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Modern Languages 
•  Represent all records (tuples, objects, etc.) 

using pointers. 
–  Makes it possible to support polymorphism. 
–  e.g., ML doesn't care whether we pass an integer, 

two-tuple, or record to the identity function:  they are 
all represented with 1 word. 

–  Price paid:  lots of loads/stores… 
•  By default, allocate records on the heap. 

–  Programmer doesn't have to worry about lifetimes. 
–  Compiler may determine that it's safe to allocate a 

record on the stack instead. 
–  Uses a garbage collector to safely reclaim data. 
–  Because pointers are abstract, has the freedom to re-

arrange the data in the heap to support compaction. 



Allocation in SML/NJ 
•  Reserve two registers:   

–  allocation pointer  (like stack pointer) 
–  limit pointer 

•  To allocate a record of size n: 
–  checks that limit-alloc > n.  If not, invokes garbage 

collector. 
–  Adds n+1 to the alloc pointer, returns old value of 

alloc pointer as result. 
–  Extra word holds meta-data (e.g., size.) 
–  Actually, amortizes the limit check across a bunch of 

allocations (just as we amortize stack pointer 
adjustment.) 

–  Result:  3-5 instructions to allocate a record. 



Garbage Collection: 
•  Starting from stack, registers, & globals (roots), 

determine which objects in the heap are 
reachable following pointers. 

•  Reclaim any object that isn't reachable. 
•  Requires being able to distinguish pointer 

values from other values (e.g., ints). 
–  SML/NJ uses the low bit:   

1 it's a scalar, 0 it's a pointer. 
–  In Java, we use put the tag bits in the meta-data. 
–  For BDW collector, we use heuristics: 

(e.g., the value doesn't point into an allocated object.) 



Mark/Sweep Traversal: 
•  Reserve a mark-bit for each object. 
•  Starting from roots, mark all accessible objects.   
•  Stick accessible objects into a queue or stack. 

–  queue:  breadth-first traversal 
–  stack: depth-first traversal 

•  Loop until queue/stack is empty: 
–  remove marked object (say x). 
–  if x points to an (unmarked) object y, then mark y and 

put it in the queue. 
•  Run through all objects:   

–  If they haven't been marked, put them on the free list.  
–  If they have been marked, clear the mark bit. 



Copying Collection: 
•  Split data segment into two pieces. 
•  Allocate in 1st piece until it fills up. 
•  Copy the reachable data into the 2nd 

area, compressing out the holes 
corresponding to garbage objects. 



Algorithm:  Queue-Based 
•  Initialize front/rear to beginning of to-space. 

–  A trick for representing the queue using the to-space. 
•  Enqueue the items pointed to by roots. 

–  Copy the objects into to-space (bump rear pointer). 
–  Place a forwarding pointer in the old copy that points 

to the new copy. 
•  While queue is not empty: 

–  Dequeue a word (i.e., bump front pointer). 
–  If the word is a pointer to an unforwarded object, then 

enqueue the object and set its forwarding pointer. 
–  If the word is a pointer to a forwarded object, 

overwrite the word with the address of the new copy. 
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Pros and Cons: 
•  Pros: 

– Fast, bump-pointer allocation. 
– Cost of GC is proportional to live data (not all 

of memory). 
– Compaction happens for free. 

•  Cons: 
– Long pauses. 
– Memory cut in half. 
– Lots of memory traffic. 



Reality: 
•  Techniques such as generational or incremental 

collection can greatly reduce latency. 
–  A few millisecond pause times. 

•  Large objects (e.g., arrays) can be copied in a 
"virtual" fashion without doing a physical copy. 

•  Some systems use a mix of copying collection 
(young data) and mark/sweep (old data) with 
support for compaction. 

•  A real challenge is scaling this to server-scale 
systems with terabytes of memory… 

•  Interactions with OS matter a lot:  cheaper to do 
GC than it is to start paging… 



Conservative Collectors: 
•  Work without help from the compiler. 

–  e.g., legacy C/C++ code. 
–  e.g., your compiler :-) 

•  Cannot accurately determine which values are 
pointers. 
–  But can rule out some values (e.g., if they don't point 

into the data segment.) 
–  So they must conservatively treat anything that looks 

like a pointer as such. 
–  Two bad things result:  leaks, can't move. 
–  Further problems if pointers are "hidden". 



The BDW Collector 
•  Based on mark/sweep. 

– performs sweep lazily 
•  Organizes free lists as we saw earlier. 

– different lists for different sized objects. 
–  relatively fast (single-threaded) allocation. 

•  Most of the cleverness is in finding roots: 
– global variables, stack, registers, etc. 

•  And determining values aren't pointers: 
– blacklisting, etc. 


