Garbage Collection

CS4410: Spring 2013



Modern Languages

* Represent all records (tuples, objects, etc.)
using pointers.

— Makes it possible to support polymorphism.

— e.g., ML doesn't care whether we pass an integer,
two-tuple, or record to the identity function: they are
all represented with 1 word.

— Price paid: lots of loads/stores...

« By default, allocate records on the heap.
— Programmer doesn't have to worry about lifetimes.

— Compiler may determine that it's safe to allocate a
record on the stack instead.

— Uses a garbage collector to safely reclaim data.

— Because pointers are abstract, has the freedom to re-
arrange the data in the heap to support compaction.



Allocation in SML/NJ

* Reserve two reqgisters:
— allocation pointer (like stack pointer)
— limit pointer

* To allocate a record of size n:

— checks that limit-alloc > n. If not, invokes garbage
collector.

— Adds n+1 to the alloc pointer, returns old value of
alloc pointer as result.

— Extra word holds meta-data (e.g., size.)

— Actually, amortizes the limit check across a bunch of
allocations (just as we amortize stack pointer
adjustment.)

— Result: 3-5 instructions to allocate a record.



Garbage Collection:

« Starting from stack, registers, & globals (roots),
determine which objects in the heap are
reachable following pointers.

* Reclaim any object that isn't reachable.

* Requires being able to distinguish pointer
values from other values (e.g., ints).

— SML/NJ uses the low bit:
1 it's a scalar, O it's a pointer.

— In Java, we use put the tag bits in the meta-data.

— For BDW collector, we use heuristics:
(e.g., the value doesn't point into an allocated object.)



Mark/Sweep Traversal:

« Reserve a mark-bit for each object.
« Starting from roots, mark all accessible objects.

« Stick accessible objects into a queue or stack.
— queue: breadth-first traversal
— stack: depth-first traversal

Loop until queue/stack is empty:
— remove marked object (say x).

— if x points to an (unmarked) object y, then mark y and
put it in the queue.

Run through all objects:
— If they haven't been marked, put them on the free list.
— If they have been marked, clear the mark bit.



Copying Collection:

» Split data segment into two pieces.
 Allocate in 1st piece until it fills up.

* Copy the reachable data into the 2nd
area, compressing out the holes
corresponding to garbage objects.

JORERRYS




Algorithm: Queue-Based

* |nitialize front/rear to beginning of to-space.
— A trick for representing the queue using the to-space.

* Enqueue the items pointed to by roots.
— Copy the objects into to-space (bump rear pointer).
— Place a forwarding pointer in the old copy that points
to the new copy.
 While queue is not empty:
— Dequeue a word (i.e., bump front pointer).

— If the word is a pointer to an unforwarded object, then
enqgueue the object and set its forwarding pointer.

— If the word is a pointer to a forwarded object,
overwrite the word with the address of the new copy.



Cheney Queue

Root(s)

FI‘OIIl SM

—q—>

T

To Space

|

Front
Rear



Cheney Queue

Root(s)
From Space
”
d

+

d

VA Dl T
yﬁé/

P

Front Rear



Cheney Queue

From Space

Root(s)

A

A

%
/

pom

—

=

|
|

Front

T

Rear




Cheney Queue

From Space

Root(s)

7

it

e —




Cheney Queue

From Space

A

Root(s)

/|
7

it

¥\

T

e |

__—

/

Rear




Cheney Queue

Root(s)

From Space

7

it

;/Zsp{ ?/V // g




Cheney Queue

Root(s)

From Space

7

it

%/V “ e




Cheney Queue

Root(s)

From Space

7

it

%/V “ e

i

e

Front



Cheney Queue

Root(s)

From Space

ToSpace

e

Front



Pros and Cons:

* Pros:
— Fast, bump-pointer allocation.

— Cost of GC is proportional to live data (not all
of memory).

— Compaction happens for free.

e Cons:

— Long pauses.
— Memory cut in half.
— Lots of memory traffic.



Reality:

Techniques such as generational or incremental
collection can greatly reduce latency.

— A few millisecond pause times.

Large objects (e.g., arrays) can be copied in a
"virtual" fashion without doing a physical copy.
Some systems use a mix of copying collection

(young data) and mark/sweep (old data) with
support for compaction.

A real challenge is scaling this to server-scale
systems with terabytes of memory...

Interactions with OS matter a lot: cheaper to do
GC than it is to start paging...



Conservative Collectors:

« Work without help from the compiler.
— e.g., legacy C/C++ code.
— e.g., your compiler :-)

« Cannot accurately determine which values are
pointers.

— But can rule out some values (e.g., if they don't point
into the data segment.)

— So they must conservatively treat anything that looks
like a pointer as such.

— Two bad things result: leaks, can't move.
— Further problems if pointers are "hidden".



The BDW Collector

« Based on mark/sweep.
— performs sweep lazily

* Organizes free lists as we saw earlier.
— different lists for different sized objects.
— relatively fast (single-threaded) allocation.
* Most of the cleverness is in finding roots:
— global variables, stack, registers, etc.

* And determining values aren't pointers:
— blacklisting, etc.



