A little bit on Class-Based OO
Languages

CS4410: Spring 2013

Java Objects

Representing Objects

— 1st field is a pointer to a vtable
« vtable: virtual method table.

» each method is a procedure that takes an extra
(implicit) argument corresponding to self.

— Remaining fields are instance variables.

In Pictures:
\ Shared Vtable for Class

vtable pointer >

address of method 1

instance variable 1

address of method 2
instance variable 2

address of method n

instance variable m

\

vtable pointer

instance variable 1

instance variable 2

instance variable m

Simple Inheritance

class Pt2d extends Object {
int x;
int y;

void movex(int 1) { x = x + 1;

void movey(int i) { y =y + 1i;
}
class Pt3d extends Pt2d {

int z;

void movez(int 1) { z =z + 1;

}

Same as:

class Pt2d {
int x;
int y;
void movex (int
void movey (int

class Pt3d {
int x;
int y;
int z;
void movex (int
void movey (int
void movez (int

]

<

"

<

<+

<+

At Run-Time:

Pt2d Object

Pt2d Vtable

\ vtable pointer

X

y

address of movex

address of movey

\ Pt3d Object

vtable pointer

X

y

Z

Pt3d Vtable

address of movex

address of movey

address of movez

Jish Abstract Syntax

type tipe = Int t|Bool t |Class t of class name

type exp = Var of var | Int of int | Nil |
Assign of var * exp | New of class name |
Invoke of exp * var * (exp list) |

type stmt = Exp of exp | Seq of stmt*stmt |

type method =
Method of {mname:var, mret tipe:tipe option,

margs:var*tipe list, mbody:stmt}
type class =
Class of {cname:class name, csuper:class name,
cinstance vars:var*tipe list,
cmethods:method list}

Compiling to Cish

For every method m(x,,...,x,), generate a Cish
function m(self,vtables,x,,...,x.).

At startup, for every class C, create a record of
C's methods (the vtable.)

Collect all of the vtables into a big record.

— we will pass this data structure to each method as
the vtables argument.

— wouldn't need this if we had a global variable in Cish
for storing the vtables.

Create a Main object and invoke its main()
method.

Operations:

 new C
— create a record big enough to hold a C object
— Initialize the object's vtable pointer using vtables.

— initialize instance variables with default values
* 0 is default for int, false for bool, nil for classes.

— return pointer to object as result
¢ e.m(ey,...,e,)
— evaluate e to an object.
— extract a pointer to the m method from e's vtable
— invoke m, passing to it e,vtables,e,,...,e,

* € is passed as self.
 vtables is threaded through to every method.

— In a real system, must check that e isn't nil!

Operations Continued:

* X, X:=e
— read or write a variable.
— the variable could be a local or an instance variable.

— if it's an instance variable, we must use the "self"
pointer to access the value.

— Real Java provides e.x. Do we need this?
* (C)e --type casts

— if e has type D and D = C, succeeds.

— if e has type D and C < D, performs a run-time check to make
sure the object is actually (at least) a C.

— if e has type D, and C is unrelated to D, then generates a
compile-time error.

Subtleties in Type-Checking:

* Every object has a run-time type.
— essentially, its vtable

* The type-checker tracks a stafic type.
— some super-type of the object.

— NB: Java confuses super-types and super-
classes.
 In reality, if e is of type C, then e could be
nil or a C object.

—Java "C" = ML "C option"

Subtyping vs. Inheritance

* Inheritance is a way to assemble classes

« Simple inheritance:
— D extends C implies D < C
— a read of instance variable x defined in C?
« okay because D has it too.

— an invocation of method m defined in C?

« okay because D has it too.
—m:(CselfT,...T.)—=T

* \What can m do to self?

» Read C instance variables, invoke C methods.

Overriding:
class List {
int hd; List tl1;
void append(List y) {

if (tl == Nil) tl :=y; Java won't
else tl.append(y) let you say
} this. ..

}

class DList extends List
DList prev;
void append (DList %) {
if (tl == Nil) {
tl = y;
if (y '= Nil) y.prev := self;
} else {
tl.append(y) ;

Best you can do:

class List {
int hd; List tl1;
void append(List y) {
if (tl == Nil) tl1 := vy;
else tl.append(y)
} Run-time type-check
}
class DList extends List {
DList prev;
void append(List y) {
if (tl == Nil) {
tl = y;
if (y '= Nil) ((DList)y) .prev :
} else {
tl.append(y) ;

self;

What We Wish we Had...

* Don't just "copy" when inheriting:
— Also replace super-class name with sub-class
name.

— That is, we need a "self" type as much as a
self value.

— But this will not, in general, give you that the
sub-class is a sub-type of the super-class.

— why?

Run-time Type Checks:

» Given an object x, how do we (quickly)
determine if it has a run-time type D that
IS a sub-class of C?

* option 1: Have a link to the parent's vtable
In the child's vtable.

— crawl up the chain until you reach the parent
(or Object).
— disadvantage?

» other options?

Displays:

address of method 1

address of method 2

address of method n

num ancestors

parent @ level O

parent @ level 1

parent @ level m

Just have a pointer to all
ancestors.

To check if C 1s a super-class:
» statically calculate depth of C
e check that num ancestors 1s at
least that depth.
e check that this ancestor 1s C.

Interfaces

 Consider an interface
I = { void foo(); wvoid bar(); }

* Any object of a class C that implements
methods named foo and bar can be treated as
if it has interface type I.

e Can we use C's vtable?
— NO.

— In general, C may have defined methods before,
between, or after foo and bar or may have defined
them in a different order.

« So to support interfaces, we need a level of
indirection...

Interfaces:

Shared Vtable for Interface

Wrapper Object address of method 1

\ address of method 2

vtable pointer

actual object

address of method n

Actual Object

vtable pointer

instance variable 1

instance variable 2

instance variable m

