live regions up. When these unify our program type-checks.

7

T-New

� ` e : ⌧ ! �, ⇢

� ` new ⇢.e : ⌧ ! �

The other type and e↵ect rules are not that interesting, but we include them here for complete-
ness.

T-If

� ` e0 : bool ! �
� ` e1 : ⌧ ! � � ` e2 : ⌧ ! �

� ` if e0 then e1 else e2 : ⌧ ! �

T-If

� ` e : ⌧ ! �

� ` fix x.e : ⌧ ! �

We mentioned region inference before. The details are too complicated to talk about now, but
the essence is that we can build a judgment � ` e) e

0 : ⌧ ! � that infers a term e

0 that is equivalent
to e except with region annotations. The goal of an algorithm that computes these judgments is
to construct e

0 such that its allocated regions are as small as possible (if they are small enough
they could be stack allocated, for example). Region inference is essential for making region-based
memory management practical.

3 Summary

Type and e↵ect systems are a natural way to extend type systems to accommodate reasoning about
e↵ects. Although the presentation is very di↵erent from FX, the idea lives on in programming
languages that are still in use today such as Java or Haskell. However, making pervasive use of
type and e↵ect systems palatable for practical languages is an open research topic (a recent ECOOP
2012 paper tackles this very issue).

8

