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1 Introduction

There are a great variety of control constructs in programming languages: conditionals, goto, corou-
tines, threads, processes, break, return, and, of course, continuations. The advantage of continua-
tions over the others is that many of the other control constructs are expressible in terms of them.
Unfortunately, the global continuations operators (e.g., call/cc) that are implemented in languages
like Scheme and SML can be difficult to use. Delimited continuations are an alternative approach
that provide better abstraction. However, designing a type system to accommodate them is non-
trivial.

Before looking at delimited continuations, let’s quickly review global continuations as exem-
plified by call/cc. The call/cc operator in Scheme and ML reifies the context of a program.
That is, we take our evaluation contexts E and turn them into special values such as (cont E). A
continuation value just installs the given context in place of the current one:

      [cont]
Meanwhile, call/cc lets us capture a context as a continuation and passes it to a function that

we define:
      [call/cc]

However, continuations are complicated to reason about and, worse, are misleadingly similar to
functions while not acting like them. For example, function composition does not make sense for
continuations:

(call/cc (� (k) ((compose add1 k) 0)))

Without looking closely, this might look like it will evaluate to 1. The real result is 0. While
languages with continuations will allow the composition of add1 and k as above, the resulting
function is not useful. In other words, call/cc continuations do not act like real functions. You
can see this in the reduction rule for continuation application, which is very different from function
application.

2 Delimited control

To deal with the deficiencies of global continuations, we can use delimited continuations. As the
name implies, delimited continuations come with a term—often called a prompt—that delimits the
extent of the captured continuation. Surprisingly, even though delimited continuations seem to be
more limited than global continuations, they are in fact more expressive.

Unlike global continuations, exemplified by call/cc, there are many competing formulations
of delimited continuations. The original formulation by Felleisen et al. is sometimes called dynamic

delimited continuations (or prompt and control) (Felleisen et al. 1987). We will first take a look
at a variation due to Danvy and Filinski called shift and reset (Danvy and Filinski 1989). The
semantics for these two sets of control operators are remarkably similar, but their reduction rules
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differ in one subtle way. The most important resulting difference, for the purposes of this talk, is
that Danvy and Filinski’s static delimited continuations are easier to reason about in a typed setting.

Our first set of delimited control operators are (shift k e) and (reset e). The former is a
binding construct that binds its parameter k to a continuation function in the body e. In this regard,
it is similar to call/cc except that call/cc uses a lambda expression to handle the binding. The
latter term (reset e) represents a delimiter for any shifts that occur inside e.

The reduction rules for shift and reset are shown below. We will assume that our language
has some standard set of evaluation contexts E and also contexts F. The F contexts only differ from
E in that they do not contain reset terms.

   [reset]

     [shift]
 subst       

The rule for reset just produces whatever value is contained in the delimiter. In other words,
the delimiter is just a marker for how far to capture the continuation.

When a shift is contained inside a reset, the evaluation context that is contained within the
delimiter—here F—is captured and provided to the body of shift. This is the key difference be-
tween delimited and global continuations. The continuations captured by call/cc represent the
entire rest of the program. However, in practice captured continuations do have a limit: e.g., the
command prompt at the REPL. In a sense, delimited continuations are formalizing what REPLs
already do in an ad-hoc way.

There is another key difference that is shown in the rules above. When a continuation is captured
with call/cc, it is reified into a (cont k) that will eventually completely replace the current
evaluation context. Meanwhile, delimited continuations are real functions and retain the evaluation
context when they are applied. This difference is made clear in the rule for shift, where the
captured context is copied into the body of the lambda. The captured context isn’t reified, but
actually integrated as an expression. This effectively means the continuation is composed into the
context where the continuation is invoked.

Note that the use of the F context is important in the rule above. Since F contains no reset

terms, the rule is specifically only capturing up to the innermost delimiter. In this system, it is not
possible to skip delimiters when capturing continuations.

Let’s look at some examples. This first example shows the reduction sequence for a simple
expression using shift and reset. The shift inside just contains a constant number in the body. Since
the continuation bound to k is not used at all, this discards the continuation and just produces 0.

 
 

In this next example, the continuation is just immediately invoked. When a continuation is

immediately invoked, it simply acts as the identity:
 

 
 
 

In a sense, this isn’t surprising because the use of k is just re-adding the continuation it already

had up to the closest reset. We can also just return the continuation bound to k, which will just be a
plain function value:




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The lambda term that is returned just contains a body that will execute the addition that was in
the original continuation. The function can be passed around and used in other contexts without
completely replacing them.

We mentioned previously that the original formulation of delimited continuations is very similar
to Danvy and Filinski’s. For comparison, here are the reduction rules for prompt and control:

   [prompt]

     [control]
 subst      

The usage of the terms is exactly the same as shift and reset. Where they differ is in a tiny
modification to the reduction rule for shift/control. The rule for shift installs a delimiter reset
just around the invocation of the captured continuation whereas the rule for control just applies
the captured continuation as is.

This difference is significant. The extra delimiter for shift constrains any inner shifts to
capture only up to the current shift. In particular, this means that we can reason about the captured
continuations entirely locally. This is advantageous for typing these delimited continuations.

Now let’s look at a more interesting example to see how delimited continuations are more flexi-
ble than call/cc. Suppose that instead of building currying into our language, we want to be able
to express that using delimited continuations. Here is a definition of a curried list append function
in Racket:

(define (append1 lst)

(if (null? lst)

(shift k k)

(cons (car lst) (append1 (cdr lst)))))

Note the use of shift in the null case. Now we can apply the function as follows: (reset

(append1 ’(1 2 3))). Effectively, this causes the use of shift in the function to return a con-
tinuation that performs (cons 1 (cons 2 (cons 3 []))), where [] is a hole awaiting a value.
This continuation is return all the way to the enclosing reset.

The power of these delimited operators is that the return behavior is truly non-local. The pair of
delimiter and control operator do not communicate except by the structure of the context. Compare
this to call/cc, which is unable to express this program as concisely. The issue is that a single
call/cc is only able to return up to the point of the continuation capture. In order to return to some
other point in the program, another continuation is needed. Since this continuation must be threaded
to the original call/cc, either extra function arguments or mutable state is necessary.

There is one issue with the code for append1 above. We needed to wrap reset around the
function call, which is extra noise that we would like to remove. We can employ what Danvy
and Filinski call a control abstraction and wrap the function: (define append (� (v) (reset

(append1 v)))). Now the fact that append uses delimited continuations is completely hidden
from the observer. We say that this version of append is pure because it is free of control effects.

3 Cupto and exceptions

There is one other delimited control operator that we will discuss called the cupto operator in-
troduced by Gunter et al (Gunter et al. 1995). These are closer to prompt and control, but are
amenable to typing because the prompts are all named. To create named prompts, there is a new-

prompt term. The set term is the delimiter and cupto is the control operator that will bind and
possibly use the continuation. Here are the reduction rules:
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   [new-prompt ]
 

 

   [set]

           [cupto]
 subst      

The new-prompt term just reduces to a value (% x_p) where x_p is some freshly generated
name. Both the cupto and set terms take one of these prompt values as an argument. What
is interesting about this operator is that it is motivated as a generalization of both exceptions and
continuations. You can see this in how the prompt mechanism works.

Instead of having prompts and shifts be paired via the dynamic context, they are now paired ex-
plicitly via the generative prompt values created by new-prompt. A cupto can jump to any delim-
iter that it has access to through the prompt value. This variation is similar to the prompt/control
semantics—notice the lack of the extra delimiter around the cupto point—except that the active
delimiter is dropped after reduction. Since cupto can jump to contexts that are arbitrary high up on
the stack anyway, there is no reason to keep the active context around.

Notice also that this set of control operators completely discards the current delimiter set after
a cupto. This is different from both the Felleisen et al and Danvy and Filinski semantics. For its
target application of exceptions, this is not really a problem. If you need to retain the delimiter, you
can always install it manually in the use of cupto. Also, like prompt and control, the cupto

operator does not install an additional delimiter inside the continuation function.
By now you probably have a basic idea of how delimited control operators work. Also, it is clear

that there are many different kinds of control operators defined by fine-tuning of certain parameters
for the basic operators. In other words, if you want to adopt delimited control operators, you need
to ask several questions like the following:

• Should the operator install an additional prompt?

• Should the active delimiter be dropped?

• Should prompts be tagged or determined dynamically?

The answers to these questions will determine the kind of delimited control operator to use.
Most of them can macro-express the others, so the decision becomes more important either in a
typed context or if you are looking for a pragmatic choice that matches your application.

We have mentioned types only in passing so far. We might now ask: how do we add types to
these operators? That really depends on what operators you are considering. Let us start with the
cupto system because it has a very straightforward type system.

The reason that the cupto type system is straightforward is because named prompts provide a
hook that we can hang types onto. We will add a prompt type that simply carries around another
type. Thus, the rule for the new-prompt term is simple:

T-NEWP

� ` (new-prompt) : (prompt ⌧)

The ⌧ occurs free in the prompt type because this type system is intended to be used in an
ML-like language with type inference.

The rule for prompts is also simple and can be derived from the operational semantics. A de-
limiter with a value inside will just step to that value, so the type of the whole delimiter must be the
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type of the value. In addition, we’ll require the prompt value to have type (prompt ⌧) where ⌧ is
the type of the value inside the delimiter.

T-PROMPT
� ` e0 : (prompt ⌧) � ` e1 : ⌧

� ` (set e0 e1) : ⌧

The most interesting part of the type rules is the rule for cupto. The rule also showcases the
primary limitation of this type system for delimited control.

T-CUPTO
� ` e0 : (prompt ⌧1) �, x : ⌧0 ! ⌧1 ` e1 : ⌧1

� ` (cupto e0 x e1) : ⌧0

In this rule, the main body of the cupto is type-checked in an environment with a binding for
the type of the continuation. The continuation takes an argument of type ⌧0, which is the type of the
hole in the context around the cupto up to the delimiter. The result of both the continuation and the
body of the cupto need to have type ⌧1 because that is the type that the entire delimited expression
should have. This makes sense, but there is a limitation: the type of the value returned by the cupto
is fixed. More specifically, a cupto that just returns the continuation itself will be ill-typed.

This type system is very simple, but unfortunately the limitation in the cupto rule is problematic
for certain use cases of continuations. For example, recall the append example that was presented
earlier. In the implementaiton of append, the shift simply returns the bound continuation k to a
context that is clearly expecting a list. The type system for cupto explicitly disallows this use. In
other words, the append example is not expressible in the cupto language with types.

Another way of phrasing this problem is that the cupto type system does not allow answer type

modification. The cupto operator can only provide values that the context is known to already accept.
While these limitations may sound severe, the cupto system is still sufficient to encode many uses

of control. In particular, the cupto system was designed as a generalization of exception operators.
Gunter et al actually introduce an encoding of exceptions in their cupto paper, which we will describe
now.

The exception language that we will consider consists of the following operators: new-exn,
(raise e_0 e_1), and (handle e_0 e_1 e_2). The new-exn term creates a new exception
value while the other two terms respectively raise an exception and handle an exception using the
provided function.

Let’s start with the translation of new-exn:

(new-exn)

=

(new-prompt)

Exception values are just represented as prompt values. Next we will look at the raise term.
This term takes the exception value and a value to raise to the handler.

(raise e1 e2)

=

(let ([x1 e1]

[x2 e2])

(cupto x1 k x2))

A raise translates simply to a cupto. The continuation parameter k is bound but never used.
Since all that the exception needs to do is abort to the handler (i.e., communication is one-way),
there is no need to use the continuation. The let is there just to force the expressions to evaluate in
order.
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Next, the translation of handler, which takes an exception value, a handler function, and the
code for the body:

(handler e1 e2 e2)

=

(let ([x1 e1]

[x2 e2]

[p (new-prompt)])

(set p ((� (z) (cupto p k (x2 z)))

(set x1

(let ([x3 e3])

(cupto p k x3))))))

This translation is somewhat more complicated. The handler translates to code that first creates
its own local prompt and sets up a delimiter for it. Within the delimiter, a lambda expression is im-
mediately applied to an expression with another delimiter. This delimiter is named by the exception
value, so that if x3 contains a raise to that exception, it will be caught by the delimiter. After it is
caught by the delimiter, the value will flow into the lambda expression and be given as an argument
to x2, which is the evaluated handler function. If there is no raise, the cupto in the let form will
jump to the local delimiter and that will be the end.

This shows that the cupto system is expressive enough to support exceptions despite its type
system limitations. In practice, there are probably many cases where answer type modification is
not necessary to support useful and interesting control idioms with delimited continuations.

4 Types for shift and reset

Since Gunter et al’s system cannot deal with answer type modification, one might ask if that is
possible in general. Danvy and Filinski’s original type system for shift and reset actually does
accommodate answer type modification. The main tradeoff for this expressiveness is that the type
system is quite complex.

To accommodate answer type modification, Danvy and Filinski make the type-checking relation
a five-place relation. The relation will now track the original result type and the new result type.
The result type is the type of the value that will be provided to the nearest delimiter by a jump.

To start, let’s look at the rules for constants. Since constants have no control effects, they will
never affect the result type at all (i.e., they are pure). In other words, they are going to be polymor-
phic in the result type:

T-INT

�;↵ ` n : int;↵

In this rule, the ↵ is both the old and new result type. The computation of a constant integer will
not matter for the result type at all.

Similarly, a reset is also pure. This makes sense given our earlier discussion of control abstrac-
tions using reset. The type rule is shown below:

T-RESET
�;� ` e : �; ⌧

�;↵ ` (reset e) : ⌧ ;↵

The expression e inside of the delimiter can have any control effect because the delimiter will
shield the context from it. Hence, the whole delimiter is pure and just has the same ↵ for old and
new result types. However, the result types for the inner expression look strange. The old result type
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and the type of the expression are both �. This makes sense because if there is a control effect, it
will potentially change the type of the value in the reset from � to some new type.

In particular, consider what would happen if the expression inside is a constant.

�; int ` n : int; int

�;↵ ` (reset e) : int;↵

Unification will cause the ↵ and � to be the same type due to both the T-INT and T-RESET rules.
In turn, both of these are instantiated with int because of the constraints in T-RESET. This makes
everything work out as the type of the whole delimiter is now int as desired.

Next, we will look at the rule for shift:

T-SHIFT
�, f : ⌧/� ! ↵/�;� ` e : �;�

�;↵ ` (shiftx e) : ⌧ ;�

The rule binds the type for the continuation, which has a function type. Notably, this rule shows
that we need to change the types of functions because they may have control effects themselves. The
extra types in the function types are the old and new result types for functions.

Type-checking the body of the shift again just assumes that the type of the old answer (�) is
the type of the body expression itself. If anything in the body changes that type, then � will reflect
that. Now notice that the type of the whole shift is not � because the shift will never return to its
immediate context unless the continuation is actually called (otherwise it will abort to the delimiter).
Instead, the type of the whole shift (i.e., the type that its context expects) is going to be the input
type of the continuation because the continuation’s argument will be plugged into this context. The
result type of the continuation has to be the old result type of shift (↵) because the context would
also produce that type if the shift were not there.

Finally, if the shift just aborts to the delimiter, we can return whatever type is consistent with
the new result type of the body expression. If the body is a constant, this will just be the type of the
constant.

Note that the continuation itself in shift is polymorphic in the answer type because of the extra
reset that is always wrapped around the context in a continuation function.

Application and lambdas are fairly straightforward except for the need to figure out the ordering
of the result types in the application. Here are the rules:

T-LAM
�, x : �;↵ ` e : ⌧,�

�; � ` �x.e : �/↵ ! ⌧/�, �

T-APP
�; � ` e0 : �/↵ ! ⌧/✏,� �; ✏ ` e1 : �; �

�;↵ ` e0 e1 : ⌧,�

The lambda rule just checks what the effects the body of a lambda would have and appropriately
instantiates the function type with the corresponding result types. The lambda expression itself is
polymorphic in its result type because lambdas are values and thus pure.

The application rule is slightly trickier. We have seen that all of the pure expressions will have
the same old and new result types. Thus, in order to determine the effect of the entire application,
we need to determine if the control effects of the function or argument position will be the effect
of the entire expression. Note that the final effect cannot be both effects because an effect will first
abort and change the context so that the other effect cannot be run at all.
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The ordering in the rule shows that the function position is evaluated first. If the function has
an effect, then its result type � is used since � is the effect of the whole expression. On the other
hand, if the function position is pure, then it will simply propagate the old result type �. This old
result type is the new result type of the argument expression. Thus, if the function does not cause
an effect, then the argument will get to set the new result type. Otherwise, there is no way that the
argument could cause an effect because the context has changed.

Similarly, because the function in the argument itself is invoked after both the function and
argument are evaluted to values, its final result type ✏ is propagated to the argument’s old result
type. That is, if the argument had no effect, the new result type of the whole expression will be the
function’s latent effect.

Answer type modification is clearly necessary even for relatively simple examples, but it greatly
increases the complexity of the type system as we have just seen.

5 Continuations in the real world

So far, we have talked about a variety of delimited control operators and their use in small examples.
While delimited control operators are actually implemented for some languages (e.g., SML, Scheme,
Racket, etc.), they have not seen mainstream adoption in the form that we have seen so far. This
might raise the question: are delimited continuations useful in practice?

It turns out that mainstream languages such as C#, JavaScript, Python, and Ruby all use a form
of delimited control called yield. Unlike the operators we have seen so far, the implmentations of
control in these languages are more limited and hidden so that most programmers need not be aware
of how they are delimited. However, James and Sabry have shown that the yield operator can be
modeled using delimited control operators and that a sufficiently powerful generalization of yield
can also model delimited control (James and Sabry 2011).

Here is one example from their paper that demonstrates how Ruby uses a form of delimited
control:

def inject(state)

self.each { v state = yield(state, v) }

state

end

def useInject()

total = [1..1000].inject(0) { sum, v

if prime?(v)

sum + v

else

sum

end

}

end

This example contains two methods. The inject method uses the yield operator to suspend
computation and return two values to the context. The other loops over the integers from 1 to 1000
and sums the prime numbers using inject. At the end of a loop iteration, the sum that is returned
is implicitly given to the suspended computation of inject (i.e., the continuation) and sets the next
state within the body of inject.

Viewing this as a use of delimited continuations, you can consider the yield as something akin
to a shift or control. The delimiter is implicitly integrated into the looping construct. This is a
common pattern in imperative languages, where yield is often used to create iterators or looping.
In other words, these languages bake a special case of delimited control into certain aspects of the
language.
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6 Conclusion

Delimited control operators are powerful and can subsume uses of global continuations. When truly
global behavior is desired, a prompt can be applied at the top-level, which simulates the behavior
of call/cc. Certain patterns of delimited control can even be found in mainstread languages,
though usually not with the full expressiveness of the traditional operators such as shift and reset.
Delimited control is a useful addition to a language’s toolbox, but care must be made to ensure that
the design fits the use cases and that a type system for it balances usefulness and complexity.
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