CS4410 @ Spring 2013

MIPS

Quick overview of the MIPS instruction set.

We're going to be compiling to MIPS assembly
language.

So you need to know how to program at the
MIPS level.

Helps to have a bit of architecture background
to understand why MIPS assembly is the way
it is.
There's an online manual that describes
things in gory detail.

Assembly vs Machine Code

We write assembly language instructions
e.g., "'addi $rl1l, $r2, 42"

The machine interprets machine code bits
e.g, '101011001100111.."

Your first assignment is to build an interpreter for
a subset of the MIPS machine code.

The assembler takes care of compiling
assembly language to bits for us.

It also provides a few conveniences as we'll see.

Some MIPS Assembly

int sum(int n) {

int s = 0;
for (; n '= 0; n--)
S += n;

sum: ori $2,%$0,S$0
b test

loop: add $2,$2,%4
subi $4,%$4,1

test: bne $4,$0,lo0p
J $31

int main() {
return sum(42) ;

}

main: ori $4,$0,42
move $17,$31

jJal sum
jr S17

An X86 Example (-O0):

_sSum:

h b main:
pushq srbp - o
movq 3rsp, 3rbp pushq orbp .
movl sedi, -4 (%rbp) movqg %rsp, %rbp
movl $0, —12(>rbp) subg $16, %rsp
jmp LBB1 2 movl $42, %eax
LBBl_Jiz 12 (32bp) movl $%eax, %edi
mov - 3rbp) , %eax
movl -4 (% rbp) , secx callq ?sum N
addl oecx, Seax movl Seax, %ecx
movl %eax, -12 (%rbp) movl %ecx, -8(%rbp)
movl -4 (% rbp) , %eax movl -8 (%rbp) , %ecx
subl $1, %eax movl $%ecx, -4 (%rbp)
LBIIanv;' %eax, -4(%rbp) movl -4 (%rbp), %eax
movl -4 (% rbp) , %eax addq §16’ srsp
cmpl $0, %eax popq 3rbp
jneLBBl 1 ret
movl -8 (%rbp) , %eax
popq srbp

ret

An X86 Example (-O3):

_sum:
pushgq %rbp
movq rsp, 3srbp
PopPq srbp
ret
_main:
pushg Srbp
movq rsp, 3srbp

popq 3rbp
ret

Reduced Instruction Set Computer (RISC)

Load/store architecture
All operands are either registers or constants

All instructions same size (4 bytes) and
aligned on 4-byte boundary.
Simple, orthogonal instructions
e.g., ho subi, (addi and negate value)
All registers (except $0) can be used in all

instructions.
Reading $0 always returns the value 0

Easy to make fast: pipeline, superscalar

MIPS Datapath

. Instruction Decode Execute ;
- Memory Access Write Back
Instruction Fetch Register Fetch Address Calc. ry
IF ID EX MEM WB
Next PC
- > m 4
> Next SEQ PC Next SEQ PC
o
RS1
pr—
RS2 Brla(mch
Register Zero? |2ken
Fle
—i

=<

—_ = m
I E N f [4 > E
o VAN = = E
el PC - S o %

: ALU
¢ ES|gncI Imm .;
xten c ol
X
| |~ |—’
> > >

WB Data

Complex Instruction Set Computer (CISC)

Instructions can operate on memory values
e.g., add [eax],ebx

Complex, multi-cycle instructions
e.g., string-copy, call

Many ways to do the same thing
e.g., add eax,1 inc eax, sub eax,-1

Instructions are variable-length (1-10 bytes)

Registers are not orthogonal
Hard to make fast...(but they do anyway)

Tradeoffs

Xx86 (as opposed to MIPS):
Lots of existing software.
Harder to decode (i.e., parse).
Harder to assemble/compile to.
Code can be more compact (3 bytes on avg.)
|-cache is more effective...

Easier to add new instructions.
Todays implementations have the best of both:

Intel & AMD chips suck in x86 instructions and
compile them to “micro-ops”, caching the results.

Core execution engine more like MIPS.

MIPS instructions:

Arithmetic & logical instructions:
add, sub, and, or, sll, srl, sra, ...
Register and immediate forms:
add 9%rd, $rs, ot
addi $rd, $rs, <16-bit-immed>
Any registers (except $0 returns 0)

Also a distinction between overflow and no-
overflow (we’ll ignore for now.)

add $#d, $rs, $rt

Opl:6| rs:5 | rt:5 rd:5 0:5 | Op2:6
addi $rt, $rs, <imm>
Opl:6| rs:5 | rt:5 1imm:16

Movement:

Assembler provides pseudo-instructions:
move $rd, $rs — or $rd, $rs, $0
1i $rd, <32-bit-imm> —

1lui $rd, <hi-16-bits>
ori $rad, $rd, <lo-16-bits>

MIPS instructions:

Multiply and Divide
Use two special registers 1o, hi

i.e., mul $3, $5 produces a 64-bit value which
IS placed in hi and lo.

Instructions to move values from lo/hi to the
general purpose registers $r and back.

Assembler provides pseudo-instructions:
mulo $2, $3, $5 expands into:

mul $3,$5

mflo $2

MIPS instructions:

Load/store
1w $rd, <imm>($rs) ; rd := Mem[rs+imm]
sw $rs, <imm>(%rt) ; Mem[rt+imm] :=rs
Traps (fails) if rs+imm is not word-aligned.
Other instructions to load bytes and half-
words.

Conditional Branching:

beq $rs,5rt,<imm16>
if $rs == $rt then pc := pc + imm16

bne $rs,%rt, <imm16>
b <imm16> == beq $0,%0, <imm16>
bgez $rs, <imm16>

if $rs >= 0 then pc := pc + imm16
Also bgtz, blez, bltz
Pseudo instructions:

b<comp> $rs,9rt, <imm16>

In Practice:

Assembler lets us use symbolic labels
instead of having to calculate the offsets.

Just as in BASIC, you put a label on an
instruction and then can branch to it:

LOOP:. ...
bne $3, $2, LOOP
Assembler figures out actual offsets.

Set less than:

slt $rd, $rs, $rt ; rd := (rs <rt)
slt $rd, $rs, <imm16>

Additionally: sltu, sltiu

Assembler provides pseudo-instructions

for seq, sge, sgeu, sgt, sne, ...

Unconditional Jumps:

j <imm26> ; pc:=(Imm26 << 2)
jr $rs . pc = $rs
jal <imm26> ; $31 :=pc+4 ;

pc = (Imm26 << 2)
Also, jalr and a few others.

Again, in practice, we use labels:
fact:. ...

malin.
jJal fact

Other Kinds of Instructions:

Floating-point (separate registers $fi)
Traps
OS-trickery

Our Example:

int sum(int n) { sum: ori 8$2,$0,S$0
int s = 0; b test
for (; n '= 0; n--)) loop: add $2,$2,s4
s += n; subi $4,%$4,1
} test: bne $4,$0,lo0p
J $31
int main() { main: ori $4,$0,42
return sum(42) ; move $17,$31
} jJjal sum
jr S17

sum(int n) {
int s
for (; n
s += n;

'= 0; n--) loop:
subi

test:

$2,$0,$0
test
$2,82,84
$4,%4,1
$4,50,1lo0p
$31

int main() {
return sum(42) ;

main:

$4,50,42
sum

One Final Point

We're going to program to the MIPS virtual
machine which is provided by the
assembler.

lets us use macro instructions, labels, etc.

(but we must leave a scratch register for the
assembler to do its work.)

lets us ignore delay slots.

(but then we pay the price of not scheduling
those slots.)

