Control-Flow Graphs & Dataflow Analysis CS4410: Spring 2013

Past Few Lectures:

High-level Intermediate Languages:

Monadic Normal Form

Optimization as algebraic transformations:

- 3+4 \rightarrow 7, ($\lambda x.e$) v \rightarrow e[v/x], fst (e_1,e_2) \rightarrow e_1

Correctness issues:

- limiting ourselves to "pure" (valuable) expressions when we duplicate or eliminate.
- avoiding variable capture by keeping bound variables unique.

Today:

- Imperative Representations
 - Like MIPS assembly at the instruction level.
 - except we assume an infinite # of temps
 - and abstract away details of the calling convention
 - But with a bit more structure.
- Organized into a Control-Flow graph (ch 8)
 - nodes: labeled basic blocks of instructions
 - single-entry, single-exit
 - i.e., no jumps, branching, or labels inside block
 - edges: jumps/branches to basic blocks
- Dataflow analysis (ch 17)
 - computing information to answer questions about data flowing through the graph.

A CFG Abstract Syntax

Operands w ::= i | x | L (* ints, vars, labels *) Cmp-op c ::= < | > | = | ... (* comparison *) Blocks B ::= return w | jump L if w1 c w2 then L1 else L2 | x := w; B (* move *) |y := *(x + i); B (* load *) | *(x + i) := y; B (* store *) | x := p (w1,...,wn); B (* arith op *)| x := f (w1,...,wn); B (* call *)

A CFG Abstract Syntax:

```
type operand =
   | Int of int | Var of var | Label of label
type block =
| Return of operand
| Jump of label
| If of operand * cmp * operand * label * label
Move of var * operand * block
| Load of var * operand * int * block
Store of var * int * operand * block
Arith of var * primop * (operand list) * block
| Call of var * operand * (operand list) * block
type proc = { vars : var list,
              prologue: label, epilogue: label,
              blocks : (label * block) list }
```

Conceptually

Differences with Monadic Form

datatype block =

Return of operand

- | Jump of label
- | If of operand * test * operand * label * label

| Move of var * operand * block

| Load of var * operand * int * block

| Store of var * int * operand * block

| Arith of var * primop * (operand list) * block

- | Call of var * operand * (operand list) * block
- Essentially MIPS assembly with an infinite # of registers.
- No lambdas, so easy to translate to MIPS modulo register allocation and assignment.
 - Monadic form requires extra pass to eliminate lambdas and make closures explicit. (Closure Conversion)
- Unlike Monadic Form, variables are *mutable*.

Let's Revisit Optimizations

constant folding

t := 3+4 → t := 7

constant propagation

t := 7;B; u:=t+3 → t := 7; B;u:=7+3

– problem: B might assign a fresh value to t.

copy propagation

t:=u;B; v:=t+3 \rightarrow t:=u;B;v:=u+3

– problems: B might assign a fresh value to t or a fresh value to u!

More Optimizations:

Dead code elimination

x:=e; B; jump L \rightarrow B; jump L

– problem: the block L might use x.

 $x:=e_1;B_1; x:=e_2;B_2 \rightarrow B_1;x:=e2;B_2 (x \text{ not in } B_1)$

Common sub-expression elimination
 x:=y+z;B₁;w := y+z;B₂ → x:=y+z;B₁;w:=x;B₂
 – problem: B₁ might change x,y, or z.

Point:

Optimization on a functional representation:

- we only had to worry about variable capture.
- we could avoid this by renaming all of the variables so that they were unique.
- then: let $x=p(v_1,...,v_n)$ in $e == e[p(v_1,...,v_n)/x]$

Optimization in an imperative representation:

- we have to worry about intervening updates.
 - for defined variable, similar to variable capture.
 - but we must also worry about free variables.
 - x:=p(v₁,...,v_n);B == B[p(v₁,...,v_n)/x] only when B doesn't modify x nor modifies any of the v_i!
- on the other hand, a graph representation makes it possible to be more precise about the *scope* of a variable.

Consider:

let k(x,y) = let z=x+1 in ... c(z,y)in let a = x+1 in if b then \ldots k(x,a) else ... k(x,a) If we inline the function k, we get: let a=x+1 in if b then ... let z=x+1 in ... c(z,y)else ... let z=x+1 in ...c(z,y)so we can do CSE on x+1, eliminating z. But the price paid is that we had to duplicate the function body. Can we do this *without* inlining?

In the Graph World:

Monadic terms only let you build trees, and the scoping rules follow the tree.

To localize scope, we end up copying sub-trees.

What we need is some way to accommodate "scope" across paths in a graph.

(CPS & SSA get best of both)

Constant Propagation: Try #1

```
type env = var -> operand
val init env = fun (x:var) => Var x
val subst : env -> operand -> operand
val extend : env -> var -> operand -> env
let rec cp (env:env) (b:block) : block =
  match b with
  Return v -> Return (subst env v)
  | Jump L -> Jump L
  | If(v1,t,v2,L1,L2) ->
      If (subst env v1, t, subst env v2, L1, L2)
  | Move(x,v,b) \rightarrow
      let v' = subst env v
      in cp (extend env x v') b
  | Arith(x,p,vs,b) \rightarrow
      Arith(x,p,map (subst env) vs, cp env b)
```

Problem:

L1: x := 3; j L2;

L2: return x

Constant Propagation: Try #2

```
let rec cp (env:env) (b:block) : block =
  match b with
```

```
| Return v -> Return (subst env v)
```

```
| Jump L ->
```

(setblock L (cp env (getblock L));

```
Jump L)
```

```
| If(v1,t,v2,L1,L2) ->
```

```
If(subst env v1,t,subst env v2,L1,L2)
| Move(x,v,b) ->
```

let v' = subst env v

in cp (extend env x v') b

| Arith(x, p, vs, b) ->

Arith(x,p,map (subst env) vs, cp env b) ...

Problem:

L1: x := 3; j L2

L2: y := x; j L1

Constant Propagation: Try #3

```
let rec cp (env:env) (b:block) : block =
  match b with
  Return v -> Return (subst env v)
  | Jump L -> Jump L
  | If(v1,t,v2,L1,L2) ->
      If (subst env v1, t, subst env v2, L1, L2)
  | Move(x,v,b) ->
      let v' = subst v env
      in Move(x,v',cp (extend env x v') b)
  | Arith(x, p, vs, b) \rightarrow
      Arith(x,p,map (subst env) vs, cp env b)
  . . .
```

Problem

X	:=	3;	{ X	-> 3}	X	:=	3;
У	:=	x+1 ;			У	:=	3+1;
X	:=	x -1;			X	:=	3-1;
Z	:=	x+2 ;			Z	:=	3+2;

Constant Propagation: Try #4

```
let rec cp (env:env) (b:block) : block =
  match b with
  Return v -> Return (subst env v)
  | Jump L -> Jump L
  | If(v1,t,v2,L1,L2) ->
      If (subst env v1, t, subst env v2, L1, L2)
  | Move(x,v,b) ->
      let v' = subst env v
      in Move(x,v',cp (extend env x v') b)
  | Arith(x,p,vs,b) \rightarrow
      Arith(x,p,map (subst env) vs,
             cp (extend env x (Var x)) b)
```

I . . .

Moral:

- Can't just hack this up with simple substitution.
- To extend across blocks, we have to be careful about termination.

Available Expressions:

- A definition "x := e" reaches a program point p if there is no intervening assignment to x or to the free variables of e on any path leading from the definition to p. We say e is *available* at p.
- If "x:=e" is available at p, we can use x in place of e (i.e., for common sub-expression elimination.)
- How do we compute the available expressions at each program point?

Gen and Kill

- Suppose D is a set of assignments that reaches the program point p.
- Suppose p is of the form "x := e_1 ; B"
- Then the statement "x:=e₁"
 - generates the definition " $x:=e_1$ ", and
 - kills any definition "y:= e₂" in D such that either x=y or x is in FV(e₂).
- So the definitions that reach B are:
 D { y:=e₂ | x=y or x in FV(e₂)} + {x:=e₁}

More Generally:

<u>statement</u>	<u>gen's</u>	<u>kill's</u>					
x:=v	x:=v	{y:=e x=y or x in e}					
x:=v ₁ p v ₂	$x := v_1 p v_2$	{y:=e x=y or x in e}					
x:=*(v+i)	{}	{y:=e x=y or x in e}					
*(v+i):=x	{}	{}					
jump L	{}	{}					
return v	{}	{}					
if v ₁ r v ₂ goto L1 else goto L2							
	{}	{}					
$x := call v(v_1)$,,v _n)						
	{}	{y:=e x=y or x in e}					

Flowing through the Graph:

- Given the available expressions Din[L] that flow into a block labeled L, we can compute the definitions Dout[L] that flow out by just using the gen & kill's for each statement in L's block.
- For each block L, we can define:
 - succ[L] = the blocks L might jump to.
 - pred[L] = the blocks that might jump to L.
- We can then flow Dout[L] to all of the blocks in succ[L].
- They'll compute new Dout's and flow them to their successors and so on.

Algorithm Sketch:

initialize Din[L] to be the empty set.

- initialize Dout[L] to be the available expressions that flow out of block L, assuming Din[L] are the set flowing in.
- loop until no change {
 - for each L:

```
In := intersection(Dout[L']) for all L' in pred[L]
if In == Din[L] then continue to next block.
Din[L] := In.
Dout[L] := flow Din[L] through L's block.
```

Termination and Speed:

- We're ensured that this will terminate because Din[L] can at worst grow to the set of all assignments in the program.
 If Din[L] doesn't change, neither will Dout[L].
- There are a number of tricks used to speed up the analysis:
 - can calculate gen/kill for a whole block before running the algorithm.
 - can keep a work queue that holds only those blocks that have changed.

Gen/Kill Available Expressions:

statement kills gen's {x:=v} $\{y:=e \mid x=y \text{ or } x \text{ in } e\}$ X := V $x:=p(v_1,v_2) \{x:=v_1 p v_2\} \{y:=e \mid x=y \text{ or } x \text{ in } e\}$ $\{y:=e \mid x=y \text{ or } x \text{ in } e\}$ $x:=^{(v+i)}$ {} *(v+i):=x {} {} $\{y:=e \mid x=y \text{ or } x \text{ in } e\}$ x := v(...){}

Extending to Basic Blocks

Gen[B]:

- Gen[s; B] = (Gen[s] Kill[B]) ∪ Gen[B]
- Gen[return v] = {}
- Gen[jump L] = {}
- Gen[if $r(v_1, v_2)$ then L₁ else L₂] = {} Kill[B]:
- Kill[s; B] = Kill[s] ∪ Kill[B]
- Kill[return v] = {}
- Kill[jump L] = {}
- Kill[if $r(v_1, v_2)$ then L_1 else L_2] = {}

Equational Interpretation:

We need to solve the following equations:

- Din[L] = Dout[L₁] $\cap \ldots \cap$ Dout[L_n] where pred[L] = {L₁,...,L_n}
- Dout[L] = (Din[L] Kill[L]) U Gen[L]

Note that for cyclic graphs, this isn't a definition, it's an equation.

- $-e.g., x^*x = 2y$ is not a definition for x.
- must solve for x.
- might have 0 or > 1 solution.

Solving the Equations

initialize Din[L] to be the empty set. initialize Dout[L] to be Gen[L].

loop until no change {

for each L:

In := Dout[L₁] \cap ... \cap Dout[L_n] where pred[L] = {L₁,...,L_n} if In == Din[L] then continue to next block. Din[L] := In. Dout[L] := (Din[L] - Kill[L]) \cup Gen[L]

Recap:

Control-flow graphs:

- nodes are basic blocks
 - single-entry, single-exit sequences of code
 - statements are imperative
 - variables have no nested scope
- edges correspond to jumps/branches

Dataflow analysis:

- Example: available expressions
- Iterative solution

Next: Another dataflow analysis - Liveness

Liveness Analysis

- A variable x is *live* at a point p if there is some path from p to a use of x that does not go through a definition of x.
 - Liveness is backwards: flows from uses backwards
 - Available expressions forwards: flows from definitions.
- We would like to calculate the set of live variables coming into and out of each statement.
 - dead code: x:=e; B if x is not live coming out of B, then we can delete the assignment.
 - register allocation: if x and y are live at the same point p, then they can't share a register.

Gen & Kill for Liveness

A use of x generates liveness, while a definition kills it.

<u>statement</u>	<u>gen's</u>	<u>kills</u>
x:=y	{y}	{x}
x:=p(y,z)	{y,z}	{X}
x:=*(y+i)	{y}	{x}
*(v+i):=x	{x}	{}
$\mathbf{x} := \mathbf{f}(\mathbf{y}_1, \dots, \mathbf{y}_n)$	$\{f, y_1, \dots, y_n\}$	{x}

Extending to blocks:

Gen[B]:

- Gen[s; B] = (Gen[B] Kill[s]) ∪ Gen[s]
- Gen[return x] = {x}
- Gen[jump L] = {}
- Gen[if r(x,z) then L1 else L2] = {x,z}
 Kill[B]:
- Kill[s; B] = Kill[s] U Kill[B]
- Kill[return v] = {}
- Kill[jump L] = {}
- Kill[if v1 r v2 then L1 else L2] = {}

Equations for graph:

We need to solve:

- LiveIn[L] = Gen[L] U (LiveOut[L] Kill[L])
- LiveOut[L] = LiveIn[L₁] U ... U LiveIn[L_n] where succ[L] = {L₁,...,L_n}

So if LiveIn changes for some successor, our LiveOut changes, which then changes our LiveIn, which then propagates to our predecessors...

Liveness Algorithm

```
initialize LiveIn[L] := Gen[L].
initialize LiveOut[L] := { }.
loop until no change {
 for each L:
   Out := Liveln[L<sub>1</sub>] \cup \ldots \cup Liveln[L<sub>n</sub>]
         where succ[L] = \{L_1, \ldots, L_n\}
   if Out == LiveOut[L] then continue to next block.
   LiveOut[L] := Out.
   LiveIn[L] := Gen[L] \cup (LiveOut[L] - Kill[L]).
```

Speeding up the Analysis

- For liveness, flow is backwards.
 - so processing successors before predecessors will avoid doing another loop.
 - of course, when there's a loop, we have to just pick a place to break the cycle.
- For available expressions, flow is forwards.
 - so processing predecessors before successors will avoid doing another loop.
- Only need to revisit blocks that change.
 - keep a priority queue, sorted by flow order

Representing Sets (See Appel)

- Consider liveness analysis:
 - need to calculate sets of variables.
 - need efficient union, subtraction.
- Usual solution uses bitsets
 - use bitwise operations (e.g., &, |, ~, etc.) to implement set operations.
 - note: this solution scales well, but has bad asymptotic complexity compared to a sparse representation.
- Complexity of whole liveness algorithm?
 - worst case, $O(n^4)$ assuming set ops are O(n)
 - in practice it's roughly quadratic.

Coming up...

- Register allocation [ch. 11]
 - seen first part: liveness analysis
 - next: construct interference graph
 - then: graph coloring & simplification
- Loop-oriented optimizations [ch. 18]
 - e.g., loop-invariant removal
- CPS & SSA