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Procedures 
Let's augment Fish with procedures and 

local variables. 
 
type exp = ... | 
   Call of var * (exp list) 
 
type stmt = ... | Let of var*exp*stmt 
 
type func = { name : var, args : var list, 
            body : stmt } 

 
type prog = func list 



Call & Return 
Each procedure is just a Fish program 

beginning with a label (the function 
name). 

 
The MIPS procedure calling convention is: 
•  To compile a call f(a,b,c,d),  

– we move results of a,b,c,d into $4-$7 
–  jal f:  this moves the return address into $31 

•  To return(e): 
– we move result of e into $2 
–  jr $31:  that is, jump to the return address.   



What goes wrong? 
•  Oops, what if f calls g and g calls h? 

– g needs to save its return address. 
–  (a caller-saves register) 
– Where do we save it? 
– One option:  have a variable for each 

procedure (e.g., g_return) to hold the value. 
•  But what if f calls g and g calls f and f calls 

g and …? 
– we need a bunch of return addresses for f & g 
–  (and also a bunch of locals, arguments, etc.) 



Stacks: 
•  The trick is to 

associate a frame 
with each invocation 
of a procedure. 

•  We store data 
belonging to the 
invocation (e.g., the 
return address) in 
the frame. 
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Frame Allocation 
•  Frames are allocated 

in a last-in-first-out fashion. 
•  We use $29 as the stack 

pointer (aka $sp). 
•  To allocate a frame  

with n bytes, we  
subtract n from $sp. 
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Calling Convention in Detail: 
To call f with arguments a1,…,an: 
1.  Save caller-saved registers.  

•  These are registers that f is free to clobber, so to 
preserve their value, you must save them. 

•  Registers $8-$15,$24,$25 (aka $t0-t9) are the 
general-purpose caller-saved registers. 

2.  Move arguments: 
•  Push extra arguments onto stack in reverse order. 
•  Place 1st 4 args in $a0-a3 ($4-$7).   
•  Set aside space for 1st 4 args.   

3.  Execute jal f:  return address placed in $ra. 
4.  Upon return, pop arguments & restore caller-

saved registers. 



Function Prologue 
At the beginning of a function f: 
1.  Allocate memory for a frame by subtracting 

the frame's size (say n) from $sp. 
•  Space for local var's, return address, frame pointer, 

etc. 
2.  Save any callee-saved registers: 

•  Registers the caller expects to be preserved. 
•  Includes $fp, $ra, and $s0-$s7 ($16-$23). 
•  Don't need to save a register you don't clobber… 

3.  Set new frame pointer to $sp + n - 4. 



During a Function: 
•  Variables access relative to frame pointer: 

– must keep track of each var's offset 
•  Temporary values can be pushed on the 

stack and then popped back off. 
– Push(r):  subu $sp,$sp,4; sw r,0($sp) 
– Pop(r): lw r,0($sp); addu $sp,$sp,4 
– e.g., when compiling e1+e2, we can evaluate 

e1, push it on the stack, evaluate e2, pop e1's 
value and then add the results. 

 



Function Epilogue 
At a return: 
1.  Place the result in $v0 ($r2). 
2.  Restore the callee-saved registers saved in 

the prologue (including caller's frame pointer 
and the return address.) 

3.  Pop the stack frame by adding the frame size 
(n) to $sp. 

4.  Return by jumping to the return address. 



Example (from SPIM docs): 
int fact(int n) { 
  if (n < 1) return 1; 
  else return n * fact(n-1); 
} 
 
int main() { 
  return fact(10)+42; 
} 
 



Main 
main: subu  $sp,$sp,32  # allocate frame 
  sw  $ra,20($sp) # save caller return address 
  sw  $fp,16($sp) # save caller frame pointer 
  addiu $fp,$sp,28  # set up new frame pointer 
  li  $a0,10  # set up argument (10) 
  jal  fact   # call fact 
  addi  $v0,v0,42  # add 42 to result 
  lw  $ra,20($sp) # restore return address 
  lw  $fp,16($sp) # restore frame pointer 
  addiu $sp,$sp,32  # pop frame 
  jr  $ra   # return to caller 



Fact 
fact:  subu  $sp,$sp,32  # allocate frame 
  sw  $ra,20($sp)   # save caller return address 
  sw  $fp,16($sp)  # save caller frame pointer 
  addiu $fp,$sp,28  # set up new frame pointer 
  bgtz  $a0,L2  # if n > 0 goto L2 
  li  $v0,1   # set return value to 1 
  j  L1   # goto epilogue 

L2:  sw  $a0,0($fp)  # save n 
  addi  $a0,$a0,-1  # subtract 1 from n 
  jal  fact   # call fact(n-1) 
  lw  $v1,0($fp)  # load n  
  mul  $v0,$v0,$v1  # calculcate n*fact(n-1) 

L1:  lw  $ra,20($sp)  # restore ra 
  lw  $fp,16($sp)  # restore frame pointer 
  addiu  $sp,$sp,32  # pop frame from stack 
  jr  $ra   # return 
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Notes: 
•  Frame pointers aren't necessary: 

– can calculate variable offsets relative to $sp 
–  this works until values of unknown size are 

allocated on the stack (e.g., via alloca.) 
–  furthermore, debuggers like having saved 

frame pointers around (can crawl up the 
stack). 

•  There are 2 conventions for the MIPS: 
– GCC:  uses frame pointer 
– SGI:  doesn't use frame pointer 



Varargs 
The convention is designed to support functions in 

C such as printf or scanf that take a variable 
number of arguments. 

 
In particular, the callee can always write out $a0-

$a3 and then has a contiguous vector of 
arguments. 

 
In the case of printf, the 1st argument is a pointer 

to a string describing how many other 
arguments were pushed on the stack 
(hopefully.) 



How to Compile a Procedure: 
•  Need to generate prologue & epilogue 

–  need to know how much space frame occupies. 
–  roughly c + 4*v where c is the constant overhead to 

save things like the caller's frame pointer, return 
address, etc. and v is the number of local variables 
(including params.) 

•  When translating the body, we need to know the 
offset of each variable. 
–  Keep an environment that maps variables to offsets. 
–  Access variables relative to the frame pointer. 

•  When we encounter a return, need to move the 
result in to $v0 and jump to the epilogue. 
–  Keep epilogue's label in environment as well. 



Environments: 
type varmap 
val empty_varmap : unit -> varmap 
val insert_var : varmap -> var -> int -> 

    varmap 
val lookup_var : varmap -> var -> int 
 
type env = {epilogue : label, 
         varmap : varmap} 
 



How to Implement Varmaps? 
One option: 
 
type varmap = var -> int 
 
exception NotFound 
 
fun empty_varmap() = fn y => raise NotFound  
 
fun insert_var vm x i =  
  fn y => if (y = x) then i else vm y 
 
fun lookup_var vm x = vm x 



Other options? 
•  Immutable Association list: (var * int) list 

– O(1) insert, O(n) lookup, O(1) copy, O(n) del 
•  Mutable Association list: 

– O(1) insert, O(n) lookup, O(n) copy, O(1) del 
•  Hashtable  

– O(1) insert, O(1) lookup, O(n) copy, O(1) del 
•  Immutable Balanced tree (e.g., red/black): 

– O(lg n) insert, O(lg n) lookup, O(1) copy,  
O(lg n) del 



What about temps? 
Option 1 (do this or option 2 or 3 for next project): 

–  when evaluating a compound expression x + y: 
•  generate code to evaluate x and place it in $v0, then push 

$v0 on the stack. 
•  generate code to evaluate y and place it in $v0. 
•  pop x's value into a temporary register (e.g., $t0). 
•  add $t0 and $v0 and put the result in $v0. 

–  Bad news:  lots of overhead for individual pushes and 
pops. 

–  Good news:  don't have to do any pre- or post-
processing to figure out how many temps you need, 
and it's dirt simple. 



For Example:  20 instructions 
a := (x + y) + (z + w) 
lw    $v0, <xoff>($fp)  #      evaluate x 
push $v0    #      push x's value 
lw   $v0, <yoff>($fp)  #      evaluate y 
pop  $v1    #     pop x's value 
add  $v0,$v1,$v0   #   add x and y's values 
push $v0    #   push value of x+y 
lw   $v0, <zoff>($fp)  #      evaluate z 
push $v0    #      push z's value 
lw   $v0, <woff>($fp)  #   evaluate w 
pop  $v1    #      pop z's value 
add  $v0,$v1,$v0   #   add z and w's values 
pop  $v1    #   pop x+y 
add  $v0,$v1,$v0   # add (x+y) and (z+w)'s values 
sw   $v0,<aoff>($fp)  # store result in a 



Option 2: 
•  We have to push every time we have a nested 

expression. 
•  So eliminate nested expressions! 

–  Introduce new variables to hold intermediate results 
•  For example, a := (x + y) + (z + w) 

might be translated to: 
t0 := x + y; 
t1 := z + w; 
a := t0 + t1; 

•  Add the temps to the local variables. 
–  So we allocate space for temps once in the prologue 

and deallocate the space once in the epilogue. 



12 instructions (9 memory) 
t0 := x + y;   lw $v0, <xoff>($fp) 
     lw $v1, <yoff>($fp) 
     add $v0, $v0, $v1 
     sw $v0, <t0off>($fp) 
t1 := z + w;   lw $v0, <zoff>($fp) 
     lw $v1, <woff>($fp) 
     add $v0, $v0, $v1 
     sw $v0, <t1off>($fp) 
a := t0 + t1;   lw $v0, <t0off>($fp) 
     lw $v1, <t1off>($fp) 
     add $v0, $v0, $v1 
     sw $v0, <aoff>($fp) 



Still… 
We're doing a lot of stupid loads and stores. 

–  We shouldn't need to load/store from temps! 
–  (Nor variables, but we'll deal with them later…) 

So another idea is to use registers to hold the 
intermediate values instead of variables. 
–  For now, assume we have an infinite # of registers. 
–  We want to keep a distinction between temps and 

variables:  variables require loading/storing, but 
temps do not. 

 



For example: 
t0 := x;   # load variable 
t1 := y;   # load variable 
t2 := t0 + t1; # add 
t3 := z;   # load variable 
t4 := w;   # load variable 
t5 := t3 + t4; # add 
t6 := t2 + t5; # add 
a := t6;   # store result 



Then:  8 instructions (5 mem!) 
•  Notice that each little statement can be directly 

translated to MIPs instructions: 
t0 := x;   -->  lw $t0,<xoff>($fp) 
t1 := y;   -->  lw $t1,<yoff>($fp) 
t2 := t0 + t1;  -->  add $t2,$t0,$t1 
t3 := z;   -->  lw $t3,<zoff>($fp) 
t4 := w;   -->  lw $t4,<woff>($fp) 
t5 := t3 + t4;  -->  add $t5,$t3,$t4 
t6 := t2 + t5;  -->  add $t6,$t2,$t5 
a := t6;   -->  sw $t6,<aoff>($fp) 



Recycling: 
•  Sometimes we can recycle a temp: 

t0 := x;   t0 taken 
t1 := y;   t0,t1 taken 
t2 := t0 + t1;  t2 taken (t0,t1 free) 
t3 := z;   t2,t3 taken 
t4 := w;   t2,t3,t4 taken 
t5 := t3 + t4;  t2,t5 taken (t3,t4 free) 
t6 := t2 + t5;  t6 taken (t2,t5 free) 
a := t6;   (t6 free) 



Tracking Available Temps: 
Aha!  Use a compile-time stack of registers 

instead of a run-time stack… 
t0 := x;   t0 
t1 := y;   t1,t0 
t0 := t0 + t1;  t0 
t1 := z;   t1,t0 
t2 := w;   t2,t1,t0 
t1 := t1 + t2;  t1,t0 
t1 := t0 + t1;  t1 
a := t1;   <empty> 



Option 3: 
•  When the compile-time stack overflows: 

–  Generate code to "spill" (push) all of the temps. 
–  (Can do one subtract on $sp). 
–  Reset the compile-time stack to <empty> 

•  When the compile-time stack underflows: 
–  Generate code to pop all of the temps. 
–  (Can do one add on $sp). 
–  Reset the compile-time stack to full. 

•  So what's really happening is that we're caching 
the "hot" end of the run-time stack in registers. 
–  Some architectures (e.g., SPARC, Itanium) can do 

the spilling/restoring with 1 instruction. 
 



Pros and Cons: 
Compared to the previous approach: 

– We don't end up pushing/popping when 
expressions are small. 

– Eliminates a lot of memory traffic and 
amortizes the cost of stack adjustment. 

But it's still far from optimal: 
– Consider a+(b+(c+(d+…+(y+z)…))) versus  

(…((((a+b)+c)+d)+ … +y)+z. 
–  If order of evaluation doesn't matter, then we 

want to pick one that minimizes the depth of 
the stack (less likely to overflow.) 


