Type Checking, Inference, & Elaboration

CS4410: Spring 2013
Statics

• After parsing, we have an AST.
• Critical issue:
 – not all operations are defined on all values.
 – e.g., (3 / 0), sub("foo",5), 42(x)
• Options
 1. don't worry about it (C, C++, etc.)
 2. report errors at run time (Scheme)
 3. rule out ill-formed expressions at compile time (ML)
Type Soundness

• Construct a model of the source language
 – i.e., interpreter
 – This tells us where operations are partial.
 – And partiality is different for different languages (e.g., "foo" + "bar" may be meaningful in some languages, but not others.)

• Construct a function $TC: AST \rightarrow \text{bool}$
 – when true, should ensure interpreting the AST does not result in an undefined operation.

• Prove that TC is correct.
Simple Language:

type tipe =
 Int_t
| Fn_t of tipe*tipe
| Pair_t of tipe*tipe

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp
Interpreter:

let rec interp (env:var->value)(e:exp) =
 match e with
 | Var x -> env x
 | Int I -> Int_v i
 | Plus_i(e1,e2) ->
 (match interp env e1, interp env e2 of
 | Int i, Int j -> Int_v(i+j)
 | _,_ => error())
 | Lambda(x,t,e) => Closure_v{env=env,code=(x,e)}
 | App(e1,e2) =>
 (match interp env e1, interp env e2 of
 | Closure_v{env=cenv,code=(x,e)},v ->
 interp (extend cenv x v) e
 | _,_ => error())
Type Checker:

let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_ => error())
 | Lambda(x,t,e) ->
 Fn_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Fn_t(t1,t2), t ->
 if (t1 != t) then error() else t2
 | _,_ => error())
Notes:

• In the interpreter, we only evaluate the body of a function when it's applied.

• In the type-checker, we always check the body of the function (even if it's never applied.)

• Because of this, we must assume the input has some type (say t_1) and reflect this in the type of the function ($t_1 \rightarrow t_2$).

• Dually, at a call site ($e_1 e_2$), we don't know what closure we're going to get.

• But we can calculate e_1's type, check that e_2 is an argument of the right type, and also determine what type e_1 will return.
Growing the language

type tipe = ... | Bool_t

type exp = ... |
 True | False | If of exp*exp*exp

let rec interp env e = ...
| True -> True_v
| False -> False_v
| If(e1,e2,e3) ->
 (match interp env e1 with
 True_v -> interp env e2
 | False_v -> interp env e3
 | _ => error())
let rec tc (env:var->tipe) (e:exp) =
 match e with
 ...
 | True -> Bool_t
 | False -> Bool_t
 | If(e1,e2,e3) ->
 (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3)
 in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ => error())
Refining Types

We can easily add new types that distinguish different subsets of values.

type tipe =

 ...

| True_t | False_t | Bool_t |
| Pos_t | Neg_t | Zero_t | Int_t |
| Any_t |
let rec tc (env:var->tipe) (e:exp) =
 ...
 | True -> True_t
 | False -> False_t
 | If(e1,e2,e3) ->
 (match tc env e1 with
 True_t -> tc env e2
 | False_t -> tc env e3
 | Bool_t ->
 (let (t2,t3) = (tc env e2, tc env e3)
 in
 lub t2 t3)
 | _ => error())
Least Upper Bound

let lub t1 t2 =
 match t1, t2 with
 | True_t (Bool_t|False_t) -> Bool_t
 | False_t,(Bool_t|True_t) -> Bool_t
 | Zero_t, (Neg_t|Pos_t|Int_t) -> Int_t
 | Neg_t, (Zero_t|Pos_t|Int_t) -> Int_t
 | Pos_t, (Zero_t|Neg_t|Int_t) -> Int_t
 | _,_ -> if (t1 = t2) then t1 else Any_t
Refining Integers into Zero, Neg, Pos

let rec tc (env:var->tipe) (e:exp) =
 ...
 | Int 0 -> Zero_t
 | Int i -> if i < 0 then Neg_t else Pos_t
 | Plus(e1,e2) ->
 (match tc env e1, tc env e2 with
 | Zero_t,t2 -> t2
 | t1,Zero_t -> t1
 | Pos_t,Pos_t -> Pos_t
 | Neg_t,Neg_t -> Neg_t
 | (Neg_t|Pos_t|Int_t),Int_t -> Int_t
 | Int_t,(Neg_t|Pos_t) -> Int_t
 | _,_ -> error())
Subtyping as Subsets

• If we think of types as sets of values, then a subtype corresponds to a subset and lub corresponds to union.

• e.g., Pos_t <= Int_t since every positive integer is also an integer.

• For conditionals, we want to find the least type of the types the two branches might return.
 – Adding "Any_t" ensures there is a type.
 – (Not always a good thing to have…)
 – Need NonPos_t, NonNeg_t and NonZero_t to get least upper bounds.
Extending Subtyping:

• What about pairs?
 – \((T_1 \times T_2) \leq (U_1 \times U_2)\) when
 \(T_1 \leq U_1\) and \(T_2 \leq U_2\)
 – But only when immutable!
 – Why?

• What about functions?
 – \((T_1 \rightarrow T_2) \leq (U_1 \rightarrow U_2)\) when
 \(U_1 \leq T_1\) and \(T_2 \leq U_2\).
 – Why?
Problems with Mutability:

```ocaml
let f (p : ref (Pos_t)) =
  let q : ref (Int_t) = p
  in
    q := 0;
    42 div (!p)
```
Another Way to See it:

• Any shared, mutable data structure can be thought of as an immutable record of pairs of methods (with hidden state):
 \- p : ref(Pos_t) =>
 \- p : \{ get: unit -> Pos_t, set: Pos_t -> unit \}

• When is ref(T) <= ref(U)? When:
 \- unit->T <= unit->U or T <= U and
 \- T->unit <= U->unit or U <= T.
 \- Thus, only when T = U!
N-Tuples and Simple Records:

• \((T_1 * ... * T_n * T_{n+1}) \leq (U_1 * ... * U_n)\) when \(T_i \leq U_i\).
 – Why?

• Non-Permutable Records:
 \(\{l_1:T_1, ..., l_n:T_n, l_{n+1}:T_{n+1}\} \leq \{l_1:U_1, ..., l_n:U_n\}\) when \(T_i \leq U_i\).
 – Assumes \(\{x:\text{int}, y:\text{int}\} \neq \{y:\text{int}, x:\text{int}\}\)
 – That is, the position of a label is independent of the rest of the labels in the type.
 – In SML (or for Java interfaces) this is not the case.
SML-Style Records:

- Compiler sorts by label.
- So if you write \{y:int,z:int,x:int\}, the compiler immediately rewrites it to \{x:int,y:int,z:int\}.
- So you need to know all of the labels to determine their positions.
- Consider: \{y:int,z:int,x:int\} \leq \{y:int,z:int\} but \{y,z,x\} == \{x,y,z\} \not< \{y,z\}
If you want both:

- If you want permutability & dropping, you need to either copy or use a dictionary:

\[p = \{x=42,y=55,z=66\} : \{x:\text{int},y:\text{int},z:\text{int}\} \]

\[q : \{y:\text{int},z:\text{int}\} = p \]
Type Inference

let rec tc (env:(var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 (let t = guess()
 in
 Fn_t(t,tc (extend env x t) e))
 | App(e1,e2) ->
 (match tc env e1, tc env e2 with
 | Fn_t(t1,t2), t ->
 if t1 != t then error() else t2
 | _,_ => error())
Extend Types with Guesses:

type tipe =
 Int_t
| Fn_t of tipe*tipe
| Guess of (tipe option ref)

fun guess() = Guess(ref None)
Must Handle Guesses

\[
\begin{align*}
| \text{Lambda}(x,e) & \rightarrow & \\
& \quad \text{let } t = \text{guess()} \\
& \quad \text{in} \\
& \quad \text{Fn}_t(t, \text{tc (extend env } x \ t) \ e) \\
| \text{App}(e1,e2) & \rightarrow & \\
& \quad (\text{match tc env } e1, \text{ tc env } e2 \text{ with} \\
& \quad \quad | \text{Fn}_t(t1,t2), t \rightarrow \\\n& \quad \quad \quad \quad \text{if } t1 \neq t \text{ then } \text{error()} \text{ else } t2 \\
& \quad \quad | \text{Guess (r as ref None), t} \rightarrow \\\n& \quad \quad \quad \text{let } t2 = \text{guess()} \text{ in} \\
& \quad \quad \quad \quad r := \text{Some(Fn}_t(t,t2)); t2 \\
& \quad \quad | \text{Guess (ref Some (Fn}_t(t1,t2))), t \rightarrow \\\n& \quad \quad \quad \text{if } t1 \neq t \text{ then } \text{error()} \text{ else } t2
\end{align*}
\]
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess()
 in
 Fn_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in
 if unify t1 (Fn_t(t2,t)) then t else error()
Where:

let rec unify (t1:tipe) (t2:tipe):bool =
 if (t1 = t2) then true else
 match t1,t2 with
 | Guess(ref(Some t1')) , _ -> unify t1' t2
 | Guess(r as (ref None)) , t2 ->
 (r := t2; true)
 | _ , Guess(_) -> unify t2 t1
 | Int_t , Int_t -> true
 | Fn_t(t1a,t1b) , Fn_t(t2a,t2b) ->
 unify t1a t2a && unify t1b t2b
Subtlety

• Consider: fun x => x x
• We guess g1 for x
 – We see App(x, x)
 – recursive calls say we have t1=g1 and t2=g1.
 – We guess g2 for the result.
 – And unify(g1,Fn_t(g1,g2))
 – So we set g1 := Some(Fn_t(g1,g2))
 – What happens if we print the type?
Fixes:

- Do an "occurs" check in unify:

```ocaml
let rec unify (t1:tipe) )t2:tipe):bool =
  if (t1 = t2) then true else
  match (t1,t2) with
  (Guess(r as ref None),_) =>
    if occurs r t2 then error() 
    else (r := Some t2; true)
  | ... 
```

- Alternatively, be careful not to loop anywhere.
 - In particular, when comparing t1 = t2, we must code up a graph equality, not a tree equality.
Polymorphism:

- Consider: `fun x => x`
- We guess `g1` for `x`
 - We see `x`.
 - So `g1` is the result.
 - We return `Fn_t(g1,g1)`
 - `g1` is unconstrained.
 - We could constraint it to `Int_t` or `Fn_t(Int_t,Int_t)` or any type.
 - In fact, we could re-use this code at any type.
ML Expressions:

type exp =
 Var of var
| Int of int
| Lambda of var * exp
| App of exp*exp
| Let of var * exp * exp
let rec tc (env: (var*tipe) list) (e:exp) =
 match e with
 | Var x -> lookup env x
 | Lambda(x,e) ->
 let t = guess() in
 Fn_t(t,tc (extend env x t) e) end
 | App(e1,e2) ->
 let (t1,t2) = (tc env e1, tc env e2) in
 let t = guess()
 in if unify t1 (Fn_t(t2,t)) then t
 else error()
 | Let(x,e1,e2) =>
 (tc env e1; tc env (substitute(e1,x,e2))

Example:

```
let id = fn x => x
in
  (id 3, id "fred")
end

====>

((fun x => x) 3, (fun x => x) "fred")
```
Better Approach (DM):

type tvar = string

type tipe =
 Int_t
| Fn_t of tipe*tipe
| Guess of (tipe option ref)
| Var_t of tvar

type tipe_scheme =
 Forall of (tvar list * tipe)
let rec tc (env:(var*tipe_scheme) list) (e:exp) =
 match e with
 | Var x -> instantiate(lookup env x)
 | Int _ -> Int_t
 | Lambda(x,e) ->
 let t = guess() in
 Fn_t(t,tc (extend env x (Forall([],t)) e)
 | App(e1,e2) ->
 let (t1,t2,t) = (tc env e1,tc env e2,guess())
 in if unify(t1,Fn_t(t2,t)) then t else error()
 | Let(x,e1,e2) ->
 let s = generalize(env,tc env e1) in
 tc (extend env x s) e2 end
let instantiate(s:tipe_scheme):tipe =
 let val Forall(vs,t) = s
 val vs_and_ts : (var*tipe) list =
 map (fn a => (a,guess())) vs
 in
 substitute(vs_and_ts,t)
 end
Generalization:

```ocaml
let generalize(e:env,t:tipe):tipe_scheme =
    let t_gs = guesses_of_tipe t in
    let env_list_gs =
        map (fun (x,s) -> guesses_of s) e in
    let env_gs = fold1 union empty env_list_gs in
    let diff = minus t_gs env_gs in
    let gs_vs =
        map (fun g -> (g,freshvar())) diff in
    let tc = subst_guess(gs_vs,t) in

        Forall(map snd gs_vs, tc)
    end
```
Explanation:

- Each let-bound value is generalized.
 - e.g., g->g generalizes to Forall a.a -> a.
- Each use of a let-bound variable is instantiated with fresh guesses:
 - e.g., if f:Forall a.a->a, then in f e, then the type we assign to f is g->g for some fresh guess g.
- But we can't generalize guesses that might later become constrained.
 - Sufficient to filter out guesses that occur elsewhere in the environment.
 - e.g., if the expression has type g1->g2 and y:g1, then we might later use y in a context that demands it has type int, such as y+1.
Effects:

• The algorithm given is equivalent to substituting the let-bound expression.
• But in ML, we evaluate CBV, not CBN!

```
let id = (print "Hello"; fn x => x)
in
  (id 42, id "fred")
```

!=

```
((print "Hello"; fn x=>x) 42,
  (print "Hello"; fn x=>x) "fred")
```
Problem:

```ocaml
let r = ref (fn x=>x)
     (* r : Forall 'a.ref('a->'a) *)
in
     r := (fn x => x+1); (* r:ref(int->int) *)
     (!r)("fred") (* r:ref(string->string) *)
```
"Value Restriction"

• When is \texttt{let x=e1 in e2} equivalent to \texttt{subst(e1,x,e2)}?
• If e1 has no side effects.
 – reads/writes/allocation of refs/arrays.
 – input, output.
 – non-termination.
• So only generalize when e1 is a \textit{value}.
 – or something easy to prove equivalent to a value.
let rec tc (env:var->tipe_scheme) (e:exp) =
 match e with
 ...
 | Let(x,e1,e2) ->
 let s =
 if may_have_effects e1 then
 Forall([],tc env e1)
 else generalize(env,tc env e1)
 in
 tc (extend env x s) e2
 end
Checking Effects:

```plaintext
let rec may_have_effects e =
    match e with
    | Int _ -> false
    | Var _ -> false
    | Lambda _ -> false
    | Pair(e1,e2) ->
        may_have_effects e1||may_have_effects e2
    | App _ -> true
```