Algebraic Optimization

CS4410: Spring 2013

Optimization:

Want to rewrite code so that it's:

- faster, smaller, consumes less power, etc.
- while retaining the "observable behavior"
- usually: input/output behavior
- often need analysis to determine that a given optimization preserves behavior.
- often need profile information to determine that a given optimization is actually an improvement.

Often have two flavors of optimization:

- high-level: e.g., at the AST-level (e.g., inlining)
- low-level: e.g., right before instruction selection (e.g., register allocation)

Some algebraic optimizations:

- Constant folding (delta reductions):
 - e.g., 3+4 ==> 7, x*1 ==> x
 - e.g., if true then s else t ==> s
- Strength reduction
 - e.g., x*2 ==> x+x, x div 8 ==> x >> 3
- Inlining, constant propagation, copy propagation, dead-code elimination, etc. (beta reduction):
 - e.g., let val x = 3 in x + x end ==> 3 + 3
- Common sub-expression elimination (beta expansion):
 - e.g., (length x) + (length x) ==>
 let val i = length x in i+i end

More optimizations:

Loop invariant removal:

```
for (i=0; i<n; i+=s*10) ... ==>
int t = s*10; for (i=0;i<n;i+=t)...
```

Loop interchange:

```
for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    s += A[j][i]; ==>

for (j=0; j<n; j++)
  for (i=0; i<n; i++)
    s += A[j][i];</pre>
```

More optimizations:

- Loop fusion, deforestation:
 - e.g., (map f)(map g x) ==> map (f o g) x
 - e.g., foldl (+) 0 (map f x) ==> foldl (fn (y,a) => (f y)+a) 0 x
- Uncurrying:
 - let val f = fn x => fn y => x + y in ...f a b... ==> let val f = fn (x,y) => x+y in ...f(a,b)...
- Flattening/unboxing:
 - let val x = ((a,b),(c,d)) in ...#1(#2 x)... ==> let val x = (a,b,c,d) in ...#3 x...

When is it safe to rewrite?

When can we safely replace e₁ with e₂?

1. when $e_1 == e_2$ from an input/output point of view.

2. when $e_1 \le e_2$ from our improvement metrics (e.g., performance, space, power)

I/O Equivalence

Consider let-reduction:

(let
$$\mathbf{x} = \mathbf{e}_1$$
 in \mathbf{e}_2) =?= ($\mathbf{e}_2[\mathbf{e}_1/\mathbf{x}]$)
where $\mathbf{e}_2[\mathbf{e}_1/\mathbf{x}]$ is \mathbf{e}_2 with \mathbf{e}_1 substituted for \mathbf{x}

When does this equation hold?

- give some positive examples?
- give some negative examples?

Some Negatives:

```
let x = print "hello" in x+x
let x = print "hello" in 3
let x = raise Foo in 3
let x = ref 3
in
   x := !x + 1; !x
```

For ML:

$$(let x = e_1 in e_2) = ?= (e_2[e_1/x])$$

Holds for sure when e_1 has no observable effects.

Observable effects include:

- diverging
- input/output
- allocating or reading/writing refs & arrays
- raising an exception

In Particular:

```
(let x = v in e) == (e[v/x])
```

where \mathbf{v} is drawn from the subset of expressions:

```
v ::= i
                  (* constants *)
                 (* variables *)
    l x
    | v op v (* binops of vals *)
    | (v1,...,vn) (* tuples of vals *)
    | #i v
                (* select of a val *)
                 (* constructors *)
    Dv
     fun x -> e (* functions *)
      let x = v1 in v2
```

Another Problem

```
let x = foo()in
let y = x+x in
let x = bar() in
y * y
```

```
let x = foo() in
let x = bar() in
  (x+x) * (x+x)
```

Variable Capture

 When substituting a value v for a variable y, we must make sure that none of the free variables in v is accidentally captured.

 A simple solution is to just rename all the variables so they are unique (throughout the program) before doing any reductions.

Must be sure to preserve uniqueness.

Avoiding Capture

```
let x = foo() in
let y = x+x in
let z = bar() in
    y * y
```

```
let x = foo() in
let z = bar() in
  (x+x) * (x+x)
```

Some General ML Equations

- 1. let x = v in e == e[v/x]
- 2. (fun $x \rightarrow e$) v == let x = v in e
- 3. let $x = (\text{let } y = e_1 \text{ in } e_2) \text{ in } e_3 == \text{let } y = e_1 \text{ in let } x = e_2 \text{ in } e_3$
- 4. $e_1 e_2 == let x=e_1 in let y=e_2 in x y$

5. $(e_1, ..., e_n) ==$ let $x_1 = e_1 ... x_n = e_n in (x_1, ..., x_n)$

What about metrics?

```
1.3 + 4 ≥ 7
2. (fun x -> e) v ≥ let x = v in e
3. let x = v in e ≥ e
    (when v doesn't occur in e)
4. let x = v in e =?= e[v/x]
```

Let reduce or expand?

The first direction:

```
let x = v in e \ge e[v/x]
is profitable when e[v/x] is "no bigger".
```

- e.g., when x does not occur in e (dead code elimination)
- e.g., when x occurs at most once in e
- e.g., when v is small (constant or variable)
 (constant & copy propagation)
- e.g., when further optimizations reduce the size of the resulting expression.

Let reduce or expand?

The second direction:

```
e[v/x] ≥ let x = v in e
can be good for shrinking code
  (common sub-expression elimination.)
```

For example:

```
(x*42+y) + (x*42+z) = -->
let w = x*42
in (w+y) + (w+z)
```

How to do reductions?

Naïve solution:

iterate until no change find sub-expression that can be reduced and reduce it.

Many questions remain:

For example, how do we find common sub-expressions?

Monadic Form:

```
datatype operand =
  (* small, pure expressions, okay to duplicate *)
  Int of int | Bool of bool | Var of var
and value =
  (* larger, pure expressions, okay to eliminate *)
 Op of operand
| Fn of var * exp
| Pair of operand * operand
| Fst of operand | Snd of operand
| Primop of primop * (operand list)
and exp =
  (* control & effects: deep thought needed here *)
 Return of operand
| LetValue of var * value * exp
| LetCall of var * operand * operand * exp
| LetIf of var * operand * exp * exp * exp
```

Monadic Form

- Similar to lowering to MIPS:
 - operands are either variables or constants.
 - means we don't have to worry about duplicating operands since they are pure and aren't big.
 - we give a (unique) name to more complicated terms by binding it with a let.
 - that will allow us to easily find common sub-expressions.
 - the uniqueness of names ensures we don't run into capture problems when substituting.
 - we keep track of those expressions that are guaranteed to be pure.
 - makes doing inlining or dead-code elimination easy.
 - we flatten out let-expressions.
 - more scope for factoring out common sub-expressions.

Example:

```
(x+42+y) * (x+42+z) ===>
let t1 = (let t2 = x+42)
              t3 = t2+y in t3
   t4 = (let t5 = x+42)
             t6 = t5+z in t6
   t7 = t1*t4
in t7
                      ===>
let t2 = x+42
                     let t2 = x+42
   t3 = t2+y
                         t3 = t2+y
   t1 = t3
                         t6 = t2+z
   t5 = x+42 ===> t7 = t3*t6
   t6 = t5+z
                   in t7
   t4 = t6
   t7 = t1*t4
in t7
```

Reduction Algorithms:

- Constant folding
 - reduce if's and arithmetic when args are constants
- Operand propagation
 - replace each LetValue(x,Op(w),e) with e[w/x].
 - why can't we do LetValue(x,v,e) with e[v/x]?
- Common Sub-Value elimination
 - replace each LetValue(x,v,...LetValue(y,v,e),...) with LetValue(x,v,...e[x/y]...)
- Dead Value elimination
 - When e doesn't contain x, replace LetValue(x,v,e) with e.

Constant Folding

```
let rec cfold exp (e:exp) : exp =
 match e with
  | Return w -> Return w
  | LetValue(x,v,e) ->
      LetValue(x,cfold val v,cfold exp e)
  | LetCall(x,f,ws,e) ->
      LetCall(x,f,ws,cfold exp e)
  | LetIf(x,Bool true,e1,e2,e)->
     cfold exp (flatten x e1 e)
  | LetIf(x,Bool false,e1,e2,e)->
     cfold exp (flatten x e2 e)
  | LetIf(x, w, e1, e2, e)->
     LetIf(x,w,cfold e1,cfold e2,cfold e)
```

Flattening

```
and flatten (x:var) (e1:exp) (e2:exp):exp =
  match e1 with
  | Return w -> LetVal(x,Op w,2)
  | LetValue(y,v,e1) ->
     LetValue(y,v,flatten x e1 e2)
  | LetCall(y,f,ws,e1) ->
     LetCall(y,f,ws,flatten x e1 e2)
  | LetIf(y,w,et,ef,ec) ->
     LetIf(y,w,et,ef,flatten x ec e2)
```

Constant Folding Contd.

```
and cfold val (v:value):value =
 match v with
  | Fn(x,e) => Fn(x,cfold exp e)
  | Primop(Plus,[Int i,Int j]) => Op(Int(i+j))
  | Primop(Plus, [Int 0,v]) => Op(v)
  | Primop(Plus,[v,Int 0]) => Op(v)
  | Primop(Minus,[Int i,Int j]) => Op(Int(i-j))
  | Primop(Minus,[v,Int 0]) => Op(v)
  | Primop(Lt,[Int i,Int j]) => Op(Bool(i<j))
  | Primop(Lt,[v1,v2]) =>
      if v1 = v2 then Op(Bool false) else v
```

Operand Propagation

```
let rec cprop exp(env:var->oper option)(e:exp):exp =
 match e with
  | Return w -> Return (cprop oper env w)
  | LetValue(x,Op w,e) ->
      cprop exp (extend env x (cprop_oper env w)) e
  | LetValue(x,v,e) ->
      LetValue(x,cprop val env v,cprop exp env e)
  | LetCall(x,f,w,e) ->
      LetCall(x,cprop oper env f, cprop oper env w,
              cprop exp env e)
  | LetIf(x, w, e1, e2, e) ->
      LetIf(x,cprop oper env w,
            cprop exp env e1, cprop exp env e2,
            cprop exp env e)
```

Operand Propagation Contd.

```
and cprop oper env w =
 match w with
  | Var x ->
     (match env x with | None -> w | Some w2 -> w2)
  | -> w
and cprop val env v =
 match v with
  | Fn(x,e) -> Fn(x,cprop exp env e)
  | Pair(w1,w2) ->
      Pair(cprop oper env w1, cprop oper env w2)
  | Fst w -> Fst(cprop oper env w)
  | Snd w -> Snd(cprop oper env w)
  | Primop(p,ws) -> Primop(p,map (cprop oper env) ws)
  | Op( ) => raise Impossible
```

Common Value Elimination

```
let rec cse exp(env:value->var option)(e:exp):exp =
match e with
| Return w -> Return w
| LetValue(x,v,e) ->
  (match env v with
   | None -> LetValue(x,cse val env v,
                      cse exp (extend env v x) e)
   | Some y -> LetValue(x,Op(Var y),cse exp env e))
| LetCall(x,f,w,e) -> LetCall(x,f,w,cse exp env e)
| LetIf(x,w,e1,e2,e) ->
    LetIf(x,w,cse exp env e1,cse exp env e2,
          cse exp env e)
and cse val env v =
 match v with | Fn(x,e) -> Fn(x,cse exp env e)
               | v -> v
```

Dead Value Elimination (Naïve)

```
let rec dead exp (e:exp) : exp =
match e with
| Return w -> Return w
| LetValue(x,v,e) ->
    if count occurs x = 0 then dead exp e
    else LetValue(x,v,dead exp e)
| LetCall(x,f,w,e) ->
    LetCall(x,f,w,dead exp e)
| LetIf(x, w, e1, e2, e) ->
    LetIf(x,w,dead exp e1,
          dead exp e2, dead exp e)
```

Comments:

- It's possible to fuse constant folding, operand propagation, common value elimination, and dead value elimination into one giant pass.
 - one env to map variables to operands
 - one env to map values to variables
 - on way back up, return a table of use-counts for each variable.
- There are plenty of improvements:
 - e.g., sort operands of commutative operations so that we get more common sub-values.
 - e.g., keep an env mapping variables to values and use this to reduce fst/snd operations.
 LetValue(x,Pair(w1,w2),...,LetValue(y,Snd(Op x),...)
 - => LetValue(x,Pair(w1,w2),...,LetValue(y,Op w2,...)

Function Inlining:

Replace:

```
LetValue(f,Fn(x,e1),...LetCall(y,f,w,e2)...)
with
LetValue(f,Fn(x,e1),...
LetValue(y,LetValue(x,Op w,e1),e2)...)
```

Problems:

- Monadic form doesn't have nested Let's!
 (so we must flatten out the nested let.)
- Bound variables get duplicated
 (so we rename them as we flatten them out.)

When to inline?

- Certainly when f occurs at most once.
 - Not going to blow up the code since DVE will get rid of the original after inlining.
- We could try inlining at each call site, then reduce, and then see if the result is no worse than the original code.

- In practice, rarely done.
- Instead, just inline "small" functions.
 - e.g., map will be inlined by SML/NJ

Monadic Form:

```
datatype operand =
  (* small, pure expressions, okay to duplicate *)
  Int of int | Bool of bool | Var of var
and value =
  (* larger, pure expressions, okay to eliminate *)
 Op of operand
| Fn of var * exp
| Pair of operand * operand
| Fst of operand | Snd of operand
| Primop of primop * (operand list)
and exp =
  (* control & effects: deep thought needed here *)
 Return of operand
| LetValue of var * value * exp
| LetCall of var * operand * operand * exp
| LetIf of var * operand * exp * exp * exp
```

Optimizations so far...

- constant folding
- operand propagation
 - copy propagation:
 substitute a variable for a variable
 - constant propagation:
 substitute a constant for a variable
- dead value elimination
- common sub-value elimination
- function inlining

Optimizing Function Calls:

- We never completely eliminate LetCall(x,f,w,e) since the call might have effects.
- But if we can determine that f is a function without side effects, then we could treat this like a LetVal declaration.
 - Then we get cse, dce, etc. on function calls!
- To what expressions can f be bound?
 - Lambda, a call, Fst x, Snd x, Hd x, etc.
 - In general, we won't be able to tell if f has effects.
 - Idea: use a modified type-inference to figure out which functions have side effects.
 - Idea 2: make the programmer distinguish between functions that have effects and those that do not.

Optimizing Conditionals:

- if v then e else e → e
- if v then ...(if v then e₁ else e₂)... else e₃ →
 if v then ...e1...else e₃
- let x = if v then e₁ else e₂ in e₃ →
 if v then let x=e₁ in e₃ else let x=e₂ in e₃
- if v then ...let x=v₁... else ...let y=v₁... →
 let z=v₁ in if v then ...let x=z... else ...let y=z...
 (when vars(v₁) defined before the if)
- let x=v₁ in if v then ...x... else ...(no x)... →
 if v then let x=v₁ in ...x... else ...(no x)...

Optimizing Loops

LetRec($[(f_1,x_1,e_1),...,(f_n,x_n,e_n)],e$)

- Loop invariant removal:
 - if $e_i = ...$ let x=v in...
 - and if vars(v) are defined before the LetRec
 - then we can hoist the definition out of the loop.
- e.g.,
 val z = 42
 fun f x = (...z*31...) → val t = z*31
 fun f x = (...t...)

Other Algebraic Laws?

If f and g have no effects, then:

- map f = foldr (fn (x,a) => (f x)::a) []
- filter f = foldr (fn (x,a) => if f x then x::a else a) []
- (foldr f u) o (map g) = foldr (fn (x,a) => f(g x,a)) u
- (foldr f u) o (filter g) =
 foldr (fn (x,a) => if g x then f(x,a) else a) u
- So any (pure) foldr combined with any sequence of (pure) filters and maps can be reduced to a single traversal of the list!

This generalizes to any inductive datatype!

Getting into Monadic Form

- Lots of optimizations are simplified by translating into monadic form.
- How do we (efficiently) get ML code into monadic form?
- Let's first consider a simpler source:

```
type arith =
  I of int | Add of arith*arith
```

And a simpler target:

```
type exp =
    Return of operand
    | Let of var * value * exp
```

Very Naïve way:

```
val split : exp -> (var * value) list * operand
val join : (var * value) list * operand -> exp
let rec tomonadic (a:arith) : exp =
  match a with
  | I(i) -> Return(Int i)
  | Add(a,b) ->
    let x = fresh var() in
    let (da,wa) = split(tomonadic a) in
    let (db,wb) = split(tomonadic b)
    in
      join (da @ db @ [(x,PrimApp(Plus,[wa,wb])))],
            Var x)
```

Where...

```
let rec split (e:exp):(var * value) list * operand =
 match e with
  | Return w -> ([],w)
  | Let(x,v,e) ->
      let (ds, w) = split e
      in ((x,v)::ds,w)
let rec join (ds:var*value list,w:operand) : exp =
 match ds with
  | [] -> Return w
  | (x,v) :: rest \rightarrow Let(x,v,join(rest,w))
```

Problems:

- Expensive to split/join on each compound expr.
- Must generalize split/join to return a declaration list that covers all of the other cases beyond values.

Avoiding Splits and Joins:

Don't bother joining until the end:

```
let rec tom (a:arith) : (var*value) list * oper =
 match a with
    I(i) => ([],Int i)
  | Add(a,b) =>
    let x = fresh var() in
    let (da,wa) = tom a in
    let (db, wb) = tom b
    in
      (da @ db @ [(x,PrimApp(Plus,[wa,wb])))],
       Var x)
    end
let tomonadic(a:arith):exp = join(tom a)
```

Problems:

```
let rec tom (a:arith) : (var*value) list * oper =
 match a with
  | I(i) -> ([], Int i)
  | Add(a,b) ->
    let x = fresh var() in
    let (da, wa) = tom a in
    let (db, wb) = tom b
    in
      (da @ db @ [(x,PrimApp(Plus,[wa,wb])))],
       Var x)
```

· Appends are causing us to be quadratic.

Accumulator Based:

```
let rec tom (a:arith) (ds: (var*value) list) :
        (var*value) list * oper =
 match a with
  | I(i) -> (ds,Int i)
  | Add(a,b) ->
    let x = fresh var() in
    let (da,wa) = tom ds a in
    let (db, wb) = tom da b
    in
      ((x, PrimApp(Plus, [wa, wb])): :db,
       Var x)
fun tomonadic(a:arith):exp = revjoin(tom a)
```

Problems:

```
let rec tom (a:arith) (ds: (var*value) list) :
        (var*value) list * oper =
  match a with
  | I(i) -> (ds,Int i)
  | Add(a,b) ->
    let x = fresh var() in
    let (da,wa) = tom ds a in
    let (db, wb) = tom da b
    in
      ((x, PrimApp(Plus, [wa, wb])): :db,
       Var x)
```

 Still have to generalize to cover all of the other Let cases beyond values (e.g., Call, If, etc.)

What we wish we could do...

```
e = Let(x_1, v_1,
                Let (\mathbf{x}_2, \mathbf{v}_2, \dots
                       Let (x_n, v_n, Return w)...)
Imagine we could split an expression e into a
  "hole-y" expression and the Return'ed operand:
    split e = (h, w)
where h is Let (x_1, v_1, v_2, v_3)
                      Let (\mathbf{x}_2, \mathbf{v}_2, ...
                               Let (x_n, v_n, [0])...)
```

Plugging Holes

Imagine we could plug another expression (with a hole) into the "hole":

```
plug (Let(x_1, v_1,
                   Let (\mathbf{x}_2, \mathbf{v}_2, \dots)
                    Let(x, v, [0])...))
           (Let(y_1,z_1,
                    Let (y_2, z_2, ...
                      Let(y_n, z_n, [o])...) =
 Let (x_1, v_1,
          Let (\mathbf{x}_2, \mathbf{v}_2, ...
                 Let (x_n, v_n)
                   (Let(y_1, z_1,
                        Let (y_2, z_2, \dots
                           Let (y_n, z_n, [o])...))
```

Recoding:

```
val hole : holy exp
val plug : holy exp -> holy_exp -> holy_exp
val plug final : holy exp * operand -> exp
let rec tom (a:arith) : holy exp * operand =
  match a with
  | I(i) -> (hole ,Int i)
  | Add(a,b) ->
    let x = fresh var() in
    let (ha,wa) = tom a in
    let (hb, wb) = tom b
    in
      (plug ha
       (plug hb(Let(x,PrimApp(Plus,[wa,wb]), hole))),
       Var x)
let tomonadic(a:arith):exp = plug final(tom a)
```

Implementing Hole-y Expr's

How to implement holy expressions?

```
val hole : holy_exp
val plug : holy_exp -> holy_exp -> holy_exp
val plug_final : holy_exp * operand -> exp
```

We've already seen one option:

```
type decl =
   Vald of var * value
| Calld of var * operand * operand
| Ifd of var * exp * exp

type holy_exp = decl list
```

A Clever Option...

```
type holy exp = exp -> exp
let hole : holy exp =
  fun e -> e
let plug (h1:holy exp) (h2:holy exp) =
  fun e -> h1(h2(e)) (* = h1 o h2 *)
let plugFinal(h:holy exp)(w:operand) =
  h (Return w) (* = h \ o \ Return \ *)
```

Tom revisited:

```
let hole : holy exp = fun e -> e
let plug : holy exp -> holy exp -> holy exp
  fun ha \rightarrow fn hb \rightarrow (fun e \rightarrow ha(hb(e)))
let rec tom (a:arith) : holy exp * operand =
  match a with
  | I(i) -> (hole, Int i)
  \mid Add(x,b) \rightarrow
    let x = fresh var() in
    let (ha,wa) = tom a in
    let (hb, wb) = tom b
    in
       (plug ha (plug hb
          (fun e -> (Let(x, PrimApp(Plus, [wa, wb]), e))),
       Var x)
```

Tom Simplified:

```
let rec tom (a:arith) : (exp->exp) * operand =
  match a with
  | I(i) -> (fun e -> e, Int i)
  \mid Add(x,b) \rightarrow
    let x = fresh var() in
    let (ha,wa) = tom a in
    let (hb, wb) = tom b
    in
      (fun e ->
        ha(hb(Let(x,PrimApp(Plus,[wa,wb]),e))),
       Var x)
    end
let tomonadic(a:arith) =
  let(h,w) = tom a in h (Return w)
```

Accumulator-Based:

```
let rec tom(a:arith)(ds:holy_exp):holy_exp * oper =
 match a with
  | I(i) -> (ds,Int i)
  | Add(a,b) =>
    let x = fresh var() in
    let (da,wa) = tom ds a in
    let (db, wb) = tom da b
    in
      (fun e -> db(Let(x,PrimApp(Plus,[wa,wb]),e)),
       Var x)
```

One more step...

Instead of:

```
tom : arith -> (exp->exp) -> (exp->exp) *operand
```

• The (exp->exp) argument represents the declarations given so far, whereas the (exp->exp) result represents the append of the declarations of arith to the declarations given so far.

The code given to you has the form:

```
tom : arith -> (operand->exp) -> exp
```

 The (operand->exp) argument is a holey-expression that represents how the rest of the surrounding expression should be built.

Even Simpler... (CPS)

```
let rec tom (a:arith) (ds:operand->exp) =
 match a with
  | I(i) -> ds(Int i)
  | Add(a,b) ->
    let x = fresh var() in
     tom a (fun wa ->
      tom b (fun wb ->
       LetVal(x,PrimApp(Plus,[wa,wb]),ds x)))
let tomonadic (a:arith) : exp =
  tom a (fun v -> Return v)
```

Example:

```
let rec tom (a:arith) (ds:operand->exp) =
 match a with
  | I(i) -> ds(Int i)
  | Add(a,b) ->
    let x = fresh var() in
     tom a (fun wa ->
      tom b (fun wb ->
       LetVal(x,PrimApp(Plus,[wa,wb]),ds x)))
let tomonadic (a:arith) : exp =
  tom a (fun v -> Return v)
tomonadic(I 31) =
tom(I 31) Return = Return(Int 31)
```

Next Example:

```
let rec tom (a:arith) (ds:operand->exp) =
 match a with
  | I(i) -> ds(Int i)
  | Add(a,b) ->
    let x = fresh var() in
     tom a (fun wa ->
      tom b (fun wb ->
       LetVal(x,PrimApp(Plus,[wa,wb]),ds x)))
tomonadic (Add (I 31, I 42)) =
tom(Add(I 31, I 42)) (fun v -> Return v) =
     tom (I 31) (fun wa ->
      tom (I 42) (fun wb ->
      LetVal("x1", PrimApp(Plus, [wa, wb]), Return "x1")))
```

Example Continued:

```
tom(Add(I 31, I 42)) (fun v -> Return v) =
     tom (I 31) (fun wa ->
      tom (I 42) (fun wb ->
      LetVal("x1", PrimApp(Plus, [wa, wb]), Return
  "x1")))
tom (I 31) ds = ds(Int 31) so...
tom (I 31) (fun wa ->
   tom (I 42) (fun wb ->
    LetVal("x1", PrimApp(Plus, [wa, wb]),
            Return "x1")))
= tom (I 42) (fun wb ->
    LetVal("x1", PrimApp(Plus, [Int 31, wb]),
           Return "x1"))
```

Example Continued:

The Real Code

- See monadic.ml for the real code.
- It has to deal with many more cases but has the same basic structure.

```
let rec tom (a:arith) (ds:operand->exp) =
  match a with
  | I(i) -> ds(Int i)
  | Add(a,b) ->
    let x = fresh_var() in
    tom a (fun wa ->
        tom b (fun wb ->
        LetVal(x,PrimApp(Plus,[wa,wb]),ds x)))
let tomonadic (a:arith) : exp =
  tom a (fun v -> Return v)
```