
Data & Memory Management

CS4410: Spring 2013

Records in C:
struct Point { int x; int y; };

struct Rect { struct Point ll,lr,ul,ur; };

struct Rect mkSquare(struct Point ll, int elen) {
 struct Square res;
 res.lr = res.ul = res.ur = res.ll = ll;
 res.lr.x += elen;
 res.ur.x += elen;
 res.ur.y += elen;
 res.ul.y += elen;
}

Representation:
struct Point { int x; int y; };

•  Two contiguous words. Use base address.

•  Alternatively, dedicate two registers?

struct Rect { struct Point ll,lr,ul,ur; };

•  8 contiguous words.

 x y

 ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.y

Member Access
i = rect.ul.y
•  Assuming $t holds address of p:
•  Calculate offsets of path relative to base:

–  .ul = sizeof(struct Point)+sizeof(struct
Point), .y = sizeof(int)

– So lw $t2, 36($t)

Copy-in/Copy-out
When we do an assignment as in:

struct Rect mkSquare(struct Point ll, int elen) {
 struct Rect res;
 res.lr = ll;

...

then we copy all of the elements out of the source and put
them in the target. Same as doing word-level opn's:

struct Rect mkSquare(struct Point ll, int elen) {
 struct Rect res;
 res.lr.x = ll.x;
 res.lr.y = ll.x;
 ...

For really large copies, we use something like memcpy.

Procedure Calls:
•  Similarly, when we call a procedure, we

copy arguments in, and copy results out.
– Caller sets aside extra space in its frame to

store results that are bigger than 2-words.
– We do the same with scalar values such as

integers or doubles.
•  Sometimes, this is termed "call-by-value".

– This is bad terminology.
– Copy-in/copy-out is more accurate.

•  Problem: expensive for large records…

Arrays
void foo() { void foo() {
 char buf[27]; char buf[27];

 buf[0] = 'a'; *(buf) = 'a';
 buf[1] = 'b'; *(buf+1) = 'b';

 buf[25] = 'z'; *(buf+25) = 'z';
 buf[26] = 0; *(buf+26) = 0;
} }

Space is allocated on the stack for buf.
(note, without alloca, need to know size of buf at

compile time…)
buf[i] is really just base of array + i * elt_size

Multi-Dimensional Arrays
•  In C int M[4][3] yields an array with 4

rows and 3 columns.
•  Laid out in row-major order:

M[0][0], M[0][1], M[0][2], M[1][0], M[1][1],
…

•  M[i][j] compiles to?
•  In Fortran, arrays are laid out in column

major order.
•  In ML, there are no multi-dimensional

arrays -- (int array) array.

Strings
•  A string constant "foo" is represented as

global data:
 _string42: 102 111 111 0
•  It's usually placed in the text segment so

it's read only.
– allows all copies of the same string to be

shared.
•  Rookie mistake:

char *p = "foo";
p[0] = 'b';

Pass-by-Reference:
void mkSquare(struct Point *ll, int elen,
 struct Rect *res) {
 res->lr = res->ul = res->ur = res->ll = *ll;
 res->lr.x += elen;
 res->ur.x += elen;
 res->ur.y += elen;
 res->ul.y += elen;
}

void foo() {
 struct Point origin = {0,0};
 struct Rect unit_sq;
 mkSquare(&origin, 1, &unit_sq);
}
The caller passes in the address of the point and

the address of the result (1 word each).

Picture: origin.y
origin.x
unit_sq.ur.y
unit_sq.ur.x
unit_sq.ul.y
unit_sq.ul.x
unit_sq.lr.y
unit_sq.lr.x
unit_sq.ll.y
unit_sq.ll.x
…
ll
elen
res
…

Foo's
frame

mkSquare's
frame

What's wrong with this?
struct Rect * mkSquare(struct Point *ll, int elen) {
 struct Rect res;
 res.lr = res.ul = res.ur = res.ll = *ll;
 res.lr.x += elen;
 res.ur.x += elen;
 res.ur.y += elen;
 res.ul.y += elen;
 return &res;
}

Picture:

ll
elen
res.ur.y
res.ur.x
res.ul.y
res.ul.x
res.lr.y
res.lr.x
res.ll.y
res.ll.x
…

mkSquare's
frame

 &res

Picture:

ll
elen
res.ur.y
res.ur.x
res.ul.y
res.ul.x
res.lr.y
res.lr.x
res.ll.y
res.ll.x
…

 &res

Picture:

ll
elen
res.ur.y
res.ur.x
res.ul.y
res.ul.x
res.lr.y
res.lr.x
res.ll.y
res.ll.x
…

 &res

next called
proc's frame

Stack vs. Heap Allocation
•  We can only allocate an object on the

stack when it is no longer used after the
procedure returns.
–  NB: it's possible to exploit bugs like this in C code to

hijack the return address. Then an attacker can gain
control of the program…

•  For other objects, we must use the heap
(i.e., malloc).
–  And of course, we must remember to free the object

when it is no longer used! Also a big source of bugs
in C/C++ code.

–  Java, ML, C#, etc. use a garbage collector instead.

Program Fixed:
struct Rect * mkSquare(struct Point *ll, int elen) {
 struct Rect *res = malloc(sizeof(struct Rect));
 res->lr = res->ul = res->ur = res->ll = *ll;
 (*res).lr.x += elen;
 res->ur.x += elen;
 res->ur.y += elen;
 (*res).ul.y += elen;
 return res;
}

How do malloc/free work?
•  Upon malloc(n):

– Find an unused space of at least size n.
–  (Need to mark space as in use.)
– Return address of that space.

•  Upon free(p):
– Mark space pointed to by p as free.
–  (Need to keep track of how big object is.)

One Option: Free List
Keep a linked list of contiguous chunks of

free memory.
–  Each component of list has two words of meta-data.
–  1 word points to the next element in the free list.
–  The other word says how big the object is.

next size next size

Malloc and Free
•  To malloc, run down the list until you find

a spot that's big enough to satisfy the
request.
–  Take left-overs and put them back in the free-list.
–  First-fit vs. Best-fit?

•  To free, put the object back in the list.
–  Perhaps keep chunks sorted so that adjacent chunks

can be coalesced.
•  Pros and Cons?
•  What happens if you free something twice or

free the middle of an object?

Exponential Scaling:
•  Keep an array of free lists:

– Each list has chunks of the same size.
– FreeList[i] holds chunks of size 2i.

– Round requests up to nearest power of two.
– When FreeList[i] is empty, take a block from

FreeList[i+1] and divide it in half, putting both
chunks in FreeList[i].

– Alternatively, run through FreeList[i-1] and
merge contiguous blocks.

•  Variations? Issues?

Modern Languages
•  Represent all records (tuples, objects, etc.)

using pointers.
–  Makes it possible to support polymorphism.
–  e.g., ML doesn't care whether we pass an integer,

two-tuple, or record to the identity function: they are
all represented with 1 word.

–  Price paid: lots of loads/stores…
•  By default, allocate records on the heap.

–  Programmer doesn't have to worry about lifetimes.
–  Compiler may determine that it's safe to allocate a

record on the stack instead.
–  Uses a garbage collector to safely reclaim data.
–  Because pointers are abstract, has the freedom to re-

arrange the data in the heap to support compaction.

Allocation in SML/NJ
•  Reserve two registers:

–  allocation pointer (like stack pointer)
–  limit pointer

•  To allocate a record of size n:
–  checks that limit-alloc > n. If not, invokes garbage

collector.
–  Adds n+1 to the alloc pointer, returns old value of

alloc pointer as result.
–  Extra word holds meta-data (e.g., size.)
–  Actually, amortizes the limit check across a bunch of

allocations (just as we amortize stack pointer
adjustment.)

–  Result: 3-5 instructions to allocate a record.

