Deforestation

Vincent St-Amour

April 26, 2012

1 Functional Programming is Nice

Why do we like functional programming?

Well, one of the reasons I like functional programming is that it allows me
to write programs that look like the problem they’re solving. For example, say
I want to:

sum the squares of all numbers from 1 up to n
I want to write:

sum_of_squares :: Int -> Int
sum_of_squares n = sum (map square (upto 1 n))

not:
sum := 0;
for i := 1 to n do
sum := sum + square(i);
The original problem statement is in terms of sum, square and from ... up to,

not for and assignment. I want my program to be the same.

However, the second program is much more efficient than the first one. Most
importantly, even though all we want is to go from a number (n) to another
number (the result), the program ends up allocating two intermediate lists along
the way: one for the result of upto, and one for the result of map.

Intermediate lists are inefficient for multiple reasons.

e They take up space; the first program takes O(n) space, while the second
takes O(1).

e Each cons cell of each list needs to be allocated, which takes time (O(n)
per traversal), and increases GC pressure.

e Each list needs to be traversed when it gets consumed (more time).

So, what we really want is to write the first program, and have the compiler
automatically turn it into the second (or something morally equivalent).

This is where deforestation comes in. Deforestation is a transformation that
transforms programs written using list combinators (such as map, foldr, etc.)
and eliminates intermediate lists.

Deforestation is a very general technique, and it can apply beyond lists, to
trees (which is where the name deforestation comes from) and other intermediate
data structures. It also applies beyond list combinators to list comprehensions
and more. We will ignore all that, and focus on lists and list combinators. Most
of the techniques we will see can easily be extended to work on other data struc-
tures and other modes of operation.

Before we dive into the meat of the topic, let’s outline the classes of list
combinators we want our “deforester” to handle:

e Producers (unfoldr)

e Consumers (foldr)

e Transformers (map)

e Selectors (filter), no one-to-one mapping from inputs to outputs
e using accumulators (foldl)

e traversing multiple lists at once (zip)

e traversing the same list multiple times (average)

Most of these functions should be familiar, but just in case, here are their
definitions:

unfoldr :: (b -> Maybe (a, b)) -> b -> [al
unfoldr f b = case f b of
Just (a,new_b) -> a : unfoldr f new_b
Nothing -> [

foldr :: (a->b ->b) >b ->[a] > b
foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

map :: (a -> b) -> [a] -> [b]
map _ [] =[]
map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> [a] -> [a]

filter pred [] =[]

filter pred (x:xs)
| pred x = x : filter pred xs
| otherwise = filter pred xs

foldl :: (a =>b ->a) ->a -> [b] > a
foldl _ z [] =z
foldl f z (x:xs) foldl £ (f z x) xs

zip :: [a]l -> [b] -> [(a,b)]
zip (a:as) (b:bs) = (a,b) : zip as bs
zip _ - =[]

average :: [Int] -> Int
average xs = (sum xs) ‘div‘ (length xs)

unfoldr is not as well-known as the others, so let’s see it in action by
implementing upto in terms of it:

upto :: Int -> Int -> [Int]
upto from to = unfoldr (\ s -> if s > to
then Nothing
else Just (s, s + 1))
from

2 Timeline

The desire to program in a functional style while achieving imperative-level per-
formance has been around for about as long as functional programming itself.
For the rest of the lecture, we will trace the history of deforestation, pausing to
study the most important! milestones along the way.

We will focus on three chunks of work, all of which led to their author’s
dissertation:
1. Philip Wadler introduces deforestation in the early 80s.

2. Andy Gill? brought deforestation to the mainstream (i.e. GHC) in the
early 90s.

3. Duncan Coutts® introduced stream fusion, which addresses the limitations
of Gill’'s work, in the late 00s.

IDisclaimer: most important from the perspective of compiler optimization, as determined
by a guy who has read on the topic for two weeks (i.e. not an expert). Any omissions and/or
misrepresentations are accidental.

2The faculty member at the University of Kansas, not the guitarist for Gang of Four.

3The consultant at Well-Typed, not the bassist for Our Lady Peace.

3 1976-1981: Prehistory

Before deforestation, multiple techniques had been proposed to eliminate inter-
mediate data structures from functional programs. Here’s a brief overview of
some of the most influential.

The fold-unfold method Burstall and Darlington[2] introduce the fold-
unfold method, a small set of semantics-preserving transformations that, when
applied to functional programs, make them more efficient. The rules, while
straightforward, must be applied by a human and are not easily automatable.

Backus’s FP In his Turing Award lecture[4], John Backus introduces function-
level programming and the FP system. FP has been described as a cross be-
tween functional programming and APL. FP came with an algebra of programs,
that allowed programs to be manipulated while preserving correctness. Using
this algebra, it is possible to show that eliminating intermediate data structures
preserves correctness.

Lazy evaluation Lazy evaluation[l] has been considered as a solution to the
inefficiencies of the functional style. Lazy evaluation sometimes eliminates the
need for intermediate data structures; their elements get computed on demand,
solving space issues. This does not always work, though (e.g. average). Fur-
thermore, lazy evaluation does not help to fix the time inefficiencies of the
functional style; worse, it often imposes an additional overhead over strict eval-
uation.

4 1981: Deforestation

Inspired by Burstall’s work, Philip Wadler set out to develop a technique that
would automatically eliminate intermediate data structures from functional pro-
grams. He dubbed this technique deforestation.

Wadler identifies a core set of list operators that can be used to express
a large class of list computations: map, red(uce) and gen(erate). red is very
similar to foldr?, so we’ll just use foldr instead.® gen serves the same purpose
as unfoldr, but the two differ enough that we’ll stick with gen. List generators
are not as widely agreed upon as list consumers, anyway.

gen :: (a -> Bool) -> (a -> b) -> (a -> a) -> a -> [b]
gen stop yield next seed =

if stop seed

then []

else (yield seed) : (gen stop yield next (next seed))

4red is in fact much closer to foldr than to the modern reduce
5This involves converting Wadler’s rules and examples a bit. Any errors are mine.

gen differs from unfoldr in the following ways: it uses an explicit predicate
(its first argument) to determine when to stop, whereas unfoldr uses a Maybe
type, and gen uses two separate functions (its second and third arguments) to
compute the next value in the list and the next value of the seed, respectively,
whereas unfoldr uses a single function that returns a pair.

As a simple example, here is the upto function defined, using gen:

upto :: Int -> Int -> [Int]
upto from to = gen (> to) id (+ 1) from

Wadler then defines a set of rewrite rules that operate on combinations of
these operators. These rules identify specific patterns of list operators that
create then consume intermediate lists, then merges the operations to eliminate
the need for intermediate lists.

map-map
map f (map g xs) = map h xs
where h x = f g x

foldr-map

foldr f a (map g xs) = foldr h a xs
where h x a = f (g x) a

map-gen
map f (gen stop yield next b) = gen stop h next b
where h b = £ (yield b)
foldr-gen

foldr f a (gen stop yield next b) = hab
where h a b =
if stop b
then a
else h (f (yield b) a)
(next b)

The deforestation algorithm basically consists of applying these rules over
and over, interspersed with inlining steps to expose more deforestation oppor-
tunities.

Let’s observe deforestation in action, using our sum of squares example:
sum (map square (upto 1 n))

we inline the definition of sum:

foldr (+) 0 (map square (upto 1 n))
we apply the foldr-map rule, eliminating one of the intermediate lists:

foldr hl1 0 (upto 1 n)
where hl x a = (square x) + a

we inline the definition of upto:

foldr h1 0 (gen (> n) id (+ 1) 1)
where hl x a = (square x) + a

we apply the foldr-gen rule, eliminating the other intermediate list:

h2 0 1
where h2 a b = if (> n) b
then a
else h2 (hl a (id b)) ((+ 1) b)

finally, a bit of inlining and cleanup:

h2 0 1
where h2 a b =if b > n
then a
else h2 (a + b * b) (b + 1)

which is equivalent® to the fast program from the introduction. We win.

The above rules cover a large class of list operations, but not all the ones
we set out to handle in the introduction. To support functions that traverse a
given list multiple times (e.g. average), we need an extra rule, that collapses
two traversals into one:

parallel foldr

(foldr f a xs, foldr g b xs) = foldr h (a, b) xs
where h x (a, b) = (f x

But other kinds of operations, such filter, cannot be expressed in this sys-
tem. Referring back to our goals from the introduction, we get:

unfoldr | foldr | map | filter | foldl | zip | average
Wadler 81 X X X X

Wadler implemented a prototype transformer? that used this technique,
showing its feasibility. It’s unclear whether that prototype was integrated to
a compiler or not.

Let’s wrap up our discussion of this work.

6The equivalence of tail-recursion and iteration had been shown by Steele (Wadler’s co-
advisor) four years earlier[3].
"In Lisp.

a, g xb)

Advantages

o Automatic: deforestation does not require programmer input, and is there-
fore suitable for inclusion in a compiler.

e Source-to-source: all the transformations take valid programs in the source
language to other (faster) valid programs in the source language. This
makes easy to integrate to a compiler pipeline, and makes it possible to
apply further optimizations to the output of deforestation. It also means
that other optimizations can potentially introduce new opportunities for
deforestation.

e Simple: each rule is easy to understand and obviously correct.

Disadvantages

e One optimization = one rule: if we want to add new list operators, we
need to add a new rule for each combination of the new operator with
each of the old ones. This does not scale.

e Limited: a lot of interesting list computations cannot be covered using
this framework. We cannot eliminate intermediate lists in these cases.

5 Interlude: Where are the Types?
I'm glad you asked!

We haven’t used types explicitly so far, but they are necessary to ensure
correctness. Consider the following program, and assume we’re in an untyped
setting:

map 3 (gen (\ x -> True) id id 0)

gen stops right away, producing the empty list. map gets called, and before
it does anything, checks whether 3 is a function (it’s not) and errors. After
optimization, this program becomes:

gen (\ x -> True) h id O
where h b = 3 (id b)

In this case, h never gets called, so 3 never gets checked for functionness, and
the program returns the empty list. We just turned an erroring program into
one that runs to completion. This is bad. More generally, deforestation can
potentially move errors around, which makes debugging harder. This is also
bad. Types prevent all this from happening.

6 1984-1990: The Listless Transformer

Throughout the 80s, Wadler kept working on deforestation. In 1984, he in-
troduced a new deforestation technique, which he dubbed the listless trans-
former[6]. This transformer would take a program written using list operators,
and would transform it into a program for a listless machine, that is, a first-
order, constant-space assembly-level program.

The listless transformer can deforest a larger class of programs than Wadler’s
original approach, but has several drawbacks. First, the transformer is fairly
complicated; it lacks the simplicity and “obvious correctness” of the original
deforestation algorithm.

Second, the transformer does not produce valid source programs; it pro-
duces output for a special machine. This makes the transformer hard to fit in a
compiler pipeline, and makes further optimizations on the transformer’s output
awkward. In a subsequent® paper[8], Wadler explains how to integrate listless
machines with graph reducers, but this is more of a Foreign Function Interface
than a true integration.

Finally, the listless transformer imposes restrictions on its inputs that limit
its applicability, but are necessary to ensure termination of the transformer.

7 1993: build-foldr Fusion

Andy Gill’s doctoral work introduces another approach to deforestation, build-
foldr fusion, which performs a range of optimizations as broad as the listless
transformer, but addresses its drawbacks.

Like the original deforestation algorithm, build-foldr fusion is source-to-
source and rule-based. In fact, it is based on a single rule:

foldr-build
foldr k z (build g0 = gk z
Cool, what’s build?

build :: (forall b. (a => b -> b) -> b -> b) -> [a]
build g = g (:) []

build itself is not especially interesting. Most of the action happens in g.
g is whatever list producer we want, abstracted over : (i.e. cons) and [1 (i.e.
nil). That is, instead of calling cons and nil directly, it calls the cons and nil it

8Literally the next one in the sequence.

gets as arguments. build simply passes g the usual cons and nil.

To make this concrete, let’s see what our upto function would look like in
this style:

upto :: Int -> Int -> [Int]
upto from to = if from > to
then []
else from : upto (from + 1) to

if we abstract over : and [], we get:

upto’ :: Int -> Int -> (@ -=> b -> b) -> b -> b
upto’ from to =
\ cons’ nil’ -> if from > to
then nil’
else cons’ from (upto’ (from + 1) to)

It should be obvious from these definitions that we can derive upto using
build and upto’. Good, but why bother? The answer comes from foldr:

foldr (+) 0 (1 : 2 : 3 : 4 : [
is equivalent to:
1+2+3+4+0

In a sense, foldr replaces the conses in its list argument with its function argu-
ment, and the nil of its list argument with its nil argument. foldr undoes what
build does! The two cancel out nicely, which is precisely what the foldr-build
rule is all about.

Let’s look at an example:
sum (upto 1 n)
we inline the definitions of sum and upto:
foldr (+) 0 (build (upto’ 1 n))
we apply the build-foldr rule:
(upto’ 1 n) (+) O
to better see what’s going on, let’s inline the definition of upto’:

h O
where h from = if from > n
then 0
else from + (h (from + 1))

We get the code we want. Groovy.

Now let’s go back to the type of build:
Va. (V8. (a = = B) = — 5) = [q]

This type may look more complicated than necessary, but it is in fact necessary
for correctness. Let’s assume we use a more permissive type for build:

vap.((a— B — B) = B — B) = [
Bad things can happen:
foldr (+) 0 (build (\ ¢ n -> 3 : [1))

This typechecks just fine with the permissive type. « is Int and f§ is [«]. Using
the build-foldr rule, this gets transformed to:

(Ncn->3:1[) (O

That can’t be right, the two expressions don’t reduce to the same thing. They
don’t even have the same type!

3 # [3]

That’s where the more restricted type saves us. It forces build’s argument
to only use the cons and nil it gets from build to construct its result. It can’t
use a cons and nil it smuggled from somewhere else, as in our example. Thanks
to the magic of Free Theorems, we know that this can’t happen.

However, this is a rank-2 type, which is not supported by Hindley-Milner.
Oops. To make this work in Haskell, Gill et al. use build internally, but do
not provide it to the use, who could potentially abuse it. With a more powerful
type system, though, it would just work.

Now let’s scale that up a bit:
sum (map square (upto 1 n))
as before, we inline:
foldr (+) 0 (map square (build (upto’ 1 n)))
and we're stuck.
How can we extend this technique so that it works on map and friends? Easy,
we write them using build and foldr!
map :: (a -> b) -> [a] -> [b]
map £ xs = build (\ ¢ nil -> foldr (\ x a -> ¢ (f x) a) nil xs)

filter :: (a -> Bool) -> [a] -> [a]
filter f xs = build (\ ¢ nil —>
foldr (\ x a -> if f x then c x a else a) nil xs)

10

And so on.

Let’s see if that fixes our problem.
foldr (+) O (map square (build (upto’ 1 n)))
we inline map:

foldr (+) O
(build (\ ¢ nil -> foldr (\ x a -> c¢ (square x) a) nil
(build (upto’ 1 n))))

we eliminate the inner intermediate list:

foldr (+) 0O
(build (\ ¢ nil -> (upto’ 1 n)
(\ x a => ¢ (square x) a) nil))

and the outer intermediate list:

(\ ¢ nil -> (upto’ 1 n) (\ x a -> ¢ (square x) a) nil) (+) 0
clean up a bit:

(upto’ 1 n) (\ x a -> (square x) + a) O

and if we keep inlining, we’ll get the fast program from the introduction. We’re
done.

Going back to our scoreboard, let’s see how build-foldr fares:

unfoldr | foldr | map | filter | foldl | zip | average
Wadler 81 X X X X
Gill 93 X X X X X

This is better than the original deforestation algorithm, but there are still
cases that we can’t handle. We can express foldl in terms of foldr, but that
just moves the intermediate list to the accumulator position, so we don’t gain
anything. In the case of zip, build-foldr fusion will eliminate one of the lists
that zip consumes, but can’t do anything about the second.

Gill et al. implemented their technique in GHC, and it worked really well in
practice. Great success!

Let’s wrap up.

11

Advantages

o Simple, source-to-source and automatic: it has all the things we liked
about the original deforestation algorithm.

e No limitations on inputs: unlike the listless transformer, build-foldr fusion
does not impose limitations on its inputs; it can operate on the entire
Haskell language. Of course, this does not mean that it will optimize all
these programs, but at least it won’t break or go off in an infinite loop.

e Single rule: unlike the original deforestation algorithm, a single rule suf-
fices. When we add new list operations, as long as we express them using
build and foldr, we’re good. That’s an O(1) amount of work, no need
to consider all the combinations with the existing operations.

Disadvantages

e Limitations: it can’t handle functions that use acculumators (foldl) or
functions that consume multiple lists (zip).

8 1993-2007: Attempts at Improving build-foldr

Following Andy Gill’s work, a whole cottage industry of new deforestation ap-
proaches appeared, all of them trying to cover the cases left out by build-foldr.
Most of that work was theoretical, a lot of it was based on category theory, and
almost none of it had any impact on practice.

Most of the proposed approaches were either complicated, or did not cover
some cases that build-foldr did, or were not suited for integration in a compiler.
As a result, build-foldr remained the favored approach in actual compilers.

9 2007: Stream Fusion

With that context, we arrive at the last system we’ll examine: stream fusion.
Like others in the preceding two decades, its goal was to cover the cases that
were missing from Gill’s work. Unlike the others, it succeeded and at the same
time stayed simple and useful in practice.

Stream fusion has a similar structure to build-foldr fusion: a single fusion
rule eliminates matching pairs of constructor and destructor, and list opera-
tions are expressed in terms of this constructor and destructor. The construc-
tor/destructor pair used by stream fusion is stream and unstream:

data Stream a = exists s. Stream (s -> Step a s) s
data Step a s = Done | Yield a s | Skip s

12

stream :: [a] -> Stream a
stream xs_0 = Stream next xs_0
where next [] = Done
next (x : xs) Yield x xs

unstream :: Stream a -> [a]
unstream (Stream next_0 s_0) = unfold s_0
where unfold s = case next_0 s of
Done -> []
Skip s’ -> unfold s’
Yield x s’ -> x : unfold s’

Streams have some abstract state type and a stepper function that advances
the stream from one state to the next and may yield values. The stream con-
structor yields values from its input list until it runs out. The unstream de-
structor consumes its input stream until it runs out, building a list from the
yielded values and discarding the Skips along the way.

The existential in the Stream type is necessary for correctness, for similar
reasons as the nested quantification in the type of build. To preserve the in-
variants on which deforestation depends, programmers should not be able to
forge stream states.

We can see that stream and unstream cancel out. This is expressed in the
stream-unstream rule, the fusion rule used by stream fusion:

stream-unstream
stream (unstream s) = s

Let’s see what map and filter would look like in this setting:

map :: (a -> b) -> [a]l -> [b]
map f = unstream . map_s f . stream

map_s :: (a -> b) -> Stream a -> Stream b
map_s f (Stream next_0 s_0) = Stream next s_0
where next s = case next_0 s of
Done -> Done
Skip s’ -> Skip s’
Yield x s’ -> Yield (f x) s’

filter :: (a -> Bool) -> [a] —-> [a]
filter p = unstream . filter_s p . stream

13

filter_s :: (a -> Bool) -> Stream a -> Stream a
filter_s p (Stream next_O s_0) = Stream next s_O
where next s = case next_0 s of

Done -> Done
Skip s’ -> Skip s’
Yield x s’ p X -> Yield x s’

|
| otherwise -> Skip s’

They become simple wrappers around functions that operate on streams. It’s
worth noting that neither map_s nor filter_s is recursive. Each time they get
called, the stream steps once. This is a property we will want of all our stream
processing functions (steppers). In order for the desired computation to be per-
formed, there needs to be a consumer “pulling” at the end, in this case unstream.

Using this definition, we can deforest map of map:

map £ . map g
unstream . map_s f . stream . unstream . map_s g . stream
unstream . map_s f . map_s g . stream

The intermediate list goes away as planned.

foldr is not primitive anymore, so let’s define it:

foldr :: (a->b ->b) >b ->[a] >b
foldr f z xs = foldr_s f z (stream xs)

foldr_s :: (a => b -> b) -> b -> Stream a -> b
foldr_s f z (Stream next s_0) = go s_0
where go s = case next s of
Done -> z
Skip s’ -> go s’
Yield x s> -> f x (go s’)

Like unstream, foldr consumes streams, and is allowed to be recursive, since
it needs to “pull” all the values from its input.

We don’t have a primitive list constructor anymore, so let’s see what upto
would look like:

upto :: Int -> Int -> [Int]
upto from to = unstream . upto_s from to

upto_s :: Int -> Int -> Stream Int
upto_s from to = Stream next from
where next n | n > h = Done

| otherwise = Yield n (n + 1)

14

Pretty simple, it just creates a stream. Since we can now express foldl and
zip, let’s do them too:

foldl :: (b ->a ->b) >b ->[a] ->b
foldl f z xs = foldl_s f z (stream xs)

foldl_s :: (b -> a ->b) -> b -> Stream a > b
foldl_s f z (Stream next s_0) = go z s_0
where go z s = case next s of
Done -> z
Skip s’ -> go z s’
Yield x s’ -> go (f z x) s’

zip :: [a]l -> [b] —> [(a,b)]
zip xs ys = unstream . zip_s (stream xs) (stream ys)

zip_s :: Stream a -> Stream b -> Stream (a,b)
zip_s (Stream next_a s_a0) (Stream next_b s_b0) =
Stream next (s_a0, s_b0O, Nothing)
where next (s_a, s_b, Nothing) =
case next_a s_a of
Done -> Done
Skip s_a’ -> Skip (s_a’, s_b, Nothing)
Yield a s_a’ -> Skip (s_a’, s_b, Just a)
next (s_a’, s_b, Just a) =
case next_b s_b of
Done -> Done
Skip s_b’ -> Skip (s_a’, s_b’, Just a)
Yield b s_b’ -> Yield (a,b) (s_a’, s_b’, Nothing)

foldl is actually quite simple. It’s allowed to be recursive, so we can have the
accumulators we want. zip is a bit more involved. The stream it produces
needs to keep track of the state of both its inputs and in addition, it keeps a
“buffer” for an a. Since zip_s is a stepper, it’s not allowed to be recursive; it
needs to produce a value for each action it takes. However, in order to yield
a value, both its input streams need to yield a value. To make it all work, we
encode a simple state machine. Every time the stepper function gets called, it
makes a transition. In first state, the stepper tries to read from its first input
stream. If it yields a value, the stepper stashes it away, then skips and goes into
the second state. In the second state, the stepper tries to read from its second
input stream. If it yields a value, the stepper combines it with its stashed value
and yields the result, resets its buffer, then goes back to the first state.

15

Ok, so things look good, we can eliminate intermediate lists. But wait,
we’re not done yet! We’ve only traded intermediate lists for intermediate stream
structures and intermediate stream states. We haven’t gained anything on the
allocation front!

Fear not! We're now in a position where standard compiler optimization
techniques can eliminate the remaining allocation. Let’s look at an example:

foldr_s (+) 0 . map_s square . stream xs
First, let’s inline the definitions:

go_foldr O xs
where go_foldr z s = case next_map s of
Done -> z
Skip s’ -> go_foldr z s’
Yield x s’ -> go_foldr (x + z) s’
next_map xs = case next_stream xs of
Done -> Done
Skip s’ -> Skip s’
Yield x s’ -> Yield (square x) s’
next_stream xs = case xs of
1 -> Done
(x : xs8’) -> Yield x xs’

Since all steppers functions are non-recursive, we can fuse them via inlining.
Let’s fuse next_map and next_stream:

go_foldr O xs
where go_foldr z s = case next_map s of
Done -> z
Skip s’ -> go_foldr z s’
Yield x s’ -> go_foldr (x + z) s’
next_map xs = case case xs of

[-> Done

(x : xs8’) -> Yield x xs’ of
Done -> Done
Skip s’ -> Skip s’

Yield x s’ -> Yield (square x) s’

Then, we can use the case-of-case transformation?, which pushes the outer case
in the alternatives of the inner case:

9Your compiler does that, right? If not, why are you bothering with stream fusion? You’ve
got lower hanging fruit than that to pick.

16

go_foldr O xs
where go_foldr z s = case next_map s of
Done -> z
Skip s’ -> go_foldr z s’
Yield x s’ -> go_foldr (x + z) s’
next_map xs = case xs of

(] -> case Done of
Done -> Done
Skip s’ -> Skip s’

Yield x s’ -> Yield (square x) s’
(x : xs’) -> case Yield x xs’

Done -> Done

Skip s’ -> Skip s’

Yield x s’ -> Yield (square x) s’

This trivially rewrites to:

go_foldr 0 xs
where go_foldr z s = case next_map s of
Done ->z
Skip s’ -> go_foldr z s’
Yield x s’ -> go_foldr (x + z) s’
next_map xs = case xs of
(] -> Done
(x : xs’) -> Yield (square x) xs’

And we’ve managed to eliminate the residual allocation from the inner part of
the example; all traces of streams have disappeared. If we keep applying the
same optimizations, we can deforest the rest, too:

go_foldr O xs
where go_foldr z s = case s of
(] -> z
(x : xs’) -> go_foldr ((square x) + z) xs’

Note that all the optimizations we applied are standard; none are deforestation-
specific.

Ok, let’s see what the scoreboard looks like:

unfoldr | foldr | map | filter | foldl | zip | average
Wadler 81 X X X X
Gill 93 X X X X X
Coutts 07 X X X X X X X

17

Stream fusion is now implemented in GHC', it works well in practice and
is responsible for big speedups all over.

Let’s wrap up our discussion of stream fusion.

Advantages

e All of the above: stream fusion preserves all the nice things about the
previous systems.

o Complete coverage: and it covers all the cases we set out to cover.

Disadvantages

e Nothing, really: stream fusion is the state of the art. The only “short-
coming” I can think of is that it can’t apply unless you write programs
using list operators; if you insist on writing your list functions recursively,
it won’t help you. But that’s true of all the systems we’ve seen. Don’t do
that.

10 Conclusion

Deforestation allows us to have our cake and eat it, too. We can write our
programs in a nice, high-level functional style, using all the list operators we
want and, using deforestation, our compiler will eliminate the intermediate data
structures introduced by the functional style.

The idea of eliminating these intermediate data structures has been around
for almost as long as functional programming itself, and automated solutions
have been the subject of research for about 30 years. Over time, solutions have
increased in applicability and flexibility, and we’ve reached a point where the
vast majority of programs built using list operators can be deforested. Defor-
estation has made its way into mainstream functional compilers (most notably
GHC) and has led to significant speedups in practice.

10Replacing build-foldr fusion, I assume.

18

References

1]

2]

[9]

Daniel P. Friedman, David S. Wise, Cons should not evaluate its arguments.
Automata, Languages and Programming, 1976.

Rod M. Burstall, John Darlington, A transformation system for developing
recursive programs. Journal of the ACM, 1977.

Guy L. Steele Jr., Debunking the expensive procedure call myth, or, Procedure
call implementations considered harmful, or, LAMBDA: the ultimate goto.
ACM Annual Conference, 1977.

John Backus, Can programming be liberated from the Von Neumann style?.
Communications of the ACM, 1978.

Philip Wadler, Applicative style programming, program transformation, and
list operators. Conference on Functional Programming and Computer Archi-
tecture, 1981.

Philip Wadler, Listlessness is better than laziness. Conference on LISP and
Functional Programming, 1984.

Philip Wadler, Listlessness is Better than Laziness. Ph.D. dissertation,
Carnegie-Mellon University, 1984.

Philip Wadler, Listlessness is better than laziness 1I. Workshop on Programs
as Data Objects, 1985.

Andrew Gill, John Launchbury, Simon L Peyton Jones, A short cut to de-
forestation. Conference on Functional Programming and Computer Archi-
tecture, 1993.

[10] Andrew Gill, Cheap Deforestation for Non-Strict Functional Languages.

Ph.D. dissertation, University of Glasgow, 1996.

[11] Duncan Coutts, Roman Leshchinskiy, Don Stewart, Stream Fusion. Inter-

national Conference on Functional Programming, 2007.

[12] Duncan Coutts, Stream Fusion: Practical Shortcut Fusion for Coinductive

Sequence Types. Ph.D. dissertation, University of Oxford, 2010.

19

