
CS7400 Problem Set 8 Due: 27 March 2015

1. Explicit Initialization (65 pts.)

Compound data structures, e.g., arrays, tuples, and records, often need to be initialized step by step,
rather than being created atomically.

For example, in the Java language, when an object is created, before the execution of its constructor,
all the non-primitive-typed fields have the default value null. The object is then gradually initialized
using individual assignments to the fields.

Now let us try to model step-by-step initialization of tuples in the context of the simply-typed λ-
calculus:

Ground values b ::= null | true | false | n
Values v ::= b | λx :T. e | (v1, . . . , vn)

Terms e ::= v | x | e1 e2 | malloc T1 × . . .× Tn | #i e | #i e1 := e2

Ground types B ::= Unit | Bool | Int

Types T ::= B | T1 → T2 | (T1 × . . .× Tn)\{i1, . . . , ik}

In order to create a tuple, the expression malloc T1× . . .×Tn is used, rather than (e1, . . . , en) which—
as we saw in class—creates a fully initialized tuple at once. The result of malloc T1 × . . . × Tn is a
fully uninitialized tuple, (null, . . . , null), of type (T1 × . . .× Tn)\{1, . . . , n}.
The type (T1 × . . . × Tn)\{i1, . . . , ik} is called a masked type, which represents a tuple that has not
been fully initialized: the elements numbered i1, . . . , ik are masked— that is, they are not initialized
and have the value null. The tuple, after being fully initialized, should have the type T1 × . . . × Tn,
which we assume is syntactic sugar for the type (T1 × . . .× Tn)\{}.
Tuples are initialized functionally with expressions #i e1 := e2, in which e1 first evaluates to a tuple
with its i-th element masked, and e2 evaluates to a value that is compatible with the type of the i-th
element in the tuple. The expression will generate a new tuple with its i-th element initialized, and
otherwise the same as the result of e1. Note that each element of a tuple should only be initialized
once.

To project the i-th element of a tuple, the expression #i e is used. Note, however, that projection of
uninitialized elements is prohibited.

For example, the following expression will evaluate to a tuple (10, 20) of type Int× Int.

(λx : (Int× Int)\{2}. #2 x := 20)
((λx : (Int× Int)\{1, 2}. #1 x := 10)

(malloc Int× Int))

(a) (7 pts) Extend the small-step operational semantics of the simply-typed λ-calculus to include the
new expressions: (v1, . . . , vn), malloc T1× . . .×Tn, #i e, and #i e1 := e2. Specifically, assuming
left-to-right evaluation, extend the definition of the evaluation contexts and give the additional
reduction rules required.

(b) (10 pts) Extend the typing rules of the simply-typed λ-calculus to include the new constructs.

(c) (15 pts) Construct a Redex model of this language. Use of metafunctions should be kept to a
minimum. Be sure to include sufficient tests. For a Redex model, about 50% of your file should
be tests. (Put this in the file 8.rkt.)

1

(d) (4 pts) Create two syntactically correct programs that cause a run-time error in the reduction
semantics. The two examples should illustrate different issues related to tuples. (Put these
examples in README.txt.)

(e) (3 pts) Define the function typed-evaluate. It consumes grammatically correct programs, type-
checks them, and if they check out, runs them on the reduction semantics to produce a result. If
a program fails to type check, the function returns “type error”. Include tests in 8.rkt showing
that typed-evaluate returns “type error” for the two programs from part (d) that caused
run-time errors.

(f) (8 pts) Provide two syntactically correct programs that do not cause a run-time error according
to the reduction semantics, but fail to type check. (Include tests in 8.rkt showing this.) The two
examples should illustrate two different issues related to tuples. For each of the two issues, explain
in 30 words or less what the issue is. (Provide the examples and explanation in README.txt.)

(g) (18 pts) Prove the soundness of the type system. For each of the lemmas involved, you only need
to show the proofs for cases that involve the new constructs. (Turn in this part on paper. Your
paper write-up should include the operational semantics from part (a) and typing rules from part
(b) so we do not have to refer to your Redex model when checking your type soundness proof.)

2

