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Past Few Lectures: 
High-level Intermediate Languages: 

–  Monadic Normal Form 
Optimization as algebraic transformations: 

–  3+4 → 7, (λx.e) v → e[v/x], fst (e1,e2) → e1 
Correctness issues: 

–  limiting ourselves to "pure" (valuable) 
expressions when we duplicate or eliminate. 

–  avoiding variable capture by keeping bound 
variables unique. 



Today: 
•  Imperative Representations 

–  Like MIPS assembly at the instruction level. 
•  except we assume an infinite # of temps 
•  and abstract away details of the calling convention 

–  But with a bit more structure.  
•  Organized into a Control-Flow graph (ch 8) 

–  nodes:  labeled basic blocks of instructions 
•  single-entry, single-exit 
•  i.e., no jumps, branching, or labels inside block 

–  edges:  jumps/branches to basic blocks 
•  Dataflow analysis (ch 17) 

–  computing information to answer questions about 
data flowing through the graph. 



A CFG Abstract Syntax 
Operands  w ::=  i | x | L   (* ints, vars, labels *) 
Cmp-op     c ::= < | > | = | …   (* comparison *) 
Blocks   B ::= return w |  jump L  
                  | if w1 c  w2 then L1 else L2  
                  | x := w; B           (* move *) 
                  | y := *(x + i); B   (* load *)     
                  | *(x + i) := y; B   (* store *) 
                  | x := p (w1,…,wn); B   (* arith op *) 
                  | x := f (w1,…,wn); B    (* call *)  



A CFG Abstract Syntax: 
type operand =  
   | Int of int | Var of var | Label of label 
type block =  
| Return of operand 
| Jump of label 
| If of operand * cmp * operand * label * label 
| Move of var * operand * block 
| Load of var * operand * int * block 
| Store of var * int * operand * block 
| Arith of var * primop * (operand list) * block 
| Call of var * operand * (operand list) * block 
type proc = { vars : var list,    

            prologue: label, epilogue: label,  
            blocks : (label * block) list } 



Conceptually 



Differences with Monadic Form 
datatype block =  
  Return of operand 
| Jump of label 
| If of operand * test * operand * label * label 
| Move of var * operand * block 
| Load of var * operand * int * block 
| Store of var * int * operand * block 
| Arith of var * primop * (operand list) * block 
| Call of var * operand * (operand list) * block 

•  Essentially MIPS assembly with an infinite # of registers. 
•  No lambdas, so easy to translate to MIPS modulo 

register allocation and assignment. 
–  Monadic form requires extra pass to eliminate lambdas and make 

closures explicit.  (Closure Conversion) 

•  Unlike Monadic Form, variables are mutable. 



Let's Revisit Optimizations 
•  constant folding 

t := 3+4 → t := 7 
•  constant propagation 

t := 7;B; u:=t+3 → t := 7; B;u:=7+3 
– problem:  B might assign a fresh value to t. 

•  copy propagation 
t:=u;B; v:=t+3 → t:=u;B;v:=u+3 
– problems: B might assign a fresh value to t or 

a fresh value to u! 



More Optimizations: 
•  Dead code elimination 

x:=e; B; jump L → B; jump L 
– problem:  the block L might use x. 
x:=e1;B1; x:=e2;B2 → B1;x:=e2;B2 (x not in B1) 

•  Common sub-expression elimination 
x:=y+z;B1;w := y+z;B2 → x:=y+z;B1;w:=x;B2 
– problem: B1 might change x,y, or z. 



Point: 
Optimization on a functional representation: 

–  we only had to worry about variable capture. 
–  we could avoid this by renaming all of the variables so 

that they were unique. 
–  then: let x=p(v1,…,vn) in e == e[p(v1,…,vn)/x] 

Optimization in an imperative representation: 
–  we have to worry about intervening updates. 

•  for defined variable, similar to variable capture. 
•  but we must also worry about free variables. 
•  x:=p(v1,…,vn);B  == B[p(v1,…,vn)/x]  only when B doesn't 

modify x nor modifies any of the vi ! 
–  on the other hand, a graph representation makes it 

possible to be more precise about the scope of a 
variable. 



Consider: 
  let k(x,y) = let z=x+1 in … c(z,y) 
  in let a = x+1 in  
    if b then ... k(x,a)  
  else ... k(x,a) 

If we inline the function k, we get: 
  let a=x+1 in 
   if b then … let z=x+1 in …c(z,y) 
   else … let z=x+1 in …c(z,y)           
so we can do CSE on x+1, eliminating z.   
But the price paid is that we had to duplicate the 

function body.  Can we do this without inlining? 



In the Graph World: 

a:=x+1 
if b 

z:=x+1 
jump c 

Monadic terms only let 
you build trees, and the  
scoping rules follow the  
tree. 
 
To localize scope, we end  
up copying sub-trees. 
 
What we need is some way 
to accommodate "scope"  
across paths in a graph. 
 
(CPS & SSA get best of both) 



Constant Propagation: Try #1 
type env = var -> operand 
val init_env = fun (x:var) => Var x 
val subst : env -> operand -> operand 
val extend : env -> var -> operand -> env 
 
let rec cp (env:env) (b:block) : block = 
  match b with 
  | Return v -> Return (subst env v) 
  | Jump L -> Jump L 
  | If(v1,t,v2,L1,L2) -> 
      If(subst env v1,t,subst env v2,L1,L2) 
  | Move(x,v,b) -> 
      let v' = subst env v 
      in cp (extend env x v') b 
  | Arith(x,p,vs,b) -> 
      Arith(x,p,map (subst env) vs, cp env b) 



Problem: 
L1:  x := 3; 
     j L2; 
 
L2:  return x 



Constant Propagation: Try #2 
let rec cp (env:env) (b:block) : block = 
  match b with 
  | Return v -> Return (subst env v) 
  | Jump L ->  
     (setblock L (cp env (getblock L)); 
      Jump L) 
  | If(v1,t,v2,L1,L2) -> 
      If(subst env v1,t,subst env v2,L1,L2) 
  | Move(x,v,b) -> 
      let v' = subst env v 
      in cp (extend env x v') b 
  | Arith(x,p,vs,b) -> 
      Arith(x,p,map (subst env) vs, cp env b) 

| ... 



Problem: 
L1:  x := 3; 
     j L2 
 
L2:  y := x; 
     j L1 
 



Constant Propagation: Try #3 
  
let rec cp (env:env) (b:block) : block = 
  match b with 
  | Return v -> Return (subst env v) 
  | Jump L -> Jump L 
  | If(v1,t,v2,L1,L2) -> 
      If(subst env v1,t,subst env v2,L1,L2) 
  | Move(x,v,b) -> 
      let v' = subst v env 
      in Move(x,v',cp (extend env x v') b) 
  | Arith(x,p,vs,b) -> 
      Arith(x,p,map (subst env) vs, cp env b) 

| ... 



Problem 
       
x := 3;    { x -> 3}   x := 3; 
y := x+1;              y := 3+1; 
x := x-1;              x := 3-1; 
z := x+2;              z := 3+2; 



Constant Propagation: Try #4 
  
let rec cp (env:env) (b:block) : block = 
  match b with 
  | Return v -> Return (subst env v) 
  | Jump L -> Jump L 
  | If(v1,t,v2,L1,L2) -> 
      If(subst env v1,t,subst env v2,L1,L2) 
  | Move(x,v,b) -> 
      let v' = subst env v 
      in Move(x,v',cp (extend env x v') b) 
  | Arith(x,p,vs,b) -> 
      Arith(x,p,map (subst env) vs,  

          cp (extend env x (Var x)) b) 
  | ... 



Moral: 
•  Can't just hack this up with simple 

substitution. 
•  To extend across blocks, we have to be 

careful about termination. 



Available Expressions: 
A definition "x := e" reaches a program point p if 

there is no intervening assignment to x or to the 
free variables of e on any path leading from the 
definition to p.  We say e is available at p. 

 
If "x:=e" is available at p, we can use x in place 

of e (i.e., for common sub-expression 
elimination.) 

 
How do we compute the available expressions at 

each program point? 



Gen and Kill 
•  Suppose D is a set of assignments that 

reaches the program point p. 
•  Suppose p is of the form  "x := e1; B" 
•  Then the statement "x:=e1" 

– generates the definition "x:=e1", and 
– kills any definition "y:= e2" in D such that 

either x=y or x is in FV(e2 ). 
•  So the definitions that reach B are: 

  D - { y:=e2 | x=y or x in FV(e2)} + {x:=e1} 



More Generally: 
statement      gen's         kill's 
x:=v              x:=v          {y:=e | x=y or x in e} 
x:=v1 p v2      x:=v1 p v2  {y:=e | x=y or x in e} 
x:=*(v+i)     {}              {y:=e | x=y or x in e} 
*(v+i):=x        {}              {} 
jump L           {}              {} 
return v         {}              {} 
if v1 r v2 goto L1 else goto L2 

                  {}              {} 
x := call v(v1,…,vn) 
                      {}              {y:=e | x=y or x in e} 



Flowing through the Graph: 
•  Given the available expressions Din[L] that flow 

into a block labeled L, we can compute the 
definitions Dout[L] that flow out by just using the 
gen & kill's for each statement in L's block. 

•  For each block L, we can define: 
–  succ[L] = the blocks L might jump to. 
–  pred[L] = the blocks that might jump to L. 

•  We can then flow Dout[L] to all of the blocks in 
succ[L]. 

•  They'll compute new Dout's and flow them to 
their successors and so on.   



Algorithm Sketch: 
initialize Din[L] to be the empty set. 
initialize Dout[L] to be the available expressions 

that flow out of block L, assuming Din[L] are the 
set flowing in. 

loop until no change { 
  for each L: 
    In := intersection(Dout[L']) for all L' in pred[L] 
    if In == Din[L] then continue to next block. 
    Din[L] := In. 
    Dout[L] := flow Din[L] through L's block. 
} 



Termination and Speed: 
•  We're ensured that this will terminate 

because Din[L] can at worst grow to the 
set of all assignments in the program. 
–  If Din[L] doesn't change, neither will Dout[L]. 

•  There are a number of tricks used to 
speed up the analysis: 
– can calculate gen/kill for a whole block before 

running the algorithm. 
– can keep a work queue that holds only those 

blocks that have changed. 



Gen/Kill Available Expressions: 
statement     gen's           kills 
x:=v              {x:=v}         {y:=e | x=y or x in e} 
x:=p(v1,v2)    {x:=v1 p v2} {y:=e | x=y or x in e} 
x:=*(v+i)      {}                {y:=e | x=y or x in e} 
*(v+i):=x       {}                {} 
x := v(…)      {}                {y:=e | x=y or x in e} 



Extending to Basic Blocks 
Gen[B]: 
•  Gen[s; B] = (Gen[s] - Kill[B]) ∪ Gen[B] 
•  Gen[return v] = {}  
•  Gen[jump L] = {} 
•  Gen[if r(v1,v2) then L1 else L2] = {} 
Kill[B]: 
•  Kill[s; B] = Kill[s] ∪ Kill[B] 
•  Kill[return v] = {} 
•  Kill[jump L] = {} 
•  Kill[if r(v1,v2) then L1 else L2] = {} 



Equational Interpretation: 
We need to solve the following equations: 
•  Din[L] = Dout[L1] ∩ … ∩ Dout[Ln]  

              where pred[L] = {L1,…,Ln} 
•  Dout[L] = (Din[L] - Kill[L]) ∪ Gen[L] 

Note that for cyclic graphs, this isn't a 
definition, it's an equation. 
– e.g.,  x*x = 2y is not a definition for x. 
– must solve for x.   
– might have 0 or > 1 solution. 



Solving the Equations 
initialize Din[L] to be the empty set. 
initialize Dout[L] to be Gen[L]. 
loop until no change { 
  for each L: 
    In := Dout[L1] ∩ … ∩ Dout[Ln]  

         where pred[L] = {L1,…,Ln} 
    if In == Din[L] then continue to next block. 
    Din[L] := In. 
    Dout[L] := (Din[L] - Kill[L]) ∪ Gen[L] 
} 



Recap: 
Control-flow graphs: 

–  nodes are basic blocks 
•  single-entry, single-exit sequences of code 
•  statements are imperative 
•  variables have no nested scope 

–  edges correspond to jumps/branches 
Dataflow analysis: 

–  Example: available expressions 
–  Iterative solution 

Next: Another dataflow analysis - Liveness 



Liveness Analysis 
•  A variable x is live at a point p if there is some 

path from p to a use of x that does not go 
through a definition of x. 
–  Liveness is backwards:  flows from uses backwards 
–  Available expressions forwards:  flows from 

definitions. 
•  We would like to calculate the set of live 

variables coming into and out of each 
statement. 
–  dead code:  x:=e; B   if x is not live coming out of B, 

then we can delete the assignment. 
–  register allocation:  if x and y are live at the same 

point p, then they can't share a register. 



Gen & Kill for Liveness 
A use of x generates liveness, while a 

definition kills it.   
 
statement            gen's            kills 
x:=y                     {y}                  {x} 
x:=p(y,z)              {y,z}               {x} 
x:=*(y+i)              {y}                 {x} 
*(v+i):=x               {x}                  {} 
x := f(y1,…,yn)      {f,y1,…,yn}     {x} 



Extending to blocks: 
Gen[B]: 
•  Gen[s; B] = (Gen[B] - Kill[s]) ∪ Gen[s] 
•  Gen[return x] = {x}  
•  Gen[jump L] = {} 
•  Gen[if r(x,z) then L1 else L2] = {x,z} 
Kill[B]: 
•  Kill[s; B] = Kill[s] ∪ Kill[B] 
•  Kill[return v] = {} 
•  Kill[jump L] = {} 
•  Kill[if v1 r v2 then L1 else L2] = {} 



Equations for graph: 
We need to solve: 
•  LiveIn[L] = Gen[L] ∪ (LiveOut[L] - Kill[L]) 
•  LiveOut[L] = LiveIn[L1] ∪ … ∪ LiveIn[Ln] 

     where succ[L] = {L1,…,Ln} 

So if LiveIn changes for some successor, 
our LiveOut changes, which then changes 
our LiveIn, which then propagates to our 
predecessors…  



Liveness Algorithm 
initialize LiveIn[L] := Gen[L]. 
initialize LiveOut[L] := { }. 
loop until no change { 
  for each L: 
    Out := LiveIn[L1] ∪ … ∪ LiveIn[Ln]  

         where succ[L] = {L1,…,Ln} 
    if Out == LiveOut[L] then continue to next block. 
    LiveOut[L] := Out. 
    LiveIn[L] := Gen[L] ∪ (LiveOut[L] - Kill[L]). 
} 



Speeding up the Analysis 
•  For liveness, flow is backwards. 

–  so processing successors before predecessors will 
avoid doing another loop. 

–  of course, when there's a loop, we have to just pick a 
place to break the cycle. 

•  For available expressions, flow is forwards. 
–  so processing predecessors before successors will 

avoid doing another loop. 
•  Only need to revisit blocks that change. 

–  keep a priority queue, sorted by flow order 



Representing Sets (See Appel) 
•  Consider liveness analysis: 

–  need to calculate sets of variables. 
–  need efficient union, subtraction. 

•  Usual solution uses bitsets 
–  use bitwise operations (e.g., &, |, ~, etc.) to 

implement set operations. 
–  note:  this solution scales well, but has bad 

asymptotic complexity compared to a sparse 
representation. 

•  Complexity of whole liveness algorithm?   
–  worst case, O(n4) assuming set ops are O(n) 
–  in practice it's roughly quadratic. 



Coming up… 
•  Register allocation [ch. 11] 

– seen first part:  liveness analysis 
– next:  construct interference graph 
–  then: graph coloring & simplification 

•  Loop-oriented optimizations [ch. 18] 
– e.g., loop-invariant removal 

•  CPS & SSA 


