
Type Checking, Inference, &
Elaboration

CS4410: Spring 2013

Statics
•  After parsing, we have an AST.
•  Critical issue:

–  not all operations are defined on all values.
–  e.g., (3 / 0), sub("foo",5), 42(x)

•  Options
1.  don't worry about it (C, C++, etc.)
2.  report errors at run time (Scheme)
3.  rule out ill-formed expressions at compile

time (ML)

Type Soundness
•  Construct a model of the source language

–  i.e., interpreter
–  This tells us where operations are partial.
–  And partiality is different for different languages (e.g.,

"foo" + "bar" may be meaningful in some languages,
but not others.)

•  Construct a function TC: AST -> bool
–  when true, should ensure interpreting the AST does

not result in an undefined operation.
•  Prove that TC is correct.

Simple Language:
type tipe =
 Int_t
| Fn_t of tipe*tipe
| Pair_t of tipe*tipe

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp

Interpreter:
let rec interp (env:var->value)(e:exp) =
 match e with
 | Var x -> env x
 | Int I -> Int_v i
 | Plus_i(e1,e2) ->
 (match interp env e1, interp env e2 of
 | Int i, Int j -> Int_v(i+j)
 | _,_ => error())
 | Lambda(x,t,e) => Closure_v{env=env,code=(x,e)}
 | App(e1,e2) =>
 (match interp env e1, interp env e2 of
 | Closure_v{env=cenv,code=(x,e)},v ->
 interp (extend cenv x v) e
 | _,_ -> error()

Type Checker:
let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_ => error())
 | Lambda(x,t,e) ->
 Fn_t(t,tc (extend env x t) e)

 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Fn_t(t1,t2), t ->
 if (t1 != t) then error() else t2
 | _,_ -> error())

Notes:
•  In the interpreter, we only evaluate the body of a function when it's

applied.

•  In the type-checker, we always check the body of the function (even
if it's never applied.)

•  Because of this, we must assume the input has some type (say t1)
and reflect this in the type of the function (t1 -> t2).

•  Dually, at a call site (e1 e2), we don't know what closure we're going
to get.

•  But we can calculate e1's type, check that e2 is an argument of the
right type, and also determine what type e1 will return.

Growing the language
type tipe = ... | Bool_t

type exp = ... |
 True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) ->
 (match interp env e1 with

 True_v -> interp env e2
 | False_v -> interp env e3
 | _ => error())

Type-Checking
let rec tc (env:var->tipe) (e:exp) =
 match e with

...
| True -> Bool_t

 | False -> Bool_t
 | If(e1,e2,e3) ->
 (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3)
 in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ => error())

Refining Types
We can easily add new types that

distinguish different subsets of values.

type tipe =
 ...
| True_t | False_t | Bool_t
| Pos_t | Neg_t | Zero_t | Int_t
| Any_t

Modified Type-Checker
let rec tc (env:var->tipe) (e:exp) =
 ...

| True -> True_t
 | False -> False_t
 | If(e1,e2,e3) ->
 (match tc env e1 with
 True_t -> tc env e2
 | False_t -> tc env e3
 | Bool_t ->
 (let (t2,t3) = (tc env e2, tc env e3)
 in
 lub t2 t3)
 | _ => error())

Least Upper Bound
let lub t1 t2 =
 match t1, t2 with

| True_t (Bool_t|False_t) -> Bool_t
 | False_t,(Bool_t|True_t) -> Bool_t
 | Zero_t, (Neg_t|Pos_t|Int_t) -> Int_t
 | Neg_t, (Zero_t|Pos_t|Int_t) -> Int_t
 | Pos_t, (Zero_t|Neg_t|Int_t) -> Int_t
 | _,_ -> if (t1 = t2) then t1 else Any_t

Refining Integers into Zero,Neg,Pos
let rec tc (env:var->tipe) (e:exp) =
 ...

| Int 0 -> Zero_t
 | Int i -> if i < 0 then Neg_t else Pos_t
 | Plus(e1,e2) ->
 (match tc env e1, tc env e2 with
 | Zero_t,t2 -> t2
 | t1,Zero_t -> t1
 | Pos_t,Pos_t -> Pos_t
 | Neg_t,Neg_t -> Neg_t
 | (Neg_t|Pos_t|Int_t),Int_t -> Int_t
 | Int_t,(Neg_t|Pos_t) -> Int_t
 | _,_ -> error())

Subtyping as Subsets
•  If we think of types as sets of values, then a

subtype corresponds to a subset and lub
corresponds to union.

•  e.g., Pos_t <= Int_t since every positive integer
is also an integer.

•  For conditionals, we want to find the least type
of the types the two branches might return.
–  Adding "Any_t" ensures there is a type.
–  (Not always a good thing to have…)
–  Need NonPos_t, NonNeg_t and NonZero_t to get

least upper bounds.

Extending Subtyping:
•  What about pairs?

–  (T1 * T2) <= (U1 * U2) when
T1 <= U1 and T2 <= U2

– But only when immutable!
– Why?

•  What about functions?
–  (T1 -> T2) <= (U1 -> U2) when

U1 <= T1 and T2 <= U2.
– Why?

Problems with Mutability:
let f(p :ref(Pos_t)) =
 let q :ref(Int_t) = p
 in
 q := 0;
 42 div (!p)

Another Way to See it:
•  Any shared, mutable data structure can

be thought of as an immutable record of
pairs of methods (with hidden state):
– p : ref(Pos_t) =>
– p : { get: unit -> Pos_t,
 set: Pos_t -> unit }

•  When is ref(T) <= ref(U)? When:
– unit->T <= unit->U or T <= U and
– T->unit <= U->unit or U <= T.
– Thus, only when T = U!

N-Tuples and Simple Records:
•  (T1 * … * Tn * Tn+1) <= (U1 * … * Un)

when Ti <= Ui.
–  Why?

•  Non-Permutable Records:
{l1:T1,…,ln:Tn,ln+1:Tn+1} <= {l1:U1,…, ln:Un}
when Ti <= Ui .
–  Assumes {x:int,y:int} != {y:int,x:int}
–  That is, the position of a label is independent of the

rest of the labels in the type.
–  In SML (or for Java interfaces) this is not the case.

SML-Style Records:
•  Compiler sorts by label.
•  So if you write {y:int,z:int,x:int}, the

compiler immediately rewrites it to
{x:int,y:int,z:int}.

•  So you need to know all of the labels to
determine their positions.

•  Consider: {y:int,z:int,x:int} <= {y:int,z:int}
but {y,z,x} == {x,y,z} <= {y,z}

If you want both:
•  If you want permutability & dropping, you

need to either copy or use a dictionary:

x y z

42 55 66

p = {x=42,y=55,z=66}:{x:int,y:int,z:int}

q : {y:int,z:int} = p y z

Type Inference
let rec tc (env:(var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 (let t = guess()
 in

 Fn_t(t,tc (extend env x t) e))
 | App(e1,e2) ->
 (match tc env e1, tc env e2 with
 | Fn_t(t1,t2), t ->
 if t1 != t then error() else t2
 | _,_ => error())

Extend Types with Guesses:
type tipe =
 Int_t
| Fn_t of tipe*tipe
| Guess of (tipe option ref)

fun guess() = Guess(ref None)

Must Handle Guesses
 | Lambda(x,e) ->
 let t = guess()
 in

 Fn_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match tc env e1, tc env e2 with
 | Fn_t(t1,t2), t ->
 if t1 != t then error() else t2
 | Guess (r as ref None), t ->
 let t2 = guess() in
 r := Some(Fn_t(t,t2)); t2
 | Guess (ref Some (Fn_t(t1,t2))), t ->
 if t1 != t then error() else t2

Cleaner:
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess()
 in

 Fn_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in

 if unify t1 (Fn_t(t2,t)) then t
 else error()

Where:
let rec unify (t1:tipe) (t2:tipe):bool =
 if (t1 = t2) then true else
 match t1,t2 with
 | Guess(ref(Some t1')), _ -> unify t1’ t2
 | Guess(r as (ref None)), t2 ->
 (r := t2; true)
 | _, Guess(_) -> unify t2 t1
 | Int_t, Int_t -> true
 | Fn_t(t1a,t1b), Fn_t(t2a,t2b)) ->
 unify t1a t2a && unify t1b t2b

Subtlety
•  Consider: fun x => x x
•  We guess g1 for x

– We see App(x,x)
–  recursive calls say we have t1=g1 and
t2=g1.

– We guess g2 for the result.
– And unify(g1,Fn_t(g1,g2))
– So we set g1 := Some(Fn_t(g1,g2))
– What happens if we print the type?

Fixes:
•  Do an "occurs" check in unify:

let rec unify (t1:tipe))t2:tipe):bool =
 if (t1 = t2) then true else
 match (t1,t2) with
 (Guess(r as ref None),_) =>
 if occurs r t2 then error()
 else (r := Some t2; true)

 | …

•  Alternatively, be careful not to loop
anywhere.
–  In particular, when comparing t1 = t2, we

must code up a graph equality, not a tree
equality.

Polymorphism:
•  Consider: fun x => x
•  We guess g1 for x

– We see x.
– So g1 is the result.
– We return Fn_t(g1,g1)
– g1 is unconstrained.
– We could constraint it to Int_t or
Fn_t(Int_t,Int_t) or any type.

–  In fact, we could re-use this code at any type.

ML Expressions:
type exp =
 Var of var
| Int of int
| Lambda of var * exp
| App of exp*exp
| Let of var * exp * exp

Naïve ML Type Inference:
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess() in
 Fn_t(t,tc (extend env x t) e) end
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in if unify t1 (Fn_t(t2,t)) then t

 else error()
| Let(x,e1,e2) =>
 (tc env e1; tc env (substitute(e1,x,e2))

Example:
let id = fn x => x
in
 (id 3, id "fred")
end

====>

((fun x => x) 3, (fun x => x) "fred")

Better Approach (DM):
type tvar = string

type tipe =
 Int_t
| Fn_t of tipe*tipe
| Guess of (tipe option ref)
| Var_t of tvar

type tipe_scheme =
 Forall of (tvar list * tipe)

ML Type Inference
let rec tc (env:(var*tipe_scheme) list) (e:exp) =
 match e with
 | Var x -> instantiate(lookup env x)
 | Int _ -> Int_t
 | Lambda(x,e) ->
 let t = guess() in
 Fn_t(t,tc (extend env x (Forall([],t)) e)
 | App(e1,e2) ->
 let (t1,t2,t) = (tc env e1,tc env e2,guess())
 in if unify(t1,Fn_t(t2,t)) then t else error()
 | Let(x,e1,e2) ->
 let s = generalize(env,tc env e1) in
 tc (extend env x s) e2 end

Instantiation
let instantiate(s:tipe_scheme):tipe =
 let val Forall(vs,t) = s
 val vs_and_ts : (var*tipe) list =
 map (fn a => (a,guess()) vs

 in
 substitute(vs_and_ts,t)
 end

Generalization:
let generalize(e:env,t:tipe):tipe_scheme =
 let t_gs = guesses_of_tipe t in
 let env_list_gs =
 map (fun (x,s) -> guesses_of s) e in

 let env_gs = foldl union empty env_list_gs
 let diff = minus t_gs env_gs in
 let gs_vs =
 map (fun g -> (g,freshvar())) diff in

 let tc = subst_guess(gs_vs,t)
in

 Forall(map snd gs_vs, tc)
 end

Explanation:
•  Each let-bound value is generalized.

–  e.g., g->g generalizes to Forall a.a -> a.
•  Each use of a let-bound variable is instantiated

with fresh guesses:
–  e.g., if f:Forall a.a->a, then in f e, then the type we

assign to f is g->g for some fresh guess g.
•  But we can't generalize guesses that might later

become constrained.
–  Sufficient to filter out guesses that occur elsewhere in

the environment.
–  e.g., if the expression has type g1->g2 and y:g1, then

we might later use y in a context that demands it has
type int, such as y+1.

Effects:
•  The algorithm given is equivalent to

substituting the let-bound expression.
•  But in ML, we evaluate CBV, not CBN!

let id = (print "Hello"; fn x => x)
in
 (id 42, id "fred”)

!=

((print "Hello";fn x=>x) 42,
(print "Hello";fn x=>x) "fred")

Problem:
let r = ref (fn x=>x)
 (* r : Forall 'a.ref('a->'a) *)
in
 r := (fn x => x+1); (* r:ref(int->int) *)
 (!r)("fred") (* r:ref(string->string) *)

"Value Restriction"
•  When is let x=e1 in e2 equivalent to
subst(e1,x,e2)?

•  If e1 has no side effects.
–  reads/writes/allocation of refs/arrays.
–  input, output.
– non-termination.

•  So only generalize when e1 is a value.
– or something easy to prove equivalent to a

value.

Real Algorithm:
let rec tc (env:var->tipe_scheme) (e:exp) =
 match e with
 ...
| Let(x,e1,e2) ->
 let s =
 if may_have_effects e1 then
 Forall([],tc env e1)
 else generalize(env,tc env e1)
 in

 tc (extend env x s) e2
 end

Checking Effects:
let rec may_have_effects e =
 match e with
 | Int _ -> false
 | Var _ -> false
 | Lambda _ -> false
 | Pair(e1,e2) ->
 may_have_effects e1||may_have_effects e2

 | App _ -> true

