1. **Warmup** (10 pts.)

Consider the following command and store in the IMP language we covered in class:

\[
\begin{align*}
 c_0 &= \text{if } ((9 + 4) > 10) \text{ then } x := 42 \text{ else } x := 2 \\
 \sigma_0 &= \{ x \mapsto 0 \}
\end{align*}
\]

(a) Draw the complete derivation tree showing one reduction step (small-step reduction) for \((c_0, \sigma_0)\).

(b) Draw the complete derivation tree showing the big-step evaluation of \((c_0, \sigma_0)\).

2. **For Loop** (25 pts.)

Consider IMP\text{FOR}, a version of IMP that has for loops instead of while loops. We redefine commands \(c\) as follows:

\[
\begin{align*}
 c &= \text{skip} \mid x := a \mid c_0; c_1 \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{for } x = a_0 \text{ to } a_1 \text{ do } c
\end{align*}
\]

Informally, the for loop works as follows. When entering the loop \(\text{for } x = a_0 \text{ to } a_1 \text{ do } c\), the expression \(a_0\) is evaluated to an integer \(n_0\) and the expression \(a_1\) is evaluated to an integer \(n_1\). If \(n_0 > n_1\), the command just behaves like skip. If \(n_0 \leq n_1\), the body \(c\) will be executed \(n_1 - n_0 + 1\) times, with \(x\) assigned the value \(n_0 + i - 1\) at the beginning of the \(i\)th loop iteration. (For instance, if \(a_0 = 3\) and \(a_1 = 5\), the body \(c\) will be executed 3 times, with \(x\) assigned the values 3, 4, and 5 at the beginning of the first, second, and third iteration, respectively.) Note that the loop bounds are computed once at the beginning of the loop, and no computation in the body of the loop can change the number of times the loop is executed. That is, although the loop index variable \(x\) can be assigned within the body \(c\) of the loop, these assignments do not affect the value of \(x\) at the beginning of the next loop iteration.

(a) Write a big-step operational semantics for the \(\text{for } x = a_0 \text{ to } a_1 \text{ do } c\) construct.

(b) Write an IMP\text{FOR} program that, given an input value in the variable \(n\), computes the \(n\)th Fibonacci number \(F(n)\) (where \(F(0) = 0\), \(F(1) = 1\), and \(F(n) = F(n - 1) + F(n - 2)\)), and returns the result in variable \(r\). You may assume that you have multiplication, addition, and subtraction as built-in arithmetic operators.

3. **Well-founded relations** (25 pts.)

Which of the following relations are well-founded? Briefly explain why or why not.

(a) Dictionary ordering on strings of alphabetic characters (a-z).

(b) An ordering \(\prec\) on pairs of natural numbers defined inductively by these rules:

\[
\begin{align*}
 n_1 < n'_1 &\quad (n_1, n_2) \prec (n'_1, n_2) \\
 n_2 < n'_2 &\quad (n_1, n_2) \prec (n_1, n'_2)
\end{align*}
\]

(c) A relation \(\prec\) on finite trees, where given two trees \(t\) and \(t'\), \(t \prec t'\) iff \(t\) is exactly the same as \(t'\) except that it is missing exactly one leaf.

(d) An ordering \(\prec\) on finite sequences of natural numbers, where a sequence \(s\) of length \(n\) is preceded by the subsequences of \(s\) and also by any sequence whose first \(n\) elements are all smaller than the corresponding elements of \(s\).
4. Dangling references (50 pts.)

In class we claimed that during evaluation, uML! programs never generate dangling references. Let’s prove it. Consider the fragment of uML! consisting of the following expressions and values:

\[e ::= \text{n} | x | \text{ref} \ e | \text{!} \ e | e_1 := e_2 | \text{null} | \lambda x. \ e | e_1 \ e_2 | \text{let} \ x = e_1 \text{ in } e_2 | (e_1, e_2) | \text{let} \ (x, y) = e_1 \text{ in } e_2 \]

\[v ::= \text{n} | (v_1, v_2) | \text{null} | \lambda x. \ e \quad (\text{where } \lambda x. \ e \text{ is closed}) \]

To define the small-step semantics of uML!, we augment the grammar of expressions and values with a set of locations \(\ell \in \text{Loc} \).

\[e ::= \ldots | \ell \]

\[v ::= \ldots | \ell \]

A store \(\sigma \) is a partial map from locations to values (which could be other locations). The small-step semantics of uML! programs was defined in terms of configurations \((e, \sigma) \), where \(e \) is an augmented expression and \(\sigma \) is a store. (For your reference, the small-step operational semantics of uML! is given at the end of this document.)

We define \(\text{loc}(e) \) to be the set of locations that occur in the expression \(e \). Thus, for example, \(\text{loc}((\lambda \ell_1 \lambda \ell_2) (\lambda x. (\text{!} \ell_1) + \text{!} (\text{ref} \ 4))) = \{\ell_1, \ell_2\} \).

A uML! program is a closed expression that does not contain any locations. Thus, if \(e \) is a program then \(\text{loc}(e) = \emptyset \).

(a) Consider the following uML! configuration:

\[\langle \ (\lambda x. (\text{!} \ell_1) \ 2) \ (\text{ref} \ 1) \ , \ \{\ell_1 \mapsto \lambda y. \text{ref} \ y\} \rangle \]

Show the evaluation of this configuration. For each configuration \(\langle e', \sigma' \rangle \) in the evaluation, give \(\text{loc}(e') \).

(b) Give an inductive definition of the set \(\text{loc}(e) \) of locations occurring in \(e \).

(c) Prove that if \(e \) is a uML! program and \(\langle e, \emptyset \rangle \rightarrow^* \langle e', \sigma \rangle \), then \(\text{loc}(e') \subseteq \text{dom}(\sigma) \). If you use induction, identify the relation you are using in your induction and argue that it is well-founded.

Small-Step Operational Semantics of uML!

Evaluation contexts

\[E ::= [\] | \text{ref} \ E | \text{!} \ E | E ::= e_2 | v_1 ::= E | E \ e_2 | v_1 \ E | \text{let} \ x = E \text{ in } e_2 | (E, e_2) | (v_1, E) | \text{let} \ (x, y) = E \text{ in } e_2 \]

Reductions

\[\langle \text{ref} \ v, \sigma \rangle \rightarrow \langle \ell, \sigma[\ell \mapsto v] \rangle \quad (\text{where } \ell \notin \text{dom}(\sigma)) \]

\[\langle \text{!} \ell, \sigma \rangle \rightarrow \langle \sigma(\ell), \sigma \rangle \quad (\text{where } \ell \in \text{dom}(\sigma)) \]

\[\langle \ell ::= v, \sigma \rangle \rightarrow \langle \text{null}, \sigma[\ell \mapsto v] \rangle \quad (\text{where } \ell \notin \text{dom}(\sigma)) \]

\[\langle \lambda x. \ e \ v, \sigma \rangle \rightarrow \langle e[v/x], \sigma \rangle \]

\[\langle \text{let} \ x = v \text{ in } e, \sigma \rangle \rightarrow \langle e[v/x], \sigma \rangle \]

\[\langle \text{let} \ (x, y) = (v_1, v_2) \text{ in } e, \sigma \rangle \rightarrow \langle e[v_1/x][v_2/y], \sigma \rangle \]

Context rule

\[\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle \]

\[\langle E[e], \sigma \rangle \rightarrow \langle E[e'], \sigma' \rangle \]