Control-Flow Graphs & Dataflow Analysis

CS4410: Spring 2013
Past Few Lectures:

High-level Intermediate Languages:
 – Monadic Normal Form

Optimization as algebraic transformations:
 – $3+4 \rightarrow 7$, $(\lambda x. e) v \rightarrow e[v/x]$, $\text{fst} (e_1, e_2) \rightarrow e_1$

Correctness issues:
 – limiting ourselves to "pure" (valuable) expressions when we duplicate or eliminate.
 – avoiding variable capture by keeping bound variables unique.
Today:

• Imperative Representations
 – Like MIPS assembly at the instruction level.
 • except we assume an infinite # of temps
 • and abstract away details of the calling convention
 – But with a bit more structure.
• Organized into a Control-Flow graph (ch 8)
 – nodes: labeled *basic blocks* of instructions
 • single-entry, single-exit
 • i.e., no jumps, branching, or labels inside block
 – edges: jumps/branches to basic blocks
• Dataflow analysis (ch 17)
 – computing information to answer questions about data flowing through the graph.
A CFG Abstract Syntax

Operands \(w ::= i | x | L \) (* ints, vars, labels *)
Cmp-op \(c ::= < | > | = | \ldots \) (* comparison *)
Blocks \(B ::= \text{return } w \mid \text{jump } L \)
| \(\text{if } w_1 \ c \ w_2 \ \text{then } L_1 \ \text{else } L_2 \)
| \(x := w; \ B \) (* move *)
| \(y := *(x + i); \ B \) (* load *)
| \(*(x + i) := y; \ B \) (* store *)
| \(x := p (w_1,\ldots,wn); \ B \) (* arith op *)
| \(x := f (w_1,\ldots,wn); \ B \) (* call *)
A CFG Abstract Syntax:

```plaintext
type operand =
    | Int of int | Var of var | Label of label

type block =
    | Return of operand
    | Jump of label
    | If of operand * cmp * operand * label * label
    | Move of var * operand * block
    | Load of var * operand * int * block
    | Store of var * int * operand * block
    | Arith of var * primop * (operand list) * block
    | Call of var * operand * (operand list) * block

type proc = { vars : var list,
          prologue: label, epilogue: label,
          blocks : (label * block) list }
```
Conceptually
Differences with Monadic Form

datatype block =
 Return of operand
| Jump of label
| If of operand * test * operand * label * label
| Move of var * operand * block
| Load of var * operand * int * block
| Store of var * int * operand * block
| Arith of var * primop * (operand list) * block
| Call of var * operand * (operand list) * block

• Essentially MIPS assembly with an infinite # of registers.
• No lambdas, so easy to translate to MIPS modulo register allocation and assignment.
 – Monadic form requires extra pass to eliminate lambdas and make closures explicit. (Closure Conversion)
• Unlike Monadic Form, variables are mutable.
Let's Revisit Optimizations

• constant folding
 \[t := 3+4 \rightarrow t := 7 \]

• constant propagation
 \[t := 7; B; u := t+3 \rightarrow t := 7; B; u := 7+3 \]
 – problem: \(B \) might assign a fresh value to \(t \).

• copy propagation
 \[t := u; B; v := t+3 \rightarrow t := u; B; v := u+3 \]
 – problems: \(B \) might assign a fresh value to \(t \) or a fresh value to \(u \)!
More Optimizations:

• Dead code elimination
 \[x := e; B; \text{jump L} \rightarrow B; \text{jump L}\]
 – problem: the block L might use x.
 \[x := e_1; B_1; x := e_2; B_2 \rightarrow B_1; x := e_2; B_2 (x \text{ not in } B_1)\]

• Common sub-expression elimination
 \[x := y + z; B_1; w := y + z; B_2 \rightarrow x := y + z; B_1; w := x; B_2\]
 – problem: B_1 might change x, y, or z.
Point:

Optimization on a functional representation:
– we only had to worry about variable capture.
– we could avoid this by renaming all of the variables so that they were unique.
– then: let $x = p(v_1, \ldots, v_n)$ in $e \equiv e[p(v_1, \ldots, v_n)/x]$

Optimization in an imperative representation:
– we have to worry about intervening updates.
 • for defined variable, similar to variable capture.
 • but we must also worry about free variables.
 • $x := p(v_1, \ldots, v_n); B \equiv B[p(v_1, \ldots, v_n)/x]$ only when B doesn't modify x nor modifies any of the v_i!
– on the other hand, a graph representation makes it possible to be more precise about the scope of a variable.
Consider:

```plaintext
let k(x,y) = let z=x+1 in ... c(z,y)
in let a = x+1 in
  if b then ... k(x,a)
  else ... k(x,a)
```

If we inline the function `k`, we get:

```plaintext
let a=x+1 in
  if b then ... let z=x+1 in ... c(z,y)
  else ... let z=x+1 in ... c(z,y)
```

so we can do CSE on `x+1`, eliminating `z`.

But the price paid is that we had to duplicate the function body. Can we do this *without* inlining?
In the Graph World:

Monadic terms only let you build trees, and the scoping rules follow the tree.

To localize scope, we end up copying sub-trees.

What we need is some way to accommodate "scope" across paths in a graph.

(CPS & SSA get best of both)
Constant Propagation: Try #1

type env = var -> operand
val init_env = fun (x:var) => Var x
val subst : env -> operand -> operand
val extend : env -> var -> operand -> env

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in cp (extend env x v') b
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)
Problem:

L1: \(x := 3; \)

\(j \) L2;

L2: return x
let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L ->
 (setblock L (cp env (getblock L));
 Jump L)
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in cp (extend env x v') b
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)
 | ...
Problem:

L1: \(x := 3; \)
 j L2

L2: \(y := x; \)
 j L1
Constant Propagation: Try #3

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst v env
 in Move(x,v',cp (extend env x v') b)
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)
 | ...
Problem

\[x := 3; \quad \{ x \rightarrow 3 \} \quad x := 3; \]
\[y := x + 1; \quad y := 3 + 1; \]
\[x := x - 1; \quad x := 3 - 1; \]
\[z := x + 2; \quad z := 3 + 2; \]
Constant Propagation: Try #4

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in Move(x,v',cp (extend env x v') b)
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs,
 cp (extend env x (Var x)) b)
 | ...

Moral:

• Can't just hack this up with simple substitution.

• To extend across blocks, we have to be careful about termination.
Available Expressions:

A definition "x := e" reaches a program point p if there is no intervening assignment to x or to the free variables of e on any path leading from the definition to p. We say e is available at p.

If "x:=e" is available at p, we can use x in place of e (i.e., for common sub-expression elimination.)

How do we compute the available expressions at each program point?
Gen and Kill

- Suppose D is a set of assignments that reaches the program point p.
- Suppose p is of the form "x := e_1; B"
- Then the statement "x:=e_1"
 - generates the definition "x:=e_1", and
 - kills any definition "y:= e_2" in D such that either x=y or x is in FV(e_2).
- So the definitions that reach B are:
 \[D - \{ y:=e_2 \mid x=y \text{ or } x \text{ in } \text{FV}(e_2) \} + \{ x:=e_1 \} \]
More Generally:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Gen's</th>
<th>Kill's</th>
</tr>
</thead>
<tbody>
<tr>
<td>x:=v</td>
<td>x:=v</td>
<td>{y:=e \mid x=y \text{ or } x \text{ in } e}</td>
</tr>
<tr>
<td>x:=v₁ \cdot v₂</td>
<td>x:=v₁ \cdot v₂</td>
<td>{y:=e \mid x=y \text{ or } x \text{ in } e}</td>
</tr>
<tr>
<td>x:=*(v+i)</td>
<td>{}</td>
<td>{y:=e \mid x=y \text{ or } x \text{ in } e}</td>
</tr>
<tr>
<td>*(v+i):=x</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>jump L</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>return v</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>if v₁ r v₂ goto L₁ else goto L₂</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>x := call v(v₁,\ldots,vₙ)</td>
<td>{}</td>
<td>{y:=e \mid x=y \text{ or } x \text{ in } e}</td>
</tr>
</tbody>
</table>
Flowing through the Graph:

• Given the available expressions Din[L] that flow into a block labeled L, we can compute the definitions Dout[L] that flow out by just using the gen & kill's for each statement in L's block.

• For each block L, we can define:
 – succ[L] = the blocks L might jump to.
 – pred[L] = the blocks that might jump to L.

• We can then flow Dout[L] to all of the blocks in succ[L].

• They'll compute new Dout's and flow them to their successors and so on.
Algorithm Sketch:

initialize Din[L] to be the empty set.
initialize Dout[L] to be the available expressions that flow out of block L, assuming Din[L] are the set flowing in.

loop until no change {
 for each L:
 In := intersection(Dout[L']) for all L' in pred[L]
 if In == Din[L] then continue to next block.
 Din[L] := In.
}
Termination and Speed:

• We're ensured that this will terminate because \text{Din}[L] \text{ can at worst grow to the set of all assignments in the program.}
 – If \text{Din}[L] doesn't change, neither will \text{Dout}[L].

• There are a number of tricks used to speed up the analysis:
 – can calculate gen/kill for a whole block before running the algorithm.
 – can keep a work queue that holds only those blocks that have changed.
<table>
<thead>
<tr>
<th>statement</th>
<th>gen's</th>
<th>kills</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := v)</td>
<td>({ x := v })</td>
<td>({ y := e \mid x = y \text{ or } x \in e })</td>
</tr>
<tr>
<td>(x := p(v_1,v_2))</td>
<td>({ x := v_1 \ p \ v_2 })</td>
<td>({ y := e \mid x = y \text{ or } x \in e })</td>
</tr>
<tr>
<td>(x := *(v+i))</td>
<td>({ })</td>
<td>({ y := e \mid x = y \text{ or } x \in e })</td>
</tr>
<tr>
<td>(*(v+i):=x)</td>
<td>({ })</td>
<td>({ })</td>
</tr>
<tr>
<td>(x := v(...))</td>
<td>({ })</td>
<td>({ y := e \mid x = y \text{ or } x \in e })</td>
</tr>
</tbody>
</table>
Extending to Basic Blocks

Gen[B]:
• Gen[s; B] = (Gen[s] - Kill[B]) ∪ Gen[B]
• Gen[return v] = {}
• Gen[jump L] = {}
• Gen[if r(v₁,v₂) then L₁ else L₂] = {}

Kill[B]:
• Kill[s; B] = Kill[s] ∪ Kill[B]
• Kill[return v] = {}
• Kill[jump L] = {}
• Kill[if r(v₁,v₂) then L₁ else L₂] = {}
Equational Interpretation:

We need to solve the following equations:

- $\text{Din}[L] = \text{Dout}[L_1] \cap \ldots \cap \text{Dout}[L_n]$
 where $\text{pred}[L] = \{L_1, \ldots, L_n\}$
- $\text{Dout}[L] = (\text{Din}[L] - \text{Kill}[L]) \cup \text{Gen}[L]$

Note that for cyclic graphs, this isn't a definition, it's an equation.
 - e.g., $x^2 = 2y$ is not a definition for x.
 - must solve for x.
 - might have 0 or > 1 solution.
Solving the Equations

initialize Din[L] to be the empty set.
initialize Dout[L] to be Gen[L].
loop until no change {
 for each L:
 In := Dout[L₁] ∩ … ∩ Dout[Lₙ]
 where pred[L] = {L₁,…,Lₙ}
 if In == Din[L] then continue to next block.
 Din[L] := In.
 Dout[L] := (Din[L] - Kill[L]) ∪ Gen[L]
}
Recap:

Control-flow graphs:
- nodes are basic blocks
 - single-entry, single-exit sequences of code
 - statements are imperative
 - variables have no nested scope
- edges correspond to jumps/branches

Dataflow analysis:
- Example: available expressions
- Iterative solution

Next: Another dataflow analysis - Liveness
Liveness Analysis

• A variable x is *live* at a point p if there is some path from p to a use of x that does not go through a definition of x.
 – Liveness is backwards: flows from uses backwards
 – Available expressions forwards: flows from definitions.

• We would like to calculate the set of live variables coming into and out of each statement.
 – dead code: $x:=e; B$ if x is not live coming out of B, then we can delete the assignment.
 – register allocation: if x and y are live at the same point p, then they can't share a register.
Gen & Kill for Liveness

A *use* of x generates liveness, while a definition kills it.

<table>
<thead>
<tr>
<th>statement</th>
<th>gen's</th>
<th>kills</th>
</tr>
</thead>
<tbody>
<tr>
<td>x := y</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>x := p(y, z)</td>
<td>{y, z}</td>
<td>{x}</td>
</tr>
<tr>
<td>x := *(y+i)</td>
<td>{y}</td>
<td>{x}</td>
</tr>
<tr>
<td>*(v+i):=x</td>
<td>{x}</td>
<td>{}</td>
</tr>
<tr>
<td>x := f(y_1, ..., y_n)</td>
<td>{f, y_1, ..., y_n}</td>
<td>{x}</td>
</tr>
</tbody>
</table>
Extending to blocks:

Gen[B]:
- $\text{Gen}[s; B] = (\text{Gen}[B] - \text{Kill}[s]) \cup \text{Gen}[s]$
- $\text{Gen}[^{\text{return}}x] = \{x\}$
- $\text{Gen}[^{\text{jump}}L] = \{\}$
- $\text{Gen}[^{\text{if}}r(x,z) \text{ then } L1 \text{ else } L2] = \{x,z\}$

Kill[B]:
- $\text{Kill}[s; B] = \text{Kill}[s] \cup \text{Kill}[B]$
- $\text{Kill}[^{\text{return}}v] = \{\}$
- $\text{Kill}[^{\text{jump}}L] = \{\}$
- $\text{Kill}[^{\text{if}}v1 r v2 \text{ then } L1 \text{ else } L2] = \{\}$
Equations for graph:

We need to solve:

- \(\text{LiveIn}[L] = \text{Gen}[L] \cup (\text{LiveOut}[L] - \text{Kill}[L]) \)
- \(\text{LiveOut}[L] = \text{LiveIn}[L_{1}] \cup \ldots \cup \text{LiveIn}[L_{n}] \)
 where \(\text{succ}[L] = \{L_{1}, \ldots, L_{n}\} \)

So if \(\text{LiveIn} \) changes for some successor, our \(\text{LiveOut} \) changes, which then changes our \(\text{LiveIn} \), which then propagates to our predecessors…
Liveness Algorithm

initialize LiveIn[L] := Gen[L].
initialize LiveOut[L] := { }.
loop until no change {
 for each L:
 Out := LiveIn[L₁] U ... U LiveIn[Lₙ]
 where succ[L] = {L₁,...,Lₙ}
 if Out == LiveOut[L] then continue to next block.
}
Speeding up the Analysis

• For liveness, flow is backwards.
 – so processing successors before predecessors will avoid doing another loop.
 – of course, when there's a loop, we have to just pick a place to break the cycle.

• For available expressions, flow is forwards.
 – so processing predecessors before successors will avoid doing another loop.

• Only need to revisit blocks that change.
 – keep a priority queue, sorted by flow order
Representing Sets (See Appel)

• Consider liveness analysis:
 – need to calculate sets of variables.
 – need efficient union, subtraction.

• Usual solution uses bitsets
 – use bitwise operations (e.g., &, |, ~, etc.) to implement set operations.
 – note: this solution scales well, but has bad asymptotic complexity compared to a sparse representation.

• Complexity of whole liveness algorithm?
 – worst case, $O(n^4)$ assuming set ops are $O(n)$
 – in practice it's roughly quadratic.
Coming up…

• Register allocation [ch. 11]
 – seen first part: liveness analysis
 – next: construct interference graph
 – then: graph coloring & simplification

• Loop-oriented optimizations [ch. 18]
 – e.g., loop-invariant removal

• CPS & SSA