Type Checking, Inference, &
Elaboration

C3S4410: Spring 2013

Statics

« After parsing, we have an AST.

« Critical issue:
— not all operations are defined on all values.
- e.g., (3/0), sub("foo",d), 42(x)

* Options
1. don't worry about it (C, C++, etc.)
2. report errors at run time (Scheme)

3. rule out ill-formed expressions at compile
time (ML)

Type Soundness

« Construct a model of the source language
— l.e., interpreter
— This tells us where operations are partial.

— And partiality is different for different languages (e.g.,
"foo" + "bar" may be meaningful in some languages,
but not others.)

 Construct a function TC: AST -> bool

— when true, should ensure interpreting the AST does
not result in an undefined operation.

 Prove that TC is correct.

Simple Language:

type tipe =
Int t
| Fn t of tipe*tipe
| Pair t of tipe*tipe

type exp =

Var of var | Int of int
Plus 1 of exp*exp

Lambda of wvar * tipe * exp
App of exp*exp

Pair of exp * exp

Fst of exp | Snd of exp

Interpreter:

let rec interp (env:var->value) (e:exp) =
match e with
| Var x -> env x
| Int I -> Int v i
| Plus i(el,e2) ->
(match interp env el, interp env e2 of
| Int i, Int j -> Int v(i+])
| _,_ => error())
| Lambda(x,t,e) => Closure v{env=env,code=(x,e)}
| App(el,e2) =>
(match interp env el, interp env e2 of
| Closure v{env=cenv,code=(x,e)},v ->
interp (extend cenv x v) e
| , => error()

Type Checker:

let rec tc (env:var->tipe) (e:exp) =
match e with
| Var x -> env x
| Int -> Int t
| Plus i(el,e2) ->
(match tc env el, tc env e with
| Int t, Int t -> Int t
| _,_ => error())
| Lambda(x,t,e) ->
Fn t(t,tc (extend env x t) e)
| App(el,e2) ->
(match (tc env el, tc env e2) with
| Fn_t(tl,t2), t ->
if (t1l '= t) then error() else t2
| , => error())

Notes:

* In the interpreter, we only evaluate the body of a function when it's
applied.

* In the type-checker, we always check the body of the function (even
if it's never applied.)

« Because of this, we must assume the input has some type (say t,)
and reflect this in the type of the function (t; -> t,).

* Dually, at a call site (e, e,), we don't know what closure we're going
to get.

« But we can calculate e,'s type, check that e, is an argument of the
right type, and also determine what type e, will return.

Growing the language

type tipe = ... | Bool t
type exp = ... |
True | False | If of exp*exp*exp

let rec interp env e =

True -> True v

False -> False v
If(el,e2,e3) ->

(match interp env el with

True v -> interp env e2
| False v -> interp env e3
| => error())

Type-Checking

let rec tc (env:var->tipe) (e:exp) =
match e with

| True -> Bool t
| False -> Bool t
| If(el,e2,e3) ->
(let (tl1l,t2,t3) = (tc env el,tc env e2,tc env e3)
in
match t1l with
| Bool t ->
if (t2 '= t3) then error() else t2

| => error())

Refining Types

We can easily add new types that
distinguish different subsets of values.

type tipe =
True t | False t | Bool t

Pos t | Neg t | Zero t | Int t
Any t

Modified Type-Checker

let rec tc (env:var->tipe) (e:exp) =

| True -> True t
| False -> False t
| If(el,e2,e3) ->
(match tc env el with
True t -> tc env e2
| False t -> tc env e3
| Bool t ->
(let (t2,t3) = (tc env e2, tc env e3)
in
lub t2 t3)
=> error())

Least Upper Bound

let 1lub tl1 t2 =

match tl, t2 with
| True t (Bool t|False t) -> Bool t

False t, (Bool t|True t) -> Bool t

Zero t, (Neg t|Pos t|Int t) -> Int t
Neg t, (Zero_t|Pos_t|Int t) -> Int t
Pos t, (Zero_t|Neg t|Int t) -> Int t
-> if (tl = t2) then tl else Any t

4

Refining Integers into Zero,Neg,Pos

let rec tc (env:var->tipe) (e:exp) =

| Int 0 -> Zero_ t
| Int 1 -> if 1 < 0 then Neg t else Pos t
| Plus(el,e2) ->
(match tc env el, tc env e2 with

| Zero t,t2 -> t2

| tl1,Zero t -> tl

| Pos t,Pos t -> Pos_t

| Neg t,Neg t -> Neg t

| (Neg t|Pos_t|Int t),Int t -> Int t

| Int t, (Neg t|Pos _t) -> Int t

| , =—> error())

Subtyping as Subsets

* |If we think of types as sets of values, then a
subtype corresponds to a subset and lub

corresponds to union.

* e.g., Pos t<=Int tsince every positive integer
IS also an integer.

* For conditionals, we want to find the /least type
of the types the two branches might return.
— Adding "Any t" ensures there is a type.

— (Not always a good thing to have...)

— Need NonPos_t, NonNeg_t and NonZero t to get
least upper bounds.

Extending Subtyping:

* What about pairs?
— (T, *T,) <= (U, * U,) when
T,<=U,and T, <= U,
— But only when immutable!
— Why?
* \What about functions?
—(T,->T,)<=(U;->U,) when
U, <=T,and T, <= U,.
— Why?

Problems with Mutability:

let £f(p :ref(Pos t)) =
let g :ref(Int t) =p
in
q := 0;
42 div ('p)

Another Way to See it:

* Any shared, mutable data structure can
be thought of as an immutable record of
pairs of methods (with hidden state):

-p : ref(Pos t) =>

-p : { get: unit -> Pos t,
set: Pos t -> unit }

 When is ref(T) <= ref(U)? When:
—unit->T <= unit->U or T <= U and
—T->unit <= U->unit or U <= T.
— Thus, only when T = U!

N-Tuples and Simple Records:

e (T,*..."T,"T 1) <=(U,"...7U,)
when T. <= U..
— Why?

« Non-Permutable Records:

{G:T T T <={4:Uy,..., £:U}

when T,<=U..

— Assumes {x:int,y:int} != {y:int,x:int}

— That is, the position of a label is independent of the
rest of the labels in the type.

— In SML (or for Java interfaces) this is not the case.

SML-Style Records:

« Compiler sorts by label.

* So if you write {y:int,z:int,x:int}, the
compiler immmediately rewrites it to
{x:int,y:int,z:int}.

* So you need to know all of the labels to
determine their positions.

* Consider: {y:int,z:int,x:int} <= {y:int,z:int}

If you want both:

* |f you want permutability & dropping, you
need to either copy or use a dictionary:

7

AN

42

55

66

|

y

/

p = {x=42,y=55,z=66}.{x:int,y:int,z:int}

7 | <

g : {y:int,z:int} = p

Type Inference

let rec tc (env: (var*tipe) list) (e:exp)

match e with
| Var x -> lookup env x

| Lambda(x,e) ->
(let t = guess|()

in
Fn t(t,tc (extend env x t) e))
| App(el,e2) ->
(match tc env el, tc env e2 with
| Fn_t(tl,t2), t ->
if t1l '= t then error() else t2

| , => error())

Extend Types with Guesses:

type tipe =
Int t
| Fn_t of tipe*tipe

| Guess of (tipe option ref)

fun guess () = Guess (ref None)

Must Handle Guesses

| Lambda(x,e) ->
let t = guess|()
in
Fn t(t,tc (extend env x t) e)
| App(el,e2) ->
(match tc env el, tc env e2 with
| Fn_t(tl,t2), t ->
if tl1 '= t then error() else t2
| Guess (r as ref None), t ->
let t2 = guess() in
r := Some(Fn _t(t,t2)); t2
| Guess (ref Some (Fn_t(tl,t2))), t ->
if tl1 '= t then error() else t2

Cleaner:

let rec tc (env: (var*tipe) list) (e:exp) =
match e with
| Var x -> lookup env x
| Lambda(x,e) ->
let t = guess|()
in
Fn t(t,tc (extend env x t) e)
| App(el,e2) ->
let (tl1l,t2) = (tc env el, tc env e2) in
let t = guess|()

in
if unify tl (Fn t(t2,t)) then t
else error ()

Where:

let rec unify (tl:tipe) (t2:tipe) :bool =
if (tl = t2) then true else
match tl,t2 with

| Guess(ref(Some tl')), -> unify tl’ t2
| Guess(r as (ref None)), t2 ->
(r := t2; true)

_, Guess() -> unify t2 tl

Int t, Int t -> true

Fn t(tla,tlb), Fn t(t2a,t2b)) ->
unify tla t2a && unify tlb t2b

Subtlety

e Consider: fun x => x x

 We guess gl for x
— We see App (x, x)
— recursive calls say we have t1l=gl and

t2=qgl.

— We guess g2 for the result.
—And unify(gl,Fn_t(gl,g2))
—Sowe setgl := Some(Fn t(gl,g2))
— What happens if we print the type?

Fixes:

* Do an "occurs" check in unify:
let rec unify (tl:tipe))t2:tipe) :bool =
if (t1l = t2) then true else
match (tl,t2) with

(Guess (r as ref None),) =>
if occurs r t2 then error()
else (r := Some t2; true)

 Alternatively, be careful not to loop
anywhere.
— In particular, when comparing t1 = t2, we

must code up a graph equality, not a tree
equality.

Polymorphism:

e Consider: fun x => x

 We guess gl for x
— We see x.
— S0 gl is the result.
—We return Fn_t (gl,gl)
— gl Is unconstrained.

— We could constraint it to Int _t or
Fn t(Int t,Int t) oranytype.
— In fact, we could re-use this code at any type.

ML EXxpressions:

type exp =

Var of var

Int of int

Lambda of wvar * exp
App of exp*exp

Let of var * exp * exp

Naive ML Type Inference:

let rec tc (env: (var*tipe) list) (e:exp) =
match e with
| Var x -> lookup env x
| Lambda(x,e) ->
let t = guess() in
Fn t(t,tc (extend env x t) e) end
| App(el,e2) ->
let (t1l,t2) = (tc env el, tc env e2) in
let t = guess|()
in if unify tl1 (Fn_t(t2,t)) then t
else error()
| Let(x,el,e2) =>
(tc env el; tc env (substitute(el,x,e2))

Example:

let 1d = £fn x => x
in
(1d 3, id "fred")

end

((fun x => x) 3, (fun x => x) "fred")

Better Approach (DM);

type tvar = string

type tipe =
Int t
Fn t of tipe*tipe

Guess of (tipe option ref)

Var t of tvar

type tipe scheme =
Forall of (tvar list * tipe)

ML Type Inference

let rec tc (env: (var*tipe scheme) list) (e:exp) =
match e with
| Var x -> instantiate (lookup env x)
| Int -> Int t
| Lambda(x,e) ->
let t = guess() in
Fn t(t,tc (extend env x (Forall([],t)) e)
| App(el,e2) ->
let (t1,t2,t) = (tc env el,tc env e2,guess())
in if unify(tl,Fn _t(t2,t)) then t else error()
| Let(x,el,e2) ->
let s = generalize (env,tc env el) in
tc (extend env x s) e2 end

Instantiation

let instantiate(s:tipe scheme) :tipe =
let val Forall(vs,t) = s

val vs _and ts : (var*tipe) list =
map (fn a => (a,guess()) vs

in
substitute (vs_and ts,t)
end

Generalization:

let generalize(e:env,t:tipe) :tipe scheme =
let t gs = guesses of tipe t 1in

let env _1list gs =

map (fun (x,s) -> guesses of s) e in
let env_gs = foldl union empty env list gs
let diff = minus t gs env _gs in
let gs vs =

map (fun g -> (g,freshvar())) diff in
let tc = subst gquess(gs_vs,t)
in

Forall (map snd gs vs, tc)

end

Explanation:

« Each let-bound value is generalized.
— e.g., g->g generalizes to Forall a.a -> a.

« Each use of a let-bound variable is instantiated

with fresh guesses:
— e.qg., if f:Forall a.a->a, then in f e, then the type we
assign to f is g->g for some fresh guess g.

« But we can't generalize guesses that might later

become constrained.

— Sufficient to filter out guesses that occur elsewhere in
the environment.

— e.g., if the expression has type g1->g2 and y:g1, then
we might later use y in a context that demands it has
type int, such as y+1.

Effects:

* The algorithm given is equivalent to
substituting the let-bound expression.

 Butin ML, we evaluate CBV, not CBN!

let id = (print "Hello"; fn x => x)

in
(id 42, id "fred”)

((print "Hello";fn x=>x) 42,
(print "HellO" ; fn x=>x) A] fred")

Problem:

let r = ref (fn X=>X)
(* r : Forall 'a.ref('a->'a) *)

in

r (fn x => x+1); (* r:ref(int->int) *)

('r) ("fred") (* r:ref(string->string) *)

"Value Restriction”

* Whenis let x=el in e2 equivalentto
subst (el,x,e2)?
* |f e1 has no side effects.
— reads/writes/allocation of refs/arrays.
— input, output.
— non-termination.
* So only generalize when e is a value.

— or something easy to prove equivalent to a
value.

Real Algorithm:

let rec tc (env:var->tipe scheme) (e:exp) =
match e with

| Let(x,el,e2) ->

let s =

if may have effects el then
Forall ([],tc env el)

else generalize (env,tc env el)

in

tc (extend env x s) e2
end

Checking Effects:

let rec may have effects e =
match e with

Int -> false

Var -> false
Lambda -> false

Pair (el,e2) ->
may have effects el||may have effects e2
| App _ -> true

