
Intro to Procedures

CS4410: Spring 2013

Procedures
Let's augment Fish with procedures and

local variables.

type exp = ... |
 Call of var * (exp list)

type stmt = ... | Let of var*exp*stmt

type func = { name : var, args : var list,
 body : stmt }

type prog = func list

Call & Return
Each procedure is just a Fish program

beginning with a label (the function
name).

The MIPS procedure calling convention is:
•  To compile a call f(a,b,c,d),

– we move results of a,b,c,d into $4-$7
–  jal f: this moves the return address into $31

•  To return(e):
– we move result of e into $2
–  jr $31: that is, jump to the return address.

What goes wrong?
•  Oops, what if f calls g and g calls h?

– g needs to save its return address.
–  (a caller-saves register)
– Where do we save it?
– One option: have a variable for each

procedure (e.g., g_return) to hold the value.
•  But what if f calls g and g calls f and f calls

g and …?
– we need a bunch of return addresses for f & g
–  (and also a bunch of locals, arguments, etc.)

Stacks:
•  The trick is to

associate a frame
with each invocation
of a procedure.

•  We store data
belonging to the
invocation (e.g., the
return address) in
the frame.

higher
address

lower
address

frame for
1st invoc.

of f

frame for
1st invoc.

of g

frame for
2nd invoc.

of f

Frame Allocation
•  Frames are allocated

in a last-in-first-out fashion.
•  We use $29 as the stack

pointer (aka $sp).
•  To allocate a frame

with n bytes, we
subtract n from $sp.

higher
address

lower
address

frame for
1st invoc.

of f

frame for
1st invoc.

of g

frame for
2nd invoc.

of f
$sp

$fp

Calling Convention in Detail:
To call f with arguments a1,…,an:
1.  Save caller-saved registers.

•  These are registers that f is free to clobber, so to
preserve their value, you must save them.

•  Registers $8-$15,$24,$25 (aka $t0-t9) are the
general-purpose caller-saved registers.

2.  Move arguments:
•  Push extra arguments onto stack in reverse order.
•  Place 1st 4 args in $a0-a3 ($4-$7).
•  Set aside space for 1st 4 args.

3.  Execute jal f: return address placed in $ra.
4.  Upon return, pop arguments & restore caller-

saved registers.

Function Prologue
At the beginning of a function f:
1.  Allocate memory for a frame by subtracting

the frame's size (say n) from $sp.
•  Space for local var's, return address, frame pointer,

etc.
2.  Save any callee-saved registers:

•  Registers the caller expects to be preserved.
•  Includes $fp, $ra, and $s0-$s7 ($16-$23).
•  Don't need to save a register you don't clobber…

3.  Set new frame pointer to $sp + n - 4.

During a Function:
•  Variables access relative to frame pointer:

– must keep track of each var's offset
•  Temporary values can be pushed on the

stack and then popped back off.
– Push(r): subu $sp,$sp,4; sw r,0($sp)
– Pop(r): lw r,0($sp); addu $sp,$sp,4
– e.g., when compiling e1+e2, we can evaluate

e1, push it on the stack, evaluate e2, pop e1's
value and then add the results.

Function Epilogue
At a return:
1.  Place the result in $v0 ($r2).
2.  Restore the callee-saved registers saved in

the prologue (including caller's frame pointer
and the return address.)

3.  Pop the stack frame by adding the frame size
(n) to $sp.

4.  Return by jumping to the return address.

Example (from SPIM docs):
int fact(int n) {
 if (n < 1) return 1;
 else return n * fact(n-1);
}

int main() {
 return fact(10)+42;
}

Main
main: subu $sp,$sp,32 # allocate frame
 sw $ra,20($sp) # save caller return address
 sw $fp,16($sp) # save caller frame pointer
 addiu $fp,$sp,28 # set up new frame pointer
 li $a0,10 # set up argument (10)
 jal fact # call fact
 addi $v0,v0,42 # add 42 to result
 lw $ra,20($sp) # restore return address
 lw $fp,16($sp) # restore frame pointer
 addiu $sp,$sp,32 # pop frame
 jr $ra # return to caller

Fact
fact: subu $sp,$sp,32 # allocate frame
 sw $ra,20($sp) # save caller return address
 sw $fp,16($sp) # save caller frame pointer
 addiu $fp,$sp,28 # set up new frame pointer
 bgtz $a0,L2 # if n > 0 goto L2
 li $v0,1 # set return value to 1
 j L1 # goto epilogue

L2: sw $a0,0($fp) # save n
 addi $a0,$a0,-1 # subtract 1 from n
 jal fact # call fact(n-1)
 lw $v1,0($fp) # load n
 mul $v0,$v0,$v1 # calculcate n*fact(n-1)

L1: lw $ra,20($sp) # restore ra
 lw $fp,16($sp) # restore frame pointer
 addiu $sp,$sp,32 # pop frame from stack
 jr $ra # return

Fact Animation:
0x100
0x0FC
0x0F8
0x0F4
0x0F0
0x0EC
0x0E8
0x0E4
0x0E0
0x0DC
0x0D8
0x0D4
0x0D0
0x0CC
0x0C8
0x0C4

main's sp
main's fp

Fact Animation:
0x100
0x0FC saved argument 10
0x0F8 (filler to align to multiple of 8)
0x0F4 main's return address
0x0F0 main's frame pointer
0x0EC (space for $a3)
0x0E8 (space for $a2)
0x0E4 (space for $a1)
0x0E0 (space for $a0)
0x0DC
0x0D8
0x0D4
0x0D0
0x0CC
0x0C8
0x0C4

fact(10)'s sp

fact(10)'s fp

fact(10)

Fact Animation:
0x100
0x0FC saved argument 10
0x0F8 (filler to align to multiple of 8)
0x0F4 main's return address
0x0F0 main's frame pointer
0x0EC (space for $a3)
0x0E8 (space for $a2)
0x0E4 (space for $a1)
0x0E0 (space for $a0)
0x0DC saved argument 9
0x0D8 (filller to align to multiple of 8)
0x0D4 fact(10)'s return address
0x0D0 fact(10)'s frame pointer
0x0CC (space for $a3)
0x0C8 (space for $a2)
0x0C4 (space for $a1)

fact(9)'s sp (0x0C0)

fact(9)'s fp

fact(10)

fact(9)

Notes:
•  Frame pointers aren't necessary:

– can calculate variable offsets relative to $sp
–  this works until values of unknown size are

allocated on the stack (e.g., via alloca.)
–  furthermore, debuggers like having saved

frame pointers around (can crawl up the
stack).

•  There are 2 conventions for the MIPS:
– GCC: uses frame pointer
– SGI: doesn't use frame pointer

Varargs
The convention is designed to support functions in

C such as printf or scanf that take a variable
number of arguments.

In particular, the callee can always write out $a0-

$a3 and then has a contiguous vector of
arguments.

In the case of printf, the 1st argument is a pointer

to a string describing how many other
arguments were pushed on the stack
(hopefully.)

How to Compile a Procedure:
•  Need to generate prologue & epilogue

–  need to know how much space frame occupies.
–  roughly c + 4*v where c is the constant overhead to

save things like the caller's frame pointer, return
address, etc. and v is the number of local variables
(including params.)

•  When translating the body, we need to know the
offset of each variable.
–  Keep an environment that maps variables to offsets.
–  Access variables relative to the frame pointer.

•  When we encounter a return, need to move the
result in to $v0 and jump to the epilogue.
–  Keep epilogue's label in environment as well.

Environments:
type varmap
val empty_varmap : unit -> varmap
val insert_var : varmap -> var -> int ->

 varmap
val lookup_var : varmap -> var -> int

type env = {epilogue : label,
 varmap : varmap}

How to Implement Varmaps?
One option:

type varmap = var -> int

exception NotFound

fun empty_varmap() = fn y => raise NotFound

fun insert_var vm x i =
 fn y => if (y = x) then i else vm y

fun lookup_var vm x = vm x

Other options?
•  Immutable Association list: (var * int) list

– O(1) insert, O(n) lookup, O(1) copy, O(n) del
•  Mutable Association list:

– O(1) insert, O(n) lookup, O(n) copy, O(1) del
•  Hashtable

– O(1) insert, O(1) lookup, O(n) copy, O(1) del
•  Immutable Balanced tree (e.g., red/black):

– O(lg n) insert, O(lg n) lookup, O(1) copy,
O(lg n) del

What about temps?
Option 1 (do this or option 2 or 3 for next project):

–  when evaluating a compound expression x + y:
•  generate code to evaluate x and place it in $v0, then push

$v0 on the stack.
•  generate code to evaluate y and place it in $v0.
•  pop x's value into a temporary register (e.g., $t0).
•  add $t0 and $v0 and put the result in $v0.

–  Bad news: lots of overhead for individual pushes and
pops.

–  Good news: don't have to do any pre- or post-
processing to figure out how many temps you need,
and it's dirt simple.

For Example: 20 instructions
a := (x + y) + (z + w)
lw $v0, <xoff>($fp) # evaluate x
push $v0 # push x's value
lw $v0, <yoff>($fp) # evaluate y
pop $v1 # pop x's value
add $v0,$v1,$v0 # add x and y's values
push $v0 # push value of x+y
lw $v0, <zoff>($fp) # evaluate z
push $v0 # push z's value
lw $v0, <woff>($fp) # evaluate w
pop $v1 # pop z's value
add $v0,$v1,$v0 # add z and w's values
pop $v1 # pop x+y
add $v0,$v1,$v0 # add (x+y) and (z+w)'s values
sw $v0,<aoff>($fp) # store result in a

Option 2:
•  We have to push every time we have a nested

expression.
•  So eliminate nested expressions!

–  Introduce new variables to hold intermediate results
•  For example, a := (x + y) + (z + w)

might be translated to:
t0 := x + y;
t1 := z + w;
a := t0 + t1;

•  Add the temps to the local variables.
–  So we allocate space for temps once in the prologue

and deallocate the space once in the epilogue.

12 instructions (9 memory)
t0 := x + y; lw $v0, <xoff>($fp)
 lw $v1, <yoff>($fp)
 add $v0, $v0, $v1
 sw $v0, <t0off>($fp)
t1 := z + w; lw $v0, <zoff>($fp)
 lw $v1, <woff>($fp)
 add $v0, $v0, $v1
 sw $v0, <t1off>($fp)
a := t0 + t1; lw $v0, <t0off>($fp)
 lw $v1, <t1off>($fp)
 add $v0, $v0, $v1
 sw $v0, <aoff>($fp)

Still…
We're doing a lot of stupid loads and stores.

–  We shouldn't need to load/store from temps!
–  (Nor variables, but we'll deal with them later…)

So another idea is to use registers to hold the
intermediate values instead of variables.
–  For now, assume we have an infinite # of registers.
–  We want to keep a distinction between temps and

variables: variables require loading/storing, but
temps do not.

For example:
t0 := x; # load variable
t1 := y; # load variable
t2 := t0 + t1; # add
t3 := z; # load variable
t4 := w; # load variable
t5 := t3 + t4; # add
t6 := t2 + t5; # add
a := t6; # store result

Then: 8 instructions (5 mem!)
•  Notice that each little statement can be directly

translated to MIPs instructions:
t0 := x; --> lw $t0,<xoff>($fp)
t1 := y; --> lw $t1,<yoff>($fp)
t2 := t0 + t1; --> add $t2,$t0,$t1
t3 := z; --> lw $t3,<zoff>($fp)
t4 := w; --> lw $t4,<woff>($fp)
t5 := t3 + t4; --> add $t5,$t3,$t4
t6 := t2 + t5; --> add $t6,$t2,$t5
a := t6; --> sw $t6,<aoff>($fp)

Recycling:
•  Sometimes we can recycle a temp:

t0 := x; t0 taken
t1 := y; t0,t1 taken
t2 := t0 + t1; t2 taken (t0,t1 free)
t3 := z; t2,t3 taken
t4 := w; t2,t3,t4 taken
t5 := t3 + t4; t2,t5 taken (t3,t4 free)
t6 := t2 + t5; t6 taken (t2,t5 free)
a := t6; (t6 free)

Tracking Available Temps:
Aha! Use a compile-time stack of registers

instead of a run-time stack…
t0 := x; t0
t1 := y; t1,t0
t0 := t0 + t1; t0
t1 := z; t1,t0
t2 := w; t2,t1,t0
t1 := t1 + t2; t1,t0
t1 := t0 + t1; t1
a := t1; <empty>

Option 3:
•  When the compile-time stack overflows:

–  Generate code to "spill" (push) all of the temps.
–  (Can do one subtract on $sp).
–  Reset the compile-time stack to <empty>

•  When the compile-time stack underflows:
–  Generate code to pop all of the temps.
–  (Can do one add on $sp).
–  Reset the compile-time stack to full.

•  So what's really happening is that we're caching
the "hot" end of the run-time stack in registers.
–  Some architectures (e.g., SPARC, Itanium) can do

the spilling/restoring with 1 instruction.

Pros and Cons:
Compared to the previous approach:

– We don't end up pushing/popping when
expressions are small.

– Eliminates a lot of memory traffic and
amortizes the cost of stack adjustment.

But it's still far from optimal:
– Consider a+(b+(c+(d+…+(y+z)…))) versus

(…((((a+b)+c)+d)+ … +y)+z.
–  If order of evaluation doesn't matter, then we

want to pick one that minimizes the depth of
the stack (less likely to overflow.)

