
A little bit on Class-Based OO
Languages

CS4410: Spring 2013

Java Objects
Representing Objects

– 1st field is a pointer to a vtable
•  vtable: virtual method table.
•  each method is a procedure that takes an extra

(implicit) argument corresponding to self.
– Remaining fields are instance variables.

In Pictures:

address of method 1

address of method 2

…

address of method n

Shared Vtable for Class
vtable pointer

instance variable 1

instance variable 2

…

instance variable m

vtable pointer
instance variable 1
instance variable 2
…
instance variable m

Simple Inheritance
class Pt2d extends Object {
 int x;
 int y;
 void movex(int i) { x = x + i; }
 void movey(int i) { y = y + i; }
}

class Pt3d extends Pt2d {
 int z;
 void movez(int i) { z = z + i; }
}

Same as:
class Pt2d {
 int x;
 int y;
 void movex(int i) { x = x + i; }
 void movey(int i) { y = y + i; }
}

class Pt3d {
 int x;
 int y;
 int z;
 void movex(int i) { x = x + i; }
 void movey(int i) { y = y + i; }
 void movez(int i) { z = z + i; }
}

At Run-Time:

address of movex

address of movey

Pt2d Vtable
vtable pointer

x

y

vtable pointer
x
y
z

address of movex

address of movey

address of movez

Pt2d Object

Pt3d Object Pt3d Vtable

Jish Abstract Syntax
type tipe = Int_t|Bool_t |Class_t of class_name
type exp = Var of var | Int of int | Nil |
 Assign of var * exp | New of class_name |
 Invoke of exp * var * (exp list) | ...
type stmt = Exp of exp | Seq of stmt*stmt | ...
type method =

Method of {mname:var, mret_tipe:tipe option,
 margs:var*tipe list, mbody:stmt}

type class =
 Class of {cname:class_name, csuper:class_name,
 cinstance_vars:var*tipe list,
 cmethods:method list}

Compiling to Cish
•  For every method m(x1,…,xn), generate a Cish

function m(self,vtables,x1,…,xn).
•  At startup, for every class C, create a record of

C's methods (the vtable.)
•  Collect all of the vtables into a big record.

–  we will pass this data structure to each method as
the vtables argument.

–  wouldn't need this if we had a global variable in Cish
for storing the vtables.

•  Create a Main object and invoke its main()
method.

Operations:
•  new C

–  create a record big enough to hold a C object
–  initialize the object's vtable pointer using vtables.
–  initialize instance variables with default values

•  0 is default for int, false for bool, nil for classes.
–  return pointer to object as result

•  e.m(e1,…,en)
–  evaluate e to an object.
–  extract a pointer to the m method from e's vtable
–  invoke m, passing to it e,vtables,e1,…,en

•  e is passed as self.
•  vtables is threaded through to every method.

–  in a real system, must check that e isn't nil!

Operations Continued:
•  x, x := e

–  read or write a variable.
–  the variable could be a local or an instance variable.
–  if it's an instance variable, we must use the "self"

pointer to access the value.
–  Real Java provides e.x. Do we need this?

•  (C)e -- type casts
–  if e has type D and D ≤ C, succeeds.
–  if e has type D and C ≤ D, performs a run-time check to make

sure the object is actually (at least) a C.
–  if e has type D, and C is unrelated to D, then generates a

compile-time error.

Subtleties in Type-Checking:
•  Every object has a run-time type.

– essentially, its vtable
•  The type-checker tracks a static type.

– some super-type of the object.
– NB: Java confuses super-types and super-

classes.
•  In reality, if e is of type C, then e could be

nil or a C object.
– Java "C" = ML "C option"

Subtyping vs. Inheritance
•  Inheritance is a way to assemble classes
•  Simple inheritance:

– D extends C implies D ≤ C
– a read of instance variable x defined in C?

•  okay because D has it too.
– an invocation of method m defined in C?

•  okay because D has it too.
– m : (C self,T1,…,Tn) → T

•  What can m do to self?
•  Read C instance variables, invoke C methods.

Overriding:
class List {
 int hd; List tl;
 void append(List y) {
 if (tl == Nil) tl := y;
 else tl.append(y);
 }
}
class DList extends List {
 DList prev;
 void append(DList y) {
 if (tl == Nil) {
 tl := y;

 if (y != Nil) y.prev := self;
 } else {
 tl.append(y);
 }
}

Java won't
let you say
this…

Best you can do:
class List {
 int hd; List tl;
 void append(List y) {
 if (tl == Nil) tl := y;
 else tl.append(y);
 }
}
class DList extends List {
 DList prev;
 void append(List y) {
 if (tl == Nil) {
 tl := y;

 if (y != Nil) ((DList)y).prev := self;
 } else {
 tl.append(y);
 }
}

Run-time type-check

What We Wish we Had…
•  Don't just "copy" when inheriting:

– Also replace super-class name with sub-class
name.

– That is, we need a "self" type as much as a
self value.

– But this will not, in general, give you that the
sub-class is a sub-type of the super-class.

– why?

Run-time Type Checks:
•  Given an object x, how do we (quickly)

determine if it has a run-time type D that
is a sub-class of C?

•  option 1: Have a link to the parent's vtable
in the child's vtable.
– crawl up the chain until you reach the parent

(or Object).
– disadvantage?

•  other options?

Displays:
address of method 1
address of method 2

…

address of method n

num ancestors

parent @ level 0

parent @ level 1

…

parent @ level m

Just have a pointer to all
ancestors.

To check if C is a super-class:

•  statically calculate depth of C
•  check that num ancestors is at
 least that depth.
•  check that this ancestor is C.

Interfaces
•  Consider an interface
•  I = { void foo(); void bar(); }
•  Any object of a class C that implements

methods named foo and bar can be treated as
if it has interface type I.

•  Can we use C's vtable?
–  no.
–  In general, C may have defined methods before,

between, or after foo and bar or may have defined
them in a different order.

•  So to support interfaces, we need a level of
indirection…

Interfaces:
address of method 1
address of method 2

…

address of method n

Shared Vtable for Interface

vtable pointer
instance variable 1

instance variable 2

…

instance variable m

Actual Object

vtable pointer
actual object

Wrapper Object

