
CS7400 Problem Set 5 Due: 14 Mar 2017

You can turn in handwritten solutions to this assignment. Please write clearly and use standard-sized
(8.5 by 11in) paper. Solutions should be submitted before the beginning of class on the due date. If you
choose to typeset your solutions using LaTeX, you may find the mathpartir.sty package useful.

1. Names and scope (20 pts.)

Consider the following program:

let x = 5 in

let f = λy. x+ y in

let x = 4 in

let g = (λz. let x = 3 in f(x)) in

g(x) + f(x)

(a) What does this program output using call-by-value semantics with static scope? Explain briefly.

(b) What does this program output using call-by-value semantics with dynamic scope? Explain
briefly.

(c) What does this program output using call-by-name semantics with static scope? Explain briefly.

2. Call-by-denotation (25 pts.)

In class we saw two different ways of evaluating the free variables in function bodies: static scoping and
dynamic scoping. Static scoping uses the environment of the function definition (the lexical scope),
and dynamic scoping uses the environment of the function evaluation (the dynamic scope).

A similar distinction can by made with the evaluation of the actual arguments of a function: we could
evaluate the free variables of actual arguments using either the environment at the function application
(the lexical scope) or the environment at the evaluation of the actual arguments (the dynamic scope).
In call-by-value semantics, since the actual arguments are evaluated before applying the function,
the lexical and dynamic scope are the same. However, when the arguments are evaluated lazily, the
distinction is important.

We use call-by-denotation to refer to lazy evaluation of the actual arguments using dynamic scope,
where even the choice of scope to use is lazy—the environment used to look up the values of variables
is the one in force when the variable’s value is needed. (We continue to use call-by-name to mean
lazy evaluation of the actual arguments using the static scope.) For example, consider the following
program. Using call-by-denotation semantics, the program evaluates to 1; using call-by-name semantics
it evaluates to 2.

let f = λy. let x = 0 in y in

let x = 1 in

f(x + 1)

The TeX language has a semantics similar to call-by-denotation. For example, the following TeX code
results in the text “inside”, because the macro foo isn’t expanded until after it is redefined.

\def\fn#1{\def\foo{inside} #1}
\def\foo{outside}
\fn\foo

The corresponding program in λ-calculus would be something like the following, and using call-by-value
semantics would evaluate to “outside”:

1

let fn = (λx. let foo = ‘‘inside’’ in x) in

let foo = ‘‘outside’’ in

fn foo

(a) What would the result of evaluating the following program be, using call-by-denotation semantics?

let x = 0 in

let f = λy. x+ y in

let x = 1 in

f(x+ 1)

(b) Give a translation of dynamically scoped call-by-denotation lambda calculus into statically scoped
uML, analogously to the translations given in class for dynamic and static scoping. That is,
the source language uses dynamic scope to evaluate free variables in function bodies, and free
variables in function arguments. Briefly explain the key differences between this translation and
the translation for statically scoped, eager evaluation.

3. Induction (20 pts.)

Prove the following assertions using well-founded induction. Make sure to clearly identify what you
are performing induction on, to state the induction hypothesis and point out where it is being used.

(a) (10 pts) Given a term e in the untyped lambda calculus, show that it doesn’t matter in what
order you substitute closed terms. Specifically, prove the following lemma:

Lemma A: Given a term e and closed terms e1 and e2, if x 6= y, then

e[e1/x][e2/y] = e[e2/y][e1/x]

(b) (10 pts) In class, we said that e −→∗ e′ if and only if there exists some natural number n such
that e0 −→ e1 −→ . . . −→ en where e = e0 and e′ = en. We call −→∗ the multi-step evaluation
relation.

For this problem, consider an alternative definition of multi-step evaluation for the untyped,
call-by-value lambda calculus, where the relation e −→∗ e′ is defined by the following set of rules:

e −→∗ e
(M-Refl)

e −→ e′ e′ −→∗ e′′

e −→∗ e′′
(M-Step)

Note that the first premise of the M-Step rule uses the call-by-value, small-step relation (−→)
for the untyped lambda calculus.

Prove that the relation −→∗ is transitive—that is, prove the following lemma:

Lemma B: If e1 −→∗ e2 and e2 −→∗ e3, then e1 −→∗ e3.

4. CPS translation (30 pts.)

In class we saw how to translate lambda-calculus terms to terms in continuation-passing style. For this
problem, let us consider CPS translation of the following source language:

Source Terms e ::= n | x | λx. e | e1 e2 | e1 ⊕ e2 | if0(e0, e1, e2) |
(e1, e2) | fst e | snd e

Source Values v ::= n | λx. e | (v1, v2)

Primitive Operations ⊕ ::= + | − | ×

The source language terms include: integer literals (n); primitive operations (⊕) on integers; a condi-
tional if0(e0, e1, e2) that tests if e0 evaluates to 0, and evaluates the first branch (e1) if it does, or else

2

evaluates the second branch (e2) if e0 evaluates to an integer other than 0; pairs (e1, e2); and constructs
(fst, snd) to extract the first and second components of a pair.

The small-step operational semantics of the source language is as follows:

Source Evaluation Contexts E ::= [·] | E e2 | v1 E | E ⊕ e2 | v1 ⊕ E | if0(E, e1, e2) |
(E, e2) | (v1, E) | fst E | snd E

Source Reductions

(λx. e) v −→ e[v/x]

n1 ⊕ n2 −→ n3 (where n3 = n1⊕̂n2)

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)

fst (v1, v2) −→ v1

snd (v1, v2) −→ v2

The continuation-passing style language that we’ll use as the target of CPS translation is as follows:

Target Values v ::= n | x | (v1, v2) | λ(x, k). e | λx. e | halt

Target Declarations d ::= v | v1 ⊕ v2 | fst v | snd v

Target Terms e ::= let x = d in e | v0 (v1, v2) | v0 v1 | if0(v, e1, e2) | halt v

Primitive Operations ⊕ ::= + | − | ×

There are a few things to note about the target language. First, lambda abstractions that correspond
to continuations are marked with an underline. Second, note that declarations cannot have declarations
as subexpressions—d does not occur in its own definition. Third, ignoring the if0 construct, terms in
the target language are nearly linear in terms of control flow—that is, they consist of a series of let
bindings followed by an application. The only exception to this is the if0 construct, which forms a tree
containing two subexpressions.

The small-step operational semantics of the target language is as follows:

Target Reductions

let x = v in e −→ e[v/x]

let x = n1 ⊕ n2 in e −→ e[n3/x] (where n3 = n1⊕̂n2)

let x = fst (v1, v2) in e −→ e[v1/x]

let x = snd (v1, v2) in e −→ e[v2/x]

(λ(x, k). e) (v1, v2) −→ e[v1/x][v2/k]

(λx. e) v −→ e[v/x]

if0(0, e1, e2) −→ e1

if0(n, e1, e2) −→ e2 (where n 6= 0)

halt v −→ v

The CPS translation C[[e]] takes a continuation k, computes the value of e, and passes that value to
k. To translate a full program—a source term with no free variables—we define the CPS translation
Cprog[[e]], which calls the translation C[[e]] with the special top-level continuation halt that accepts a
final answer and halts. (An aside: Instead of adding the special continuation halt as a primitive to our
target language, we could have defined the halt continuation as λx. x.)

The CPS translation for programs, integers, variables, λ-abstractions, and application is defined as

3

follows:

Cprog[[e]]
def
= C[[e]](λx. halt x)

C[[n]]k
def
= k n

C[[x]]k
def
= k x

C[[λx. e]]k def
= k (λ(x, k′). C[[e]]k′)

C[[e1 e2]]k
def
= C[[e1]](λx1. C[[e2]](λx2. x1 (x2, k)))

In the above translation, in order to avoid variable capture, we assume that x is fresh in the Cprog[[]]
case, that k′ is fresh in the λ-abstraction case, and that x1 and x2 are fresh in the application case.

(a) (10 pts) Consider the following source language program:

(λz. z 3) (λy. y)

Show the CPS translation of the above program. Once you have completed the CPS translation,
show the evaluation of the resulting target-level term. (You should show intermediate steps for
both the translation and the evaluation.)

(b) (20 pts) The above definition of C[[e]]k is incomplete—it only shows how to translate source-
language integers, variables, λ-abstractions and application. Define the missing cases of the CPS
translation.

4

