Algebraic Optimization

CS4410: Spring 2013



Optimization:

Want to rewrite code so that it's:

faster, smaller, consumes less power, etc.
while retaining the "observable behavior"
usually: input/output behavior

often need analysis to determine that a given
optimization preserves behavior.

often need profile information to determine that a
given optimization is actually an improvement.

Often have two flavors of optimization:

high-level: e.g., at the AST-level (e.g., inlining)

low-level: e.g., right before instruction selection
(e.qg., register allocation)



Some algebraic optimizations:

« Constant folding (delta reductions):
—e.g., 3+4 ==> 7, x*1 ==>x
— e.g., iftruethenselset ==> s
« Strength reduction
—e.g., X2==>x+x, xdiv8==>x>>3
* |Inlining, constant propagation, copy
propagation, dead-code elimination, etc.
(beta reduction):
—eg., letvalx=3inx+xend ==> 3+3
 Common sub-expression elimination (beta
expansion):
— e.g., (length x) + (length x) ==>
let val i = length x in i+i end



More optimizations:

* Loop invariant removal:
for (1i=0; i<n; i+=s*10) ... ==
int t = s*10; for (i=0;i<n;i+=t) ...

* Loop interchange:
for (1i=0; i<n; i++)
for (3j=0; j<n; jJ++)
s += A[j][1i]; ==>

for (j=0; j<n; jJ++)
for (1=0; i<n; i++)
s += A[]J][1i];



More optimizations:

* Loop fusion, deforestation:

— e.g., (map f)(map g x) ==>map (fo g) x

— e.g., foldl (+) O (map fx) ==>

foldl (fn (y,a) => (f y)+a) O x

* Uncurrying:

—letvalf=fhx=>fhy=>x+yin...fab... ==>

let val f = fn (x,y) => x+y in ...f(a,b)...

 Flattening/unboxing:

— letval x = ((a,b),(c,d)) in ... #1(#2 x)... ==>
let val x = (a,b,c,d) in ... #3 x...



When is it safe to rewrite?

When can we safely replace e, with e,?

1. when e, ==e, from an input/output
point of view.

2. when e, <e,from our improvement
metrics (e.g., performance, space,
power)



/O Equivalence

« Consider let-reduction:
(let x = e; in e,)=7= (e,le,/x])
where e,[e,/x] IS e, with e; substituted for x

When does this equation hold?
— give some positive examples?
— give some negative examples?



Some Negatives:

let x = print "hello" in x+x

let x = print "hello" in 3
let x = raise Foo in 3
let x = ref 3
in
x := I'x 4+ 1; 'x



For ML.

(let x = e; in e,) =7= (e,[e,/x])
Holds for sure when e; has no observable effects.

Observable effects include:

* diverging

* Input/output

+ allocating or reading/writing refs & arrays
* raising an exception



In Particular:

(let x = v in e) == (e[v/x])

where v is drawn from the subset of expressions:

v :=1 (* constants *)
X (* variables ¥*)
vV Oop V (* binops of wvals ¥*)
(v1l,..,vn) (* tuples of vals ¥*)
i v (* select of a val *)
D v (* constructors *)

fun x -> e (* functions ¥*)

let x = vl in v2



Another Problem

let x = foo()in let x = foo() in

let y = x+x in let x = bar() in

let x = bar() in (x+x) * (x+x)
y *y




Variable Capture

* When substituting a value v for a variable
y, we must make sure that none of the
free variables in v is accidentally
captured.

* A simple solution is to just rename all the
variables so they are unique (throughout
the program) before doing any reductions.

* Must be sure to preserve unigueness.



Avoiding Capture

let x = foo() in let x = foo() in

let y = x+x in let z = bar() in

let z = bar() in (x+x) * (x+x)
y *y




Some General ML Equations

l. let x = v in e == e[v/x]
2. (fun x -> e) v==1let x = v 1in e

3. let x =(let y = e; in e,) 1in e; ==
let y = e; 1n let x = e, 1in e,

4. e; e, == let x=e; 1n let y=e, 1n x y

5. (e{,..,e) ==
let x,=e;, .. x,=e_, in (x,,..,X,)



What about metrics?

1.3 +4 = 7
2. (fun x -> e) v = let x = v in e

3.let x = v in e = e
(when v doesn't occur in e)

4.let x = v in e =7= e[v/x]



Let reduce or expand?

The first direction:
let x = v in e = e[v/X]
IS profitable when e[v/x] is "no bigger".

—e.d., when x does not occur in e
(dead code elimination)

—e.g., when x occurs at most once in e

—e.g., when v is small (constant or variable)
(constant & copy propagation)

— e.g., when further optimizations reduce the
size of the resulting expression.



Let reduce or expand?

The second direction:
e[v/ix] = let x = v in e

can be good for shrinking code
(common sub-expression elimination.)

For example:
(x*42+y) + (x*42+z) -->
let w = x*42
in (w+y) + (w+z)



How to do reductions?

Naive solution:

iterate until no change

find sub-expression that can be reduced
and reduce |It.

Many questions remain:

For example, how do we find common
sub-expressions?



Monadic Form:

datatype operand =
(* small, pure expressions, okay to duplicate ¥*)
Int of int | Bool of bool | Var of wvar

and value =
(* larger, pure expressions, okay to eliminate ¥*)
Op of operand
Fn of var * exp

Fst of operand | Snd of operand
Primop of primop * (operand list)
and exp =
(* control & effects: deep thought needed here *)
Return of operand
| LetValue of var * value * exp
| LetCall of var * operand * operand * exp

I
| Pair of operand * operand
I
I

| LetIf of var * operand * exp * exp * exp



Monadic Form

« Similar to lowering to MIPS:

— operands are either variables or constants.

* means we don't have to worry about duplicating operands
since they are pure and aren't big.

— we give a (unique) name to more complicated terms
by binding it with a let.
« that will allow us to easily find common sub-expressions.

 the uniqueness of names ensures we don't run into capture
problems when substituting.

— we keep track of those expressions that are
guaranteed to be pure.
* makes doing inlining or dead-code elimination easy.

— we flatten out let-expressions.
* more scope for factoring out common sub-expressions.



Example:

(x+42+y) * (x+42+z) ===

let t1 = (let t2 = x+42
t3 = t2+y in t3)
t4d = (let t5 = x+42
t6 = t5+z in t6)
t7 = tl*t4
in t7 ===
let t2 = x+42 let t2 =
t3 = t2+y t3 =
tl = t3 t6 =
ts = x+42 === t7 =
t6 = t5+z in t7
t4d = te6
t7 = tl*t4

in t7

x+42
t2+y
t2+z
t3*t6



Reduction Algorithms:

* Constant folding
— reduce if's and arithmetic when args are constants

* Operand propagation
— replace each LetValue(x,0Op(w),e) with e[w/X].
— why can't we do LetValue(x,v,e) with e[v/x]?
« Common Sub-Value elimination
— replace each LetValue(x,v,...LetValue(y,v,e),...) with
LetValue(x,v,...e[x/y]...)
 Dead Value elimination

— When e doesn't contain x, replace LetValue(x,v,e)
with e.



Constant Folding

let rec cfold exp (e:exp) : exp =
match e with
| Return w -> Return w
| LetValue(x,v,e) ->
LetValue (x,cfold val v,cfold exp e)
| LetCall(x,f,ws,e) ->
LetCall (x,f,ws,cfold exp e)
| LetIf(x,Bool true,el,e2,e)->
cfold exp (flatten x el e)
| LetIf(x,Bool false,el,e2,e)->
cfold exp (flatten x e2 e)
| LetIf(x,w,el,e2,e)->
LetIf (x,w,cfold el,cfold e2,cfold e)



Flattening

and flatten (x:var) (el:exp) (e2:exp):exp =
match el with
| Return w -> LetVal (x,0p w,2)
| LetValue(y,v,el) ->

LetValue (y,v,flatten x el e2)
| LetCall(y,f,ws,el) ->
LetCall(y,f,ws,flatten x el e2)
| LetIf(y,w,et,ef,ec) ->
LetIf(y,w,et,ef,flatten x ec e2)



Constant Folding Contd.

and cfold val (v:value) :value =

match v with
Fn(x,e) => Fn(x,cfold exp e)
Primop (Plus, [Int i,Int j]) => Op(Int(i+j))
Primop (Plus, [Int O,v]) => Op(v)
Primop (Plus, [v,Int 0]) => Op(v)
Primop (Minus, [Int i,Int j]) => Op(Int(i-j))
Primop (Minus, [v,Int 0]) => Op(v)
Primop (Lt, [Int i,Int j]) => Op(Bool (i<j))
Primop (Lt, [v1l,v2]) =>

if vl = v2 then Op(Bool false) else v

| v => v



Operand Propagation

let rec cprop exp(env:.var->oper option) (e:exp) :exp =
match e with
| Return w -> Return (cprop oper env w)
| LetValue(x,0p w,e) ->
cprop _exp (extend env x (cprop oper env w)) e
| LetValue(x,v,e) ->
LetValue (x,cprop val env v,Cprop exp env e)
| LetCall(x,f,w,e) ->
LetCall (x,cprop oper env £, cprop oper env w,
cprop_exp env e)
| LetIf(x,w,el,e2,e) ->
LetIf (x,cprop oper env w,
cprop exp env el, cprop exp env e2,
cprop exp env e)



Operand Propagation Contd.

and cprop oper env w =
match w with

vVar x ->

(match env x with | None -> w | Some w2 -> w2)

-> W

and cprop val env v =

match v with

Fn(x,e) -> Fn(x,cprop exp env e)
Pair (wl,w2) ->

Pair (cprop oper env wl, cprop oper env w2)
Fst w -> Fst(cprop oper env w)
Snd w -> Snd(cprop oper env w)
Primop (p,ws) -> Primop (p,map (cprop_ oper env)
Op( ) => raise Impossible

ws)



Common Value Elimination

let rec cse exp(env:value->var option) (e:exp) :exp
match e with

| Return w -> Return w
| LetValue(x,v,e) ->
(match env v with

| None -> LetValue(x,cse val env v,
cse exp (extend env v x) e)

| Some y -> LetValue(x,0p(Var y) ,cse exp env e))
| LetCall(x,f,w,e) -> LetCall(x,f,w,cse exp env e)
| LetIf(x,w,el,e2,e) ->
LetIf (x,w,cse exp env el,cse exp env e2,
cse _exp env e)

and cse val env v =
match v with | Fn(x,e) -> Fn(x,cse_exp env e)
| v -> v



Dead Value Elimination (Naive)

let rec dead exp (e:exp) : exp =

match e with

| Return w -> Return w

| LetValue(x,v,e) ->
if count occurs x e = 0 then dead exp e
else LetValue(x,v,dead exp e)

| LetCall(x,f,w,e) —->
LetCall (x,f,w,dead exp e)

| LetIf(x,w,el,e2,e) ->

LetIf (x,w,dead exp el,
dead exp e2,dead exp e)



Comments:

* It's possible to fuse constant folding, operand
propagation, common value elimination, and
dead value elimination into one giant pass.

— one env to map variables to operands

— one env to map values to variables

— on way back up, return a table of use-counts for each
variable.

« There are plenty of improvements:

— e.g., sort operands of commutative operations so that
we get more common sub-values.

— e.g., keep an env mapping variables to values and
use this to reduce fst/snd operations.
LetValue(x,Pair(w1,w2),...,LetValue(y,Snd(Op x),...)
=> LetValue(x,Pair(w1,w2),...,LetValue(y,Op w2,...)



Function Inlining:

Replace:
LetValue(f,Fn(x,e1),...LetCall(y,f,w,e2)...)

with

LetValue(f,Fn(x,e1),...
LetValue(y,LetValue(x,0Op w,e1),e2)...)

Problems:
— Monadic form doesn't have nested Let's!
(so we must flatten out the nested let.)

— Bound variables get duplicated
(so we rename them as we flatten them out.)



When to inline?

» Certainly when f occurs at most once.

— Not going to blow up the code since DVE will
get rid of the original after inlining.

* We could try inlining at each call site, then

reduce, and then see if the result is no
worse than the original code.

* In practice, rarely done.

* Instead, just inline "small" functions.
—e.g., map will be inlined by SML/NJ



Monadic Form:

datatype operand =
(* small, pure expressions, okay to duplicate ¥*)
Int of int | Bool of bool | Var of wvar

and value =
(* larger, pure expressions, okay to eliminate ¥*)
Op of operand
Fn of var * exp

Fst of operand | Snd of operand
Primop of primop * (operand list)
and exp =
(* control & effects: deep thought needed here *)
Return of operand
| LetValue of var * value * exp
| LetCall of var * operand * operand * exp

I
| Pair of operand * operand
I
I

| LetIf of var * operand * exp * exp * exp



Optimizations so far...

 constant folding
* operand propagation

— Copy propagation:
substitute a variable for a variable

— constant propagation:
substitute a constant for a variable

 dead value elimination
e common sub-value elimination
* function inlining



Optimizing Function Calls:

* We never completely eliminate LetCall(x,f,w,e)
since the call might have effects.

 But if we can determine that f is a function
without side effects, then we could treat this like
a LetVal declaration.

— Then we get cse, dce, etc. on function calls!

* To what expressions can f be bound?
— Lambda, a call, Fst x, Snd x, Hd x, etc.
— In general, we won't be able to tell if f has effects.

— ldea: use a modified type-inference to figure out
which functions have side effects.

— ldea 2: make the programmer distinguish between
functions that have effects and those that do not.



Optimizing Conditionals:

e fvtheneelsee — e

if vthen ...(if vthen e, else e,)... else e; —
If vthen ...e1...else e;

let x =if vthen e, else e, ine; —
if vthen let x=e, in e, else let x=e, in e,4

if vthen ...let x=v,... else ...lety=v,... —
let z=v, inif vthen ...let x=z... else ...let y=z...
(when vars(v,) defined before the if)

let x=v, in if v then ...x... else ...(n0 X)... —
If vthen let x=v,in ...x... else ...(no X)...



Optimizing Loops

LetRec([(f;,X4,&4),---,(f.X,,&,)],€)

* Loop invariant removal:
—ife, = ...letx=vin...
— and if vars(v) are defined before the LetRec
— then we can hoist the definition out of the loop.
¢ e.g.,
val z =42 val z =42
funfx=(...2z"31...) = valt=2z*31
funfx=1(..1..)



Other Algebraic Laws?

If f and g have no effects, then:

« map f = foldr (fn (x,a) => (f x)::a) []

« filter f = foldr (fn (x,a) => if f x then x::a else a) []
 (foldrfu)o (map g) = foldr (fn (x,a) => f(g x,a)) u

 (foldrfu) o (filter g) =
foldr (fn (x,a) => if g x then f(x,a) else a) u

So any (pure) foldr combined with any sequence
of (pure) filters and maps can be reduced to a
single traversal of the list!

This generalizes to any inductive datatype!



Getting into Monadic Form

 Lots of optimizations are simplified by
translating into monadic form.

 How do we (efficiently) get ML code into
monadic form?

 Let's first consider a simpler source:

type arith =
I of int | Add of arith*arith
* And a simpler target:
type exp =
Return of operand
| Let of var * value * exp



Very Nailve way:

val split : exp -> (var * value) list * operand
val join : (var * value) list * operand -> exp

let rec tomonadic (a:arith) : exp =
match a with
| I(1i) -> Return(Int i)
| Add(a,b) ->

let x = fresh var() in

let (da,wa) = split(tomonadic a) in
let (db,wb) = split(tomonadic b)

in

join (da @ db @ [(x,PrimApp (Plus,[wa,wb])))],
Var x)



Where...

let rec split (e:exp): (var * value) list * operand =
match e with
| Return w -> ([],w)
| Let(x,v,e) ->
let (ds,w) = split e

in ((x,v)::ds,w)

let rec join (ds:var*value list,w:operand) : exp =
match ds with
| [] -> Return w
| (x,v)::rest -> Let(x,v,join(rest,w))



Problems:

« Expensive to split/join on each compound expr.

« Must generalize split/join to return a declaration list that covers all of
the other cases beyond values.

let rec tomonadic (a:arith) : exp =
match a with
| I(i) -> Return(Int i)
| Add(a,b) ->
let x = fresh var() in

let (da,wa) = split(tomonadic a) in
let (db,wb) = split(tomonadic b)
in

join (da @ db @ [(x,PrimApp(Plus,[wa,wb])))],
Var x)



Avoiding Splits and Joins:

Don't bother joining until the end:
let rec tom (a:arith) : (var*value) list * oper =
match a with
I(i) => ([],Int i)
| Add(a,b) =>

let x = fresh var() in

let (da,wa) = tom a in

let (db,wb) = tom b

in
(da @ db @ [(x,PrimApp (Plus, [wa,wb])))],
Var x)

end

let tomonadic(a:arith) :exp = join(tom a)



Problems:

let rec tom (a:arith) : (var*value) list * oper =
match a with
| T(i) -> ([],Int i)
| Add(a,b) ->

let x = fresh var() in

let (da,wa) = tom a in

let (db,wb) = tom b

in
(da @ db @ [(x,PrimApp (Plus, [wa,wb])))],
Var x)

* Appends are causing us to be quadratic.



Accumulator Based:

let rec tom (a:arith) (ds: (var*value) list)
(var*value) list * oper =
match a with
| I(i) -> (ds,Int 1)
| Add(a,b) ->
let x = fresh var() in

let (da,wa) = tom ds a in

let (db,wb) = tom da b

in
((x,PrimApp (Plus, [wa,wb])) ::db,
Var x)

fun tomonadic(a:arith) :exp = revjoin(tom a)



Problems:

let rec tom (a:arith) (ds: (var*value) list)
(var*value) list * oper =
match a with
| I(i) -> (ds,Int 1)
| Add(a,b) ->
let x = fresh var() in
let (da,wa) = tom ds a in
let (db,wb) = tom da b
in
((x,PrimApp (Plus, [wa,wb])) ::db,
Var x)

Still have to generalize to cover all of the other
Let cases beyond values (e.g., Call, If, etc.)



What we wish we could do...

e Let (x,,v,,
Let(x,,v,,..
Let(x_ ,v_ ,Return w)..))
Imagine we could split an expression e into a

"hole-y" expression and the Return'ed operand:
split e = (h, w)

where h is Let (x,,v,,
Let(x,,v,,..
Let(x, ,v_,[0])..))



Plugging Holes

Imagine we could plug another expression (with a
hole) into the "hole™:

plug (Let(x,,v,,
Let(x,,v,,..
Let(x, ,v,, [0])..))

(Let(y,,z;,
Let(y,,z,,..

Let(y,,z,,[0])..)) =
Let(x,,v,,
Let(x,,v,,..
Let(x, ,Vv,,
(Let(y,,2,,
Let(y,,z,,..
Let(y,,z,, [0])..)))..))



Recoding:

val hole : holy exp
val plug : holy exp -> holy exp -> holy exp
val plug final : holy exp * operand -> exp
let rec tom (a:arith) : holy exp * operand =
match a with
| I(i) -> (hole ,Int 1)
| Add(a,b) ->

let x = fresh var() in

let (ha,wa) = tom a in

let (hb,wb) = tom b

in
(plug ha
(plug hb (Let(x,PrimApp (Plus, [wa,wb]), hole))),
Var x)

let tomonadic(a:arith) :exp = plug final (tom a)



Implementing Hole-y Expr's

* How to implement holy expressions?

val hole : holy exp
val plug : holy exp -> holy exp -> holy exp
val plug final : holy exp * operand -> exp



We've already seen one option:

type decl =

Vald of var * value
| Calld of wvar * operand * operand
| Ifd of var * exp * exp

type holy exp = decl list



A Clever Option...

type holy exp = exp -> exp

let hole : holy_exp =
fun e -> e

let plug (hl:holy exp) (h2:holy exp) =
fun e -> hl(h2(e)) (* = hl o h2 *)

let plugFinal (h:holy exp) (w:operand) =
h (Return w) (* = h o Return *)



Tom revisited:

let hole : holy exp = fun e -> e
let plug : holy exp -> holy exp -> holy exp
fun ha -> £fn hb -> (fun e -> ha(hb(e)))
let rec tom (a:arith) : holy exp * operand =
match a with
| I(i) -> (hole,Int i)
| Add(x,b) ->
let x = fresh var() in

let (ha,wa) = tom a in
let (hb,wb) = tom b
in

(plug ha (plug hb
(fun e -> (Let(x,PrimApp (Plus, [wa,wb]) ,e))),
Var x)



Tom Simplified:

let rec tom (a:arith) : (exp->exp) * operand =
match a with
| I(1) -> (fun e -> e,Int 1)
| Add(x,b) ->

let x = fresh var() in
let (ha,wa) = tom a in
let (hb,wb) = tom b
in
(fun e ->
ha (hb (Let (x, PrimApp (Plus, [wa,wb]) ,e))),
Var x)
end

let tomonadic(a:arith) =
let(h,w) = tom a in h (Return w)



Accumulator-Based:

let rec tom(a:arith) (ds:holy exp) :holy exp * oper =
match a with
| I(1i) -> (ds,Int 1i)
| Add(a,b) =>

let x = fresh var() in
let (da,wa) = tom ds a in
let (db,wb) = tom da b

in

(fun e -> db(Let (x,PrimApp (Plus, [wa,wb]) ,e)),
Var x)



One more step...

Instead of:
tom : arith -> (exp->exp) -> (exp->exp) *operand
- The (exp->exp) argumentrepresents the declarations given so

far, whereas the (exp->exp) result represents the append of the
declarations of arith to the declarations given so far.

The code given to you has the form:

tom : arith -> (operand->exp) -> exp

* The (operand->exp) argumentis a holey-expression that
represents how the rest of the surrounding expression should be
built.



Even Simpler... (CPS)

let rec tom (a:arith) (ds:operand->exp) =
match a with
| I(i) -> ds(Int i)
| Add(a,b) ->
let x = fresh var() in
tom a (fun wa ->

tom b (fun wb ->
LetVal (x,PrimApp (Plus, [wa,wb]) ,ds x)))

let tomonadic (a:arith) : exp =
tom a (fun v -> Return v)



Example:

let rec tom (a:arith) (ds:operand->exp) =
match a with
| I(i) -> ds(Int i)
| Add(a,b) ->
let x = fresh var() in
tom a (fun wa ->

tom b (fun wb ->
LetVal (x,PrimApp (Plus, [wa,wb]) ,ds x)))

let tomonadic (a:arith) : exp =
tom a (fun v -> Return v)

tomonadic (I 31) =
tom(I 31) Return = Return(Int 31)



Next Example:

let rec tom (a:arith) (ds:operand->exp) =
match a with
| I(1) -> ds(Int i)
| Add(a,b) ->
let x = fresh var() in
tom a (fun wa ->

tom b (fun wb ->
LetVal (x,PrimApp (Plus, [wa,wb]) ,ds x)))

tomonadic(Add(I 31, I 42)) =

tom(Add(I 31, I 42)) (fun v -> Return v) =
tom (I 31) (fun wa ->

tom (I 42) (fun wb ->
LetVal ("x1" ,PrimApp (Plus, [wa,wb]) ,Return "x1")))



Example Continued:

tom(Add(I 31, I 42)) (fun v -> Return v) =
tom (I 31) (fun wa ->

tom (I 42) (fun wb ->
LetVal ("x1" ,PrimApp (Plus, [wa,wb]) ,Return

Hxlll) ) )

tom (I 31) ds = ds(Int 31) so..

tom (I 31) (fun wa ->
tom (I 42) (fun wb ->
LetVal ("x1" ,PrimApp (Plus, [wa,wb]),
Return "x1")))

= tom (I 42) (fun wb ->
LetVal ("x1" ,PrimApp (Plus, [Int 31,wb]),
Return "x1"))



Example Continued:

tom (I 42) ds = ds(Int 42) so..

tom (I 42) (fun wb ->
LetVal ("x1" ,PrimApp (Plus, [Int 31,wb]),

Return "x1"))

LetVal ("x1" ,PrimApp (Plus, [Int 31,Int 42]),
Return "x1")



The Real Code

« See monadic.ml for the real code.

* It has to deal with many more cases but
has the same basic structure.

let rec tom (a:arith) (ds:operand->exp) =
match a with
| I(i) -> ds(Int i)
| Add(a,b) ->
let x = fresh var() in
tom a (fun wa ->

tom b (fun wb ->
LetVal (x, PrimApp (Plus, [wa,wb]) ,ds x)))

let tomonadic (a:arith) : exp =
tom a (fun v -> Return v)



