Intro to Procedures

CS4410: Spring 2013

Procedures

Let's augment Fish with procedures and
local variables.

type exp = ... |
Call of var * (exp list)

type stmt = ... | Let of var*exp*stmt

{ name : var, args : var list,
body : stmt }

type func

func list

type prog

Call & Return

Each procedure is just a Fish program
beginning with a label (the function
name).

The MIPS procedure calling convention is:

 To compile a call f(a,b,c,d),
— we move results of a,b,c,d into $4-%7
—jal f: this moves the return address into $31

* To return(e):
— we move result of e into $2
—jr $31: that is, jump to the return address.

What goes wrong?

» Oops, whatif f calls g and g calls h?
— g needs to save its return address.
— (a caller-saves reqister)
— Where do we save it?

— One option: have a variable for each
procedure (e.g., g_return) to hold the value.

 But what if f calls g and g calls f and f calls
gand...?
— we need a bunch of return addresses for f & g
— (and also a bunch of locals, arguments, etc.)

Stacks:

 The trick is to
associate a frame
with each invocation
of a procedure.

* We store data
belonging to the
iInvocation (e.g., the
return address) in
the frame.

frame for
Ist invoc.

of f

frame for
I st invoc.
of g

frame for

2nd 1nvoc.

of f

higher
address

lower
address

Frame Allocation

* Frames are allocated

In a last-in-first-out fashion.
« We use $29 as the stack

pointer (aka $sp).

* To allocate a frame
with n bytes, we
subtract n from $sp.

Stp—

$sp——

frame for
Ist invoc.

of f

frame for
Ist invoc.

of g

frame for

2nd 1nvoc.

of f

higher
address

lower
address

Calling Convention in Detail:

To call £ with arguments a,,...,a,:

1. Save caller-saved registers.

 These are registers that £ is free to clobber, so to
preserve their value, you must save them.

« Registers $8-$15,$24,%25 (aka $t0-19) are the
general-purpose caller-saved registers.

2. Move arguments:

 Push extra arguments onto stack in reverse order.
« Place 1st 4 args in $a0-a3 ($4-%7).
« Set aside space for 1st 4 args.

3. Execute jal £: return address placed in $ra.

4. Upon return, pop arguments & restore caller-
saved registers.

Function Prologue

At the beginning of a function £:
1. Allocate memory for a frame by subtracting
the frame's size (say n) from $sp.

« Space for local var's, return address, frame pointer,
etc.

2. Save any callee-saved registers:

 Registers the caller expects to be preserved.
« Includes $fp, $ra, and $s0-$s7 ($16-$23).
 Don't need to save a register you don't clobber...

3. Set new frame pointer to $sp + n - 4.

During a Function:

* Variables access relative to frame pointer:
— must keep track of each var's offset

 Temporary values can be pushed on the
stack and then popped back off.
— Push(r): subu $sp,$sp,4; sw r,0($sp)
— Pop(r): Iw r,0($sp); addu $sp,$sp,4

—e.g., when compiling e1+e2, we can evaluate
e1, push it on the stack, evaluate €2, pop el's
value and then add the results.

Function Epilogue

At a return:
1. Place the result in $v0 ($r2).

2. Restore the callee-saved registers saved In
the prologue (including caller's frame pointer
and the return address.)

3. Pop the stack frame by adding the frame size
(n) to $sp.

4. Return by jumping to the return address.

Example (from SPIM docs):

int fact(int n) {
i1f (n < 1) return 1;

else return n * fact(n-1);

int main() {
return fact (10)+42;

Main

main: subu $sp,$sp,32 # allocate frame
SW Sra,20($Ssp) # save caller return address
sSwW Sfp,16($sp) # save caller frame pointer
addiu fp,Ssp,28 # set up new frame pointer
1i $a0,10 # set up argument (10)
jal fact # call fact
addi $vO0,v0,42 # add 42 to result
lw Sra,20($sp) # restore return address
lw $Sfp,16($sp) # restore frame pointer
addiu Ssp,Ssp,32 # pop frame
jr Sra # return to caller

Fact

fact: subu $sp,$sp,32 # allocate frame
sSwW $ra,20($sp) # save caller return address
SW $Sfp,16($sp) # save caller frame pointer
addiu $£fp, $sp, 28 # set up new frame pointer
bgtz $a0,L2 # if n > 0 goto L2
1i $vo0,1 # set return value to 1
j L1 # goto epilogue
L2: SW $a0,0 ($£fp) # save n
addi $a0,$a0,-1 # subtract 1 from n
jal fact # call fact(n-1)
lw $vl,0(S£fp) # load n
mul $v0,$v0,$Svl # calculcate n*fact(n-1)
Ll: lw $Sra,20(Ssp) # restore ra
1w $Sfp,16(Ssp) # restore frame pointer
addiu sp,Ssp, 32 # pop frame from stack
jr Sra # return

Fact Animation:

main's fp

0x100 —
0xOFC
0xO0F8
0xO0F4
0xO0F0
0xO0EC
0xO0ES8
0x0E4
0x0EO
0x0DC
0x0D8
0x0D4
0x0D0
0x0CC
0x0C8
0x0C4

main's sp

Fact Animation:

fact(10) <

0x100

0x0FC

saved argument 10

0xO0F8

0x0F4

main's return address

0xO0F0

main's frame pointer

<« fact(10)'s fp

0x0EC

0xOES8

0x0E4

0x0EO

0x0DC

0x0D8

0x0D4

0x0DO0

0x0CC

0x0C38

0x0C4

«— fact(10)'s sp

Fact Animation:

fact(10)<

fact(9)

N/

0x100

0x0FC

saved argument 10

0xO0F8

0x0F4

main's return address

0xO0F0

main's frame pointer

A

0x0EC

0xOES8

0x0E4

0x0EO

0x0DC

saved argument 9

0x0D8

0x0D4

fact(10)'s return address

0x0DO0

fact(10)'s frame pointer

<« fact(9)'s p

0x0CC

0x0C38

0x0C4

/ fact(9)'s sp (0x0CO0)

Notes:

* Frame pointers aren't necessary:
— can calculate variable offsets relative to $sp

— this works until values of unknown size are
allocated on the stack (e.g., via alloca.)

— furthermore, debuggers like having saved
frame pointers around (can crawl up the
stack).

* There are 2 conventions for the MIPS:

— GCC: uses frame pointer

— SGI. doesn't use frame pointer

Varargs

The convention is designed to support functions in
C such as printf or scanf that take a variable
number of arguments.

In particular, the callee can always write out $a0-

$a3 and then has a contiguous vector of
arguments.

In the case of printf, the 1st argument is a pointer
to a string describing how many other
arguments were pushed on the stack
(hopefully.)

How to Compile a Procedure:

* Need to generate prologue & epilogue
— need to know how much space frame occupies.

— roughly ¢ + 4*v where c is the constant overhead to
save things like the caller's frame pointer, return
address, etc. and v is the number of local variables
(including params.)

 When translating the body, we need to know the
offset of each variable.
— Keep an environment that maps variables to offsets.
— Access variables relative to the frame pointer.
 When we encounter a return, need to move the
result in to $v0 and jump to the epilogue.
— Keep epilogue's label in environment as well.

Environments:

type wvarmap
val empty varmap : unit -> varmap

val insert var : varmap -> var -> int ->
varmap

val lookup var : varmap -> var -> int

type env = {epilogue : label,
varmap : varmap}

How to Implement Varmaps®?

One option:

type varmap = var -> 1int

exception NotFound

fun empty varmap() = fn y => raise NotFound

fun insert_var vm X 1 =
fn y => 1f (y = x) then i else vm y

fun lookup var vm x = vm X

Other options?

* Immutable Association list: (var * int) list

— O(1) insert, O(n) lookup, O(1) copy, O(n) del
* Mutable Association list:

— O(1) insert, O(n) lookup, O(n) copy, O(1) del
* Hashtable

— O(1) insert, O(1) lookup, O(n) copy, O(1) del
» Immutable Balanced tree (e.g., red/black):

— O(lg n) insert, O(Ig n) lookup, O(1) copy,
O(lg n) del

What about temps?

Option 1 (do this or option 2 or 3 for next project):

— when evaluating a compound expression X + v:

« generate code to evaluate x and place it in $v0, then push
$v0 on the stack.

« generate code to evaluate y and place it in $vO.
« pop Xx's value into a temporary register (e.g., $t0).
« add $t0 and $v0 and put the result in $v0.
— Bad news: lots of overhead for individual pushes and
POpS.
— Good news: don't have to do any pre- or post-

processing to figure out how many temps you need,
and it's dirt simple.

For Example: 20 instructions

a .
1w
push
1w
pop
add
push
1w
push
1w
pop
add
pop
add
SW

Sv0

Sv0, <yoff>(Sfp)
Svl

Sv0,S$vl, $vO

Sv0

Sv0, <zoff>($Sfp)
Sv0

Sv0, <woff> ($Sfp)
Svl

Sv0,$vl, $vO

Svl

Sv0,$vl, $vO
$v0,<aoff> ($fp)

#
#
#
#
#
#
#
#
#
#
#
#
#
#

(x +vy) + (z + w)
Sv0, <xoff>(Sfp)

evaluate x
push x's value
evaluate y
pop x's value
add x and y's values
push value of x+y
evaluate =z
push z's wvalue
evaluate w
pop z's value
add z and w's values
pop x+ty
add (x+y) and (z+w) 's values
store result in a

Option 2:

We have to push every time we have a nested
expression.

So eliminate nested expressions!
— Introduce new variables to hold intermediate results

Forexample,a := (x + y) + (z + w)
might be translated to:

t0 (= x + y;

tl =z + w;

a := t0 + t1;

Add the temps to the local variables.

— So we allocate space for temps once in the prologue
and deallocate the space once in the epilogue.

12 instructions (9 memory)

t0 :

tl :

a .

X + vy,

Z + w;

t0 + t1;

1w $v0, <xoff> ($fp)
1w Svl, <yoff> ($fp)
add $vO0, S$vO0, Svl
sw Sv0, <tOoff>($£fp)
1w $vO0, <zoff> ($fp)
1w Sv1l, <woff> ($fp)
add $vO0, $vO0, Svl
sw $v0, <tloff>($£fp)
1w $v0, <tOoff>(Sfp)
lw Svl, <tloff>(Sfp)
add $v0, $v0, S$vl
sw $v0, <aoff>(Sfp)

Still. ..

We're doing a lot of stupid loads and stores.
— We shouldn't need to load/store from temps!
— (Nor variables, but we'll deal with them later...)

So another idea is to use registers to hold the
intermediate values instead of variables.
— For now, assume we have an infinite # of registers.

— We want to keep a distinction between temps and
variables: variables require loading/storing, but
temps do not.

For example:

t0
tl
t2
t3
t4
t5
t6
a

= X;

I
(.'.
o
+
(.'.
=

I
N

I
(.'.
N
+
(.'.
Ol

= t6;

H H = FH= HF = =

load
load
add
load
load
add
add

variable

variable

variable

variable

store result

Then: 8 instructions (5 mem!)

* Notice that each little statement can be directly
translated to MIPs instructions:

t0 :=
tl

t2 :=

t3
td
t5 :
tée :

a .

X; -=2>
Y —-=>
t0 + t1; -=>
Z; -=>
\ -=2>
t3 + t4; -=>
t2 + t5; -=>
t6; -->

lw $t0,<xoff>(S£fp)
lw S$tl,<yoff>(Sfp)
add S$t2,$t0,stl
lw $t3,<zoff>(S$£fp)
lw $t4,<woff>(S£fp)
add $t5,$t3,5$t4
add $t6,$t2,S$t5
sw $t6,<aocff>(Sfp)

Recycling:

* Sometimes we can recycle a temp:

t0
tl
t2
t3
t4
t5
té

a

t0 taken

t0,tl taken

t2 taken (t0,tl free)
t2,t3 taken

t2,t3,t4 taken

t2,t5 taken (t3,t4d free)
t6 taken (t2,t5 free)
(t6 free)

Tracking Available Temps:

Aha! Use a compile-time stack of registers
instead of a run-time stack...

t0
tl
t0
tl
t2
tl
tl

a

t0

tl,t0

t0

tl,t0
t2,t1,t0
tl,t0

tl
<empty>

Option 3:

* When the compile-time stack overflows:
— Generate code to "spill" (push) all of the temps.
— (Can do one subtract on $sp).
— Reset the compile-time stack to <empty>

* When the compile-time stack underflows:
— Generate code to pop all of the temps.
— (Can do one add on $sp).
— Reset the compile-time stack to full.
« S0 what's really happening is that we're caching
the "hot" end of the run-time stack in registers.

— Some architectures (e.g., SPARC, Itanium) can do
the spilling/restoring with 1 instruction.

Pros and Cons:

Compared to the previous approach:
— We don't end up pushing/popping when
expressions are small.

— Eliminates a lot of memory traffic and
amortizes the cost of stack adjustment.

But it's still far from optimal:
— Consider a+(b+(c+(d+...+(y+z)...))) versus
(...((((a+b)+c)+d)+ ... +y)+z.
— |f order of evaluation doesn't matter, then we

want to pick one that minimizes the depth of
the stack (less likely to overflow.)

