
Control-Flow Graphs
&

Dataflow Analysis
CS4410: Spring 2013

Past Few Lectures:
High-level Intermediate Languages:

–  Monadic Normal Form
Optimization as algebraic transformations:

–  3+4 → 7, (λx.e) v → e[v/x], fst (e1,e2) → e1
Correctness issues:

–  limiting ourselves to "pure" (valuable)
expressions when we duplicate or eliminate.

–  avoiding variable capture by keeping bound
variables unique.

Today:
•  Imperative Representations

–  Like MIPS assembly at the instruction level.
•  except we assume an infinite # of temps
•  and abstract away details of the calling convention

–  But with a bit more structure.
•  Organized into a Control-Flow graph (ch 8)

–  nodes: labeled basic blocks of instructions
•  single-entry, single-exit
•  i.e., no jumps, branching, or labels inside block

–  edges: jumps/branches to basic blocks
•  Dataflow analysis (ch 17)

–  computing information to answer questions about
data flowing through the graph.

A CFG Abstract Syntax
Operands w ::= i | x | L (* ints, vars, labels *)
Cmp-op c ::= < | > | = | … (* comparison *)
Blocks B ::= return w | jump L
 | if w1 c w2 then L1 else L2
 | x := w; B (* move *)
 | y := *(x + i); B (* load *)
 | *(x + i) := y; B (* store *)
 | x := p (w1,…,wn); B (* arith op *)
 | x := f (w1,…,wn); B (* call *)

A CFG Abstract Syntax:
type operand =
 | Int of int | Var of var | Label of label
type block =
| Return of operand
| Jump of label
| If of operand * cmp * operand * label * label
| Move of var * operand * block
| Load of var * operand * int * block
| Store of var * int * operand * block
| Arith of var * primop * (operand list) * block
| Call of var * operand * (operand list) * block
type proc = { vars : var list,

 prologue: label, epilogue: label,
 blocks : (label * block) list }

Conceptually

Differences with Monadic Form
datatype block =
 Return of operand
| Jump of label
| If of operand * test * operand * label * label
| Move of var * operand * block
| Load of var * operand * int * block
| Store of var * int * operand * block
| Arith of var * primop * (operand list) * block
| Call of var * operand * (operand list) * block

•  Essentially MIPS assembly with an infinite # of registers.
•  No lambdas, so easy to translate to MIPS modulo

register allocation and assignment.
–  Monadic form requires extra pass to eliminate lambdas and make

closures explicit. (Closure Conversion)

•  Unlike Monadic Form, variables are mutable.

Let's Revisit Optimizations
•  constant folding

t := 3+4 → t := 7
•  constant propagation

t := 7;B; u:=t+3 → t := 7; B;u:=7+3
– problem: B might assign a fresh value to t.

•  copy propagation
t:=u;B; v:=t+3 → t:=u;B;v:=u+3
– problems: B might assign a fresh value to t or

a fresh value to u!

More Optimizations:
•  Dead code elimination

x:=e; B; jump L → B; jump L
– problem: the block L might use x.
x:=e1;B1; x:=e2;B2 → B1;x:=e2;B2 (x not in B1)

•  Common sub-expression elimination
x:=y+z;B1;w := y+z;B2 → x:=y+z;B1;w:=x;B2
– problem: B1 might change x,y, or z.

Point:
Optimization on a functional representation:

–  we only had to worry about variable capture.
–  we could avoid this by renaming all of the variables so

that they were unique.
–  then: let x=p(v1,…,vn) in e == e[p(v1,…,vn)/x]

Optimization in an imperative representation:
–  we have to worry about intervening updates.

•  for defined variable, similar to variable capture.
•  but we must also worry about free variables.
•  x:=p(v1,…,vn);B == B[p(v1,…,vn)/x] only when B doesn't

modify x nor modifies any of the vi !
–  on the other hand, a graph representation makes it

possible to be more precise about the scope of a
variable.

Consider:
 let k(x,y) = let z=x+1 in … c(z,y)
 in let a = x+1 in
 if b then ... k(x,a)
 else ... k(x,a)

If we inline the function k, we get:
 let a=x+1 in
 if b then … let z=x+1 in …c(z,y)
 else … let z=x+1 in …c(z,y)
so we can do CSE on x+1, eliminating z.
But the price paid is that we had to duplicate the

function body. Can we do this without inlining?

In the Graph World:

a:=x+1
if b

z:=x+1
jump c

Monadic terms only let
you build trees, and the
scoping rules follow the
tree.

To localize scope, we end
up copying sub-trees.

What we need is some way
to accommodate "scope"
across paths in a graph.

(CPS & SSA get best of both)

Constant Propagation: Try #1
type env = var -> operand
val init_env = fun (x:var) => Var x
val subst : env -> operand -> operand
val extend : env -> var -> operand -> env

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in cp (extend env x v') b
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)

Problem:
L1: x := 3;
 j L2;

L2: return x

Constant Propagation: Try #2
let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L ->
 (setblock L (cp env (getblock L));
 Jump L)
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in cp (extend env x v') b
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)

| ...

Problem:
L1: x := 3;
 j L2

L2: y := x;
 j L1

Constant Propagation: Try #3

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst v env
 in Move(x,v',cp (extend env x v') b)
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs, cp env b)

| ...

Problem

x := 3; { x -> 3} x := 3;
y := x+1; y := 3+1;
x := x-1; x := 3-1;
z := x+2; z := 3+2;

Constant Propagation: Try #4

let rec cp (env:env) (b:block) : block =
 match b with
 | Return v -> Return (subst env v)
 | Jump L -> Jump L
 | If(v1,t,v2,L1,L2) ->
 If(subst env v1,t,subst env v2,L1,L2)
 | Move(x,v,b) ->
 let v' = subst env v
 in Move(x,v',cp (extend env x v') b)
 | Arith(x,p,vs,b) ->
 Arith(x,p,map (subst env) vs,

 cp (extend env x (Var x)) b)
 | ...

Moral:
•  Can't just hack this up with simple

substitution.
•  To extend across blocks, we have to be

careful about termination.

Available Expressions:
A definition "x := e" reaches a program point p if

there is no intervening assignment to x or to the
free variables of e on any path leading from the
definition to p. We say e is available at p.

If "x:=e" is available at p, we can use x in place

of e (i.e., for common sub-expression
elimination.)

How do we compute the available expressions at

each program point?

Gen and Kill
•  Suppose D is a set of assignments that

reaches the program point p.
•  Suppose p is of the form "x := e1; B"
•  Then the statement "x:=e1"

– generates the definition "x:=e1", and
– kills any definition "y:= e2" in D such that

either x=y or x is in FV(e2).
•  So the definitions that reach B are:

 D - { y:=e2 | x=y or x in FV(e2)} + {x:=e1}

More Generally:
statement gen's kill's
x:=v x:=v {y:=e | x=y or x in e}
x:=v1 p v2 x:=v1 p v2 {y:=e | x=y or x in e}
x:=*(v+i) {} {y:=e | x=y or x in e}
*(v+i):=x {} {}
jump L {} {}
return v {} {}
if v1 r v2 goto L1 else goto L2

 {} {}
x := call v(v1,…,vn)
 {} {y:=e | x=y or x in e}

Flowing through the Graph:
•  Given the available expressions Din[L] that flow

into a block labeled L, we can compute the
definitions Dout[L] that flow out by just using the
gen & kill's for each statement in L's block.

•  For each block L, we can define:
–  succ[L] = the blocks L might jump to.
–  pred[L] = the blocks that might jump to L.

•  We can then flow Dout[L] to all of the blocks in
succ[L].

•  They'll compute new Dout's and flow them to
their successors and so on.

Algorithm Sketch:
initialize Din[L] to be the empty set.
initialize Dout[L] to be the available expressions

that flow out of block L, assuming Din[L] are the
set flowing in.

loop until no change {
 for each L:
 In := intersection(Dout[L']) for all L' in pred[L]
 if In == Din[L] then continue to next block.
 Din[L] := In.
 Dout[L] := flow Din[L] through L's block.
}

Termination and Speed:
•  We're ensured that this will terminate

because Din[L] can at worst grow to the
set of all assignments in the program.
–  If Din[L] doesn't change, neither will Dout[L].

•  There are a number of tricks used to
speed up the analysis:
– can calculate gen/kill for a whole block before

running the algorithm.
– can keep a work queue that holds only those

blocks that have changed.

Gen/Kill Available Expressions:
statement gen's kills
x:=v {x:=v} {y:=e | x=y or x in e}
x:=p(v1,v2) {x:=v1 p v2} {y:=e | x=y or x in e}
x:=*(v+i) {} {y:=e | x=y or x in e}
*(v+i):=x {} {}
x := v(…) {} {y:=e | x=y or x in e}

Extending to Basic Blocks
Gen[B]:
•  Gen[s; B] = (Gen[s] - Kill[B]) ∪ Gen[B]
•  Gen[return v] = {}
•  Gen[jump L] = {}
•  Gen[if r(v1,v2) then L1 else L2] = {}
Kill[B]:
•  Kill[s; B] = Kill[s] ∪ Kill[B]
•  Kill[return v] = {}
•  Kill[jump L] = {}
•  Kill[if r(v1,v2) then L1 else L2] = {}

Equational Interpretation:
We need to solve the following equations:
•  Din[L] = Dout[L1] ∩ … ∩ Dout[Ln]

 where pred[L] = {L1,…,Ln}
•  Dout[L] = (Din[L] - Kill[L]) ∪ Gen[L]

Note that for cyclic graphs, this isn't a
definition, it's an equation.
– e.g., x*x = 2y is not a definition for x.
– must solve for x.
– might have 0 or > 1 solution.

Solving the Equations
initialize Din[L] to be the empty set.
initialize Dout[L] to be Gen[L].
loop until no change {
 for each L:
 In := Dout[L1] ∩ … ∩ Dout[Ln]

 where pred[L] = {L1,…,Ln}
 if In == Din[L] then continue to next block.
 Din[L] := In.
 Dout[L] := (Din[L] - Kill[L]) ∪ Gen[L]
}

Recap:
Control-flow graphs:

–  nodes are basic blocks
•  single-entry, single-exit sequences of code
•  statements are imperative
•  variables have no nested scope

–  edges correspond to jumps/branches
Dataflow analysis:

–  Example: available expressions
–  Iterative solution

Next: Another dataflow analysis - Liveness

Liveness Analysis
•  A variable x is live at a point p if there is some

path from p to a use of x that does not go
through a definition of x.
–  Liveness is backwards: flows from uses backwards
–  Available expressions forwards: flows from

definitions.
•  We would like to calculate the set of live

variables coming into and out of each
statement.
–  dead code: x:=e; B if x is not live coming out of B,

then we can delete the assignment.
–  register allocation: if x and y are live at the same

point p, then they can't share a register.

Gen & Kill for Liveness
A use of x generates liveness, while a

definition kills it.

statement gen's kills
x:=y {y} {x}
x:=p(y,z) {y,z} {x}
x:=*(y+i) {y} {x}
*(v+i):=x {x} {}
x := f(y1,…,yn) {f,y1,…,yn} {x}

Extending to blocks:
Gen[B]:
•  Gen[s; B] = (Gen[B] - Kill[s]) ∪ Gen[s]
•  Gen[return x] = {x}
•  Gen[jump L] = {}
•  Gen[if r(x,z) then L1 else L2] = {x,z}
Kill[B]:
•  Kill[s; B] = Kill[s] ∪ Kill[B]
•  Kill[return v] = {}
•  Kill[jump L] = {}
•  Kill[if v1 r v2 then L1 else L2] = {}

Equations for graph:
We need to solve:
•  LiveIn[L] = Gen[L] ∪ (LiveOut[L] - Kill[L])
•  LiveOut[L] = LiveIn[L1] ∪ … ∪ LiveIn[Ln]

 where succ[L] = {L1,…,Ln}

So if LiveIn changes for some successor,
our LiveOut changes, which then changes
our LiveIn, which then propagates to our
predecessors…

Liveness Algorithm
initialize LiveIn[L] := Gen[L].
initialize LiveOut[L] := { }.
loop until no change {
 for each L:
 Out := LiveIn[L1] ∪ … ∪ LiveIn[Ln]

 where succ[L] = {L1,…,Ln}
 if Out == LiveOut[L] then continue to next block.
 LiveOut[L] := Out.
 LiveIn[L] := Gen[L] ∪ (LiveOut[L] - Kill[L]).
}

Speeding up the Analysis
•  For liveness, flow is backwards.

–  so processing successors before predecessors will
avoid doing another loop.

–  of course, when there's a loop, we have to just pick a
place to break the cycle.

•  For available expressions, flow is forwards.
–  so processing predecessors before successors will

avoid doing another loop.
•  Only need to revisit blocks that change.

–  keep a priority queue, sorted by flow order

Representing Sets (See Appel)
•  Consider liveness analysis:

–  need to calculate sets of variables.
–  need efficient union, subtraction.

•  Usual solution uses bitsets
–  use bitwise operations (e.g., &, |, ~, etc.) to

implement set operations.
–  note: this solution scales well, but has bad

asymptotic complexity compared to a sparse
representation.

•  Complexity of whole liveness algorithm?
–  worst case, O(n4) assuming set ops are O(n)
–  in practice it's roughly quadratic.

Coming up…
•  Register allocation [ch. 11]

– seen first part: liveness analysis
– next: construct interference graph
–  then: graph coloring & simplification

•  Loop-oriented optimizations [ch. 18]
– e.g., loop-invariant removal

•  CPS & SSA

